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Recovering low-rank structures via eigenvector perturbation analysis is
a common problem in statistical machine learning, such as in factor analy-
sis, community detection, ranking, matrix completion, among others. While
a large variety of bounds are available for average errors between empirical
and population statistics of eigenvectors, few results are tight for entrywise
analyses, which are critical for a number of problems such as community
detection.

This paper investigates entrywise behaviors of eigenvectors for a large
class of random matrices whose expectations are low rank, which helps settle
the conjecture in Abbe, Bandeira and Hall (2014) that the spectral algorithm
achieves exact recovery in the stochastic block model without any trimming
or cleaning steps. The key is a first-order approximation of eigenvectors under
the �∞ norm:

uk ≈ Au∗
k

λ∗
k

,

where {uk} and {u∗
k} are eigenvectors of a random matrix A and its expecta-

tion EA, respectively. The fact that the approximation is both tight and linear
in A facilitates sharp comparisons between uk and u∗

k . In particular, it al-
lows for comparing the signs of uk and u∗

k even if ‖uk − u∗
k‖∞ is large. The

results are further extended to perturbations of eigenspaces, yielding new �∞-
type bounds for synchronization (Z2-spiked Wigner model) and noisy matrix
completion.

1. Introduction. Many estimation problems in statistics involve low-rank matrix estima-
tors that are NP-hard to compute, and many of these estimators are solutions to nonconvex
programs. This is partly because of the widespread use of maximum likelihood estimation
(MLE) which, while enjoying good statistical properties, often poses computational chal-
lenges due to nonconvex or discrete constraints inherent in the problems.

Fortunately, computationally efficient algorithms using eigenvectors often afford good per-
formance. The eigenvectors either directly lead to final estimates (Ng, Jordan and Weiss
(2002), Shi and Malik (2000)), or serve as warm starts followed by further refinements
(Candès, Li and Soltanolkotabi (2015), Jain, Netrapalli and Sanghavi (2013), Keshavan,
Montanari and Oh (2010a)). Such algorithms mostly rely on computation of leading eigen-
vectors and matrix-vector multiplications, which are easily implemented.

While various heuristics abound, theoretical understanding remains scarce on the entry-
wise analysis, and on when refinements are needed or can be avoided. In particular, it remains
open in various cases to determine whether a vanilla eigenvector-based method without pre-
processing steps (e.g., trimming of outliers) or without refinement steps (e.g., cleaning with

Received October 2017; revised November 2018.
MSC2010 subject classifications. Primary 62H25; secondary 60B20, 62H12.
Key words and phrases. Eigenvector perturbation, spectral analysis, synchronization, community detection,

matrix completion, low-rank structures, random matrices.

1452

http://www.imstat.org/aos/
https://doi.org/10.1214/19-AOS1854
http://www.imstat.org
mailto:eabbe@princeton.edu
mailto:jqfan@princeton.edu
mailto:kaizheng@princeton.edu
mailto:yiqiaoz@princeton.edu
http://www.ams.org/mathscinet/msc/msc2010.html


ENTRYWISE EIGENVECTOR ANALYSIS 1453

local improvements) enjoys the same optimality results as the MLE (or SDP) does. A crucial
missing step is a sharp entrywise perturbation analysis of eigenvectors. This is party because
the �∞ distance between the eigenvectors of a random matrix and their expected counterparts
may not be the correct quantity to look at; errors per entry can be asymmetrically distributed,
as we shall see in this paper.

This paper investigates entrywise behaviors of eigenvectors and more generally,
eigenspaces, for random matrices with low expected rank using the following approach.
Let A be a random matrix, A∗ = EA, and E = A − A∗ be the “error” of A. In many cases,
A∗ is a symmetric matrix with low rank determined by the structure of a statistical problem,
such as low rank with blocks in community detection.

Consider for now the case of symmetric A, and let uk , respectively, u∗
k , be the eigenvector

corresponding to the k-th largest eigenvalue of A, respectively, A∗. Roughly speaking, if E

is moderate, our first-order approximation reads

uk = Auk

λk

≈ Au∗
k

λ∗
k

= u∗
k + Eu∗

k

λ∗
k

.

While uk is a nonlinear function of A (or equivalently E), the approximation is linear in
A, which greatly facilitates the analysis. Under certain conditions, the maximum entrywise
approximation error ‖uk − Au∗

k/λ
∗
k‖∞ can be much smaller than ‖u∗

k‖∞, allowing us to
study uk through Au∗

k/λ
∗
k . To obtain such results, a key part in our theory is to characterize

concentration properties of A and structural assumptions on its expectation A∗.
This perturbation analysis leads to new and sharp theoretical guarantees. In particular,

we find that for the exact recovery problem in stochastic block model, the vanilla spectral
algorithm (without trimming or cleaning) achieves the information-theoretic limit, and it co-
incides with the MLE estimator whenever the latter succeeds. This settles in particular a
conjecture left open in Abbe, Bandeira and Hall (2014, 2016). Therefore, MLE and SDP do
not have advantage over the spectral method in terms of exact recovery, if the model is cor-
rect. SDP may be preferred in some applications for its robustness and optimality certificates,
but that is beyond the scope of this paper.

1.1. A sample problem. Let us consider a network model that has received widespread
interest in recent years: the stochastic block model (SBM). Suppose that we have a graph with
vertex set {1,2, . . . , n}, and assume for simplicity that n is even. There is an unknown index
set J ∈ {1,2, . . . , n} with |J | = n/2 such that the vertex set is partitioned into two groups J

and J c. Within groups, there is an edge between each pair of vertices with probability p, and
between groups, there is an edge with probability q . Let x ∈ R

n be the group membership
vector with xi = 1 if i ∈ J and xi = −1 otherwise. The goal is to recover x from the observed
edges of the graph.

This random-graph-based model was first proposed for social relationship networks
(Holland et al. (1983)), and many more realistic models have been developed based on the
SBM since then. Given its fundamental importance, there are a plurality of papers addressing
statistical properties and algorithmic efficiencies; see Abbe (2017) for a survey.

Under the regime p = a logn
n

, q = b logn
n

where a > b > 0 are constants, Abbe, Bandeira
and Hall (2016) and Mossel, Neeman and Sly (2014) proved that exact recovery is possible if
and only if

√
a − √

b >
√

2, and that the limit can be achieved by efficient algorithms. They
used two-round procedures (with a clean-up phase) to achieve the threshold. Semidefinite re-
laxations are also known to achieve the threshold (Abbe, Bandeira and Hall (2016), Agarwal
et al. (2017), Bandeira (2018), Hajek, Wu and Xu (2016)), as well as spectral methods with
local refinements (Abbe and Sandon (2015), Gao et al. (2017), Yun and Proutiere (2016)).
We will discuss more in Sections 1.5 and 3.2.
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While existing works tackle exact recovery rather successfully, some fundamental ques-
tions remain unsolved: how do the simple statistics—top eigenvectors of the adjacency
matrix—behave? Are they informative enough to reveal the group structure under very chal-
lenging regimes?

To study these questions, we start with the eigenvectors of A∗ = EA. By definition, Aij is
a Bernoulli random variable, and P(Aij = 1) depends on whenever i and j are from the same
groups. The expectation EA must be a block matrix of the following form:

EA = logn

n

(
a1 n

2 × n
2

b1 n
2 × n

2
b1 n

2 × n
2

a1 n
2 × n

2

)
,

where 1m×m is the m × m all-one matrix. Here, for convenience, we represent EA as if J =
{1,2, . . . , n/2}. But in general J is unknown, and there is a permutation of indices {1, . . . , n}
in the matrix representation.

From the matrix representation, it is clear that EA has rank 2, with two nonzero eigen-
values λ∗

1 = a+b
2 logn and λ∗

2 = a−b
2 logn. Simple calculations give the corresponding (nor-

malized) eigenvectors: u∗
1 = 1√

n
1n, and (u∗

2)i = 1/
√

n if i ∈ J and (u∗
2)i = −1/

√
n if i ∈ J c.

