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ON THE ABSOLUTE CONTINUITY OF RANDOM NODAL VOLUMES
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We study the absolute continuity with respect to the Lebesgue measure
of the distribution of the nodal volume associated with a smooth, nondegen-
erate and stationary Gaussian field (f (x), x ∈Rd ). Under mild conditions,
we prove that in dimension d ≥ 3, the distribution of the nodal volume has an
absolutely continuous component plus a possible singular part. This singular
part is actually unavoidable bearing in mind that some Gaussian processes
have a positive probability to keep a constant sign on some compact domain.
Our strategy mainly consists in proving closed Kac–Rice type formulas al-
lowing one to express the volume of the set {f = 0} as integrals of explicit
functionals of (f,∇f,Hess(f )) and next to deduce that the random nodal
volume belongs to the domain of a suitable Malliavin gradient. The cele-
brated Bouleau–Hirsch criterion then gives conditions ensuring the absolute
continuity.

1. Introduction. Nodal sets, that is, vanishing loci of functions, are central objects in
mathematics. They are, for example, at the very definition of algebraic varieties and, thus,
the main object of algebraic geometry, but they also appear naturally in analysis, differential
geometry and mathematical physics. Understanding the main features of a purely determin-
istic nodal set is generally out of reach, as illustrated by several celebrated open problems,
such as Hilbert’s sixteenth problem [27] or else Yau’s conjecture [28]. In order to capture
the typical behavior of an object, one is thus tempted to randomize which reduces here to
consider nodal sets associated with random functions. Computing expected values, variances
or else fluctuations around the mean of the considered nodal functionals and, in particular,
understanding their asymptotic behavior as the amount of noise goes to infinity is then a true
wealth of information about the possible deterministic behaviors. Besides, randomization of
nodal sets is also strongly motivated by deep physical insights, such as the celebrated Berry’s
conjecture as explained in [7].

Let d ≥ 1 be an integer, K a compact hypercube of Rd and f a smooth function from Rd

to R, which is nondegenerate on K in the sense that

(1) min
x∈K

ηf (x) > 0 where ηf (x) :=
√

f 2(x) + ∥∥∇f (x)
∥∥2

2,

where ‖ · ‖2 denotes the Euclidean norm in Rd . In virtue of the implicit function theorem,
the nodal set {f = 0} ∩ K is then a smooth submanifold of dimension d − 1. One of the
simplest nodal observable is then the nodal volume Hd−1({f = 0} ∩ K), that is, the d − 1
Hausdorff measure of the zero set in K . Undoubtedly, the most important tool in studying
such functionals is the so-called Kac–Rice formula

(2) Hd−1({f = 0} ∩ K
)= lim

ε→0

1

2ε

∫
K

1{|f (x)|<ε}
∥∥∇f (x)

∥∥
2Hd(dx).

When f is a smooth random Gaussian field, one can then naturally take the expectation
in equation (2) and get rather easily the exact value of E[Hd−1({f = 0} ∩ K)]. It is also
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possible to compute higher moments with similar formulas, which in that case can become
more intricate. We refer the reader to the book [6] for a rather exhaustive exposition of Kac–
Rice type methods and applications.

In the framework of random Gaussian fields, another salient tool is the so-called Wiener-
chaotic expansion of the random variable Hd−1({f = 0} ∩ K). This tool has shown recently
its great efficiency in order to establish limit theorems, both central and noncentral, regarding
the random nodal volume. The literature on this topic is growing, and the reader can consult
the following nonexhaustive list of related works [2, 4, 5, 11, 16, 17, 19, 22] as well as
the nice survey [25] for an overview. For each of the aforementioned models, it is indeed
possible to compute explicitly the expansion into Wiener chaoses, which can be seen formally
as the infinite dimensional analogue of the Hermite polynomials. The exact computation of
the chaotic expansions enables one to use the so-called Nualart–Peccati criterion [21] as
well as Peccati–Tudor Theorem [24] which both provide efficient criteria ensuring central
convergence.