Since u∗
2 perfectly aligns with the group assignment vector x, we hope to show its counterpart

u2, that is, the second eigenvector of A, also has desirable properties.
The first reassuring fact is that, the top eigenvalues preserve proper ordering: by Weyl’s

inequality, the deviation of any eigenvalue λi (i ∈ [n]) from λ∗
i is bounded by ‖A − A∗‖2,

which is O(
√

logn) with high probability; see supplementary materials (Abbe et al. (2019)).
The Davis–Kahan sin� theorem asserts that u1 and u2 are weakly consistent estimators for

u∗
1 and u∗

2, respectively, in the sense that |〈uk,u
∗
k〉| P−→ 1 for k = 1,2. However, this is not

helpful for understanding their entrywise behaviors in the uniform sense, which is crucial
for exact recovery. Nor can it explain the sharp phase transition phenomenon. This makes
entrywise analysis both interesting and challenging.

This problem motivates some simulations about the coordinates of top eigenvectors of A.
In Figure 1, we calculate the rescaled second eigenvector

√
nu2 of one typical realization

A, and make a histogram plot of its coordinates. (Note the first eigenvector is aligned with
the all-one vector 1n, which is uninformative.) The parameters we choose are n = 5000,

FIG. 1. The second eigenvector and its first-order approximation in SBM. Left: The histogram of coordinates
of

√
nu2 computed from a single realization of adjacency matrix A, where n is 5000, a is 4.5 and b is 0.25.

Exact recovery is expected as coordinates form two well-separated clusters. Right: Boxplots showing three dif-
ferent distance/errors (up to sign) over 100 realizations: (i)

√
n‖u2 − u∗

2‖∞, (ii)
√

n‖Au∗
2/λ∗

2 − u∗
2‖∞, (iii)√

n‖u2 − Au∗
2/λ∗

2‖∞. Au∗
2/λ∗

2 is a good approximation of u2 under �∞ norm even though ‖u2 − u∗
2‖∞ may be

large.
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a = 4.5 and b = 0.25, for which exact recovery is possible with high probability. Visibly, the
coordinates of

√
nu2 form two clusters around ±1 which, marked by red dashed lines, are

coordinates of
√

nu∗
2. Intuitively, the signs of the former should suffice to reveal the group

structure.
To probe into the second eigenvector u2, we expand the perturbation u2 − u∗

2 as follows:

(1.1) u2 − u∗
2 =

(
Au∗

2

λ∗
2

− u∗
2

)
+

(
u2 − Au∗

2

λ∗
2

)
.

The first term is exactly Eu∗
2/λ

∗
2, which is linear in E and can be viewed as the first-order

perturbation. The second term is nonlinear in general, representing the error of higher order.
Figure 1 shows boxplots of the infinity norm of rescaled perturbation errors over 100 realiza-
tions (see (i)–(iii)), which illustrates that ‖u2 −Au∗

2/λ
∗
2‖∞ is much smaller than ‖u2 −u∗

2‖∞
and ‖Au∗

2/λ
∗
2 − u∗

2‖∞. Indeed, we will see in Theorem 1.1 that

(1.2)
∥∥u2 − Au∗

2/λ
∗
2
∥∥∞ = oP

(
min

i

∣∣(u∗
2
)
i

∣∣) = oP(1/
√

n).

The result holds “up to sign,” that is, can choose an appropriate sign for the eigenvector u2 as
it is not uniquely defined; see Theorem 1.1 for its precise meaning. Therefore, the entrywise
behavior of u2 − u∗

2 is captured by its first-order term, which is much more amenable to
analysis. This observation will finally lead to sharp eigenvector results in Section 3.2.

We remark that it is also possible to study the top eigenvector (denoted as ū) of the centered

adjacency matrix Ā = A− d̂
n

1n1T
n , where d̂ = ∑

i,j Aij /n is the average degree of all vertices.
The top eigenvector of EĀ is exactly u∗

2, and its empirical counterpart ū is very similar to u2.
In fact, the same reasoning and analysis applies to ū, and one obtains similar plots as Figure 1
(omitted here).

1.2. First-order approximation of eigenvectors. Now we present a simpler version of our
result that justifies the intuitions above. Consider a general symmetric random matrix (more
precisely, this should be a sequence of random matrices with growing dimensions) A ∈ R

n×n

with independent entries on and above its diagonal. Suppose its expectation A∗ = EA ∈ R
n×n

is low rank and has r nonzero eigenvalues. Let us assume that

(a) r = O(1), these r eigenvalues are positive and in descending order (λ∗
1 ≥ λ∗

2 ≥ · · · ≥
λ∗

r > 0), and λ∗
1 � λ∗

r .

Their corresponding eigenvectors are denoted by u∗
1, . . . , u

∗
r ∈ R

n. In other words, we have
spectral decomposition A∗ = ∑r

j=1 λ∗
ju

∗
j (u

∗
j )

T .
We fix k ∈ [r] and study the kth eigenvector uk . Define the eigengap (or spectral gap) as

�∗ = min{λ∗
k−1 −λ∗

k, λ
∗
k −λ∗

k+1}, where we adopt the convention λ∗
0 = +∞ and λ∗

n+1 = −∞.
Assume that

(b) A concentrates under the spectral norm, that is, there is a suitable γ = γn = o(1) such
that ‖A − A∗‖2 ≤ γ�∗ holds with probability 1 − o(1).

A direct yet important implication is that, the fluctuation of λk is much smaller than the
gap �∗, since Weyl’s inequality forces |λk − λ∗

k | ≤ ‖A − A∗‖2. Thus, λk is well separated
from other eigenvalues, including the “bulk” n− r eigenvalues whose magnitudes are at most
‖E‖2.

In addition, we assume that A concentrates in a rowwise sense:

(c) there exists a continuous nondecreasing function ϕ : R+ → R+ that possibly depends
on n, such that ϕ(0) = 0, ϕ(x)/x is nonincreasing, and that for any m ∈ [n], w ∈ R

n, with
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FIG. 2. Typical choices of ϕ for Gaussian noise and Bernoulli noise.

probability 1 − o(n−1),

∣∣(A − A∗)
m·w

∣∣ ≤ �∗‖w‖∞ϕ

( ‖w‖2√
n‖w‖∞

)
.

Here, the notation (A − A∗)m· means the mth row vector of A − A∗.
For the Gaussian case where Aij ∼ N(A∗

ij , σ
2), we can simply choose a linear function

ϕ(x) = c(�∗)−1σ
√

n lognx where c > 0 is some proper constant. The condition then reads

P
(∣∣(A − A∗)

m·w
∣∣ ≤ cσ

√
logn‖w‖2

) = 1 − o
(
n−1)

,

which directly follows from Gaussian tail bound since (A − A∗)m·w ∼ N(0, σ 2‖w‖2
2). The

tail of (A − A∗)m·w is completely determined by ‖w‖2. For Bernoulli variables, we will
use Bernstein-type inequalities to study (A − A∗)m·w, which will inevitably involve both
‖w‖2 and ‖w‖∞. Hence the function ϕ(x) can no longer be linear. It turns out that ϕ(x) ∝
(1 ∨ log(1/x))−1, shown in Figure 2, is a suitable choice. More details can be found in
Section 2.1 and the supplementary material (Abbe et al. (2019)). In both cases, we have
ϕ(1) = O(1) under suitable signal-to-noise conditions.

THEOREM 1.1 (Simpler form of Theorem 2.1). Let k ∈ [r] = {1,2, . . . , r} be fixed. Sup-
pose that Assumptions (a), (b) and (c) hold, and ‖u∗

k‖∞ ≤ γ . Then, with probability 1 − o(1),

(1.3) min
s∈{±1}

∥∥uk − sAu∗
k/λ

∗
k

∥∥∞ = O
((

γ + ϕ(γ )
)∥∥u∗

k

∥∥∞
) = o

(∥∥u∗
k

∥∥∞
)
,

where the notations O(·) and o(·) hide dependencies on ϕ(1).

On the left-hand side, we are allowed to choose a suitable sign s as eigenvectors are not
uniquely defined. The second bound is a consequence of the first one, since γ = o(1) and
limγ→0 ϕ(γ ) = 0 by continuity. We hide dependency on ϕ(1) in the above bound, since ϕ(1)

is bounded by a constant under suitable signal-to-noise ratio. More details can be found in
Theorem 2.1. Therefore, the approximation error ‖uk − Au∗

k/λ
∗
k‖∞ is much smaller than

‖u∗
k‖∞. This rigorously confirms the intuitions in Section 1.1.
Here are some remarks. (1) This theorem enables us to study uk via its linearization

Au∗
k/λ

∗
k , since the approximation error is usually small orderwise. (2) The conditions of the

theorem are fairly mild. For SBM, the theorem is applicable as long as we are in the logn
n

regime (p = a
logn

n
and q = b

logn
n

), regardless of the relative sizes of a and b.

1.3. MLE, spectral algorithm and strong consistency. Once we obtain the approxima-
tion result (1.3), the analysis of entrywise behavior of eigenvectors boils down to that
of Au∗

k/λ
∗
k . In the SBM example, suppose we have (1.2) and with probability 1 − o(1),

sgn(Au∗
2/λ

∗
2) = sgn(u∗

2) and all of the entries of Au∗
2/λ

∗
2 are bounded away from zero by an
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order of 1/
√

n. Then sgn(u2) = sgn(Au∗
2/λ

∗
2) holds with probability 1 − o(1). Here, sgn(·)

denotes the entrywise sign function. The eigenvector-based estimator sgn(u2) for block mem-
bership can be conveniently analyzed through Au∗

2/λ
∗
2, whose entries are just linear combi-

nations of Bernoulli variables.
We remark on a subtlety of our result: our central analysis is a good control of ‖uk −

Au∗
k/λ

∗
k‖∞, not necessarily of ‖uk −u∗

k‖∞. For example, in SBM, an inequality such as ‖u2 −
u∗

2‖∞ < ‖u∗
2‖∞ is not true in general. In Figure 1, the second boxplot shows that

√
n‖u2 −

u∗
2‖∞ may well exceed 1 even if sgn(u2) = sgn(u∗

2). This suggests that the distributions
of the coordinates of the two clusters, though well separated, have asymmetric tails. Our
Theorem 3.3 asserts that it is in vain to seek a good bound for ‖u2 − u∗

2‖∞. Instead, one
should resort to the central quantity Au∗

2/λ
∗
2. This may partly explain why the conjecture has

remained open for long.
The vector Au∗

k/λ
∗
k also plays a pivotal role in the information-theoretic lower bound for

exact recovery in SBM, established in Abbe, Bandeira and Hall (2016). It is necessary to
ensure (Au∗

2/λ
∗
2)i > 0, ∀i ∈ J to hold with probability at least 1/3. Otherwise, by symmetry

and the union bound, with probability at least 1/3 we can find some i ∈ J and i′ ∈ J c with
(Au∗

2/λ
∗
2)i < 0 and (Au∗

2/λ
∗
2)i′ > 0. Elementary calculation shows that in that case, a swap

of group assignments of i and i ′ increases the likelihood. Thus the MLE x̂MLE fails to ex-
actly recover J . With a uniform prior on group assignments, the MLE is equivalent to the
maximum a posteriori estimator, which is optimal for exact recovery. Therefore, we must
eliminate such local refinements to make exact recovery possible. This forms the core argu-
ment in Abbe, Bandeira and Hall (2016). The analysis above suggests an interesting property
about the eigenvector-based estimator x̂eig(A) := sgn(u2).

COROLLARY 1.1. Suppose we are given a > b > 0 such that
√

a �= √
b+√

2, that is, we
exclude the regime where (a, b) is at the boundary of the phase transition. Then, whenever
the MLE is successful, in the sense that x̂MLE = x (up to sign) with probability 1 − o(1), we
have

x̂eig(A) = x̂MLE(A) = x

with probability 1 − o(1). Here, x is the signed indicator of true communities.

This is because the success of x̂MLE hinges on sgn(Au∗
2/λ

∗
2) = sgn(u∗

2), which also guar-
antees x̂eig to work; see Section 3.2 for details. Such phenomenon appears in two applications
considered in this paper.

1.4. An iterative perspective: Power iterations. In the SBM, a key observation is that
‖u2 − Au∗

2/λ
∗
2‖∞ is small. Here, we give some intuitions from an iterative (or algorithmic)

perspective. For simplicity, we will focus on the top eigenvector ū of the centered adjacency

matrix Ā = A − d̂
n

1n1T
n .

It is well known that the top eigenvector of a symmetric matrix can be computed via the
power method. For almost any possible initialization u0, the iterations ut+1 = Āut/‖Āut‖2
converge to ū. Suppose we set u0 = u∗

2, the top eigenvector of EĀ. Although this is not a real
algorithm due to the initialization, it helps us gain theoretical insights.

The first iterate after initialization is u1 = Āu∗
2/‖Āu∗

2‖2. Standard concentration inequal-
ities show that ‖Āu∗

2‖2 ≈ λ̄∗, the top eigenvalue of EĀ. Therefore, u1 is approximately
Āu∗

2/λ̄
∗, which coincides with our first-order approximation. If ut converges to ū sufficiently

fast, u1 can already be good enough. This is similar to the rationale of one-step estimator
(Bickel (1975)): a single, carefully designed iterate may improve the precision of a good
initialization to the desired level. Figure 3 helps illustrate this idea.
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FIG. 3. Error decay in power iterations. The larger and smaller squares represent �∞ balls centered at ū with
radii ‖u0 − ū‖∞ and ‖u1 − ū‖∞, respectively.

The iterative perspective has been explored in recent works (Zhong (2017), Zhong and
Boumal (2018)) where the latter studied both the eigenvector estimator and the MLE of a
nonconvex problem. We are not going to show any proof with iterations or induction. In-
stead, we resort to the Davis–Kahan sin� theorem, combined with a “leave-one-out” tech-
nique. Nevertheless, we believe the iterative perspective is helpful to many other (nonconvex)
problems where a counterpart of Davis–Kahan theorem is absent.

1.5. Related works. The study of eigenvector perturbation dates back to Rayleigh
(Rayleigh (1896)) and Schrödinger (Schrödinger (1926)), in which asymptotic expansions
were obtained. Later, Davis and Kahan (1970) developed elegant nonasymptotic perturbation
bounds for eigenspaces gauged by unitary-invariant norms. These were extended to general
rectangular matrices in Wedin (1972); see Stewart and Sun (1990) for a comprehensive in-
vestigation. Recently, O’Rourke, Vu and Wang (2018) showed significant improvements of
classical, deterministic bounds when the perturbation is random. Norms that depend on the
choice of basis, such as the �∞ norm, are not addressed in these works but are of great interest
in statistics.

There are several recent papers related to the study of entrywise perturbation. Fan, Wang
and Zhong (2017) obtained �∞ eigenvector perturbation bounds. Their results were improved
by Cape, Tang and Priebe (2017), in which the authors focused on 2 → ∞ norm bounds for
eigenspaces. Eldridge, Belkin and Wang (2018) developed a �∞ perturbation bound by ex-
panding the eigenvector perturbation into infinite series. These results are deterministic by
nature, and thus yield suboptimal bounds under challenging stochastic regimes with small
signal-to-noise ratio. By taking advantage of randomness, Koltchinskii and Lounici (2016)
and Koltchinskii and Xia (2016) studied bilinear forms of singular vectors, leading to a
sharp bound on �∞ error that was later extended to tensors (Xia and Zhou (2017)). Zhong
(2017) characterized entrywise behaviors of eigenvectors and explored their connections with
Rayleigh–Schrödinger perturbation theory. Zhong and Boumal (2018) worked on a related
but slighted more complicated problem named “phase synchronization,” and analyzed entry-
wise behaviors of both the spectral estimator and MLE under a near-optimal regime. Chen et
al. (2019) used similar ideas to derive the optimality of both the spectral estimator and MLE
in top-K ranking problem.

There is a rich literature on the three applications in this paper. The synchronization prob-
lems (Cucuringu, Lipman and Singer (2012), Singer (2011)) aim at estimating unknown sig-
nals (usually group elements) from their noisy pairwise measurements, and have recently
attracted much attention in the optimization and statistics community (Bandeira, Boumal and
Singer (2017), Javanmard, Montanari and Ricci-Tersenghi (2016)). They are very relevant
models for cryo-EM, robotics (Rosen et al. (2016), Singer (2011)) and more.

The stochastic block model has been studied extensively in the past decades, with renewed
activity in the recent years (Abbe, Bandeira and Hall (2016), Abbe and Sandon (2015, 2018),
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Amini and Levina (2018), Bordenave, Lelarge and Massoulié (2015), Coja-Oghlan (2006),
Decelle et al. (2011), Guédon and Vershynin (2016), Banks et al. (2016), Krzakala et al.
(2013), Massoulié (2014), Montanari and Sen (2016), Mossel, Neeman and Sly (2018)); see
Abbe (2017) for further references, and in particular McSherry (2001), Vu (2018), Yun and
Proutiere (2014), Lelarge, Massoulié and Xu (2015), Chin, Rao and Vu (2015) and Yun and
Proutiere (2016), which are closest to this paper in terms of regimes and algorithms. The
matrix completion problems (Candès and Plan (2010), Candès and Recht (2009), Keshavan,
Montanari and Oh (2010b)) have seen great impacts in many areas, and new insights and
ideas keep flourishing in recent works (Ge, Lee and Ma (2016), Sun and Luo (2016)). These
lists are only a small fraction of the literature and are far from complete.