In this article we provide a new tool enabling to study the probabilistic properties of the
nodal volume associated with a smooth stationary Gaussian field, that is, a Gaussian field
whose distribution is invariant under translations. Namely, we first exhibit some determinis-
tic closed Kac–Rice type formulas for the nodal volume of nondegenerate functions. Then,
we deduce that, under mild conditions, the random nodal volume associated with a smooth
stationary Gaussian field belongs to the domain of a Malliavin derivative operator. The Malli-
avin derivative has shown to be an efficient tool for proving the existence of densities for the
law of random variables which belong to the domain of the Malliavin gradient. This theory
is mainly due to P. Malliavin, who used it to give an alternative proof of the hypoellipticity
criterion of Hörmander. Aside from this emblematic consequence of Malliavin theory, the
reader is referred to [20] or [18] for many other applications of Malliavin calculus. In this ar-
ticle, we will rely on the so-called Bouleau–Hirsch criterion of existence of densities; see, for
example, [8], p. 42. This criterion is more general, compared to the Malliavin criterion, since
it requires less nondegeneracy; however, it does not give any information on the regularity of
the density.

Let us describe in more details our strategy and the organization of the paper. The first
step, which is the object of the whole Section 2 below, consists in rewriting the deterministic
formula (2) as an explicit closed formula taking the form of an integral of a simple functional
of both the function f and its derivatives. To the best of our knowledge, this above mentioned
closed formula and its variants seem to be new and are of independent interest. Section 2.1 to
2.3 are devoted the one-dimensional framework, whereas Sections 2.4 and 2.5 deal with the
higher dimensional setting. To give to the reader a foretaste of the closed formulas we have
in mind, if f is a smooth, nondegenerate, periodic function from Td = Rd/Zd to R, we will
prove, for example, in Proposition 7 below that

Hd−1({f = 0})= −1

2

∫
Td

(
f (x)�f (x) − ∥∥∇f (x)

∥∥2) |f (x)|
ηf (x)3 dx

−1

2

∫
Td

∣∣f (x)
∣∣(∥∥Hessx(f )

∥∥2 − Tr
(
Hessx(f )

)2) dx

ηf (x)3

−3

4

∫
Td

|f (x)|
η5

f (x)

(
�f (x)

〈∇f (x),∇η2
f (x)

〉− ∇f (x)∗ Hessx f ∇η2
f (x)

)
dx.

Compared to the classical Kac–Rice formula (2), the suppression of the limit in this last
formula, and the fact that each of the three integrands is a Lipschitz functional of the vector
(f,∇f,Hess(f )), will allow us to deploy the rich properties of stability of the domain of
the Malliavin gradients in the case where the field f is random and Gaussian. One can also
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use this formula to provide moment estimates for the nodal volume. Relying on the proof
of Lemma 5, we may infer that Hd−1({f = 0}) has a moment of any order less than d+1

2 ,
provided that the Gaussian process is of class C2(Td,R) and nondegenerate. Interestingly,
this observation complements Theorem 5 from [3] which basically asserts that the nodal
volume of a suitable C∞ Gaussian field has moments of every order. Our formula establishes
that, under the assumption of two derivatives, the integrability of the nodal volume increases
as the dimension increases; see Remark 10.

Section 3, which may be of independent interest, is devoted to establishing mild sufficient
conditions which ensure that the nodal volume Hd−1({f = 0} ∩ K) associated to a smooth
stationary Gaussian field f is not almost surely constant. Namely, we prove the following
result:

THEOREM 1. Let f be a stationary Gaussian field of class C1 in Rd , whose spectral
measure μf admits two moments, and such that ∇f (0) is a nondegenerate Gaussian vector.
We further assume that μf is not of the form δa+δ−a

2 . Let P =∏d
i=1[ai, bi] some hypercube

with ai < bi , then the random variable Hd−1({f = 0} ∩ P) is not almost surely constant.