We organize our paper as follows: we present our main theorems of eigenvector and
eigenspace perturbation in Section 2, which are rigorous statements of the intuitions
introduced in Section 1. In Section 3, we apply the theorems to three problems: Z2-
synchronization, SBM, and matrix completion from noisy entries. In Section 4, we present
simulation results to verify our theories. Finally, we conclude and discuss future works in
Section 5.

1.6. Notation. We use the notation [n] to refer to {1,2, . . . , n} for n ∈ Z+, and let
R+ = [0,+∞). For any real numbers a, b ∈ R, we denote a ∨ b = max{a, b} and a ∧ b =
min{a, b}. For nonnegative an and bn that depend on n (e.g., problem size), we write an � bn

to mean an ≤ Cbn for some constant C > 0. The notation � is similar, hiding two con-

stants in upper and lower bounds. For any vector x ∈ R
n, we define ‖x‖2 =

√∑n
i=1 x2

i and

‖x‖∞ = maxi |xi |. For any matrix M ∈ R
n×d , Mi· refers to its ith row, which is a row vec-

tor, and M·i refers to its ith column, which is a column vector. The matrix spectral norm is
‖M‖2 = max‖x‖2=1 ‖Mx‖2, the matrix max-norm is ‖M‖max = maxi,j |Mij |, and the matrix
2 → ∞ norm is ‖M‖2→∞ = max‖x‖2=1 ‖Mx‖∞ = maxi ‖Mi·‖2. The set of n × r matrices
with orthonormal columns is denoted by On×r .

2. Main results.

2.1. Random matrix ensembles. Suppose A ∈ R
n×n is a symmetric random matrix and

A∗ = EA. Denote the eigenvalues of A by λ1 ≥ · · · ≥ λn, and their associated eigenvectors
by {uj }nj=1. Analogously for A∗, the eigenvalues and eigenvectors are λ∗

1 ≥ · · · ≥ λ∗
n and

{u∗
j }nj=1, respectively. We also adopt the convention λ0 = λ∗

0 = +∞ and λn+1 = λ∗
n+1 = −∞.

We allow some eigenvalues to be identical. Thus, some eigenvectors may be defined up to
rotations.

Suppose r and s are two integers satisfying 1 ≤ r ≤ n and 0 ≤ s ≤ n − r . Let U =
(us+1, . . . , us+r ) ∈ R

n×r , U∗ = (u∗
s+1, . . . , u

∗
s+r ) ∈ R

n×r and 	∗ = diag(λ∗
s+1, . . . , λ

∗
s+r ) ∈

R
r×r . We are interested in the eigenspace span(U). To this end, we assume there is an eigen-

gap �∗ separating {λ∗
s+j }rj=1 from 0 and other eigenvalues (see Figure 4), that is,

(2.1) �∗ = (
λ∗

s − λ∗
s+1

) ∧ (
λ∗

s+r − λ∗
s+r+1

) ∧ min
i∈[r]

∣∣λ∗
s+i

∣∣.
Compared with the usual eigengap (Davis and Kahan (1970)), our definition also takes the
distances between eigenvalues and 0 into consideration. When A∗ is rank-deficient, 0 is itself
an eigenvalue.

We define κ := maxi∈[r] |λ∗
s+i |/�∗, which is always bounded from below by 1. In our

applications, κ is usually bounded from above by a constant, that is, �∗ is comparable to
{λ∗

s+j }rj=1 in terms of magnitude.
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FIG. 4. Eigengap �∗.

The concentration property is characterized by a parameter γ ≥ 0, and a function ϕ(x) :
R+ → R+. Roughly speaking, γ −1 resembles the signal-to-noise ratio, and γ typically van-
ishes as n tends to infinity. ϕ(x) is chosen according to the distribution of A, and is typically
bounded by a constant for x ∈ [0,1]. In particular, we take ϕ(x) ∝ x for Gaussian matri-
ces and ϕ(x) ∝ (1 ∨ log(1/x))−1 for Bernoulli matrices; see Figure 2. In addition, we will
also make a mild structural assumption: ‖A∗‖2→∞ ≤ γ�∗. In many applications involving
low-rank structure, the eigenvalues of interest (and thus �∗) typically scale with n, whereas
‖A∗‖2→∞ scales with

√
n.

Based on the quantities above, we make the following assumptions.

(A1) (Incoherence) ‖A∗‖2→∞ ≤ γ�∗.
(A2) (Row and columnwise independence) For any m ∈ [n], the entries in the mth row

and column of A are independent with others, that is, {Aij : i = m or j = m} are independent
of {Aij : i �= m,j �= m}.

(A3) (Spectral norm concentration) 32κ max{γ,ϕ(γ )} ≤ 1 and for some δ0 ∈ (0,1),

(2.2) P
(∥∥A − A∗∥∥

2 ≤ γ�∗) ≥ 1 − δ0.

(A4) (Row concentration) Suppose ϕ(x) is continuous and non-decreasing in R+ with
ϕ(0) = 0, ϕ(x)/x is nonincreasing in R+, and δ1 ∈ (0,1). For any m ∈ [n] and W ∈ R

n×r ,

(2.3) P

(∥∥(
A − A∗)

m·W
∥∥

2 ≤ �∗‖W‖2→∞ϕ

( ‖W‖F√
n‖W‖2→∞

))
≥ 1 − δ1

n
.

Here are some remarks and intuitions. Assumption A1 requires that no row of A∗ is dom-
inant. To relate it to the usual concept of incoherence (Candès and Recht (2009), Candès et
al. (2011)), we consider the case A∗ = U∗	∗(U∗)T and let μ(U∗) = n

r
maxi∈[n]

∑
k(U

∗
ik)

2 =
n
r
‖U∗‖2

2→∞. Note that

∥∥U∗	∗(
U∗)T ∥∥

2→∞ ≤ ∥∥U∗∥∥
2→∞

∥∥	∗(
U∗)T ∥∥

2 = ∥∥U∗∥∥
2→∞

∥∥	∗∥∥
2(2.4)

and κ = ‖	∗‖2/�
∗. Then Assumption A1 is satisfied as long as μ(U∗) ≤ nγ 2

rκ2 , which is very
mild.

Assumption A2 is a mild independence assumption, and it encompasses common i.i.d.
noise assumptions.

Assumption A3 requires the spectral norm of the noise matrix A − A∗ to be dominated by
�∗, which can be interpreted as signal strength. In our example of Z2 synchronization (see
Section 3.1), we have �∗ = n, and A − A∗ have i.i.d. N(0, σ 2) entries above the diagonal.
Since ‖A−A∗‖2 � σ

√
n by standard concentration results, we need to require σ = O(γ

√
n).

Assumption A4 is a generalization of the row concentration assumption in Section 1.2,
and the function ϕ is problem-dependent. Here, we explain the role of ϕ using a special
case where r = 1 and A ∈ {0,1}n×n has i.i.d. Bernoulli entries with parameter p = pn on
and above its diagonal. Then �∗ = np,

∑n
i=1 A∗

mi = np. If p is not too small, with high
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probability we have
∑n

i=1 Ami � np, and thus

∣∣(A − A∗)
m·W

∣∣ ≤ ‖W‖∞
n∑

i=1

∣∣(A − A∗)
mi

∣∣
� ‖W‖∞np

= �∗‖W‖∞.

If many entries in W have magnitudes much less than ‖W‖∞, there should be less fluctua-
tion and better concentration. Indeed, Assumption A4 stipulates a tighter bound by a factor
of ϕ(

‖W‖2√
n‖W‖∞ ), where ‖W‖2√

n‖W‖∞ is typically much smaller than 1 in this case. This delicate
concentration bound turns out to be crucial in the analysis of SBM, where A is a sparse binary
matrix.

2.2. Entrywise perturbation of general eigenspaces. In this section, we generalize The-
orem 1.1 from individual eigenvectors to eigenspaces under milder conditions that are char-
acterized by additional parameters. Note that neither U nor U∗ is uniquely defined, and they
can only be determined up to a rotation if the eigenvalues are identical. For this reason, our
result has to involve an r × r orthogonal matrix. Beyond asserting our result holds up to a
suitable rotation, we give an explicit form of such orthogonal matrix.

Let H = UT U∗ ∈ R
r×r , and its singular value decomposition be H = Ū�̄V̄ T , where

Ū , V̄ ∈ R
r×r are orthonormal matrices, and �̄ ∈ R

r×r is a diagonal matrix. Define an or-
thonormal matrix sgn(H) ∈ R

r×r as

(2.5) sgn(H) := Ū V̄ T .

This orthogonal matrix is called the matrix sign function (Gross (2011)). Now we are able to
extend the results in Section 1.2 to general eigenspaces.

THEOREM 2.1. Under Assumptions A1–A4, with probability at least 1 − δ0 − 2δ1 we
have

‖U‖2→∞ �
(
κ + ϕ(1)

)∥∥U∗∥∥
2→∞ + γ

∥∥A∗∥∥
2→∞/�∗,∥∥U sgn(H) − AU∗(

	∗)−1∥∥
2→∞ � κ

(
κ + ϕ(1)

)(
γ + ϕ(γ )

)∥∥U∗∥∥
2→∞

+ γ
∥∥A∗∥∥

2→∞/�∗,∥∥U sgn(H) − U∗∥∥
2→∞ ≤ ∥∥U sgn(H) − AU∗(

	∗)−1∥∥
2→∞

+ ϕ(1)
∥∥U∗∥∥

2→∞.

Here, the notation � only hides absolute constants.

The third inequality is derived by simply writing U sgn(H)−U∗ as a sum of the first-order
error EU∗(	∗)−1 and higher-order error U sgn(H)−AU∗(	∗)−1, and bounding EU∗(	∗)−1

by the row concentration Assumption A4. It will be useful for the noisy matrix completion
problem. It is worth pointing out that Theorem 2.1 is applicable to any eigenvector of A that
is not necessarily the leading one. This is particularly powerful in SBM (Section 3.2) where
we need to analyze the second eigenvector. In addition, we do not need A∗ to have low rank,
although the examples to be presented have such structure. For low-rank A∗, estimation errors
of all the eigenvectors can be well controlled by the following corollary of Theorem 2.1.
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COROLLARY 2.1. Let Assumptions A1–A4 hold, and suppose that A∗ = U∗	∗(U∗)T .
With probability at least 1 − δ0 − 2δ1, we have

‖U‖2→∞ �
(
κ + ϕ(1)

)∥∥U∗∥∥
2→∞,∥∥U sgn(H) − AU∗(

	∗)−1∥∥
2→∞ � κ

(
κ + ϕ(1)

)(
γ + ϕ(γ )

)∥∥U∗∥∥
2→∞,∥∥U sgn(H) − U∗∥∥

2→∞ ≤ ∥∥U sgn(H) − AU∗(
	∗)−1∥∥

2→∞
+ ϕ(1)

∥∥U∗∥∥
2→∞.

Here, the notation � only hides absolute constants.

Corollary 2.1 directly follows from Theorem 2.1, inequality (2.4) and the fact that κ ≥ 1.
Below we use a simple example to illustrate the results above. Let A∗ = λ∗u∗(u∗)T be a rank-
one matrix with λ∗ > 0 and ‖u∗‖2 = 1. Set r = 1 and s = 0. This structure implies �∗ = λ∗
and κ = 1. Suppose A has independent entries on and above the diagonal. Such A is usually
called a spiked Wigner matrix in statistics and random matrix theory.

Let Assumptions A1–A4 hold. The first two inequalities in Corollary 2.1 are simplified as

‖u‖∞ �
(
1 + ϕ(1)

)∥∥u∗∥∥∞,(2.6) ∥∥u − Au∗/λ∗∥∥∞ �
(
γ + ϕ(γ )

)(
1 + ϕ(1)

)∥∥u∗∥∥∞.(2.7)

In many applications, ϕ(1) � 1 and γ = o(1) as n goes to infinity. Then (2.6) controls the
magnitude of the empirical eigenvector u by that of the true eigenvector u∗ in the �∞ sense.
Furthermore, (2.7) has the same form as the main result in Theorem 1.1, stating that Au∗/λ∗
is an �∞ approximation of u with error much smaller than ‖u∗‖∞. Therefore, it is possible
to study u via its linearization Au∗/λ∗, which usually makes analysis much easier.

The regularity conditions in Theorem 1.1 imply our Assumptions A1–A4. In particular,
the condition ‖u∗‖∞ ≤ γ there is equivalent to Assumption A1. As a result, Theorem 1.1
with r = 1 is a special case of Corollary 2.1, and hence of Theorem 2.1. It is not hard to
generalize to r = O(1).

3. Applications.

3.1. Z2-synchronization and spiked Wigner model. The problem of Z2-synchronization
is to recover n unknown labels ±1 from noisy pairwise measurements. This is a proto-
type of more general SO(d)-synchronization problems including phase synchronization and
SO(3)-synchronization, in which one wishes to estimate the phases of signals or rotations of
cameras/molecules, etc. Such problems arise in time synchronization of distributed networks
(Giridhar and Kumar (2006)), calibration of cameras (Tron and Vidal (2009)) and cryo-EM
(Shkolnisky and Singer (2012)).

Consider an unknown signal x ∈ {±1}n. Suppose we have independent measurements of
the form Yij = xixj + σWij , where i < j , Wij ∼ N(0,1) and σ > 0. We can define Wii = 0
and Wij = Wji for simplicity, and write our model into a matrix form as follows:

(3.1) Y = xxT + σW, x ∈ {±1}n.
This is sometimes called the Gaussian Z2-synchronization problem, in contrast to the one
with Z2-noise, also known as the censored block model (Abbe et al. (2014)). This problem
can be further generalized: each entry xj is a unit-modulus complex number eiθj , if the goal
is to estimate unknown angles from pairwise measurements; or each entry xj is an orthogonal
matrix from SO(3), if the goal is to estimate unknown orientations of molecules, cameras,
etc. Here, we focus on the simplest case xj ∈ {±1}.
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Note that in (3.1), both Y and W are symmetric matrices in R
n×n, and the data matrix Y

has a noisy rank-one decomposition. This falls into the spiked Wigner model. The quality
of an estimator x̂ is usually gauged either by its correlation with x, or by the proportion
of labels xi it correctly recovers. It has been shown that the information-theoretic threshold
for a nontrivial correlation is σ = √

n (Deshpande, Abbe and Montanari (2017), Javanmard,
Montanari and Ricci-Tersenghi (2016), Lelarge and Miolane (2019), Perry et al. (2016)), and
the threshold for exact recovery (i.e., x̂ = ±x with probability tending to 1) is σ =

√
n

2 logn

(Bandeira, Boumal and Singer (2017)).
When σ ≤

√
n

(2+ε) logn
(ε > 0 is any constant), it was proved by Bandeira, Boumal and

Singer (2017) that semidefinite programming (SDP) finds the maximum likelihood estimator
and achieves exact recovery. We are going to show that a very simple method, both concep-
tually and computationally, also achieves exact recovery. This method is outlined as follows:

1. Compute the leading eigenvector of Y , denoted by u;
2. Take the estimate x̂ = sgn(u).

Our next theorem asserts that the eigenvector-based method above succeeds in finding x

consistently under σ ≤
√

n
(2+ε) logn

. Thus, under any regime where the MLE achieves ex-

act recovery, our eigenvector estimator x̂ equals the MLE with high probability. This phe-
nomenon also holds for the stochastic block model.

THEOREM 3.1. Suppose σ ≤
√

n
(2+ε) logn

for some ε > 0. With probability 1 − o(1), the

leading eigenvector of Y with unit �2 norm satisfies

√
n min

i∈[n]{sxiui} ≥ 1 −
√

2

2 + ε
+ C√

logn
,

for a suitable s ∈ {±1}, where C > 0 is an absolute constant. As a consequence, our
eigenvector-based method achieves exact recovery.

Note that our approach does not utilize the structural constraints |xi | = 1, ∀i ∈ [n], whereas
such constraints appear in the SDP formulation (Bandeira, Boumal and Singer (2017)). A nat-
ural question is an analysis of both methods with an increased noise level σ . A seminal work
by Javanmard, Montanari and Ricci-Tersenghi (2016) complements our story: the authors
showed via nonrigorous statistical mechanics arguments that when σ is on the order of

√
n,

the SDP-based approach outperforms the eigenvector approach. Nevertheless, with a slightly
larger signal strength, there is no such advantage of the SDP approach.

When σ � √
n, general results for spiked Wigner models (Baik, Ben Arous and Péché

(2005), Benaych-Georges and Nadakuditi (2011), Féral and Péché (2007)) imply that
1
n
|uT x|2 → 1 − σ 2/n for σ/

√
n < 1 − ε with any small constant ε > 0. Deshpande, Abbe

and Montanari (2017) proved that nontrivial correlation with x cannot be obtained by any
estimator if σ/

√
n > 1 + ε.

3.2. Stochastic block model. As is briefly discussed in Section 1, we focus on the sym-
metric SBM with two equally-sized groups. (Though the second eigenvector of A∗ depends
on relative sizes of the groups, our analysis only requires slight modification if groups have
different sizes.) For simplicity, we allow for self-loops (i.e., edges from vertices to them-
selves) in the random graph, and it makes no much difference if they are excluded. In that
case, the expectation of the adjacency matrix changes by a negligible quantity O(logn/n)

under the spectral norm and moreover, Assumptions A1–A4 still hold with the same param-
eters.
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DEFINITION 3.1. Let n be even, 0 ≤ q ≤ p ≤ 1, and J ⊆ [n] with |J | = n/2.
SBM(n,p, q, J ) is the ensemble of n×n symmetric random matrices A = (Aij )i,j∈[n] where
{Aij }1≤i≤j≤n are independent Bernoulli random variables, and

(3.2) P(Aij = 1) =
{
p if i ∈ J, j ∈ J or i ∈ J c, j ∈ J c,

q otherwise.

The community detection problem aims at finding the bipartition (J, J c) given only one
realization of A. Let zi = 1 if i ∈ J and zi = −1 otherwise. We want to find an estimator ẑ

for the unknown labels z ∈ {±1}n. Intuitively, the task is more difficult when p is close to
q , and when the magnitudes of p, q are small. It is impossible, for instance, to produce any
meaningful estimator when p = q . The task is also impossible when p and q are as small as
o(n−2), since A is a zero matrix with high probability.

As is already discussed in Section 1, under the regime p = a logn
n

, q = b logn
n

where a and
b are constants independent of n, it is information theoretically impossible to achieve exact
recovery (the estimate ẑ equals z or −z with probability tending to 1) when

√
a − √

b <
√

2.
In contrast, when

√
a − √

b >
√

2, the goal is efficiently achievable. Further, it is known that
SDP succeeds down to the threshold. Under the regime p = a

n
, q = b

n
, it is impossible to

obtain nontrivial correlation (i.e., the correlation between ẑ and z is at least some positive
constant ε, as a random guess gets roughly half the signs correct and almost zero correlation
with z) between any estimator ẑ and z if (a − b)2 < 2(a + b), and when (a − b)2 > 2(a + b),
nontrivial correlation can efficiently be obtained (Massoulié (2014), Mossel, Neeman and Sly
(2018)).

Here, we focus on the regime where p = a
logn

n
, q = b

logn
n

and a > b > 0 are constants.
Note that EA, or equivalently A∗, is a rank-2 matrix. Its nonzero eigenvalues are λ∗

1 = (p +
q)n/2 and λ∗

2 = (p−q)n/2, whose associated eigenvectors are u∗
1 = 1√

n
1n and u∗

2 = 1√
n

1J −
1√
n

1J c . As u∗
2 is aligned with z and perfectly reveals the desired partition, the following

vanilla spectral method is a natural candidate:

1. Compute u2, the eigenvector of A corresponding to its second largest eigenvalue λ2;
2. Set ẑ = sgn(u2).

It has been empirically observed and conjectured that as soon as the signal strength
√

a −√
b

exceed the information threshold
√

2, the vanilla spectral method achieves exact recovery
(Abbe, Bandeira and Hall (2014)). Moreover, in regimes where exact recovery is impossi-
ble, Zhang and Zhou (2016) established the following minimax result. It has not been clear
whether the vanilla spectral method achieves the minimax misclassification rate.

If we define the misclassification rate as

(3.3) r(ẑ, z) = min
s∈{±1}n

−1
n∑

i=1

1{ẑi �=szi},

then the results of Zhang and Zhou (2016) imply that

(3.4) inf
ẑ

supEr(ẑ, z) = exp
(
−(

1 + o(1)
) · (√a − √

b)2 logn

2

)
,

where the supremum is taken over approximately equal-sized SBM with 2-blocks. Note that
this parameter space is slightly different from our Definition 3.1, but as explained before,
we can modify our proofs accordingly such that the same conclusions still hold. See the
supplementary materials (Abbe et al. (2019)) for further explanation of (3.4).

Here, we prove that the vanilla spectral method indeed succeeds in exact recovery when-
ever it is information-theoretic possible, which resolves the conjecture of (Abbe, Bandeira
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and Hall (2014)); and if it is not, the vanilla spectral method achieves the optimal misclassi-
fication rate.

THEOREM 3.2.

(i) If
√

a − √
b >

√
2, then there exists η = η(a, b) > 0 and s ∈ {±1} such that with

probability 1 − o(1),
√

n min
i∈[n] szi(u2)i ≥ η.

As a consequence, our spectral method achieves exact recovery.
(ii) Let the misclassification rate r(ẑ, z) be defined in (3.3). If

√
a − √

b ∈ (0,
√

2], then

Er(ẑ, z) ≤ n−(1+o(1))(
√

a−√
b)2/2.

This upper bound matches the minimax lower bound.

The first part implies that, under the regime where the MLE achieves exact recovery, our
eigenvector estimator is exactly the MLE with high probability. This proves Corollary 1.1 in
the Introduction. Moreover, the second part asserts that for more challenging regime where
exact recovery is impossible, the eigenvector estimator has the optimal misclassification rate.

Before further explaining our results, we give a brief review of previous endeavors and
an analysis of difficulties. Various papers have investigated this algorithm and its variants
such as McSherry (2001), Coja-Oghlan (2006), Rohe, Chatterjee and Yu (2011), Sussman et
al. (2012), Vu (2018), Lelarge, Massoulié and Xu (2015), Yun and Proutiere (2014, 2016),
Lei and Rinaldo (2015), Gao et al. (2017) among others. However, it is not known if the
simple algorithm above achieves exact recovery down to the information-theoretic thresh-
old, nor the optimal misclassification rate studied in Zhang and Zhou (2016) while below
the threshold. An important reason for the unsettlement of this question is that the entrywise
behavior of u2 is not fully understood. In particular, people have been focusing on the �∞
error ‖u2 − u∗

2‖∞, which may well exceed ‖u∗
2‖∞ (see Theorem 3.3), suggesting that the

algorithm may potentially fail by rounding on the incorrect sign. This is not necessarily the
case—as errors could have larger magnitudes on the “good side” of the signal range—but
‖u2 − u∗

2‖∞ cannot capture this. To avoid suboptimal theoretical results, multiround algo-
rithms are popular choices in the literature (Coja-Oghlan (2006), Vu (2018)), which typically
have a preprocessing step of trimming and/or a postprocessing step refining the initial solu-
tion. Yun and Proutiere (2014) and Yun and Proutiere (2016) showed that such variants can
achieve the exact recovery threshold. We are going to prove that the vanilla spectral algorithm
alone achieves the threshold and the minimax lower-bound in one shot.

The key to proving Theorem 3.2 is the following first-order approximation result for u2
under the �∞ norm, which is a consequence of Theorem 2.1.

COROLLARY 3.1. If A ∼ SBM(n, a
logn

n
, b

logn
n

, J ), then with probability 1 − O(n−3)

we have

(3.5) min
s∈{±1}

∥∥u2 − sAu∗
2/λ

∗
2
∥∥∞ ≤ C√

n log logn
,

where C = C(a, b) is some constant depending only on a and b.

The above result holds for any constants a and b, and does not depend on the gap
√

a−√
b.

This fact will be useful for analyzing the misclassification rate. By Corollary 3.1, the �∞
approximation error is negligible, and thus the analysis of vanilla spectral algorithm boils
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down to analyzing the entries in Au∗
2/λ

∗
2, which are just weighted sums of Bernoulli random

variables.
As a by-product, we can show that entrywise analysis through ‖u2 − u∗

2‖∞ is not a good
strategy. As is mentioned earlier, our sharp result for the eigenvector estimator stems from
careful analysis of the linearized version Au∗

2/λ
∗
2 of u2, and the approximation error ‖u2 −

Au∗
2/λ

∗
2‖∞. This is superior to direct analysis of the �∞ perturbation ‖u2 −u∗

2‖∞, as the next
theorem implies that ‖u2 − u∗

2‖∞ > ‖u∗
2‖∞ is possible even if sgn(u2) = sgn(u∗

2).

THEOREM 3.3 (Asymptotic lower bound for eigenvector perturbation). Let J = [n/2]
and A ∼ SBM(n, a

logn
n

, b
logn

n
, J ), where a > b > 0 are constants and n → ∞. For any fixed

η > 1 with η logη − η + 1 < 2/a, with probability 1 − o(1) we have

√
n
∥∥u2 − u∗

2
∥∥∞ ≥ a(η − 1)

a − b
.

Now let us consider the case in Figure 1, where a = 4.5 and b = 0.25. On the one hand,
exact recovery is achievable since

√
a−√

b > 1.62 >
√

2. On the other hand, by taking η = 2
we get h(η) = 2 log 2 − 2 + 1 < 4/9 = 2/a and a(η−1)

a−b
> 1.05. Theorem 3.3 implies

lim
n→∞P

(∥∥u2 − u∗
2
∥∥∞ > 1.05/

√
n
) = 1.

In words, the size of fluctuation is consistently larger than the signal strength. As a result,
by merely looking at ‖u2 − u∗

2‖∞ we cannot expect sharp analysis of the spectral method in
exact recovery.

Finally, we point out that it is not straightforward to develop a simple spectral method to
achieve the information threshold for exact recovery in SBM with K > 2 blocks. Spectral
methods in this scenario (Lei and Rinaldo (2015), Rohe, Chatterjee and Yu (2011)) typically
start with r > 1 eigenvectors {vj }rj=1 ⊆ R

n of some data matrix (e.g., the adjacency matrix or
Laplacian matrix). Then the n rows of V = (v1, . . . , vr) ∈ R

n×r are treated as embeddings of
the n nodes into R

r , from which one infers block memberships using clustering techniques.
In our vanilla spectral method for 2 blocks, we only look at a single eigenvector and return
the blocks based on signs of coordinates. This method always returns the same memberships
(up to a global swap), even though the eigenvector is identifiable only up to a sign. When
K > 2 and r > 1, due to possible multiplicity of eigenvalues, the embeddings of n nodes may
be identifiable only up to an orthonormal transform in R

r . Such ambiguity causes trouble
for effective clustering, although we can still study the embedding using Theorem 2.1. Due
to space constraints, we put a brief discussion in the supplementary material (Abbe et al.
(2019)).

3.3. Matrix completion from noisy entries. Matrix completion based on partial obser-
vations has wide applications including collaborative filtering, system identification, global
positioning, remote sensing, etc.; see Candès and Plan (2010). A popular version is the “Net-
flix problem,” where one is given a incomplete table of customer ratings and wants to predict
the missing entries. This could be useful for targeted recommendation in the future. Since it
has been intensively studied in the past decade, our brief review below is by no means exhaus-
tive. Candès and Recht (2009), Candès and Tao (2010) and Gross (2011) focused on exact
recovery of low-rank matrices based on noiseless observations. More realistic models with
noisy observations were studied in Candès and Plan (2010), Keshavan, Montanari and Oh
(2010b), Koltchinskii, Lounici and Tsybakov (2011), Jain, Netrapalli and Sanghavi (2013)
and Chatterjee (2015).

As an application of Theorem 2.1, we are going to study a model similar to the one in
Chatterjee (2015) where both sampling scheme and noise are random. It can be viewed as a
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statistical problem with missing values. Suppose we have an unknown signal matrix M∗ ∈
R

n1×n2 . For each entry of M∗, we have a noisy observation M∗
ij + εij with probability p,

and have no observation otherwise. Let Mobs ∈ R
n1×n2 record our observations, with missing

entries treated as zeros. We consider the rescaled partial observation matrix M = Mobs/p

for simplicity. It is easy to see that M is an unbiased estimator for M∗, and hence a popular
starting point for further analysis. The definition of our model is formalized below.

DEFINITION 3.2. Let M∗ ∈ R
n1×n2 , p ∈ (0,1] and σ ≥ 0. We define NMC(M∗,p,σ )

to be the ensemble of n1 × n2 random matrices M = (Mij )i∈[n1],j∈[n2] with Mij = (M∗
ij +

εij )Iij /p, where {Iij , εij }i∈[n1],j∈[n2] are jointly independent, P(Iij = 1) = p = 1 − P(Iij =
0) and εij ∼ N(0, σ 2).

Let r = rank(M∗) and M∗ = U∗�∗V ∗ be its singular value decomposition (SVD), where
U∗ ∈ On1×r , V ∗ ∈ On2×r , �∗ = diag(σ ∗

1 , . . . , σ ∗
r ) is diagonal, and σ ∗

1 ≥ · · · ≥ σ ∗
r . We are

interested in estimating U∗, V ∗, and M∗. The rank r is assumed to be known, which is
usually easily estimated otherwise; for example, see Keshavan and Oh (2009). We work on
a very simple spectral algorithm that often serves as an initial estimate of M∗ in iterative
methods:

1. Compute the r largest singular values σ1 ≥ · · · ≥ σr of M , and their associated left and
right singular vectors {uj }rj=1 and {vj }rj=1. Define � = diag(σ1, . . . , σr), U = (u1, . . . , ur) ∈
On1×r and V = (v1, . . . , vr) ∈ On2×r .

2. Return U , V and U�V T as estimators for U∗, V ∗ and M∗, respectively.

Note that the matrices in Definition 3.2 are asymmetric in general, due to the rectangular
shape and independent sampling. Hence, Theorem 2.1 is not directly applicable. Neverthe-
less, it could be tailored to fit into our framework by a “symmetric dilation” trick. See the
supplementary materials (Abbe et al. (2019)) for details. Below we present our results.

THEOREM 3.4. Let M ∼ NMC(M∗,p,σ ), n = n1 + n2, κ = σ ∗
1 /σ ∗

r , H = 1
2(UT U∗ +

V T V ∗), and η = (‖U∗‖2→∞ ∨ ‖V ∗‖2→∞). There exist constants C and C′ such that the

followings hold. Suppose p ≥ 6 logn
n

and κ
n(‖M∗‖max+σ)

σ ∗
r

√
logn
np

≤ 1/C. With probability at
least 1 − C/n, we have(‖U‖2→∞ ∨ ‖V ‖2→∞

) ≤ C′κη,(∥∥U sgn(H) − U∗∥∥
2→∞ ∨ ∥∥V sgn(H) − V ∗∥∥

2→∞
)

≤ C′ηκ2 n(‖M∗‖max + σ)

σ ∗
r

√
logn

np
,

∥∥U�V T − M∗∥∥
max ≤ C′η2κ4(∥∥M∗∥∥

max + σ
)√n logn

p
.

To our best knowledge, the results for singular vectors are the first of this type for the
spectral algorithm. Our bound on ‖U�V T − M∗‖max is a by-product of that, and a similar
result was derived by Jain and Netrapalli (2015) using a different approach.

There are two reasons why entrywise type bounds are important. First, in applications such
as recommender systems, it is often desirable to have uniform guarantees for all individuals. If
we directly use existing �2-type inequalities to control entrywise errors, the resulting bounds
can be highly suboptimal in high dimensions. Thus new results are needed. Second, in algo-
rithms based on nonconvex optimization (Jain and Netrapalli (2015), Keshavan, Montanari
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and Oh (2010b), Sun and Luo (2016)), entrywise bounds are critical for the analysis of ini-
tializations and iterations. After the first draft of this paper came out, the entrywise bounds on
singular subspaces were applied by Ma et al. (2017) as a guarantee for spectral initialization.
The relevance of entrywise bounds goes well beyond matrix completion; see Section 1.5.

For the rest of this subsection, we will illustrate the results in Theorem 3.4 by comparing
them with existing ones based on Frobenius norm.

Suppose p > c
logn

n
for some large constant c > 0. By Theorems 1.1 and 1.3 of Keshavan,

Montanari and Oh (2010b), an upper bound for the root-mean squared error (RMSE) gives

1

n

∥∥U�V T − M∗∥∥
F �

(∥∥M∗∥∥
max + σ

)√ r

np
.(3.6)

This implies that the spectral algorithm is rate-optimal when σ � ‖M∗‖max, as Candès and
Plan (2010) established a lower bound 1

n
‖M̂ − M∗‖F � σ

√
r
np

for any estimator M̂ . On the

other hand, our Theorem 3.4 asserts that

∥∥U�V T − M∗∥∥
max �κ,r,η

(∥∥M∗∥∥
max + σ

)√ logn

np
,

where �κ,r,η hides a factor O(κ, r, η
√

n/r) that is not large if certain matrix incoherence
structure is assumed; for example, see Candès and Recht (2009). Note that our result recovers
(3.6) up to a factor of

√
logn, since ‖X‖F ≤ √

n1n2‖X‖max always holds for any X of size
n1 × n2.

We also compare the estimation errors of singular vectors under the Frobenius norm and
the max-norm. On the one hand, the perturbation inequality in Wedin (1972) and spectral
norm concentration yield the following:

max
{∥∥U sgn(H) − U∗∥∥

F ,
∥∥V sgn(H) − V ∗∥∥

F

}
�

√
r
∥∥M − M∗∥∥

2/σ
∗
r

�
√

rn/p(‖M∗‖max + σ)

σ ∗
r

� n‖M∗‖max

σ ∗
r

(
1 + σ

‖M∗‖max

)√
r

np
.

(3.7)

On the other hand, by our entrywise bound in Theorem 3.4 we have
√

nmax
{∥∥U sgn(H) − U∗∥∥

2→∞,
∥∥V sgn(H) − V ∗∥∥

2→∞
}

�κ,r,η

n‖M∗‖max

σ ∗
r

(
1 + σ

‖M∗‖max

)√
r logn

np
,

(3.8)

where, as before, �κ,r,η hides a factor O(κ, r, η
√

n/r) that is usually not large. Therefore,
we also recover (3.7) up to a factor of

√
logn, since ‖X‖F ≤ √

nr‖X‖max holds for any X

of size n × r . Note that our goal is to derive good max-norm bounds rather than improv-
ing Frobenius-norm bounds. The comparisons above demonstrate that our bounds have the
“correct” order. To a certain extent, our results better portrait the behavior of the spectral
algorithm and provide more information than their Frobenius counterparts.

4. Numerical experiments.

4.1. Z2-synchronization. We present our numerical results for the phase transition phe-
nomenon of Z2-synchronization; see Figure 5. Fix q1 = 5001/50 and q2 = 21/10. For each n

in the geometric sequence {2,2q1,2q2
1 , . . . ,2q50

1 } (rounded to the nearest integers), and each
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FIG. 5. Phase transition of Z2-synchronization: the x-axis is the dimension n, and the y-axis is σ . Lighter pixels
refer to higher proportions of runs that x̂ recovers x. The red curve shows the theoretical boundary σ = √

n
2 logn

.

σ in the geometric sequence {q−32
2 , q−31

2 , . . . , q50
2 }, we compare our eigenvector-based esti-

mator x̂ with the unknown signal x, and report the proportion of success (namely x̂ = ±x)
out of 100 independent runs in the heat map.

A theoretical curve σ =
√

n
2 logn

is added onto the heat map. It is clear that below the curve,

the eigenvector approach almost always recovers the signal perfectly; and above the curve, it
fails to recover the signal.

4.2. Stochastic block model. Now we present our simulation results for exact recovery
and misclassification rates of SBM. The phase transition phenomenon of SBM is exhibited
on the left of Figure 6. In this simulation, n is fixed as 300, and parameters a (y-axis) and b

(x-axis) vary from 0 to 30 and 0 to 10, with increments 0.3 and 0.1, respectively. We compare
the labels returned by our eigenvector-based method with the true cluster labels, and report
the the proportion of success (namely ẑ = ±z) out of 100 independent runs. As before, lighter
pixels represent higher chances of success. Two theoretical curves

√
a −√

b = ±√
2 are also

added onto the heat map. Clearly, theoretical predictions match numerical results.

FIG. 6. Vanilla spectral method for SBM. Left: phase transition of exact recovery. The x-axis is b, the y-axis is
a and lighter pixels represent higher chances of success. Two red curves

√
a − √

b = ±√
2 represent theoretical

boundaries for phase transition, matched by numerical results. Right: mean misclassification rates on the loga-
rithmic scale with b = 2. The x-axis is a, varying from 2 to 8, and the y-axis is logEr(ẑ, z)/ logn. No marker:
theoretical curve; circles: n = 5000; crosses: n = 500; squares: n = 100.
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FIG. 7. Rmat and Rvec in matrix completion from noisy entries. The x-axis is n, varying from 500 to 5000 by
500, and the y-axis is the ratio. Crosses and circles stand for Rmat and Rvec, respectively.

The right plot of Figure 6 shows misclassification rates of our eigenvector approach with a
fixed parameter b and a varying parameter a, where a is not large enough to reach the exact
recovery threshold. We fix b = 2, and increase a from 2 to 8 by 0.2 for three different choices
of n from {100,500,5000}. Then we calculate the mean misclassification rates Er(ẑ, z) aver-
aged over 100 independent runs, and plot logEr(ẑ, z)/ logn against varying b. We also add
a theoretical curve (with no markers), whose y-coordinates are −(

√
a − √

b)2/2; see The-
orem 3.2(ii). It is clear that with n tending to infinity, the curves of mean misclassification
rates move closer to the theoretical one.

4.3. Matrix completion from noisy entries. Finally, we come to experiments of matrix
completion from noisy entries. The performance of the spectral algorithm in terms of root-
mean squared error (RMSE) has already been demonstrated in Keshavan, Montanari and
Oh (2010b), among others. In this part, we focus on the comparison between the maximum
entrywise errors and RMSEs, for both the singular vectors and the matrix itself. The set-
tings are mainly adopted from Candès and Plan (2010) and Keshavan, Montanari and Oh
(2010b). Each time we first create a rank-r matrix M∗ ∈ R

n×n using the product MLMT
R ,

where ML,MR ∈ R
n×r have i.i.d. N(0,20/

√
n) entries. Then each entry of M∗ is picked

with probability p and contaminated by random noise drawn from N(0, σ 2), independently
of others. While increasing n from 500 to 5000 by 500, we choose p = 10 logn

n
, fix r = 5 and

σ = 1. All of the data presented in the plot are averaged over 100 independent experiments.
In support of our discussions in Section 3.3, Figure 7 shows that the following two ratios

Rmat = ‖U�V T − M∗‖max

η2
√

logn · ‖U�V T − M∗‖F

,

Rvec = max{‖U sgn(H) − U∗‖2→∞,‖V sgn(H) − V ∗‖2→∞}
η
√

logn · max{‖U sgn(H) − U∗‖F ,‖V sgn(H) − V ∗‖F } ,

approximately remain constant as n grows. Here, the RMSEs n−1‖U�V T − M∗‖F and
n−1/2 max{‖U sgn(H) − U∗‖F ,‖V sgn(H) − V ∗‖F } are scaled by (

√
nη)2√logn and

(
√

nη)
√

logn, respectively. Hence our analysis is sharp, and the perturbations are obviously
delocalized among the entries.

5. Discussions. We have developed first-order approximations for eigenvectors and
eigenspaces with small �∞ errors under random perturbations. These results lead to sharp
guarantees for three statistical problems.
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Several future directions deserve exploration. First, the main perturbation theorems are
currently stated only for symmetric matrices. We think it may be possible to extend the cur-
rent analysis to SVD of general rectangular matrices, which has broader applications such
as principal component analysis. Second, there are many other graph-related matrices be-
yond adjacency matrices, including graph Laplacians and nonbacktracking matrices, which
are important both in theory and in practice. Third, we believe our assumption of row and
columnwise independence can be relaxed to blockwise independence, which is relevant to
cryo-EM and other problems.

Finally, in our examples, the spectral algorithm is strongly consistent if and only if the
MLE is, though the latter can be NP-hard to compute in general. It would be interesting
to see how general this phenomenon is, in view of better understanding the statistical and
computational tradeoffs.
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proofs of all stated results.
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