REMARK 1. The Gaussian process f (x) = G1 cos(x) + G2 sin(x), with G1,G2 being
two independent standard Gaussian random variables, has a number of roots constant equal

to two on any interval of length 2π . Indeed, one has f (x) =
√

G2
1 + G2

2 cos(x + φ) with

cos(φ) = G1√
G2

1 + G2
2

, sin(φ) = G2√
G2

1 + G2
2

.

This explains why one needs to impose that μf 
= δa+δ−a

2 in the assumptions of the previous
theorem.

Finally, Section 4 is devoted to the precise study of the absolute continuity of the random
nodal volume. In Section 4.1 we give a self-contained introduction to Malliavin calculus and
Malliavin derivatives, and in Section 4.2 we state and prove our main results concerning
absolute continuity. We establish that the nodal volume of a suitable Gaussian field is in
the domain of the Malliavin derivative (see conclusion (i) below) and that its distribution is
not singular with respect to the Lebesgue measure. For more precise explanations about the
domain D1,p of the Malliavin derivative, which appears in the statement (i) below, we refer
the reader to Section 4.1.

THEOREM 2. Let d ≥ 3 be an integer and (f (x))x∈Td be a periodic and stationary
Gaussian field which is of class C2(Td,R), with the convention that E[f (0)2] = 1. Let us
assume that the Gaussian vector ∇f (0) has a density. Then, we have the two conclusions:

(i) Hd−1({f = 0}) ∈ D1, d+1
3 −,

(ii) the distribution of Hd−1({f = 0}) has a nonzero component which is absolutely con-
tinuous with respect to the Lebesgue measure.

The previous statement also holds true without periodicity conditions on the Gaussian field
f , as illustrated by our next main result. Let us stress here that we have separated the periodic
and nonperiodic frameworks because the absence of boundary terms in the integrations by
parts used in the proof of Theorem 2 makes it more transparent in the periodic setting.
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THEOREM 3. Let d ≥ 3 be an integer and (f (x))x∈Rd be a stationary Gaussian
field which is of class C2(Rd,R), normalized such that E[f (0)2] = 1. Let a1 < b1, a2 <

b2, . . . , ad < bd be some real numbers, and set K = ∏d
i=1[ai, bi]. Let us assume that the

Gaussian vector ∇f (0) has a density. Then, we have the two conclusions:

(i) Hd−1({f = 0} ∩ K) ∈ D1, d+1
3 −,

(ii) the distribution of Hd−1({f = 0} ∩ K) has a nonzero component which is absolutely
continuous with respect to the Lebesgue measure.

REMARK 2. Throughout the whole article, unless otherwise stated, we will assume that
the considered Gaussian fields f , which in our case will be indexed by Rd or Td , are almost
surely nondegenerate in the sense of (1), that is, almost surely no zeros of f are critical
points. When dealing with a stationary Gaussian field, the nondegeneracy holds true if the
(d + 1)-dimensional Gaussian vector (f (x),∇f (x)) has a density with respect to Lebesgue
measure. Using the stationarity and hence the independence of f (0) and ∇f (0), condition
(1) simply reduces to the assumption on ∇f (0) of the previous theorems. This last condition
is very weak since it is not satisfied only if the underlying Gaussian field is constant along
some direction.

REMARK 3. Self-evidently, if a function f has a constant sign on some domain K , its
nodal set has volume zero. Hence, if f is a Gaussian process which has positive probability
to keep a constant sign on K , the distribution of the random variable Hd−1({f = 0}∩K) has
an atom at zero and cannot be absolutely continuous with respect to the Lebesgue measure.
In this sense, the conclusions (ii) of the two above theorems are sharp. To illustrate this
observation, let us consider Pλ the random trigonometric polynomial of degree 3 × 3 in T3

of the form

Pλ(x, y, z) := λa0 + 1√
n

3

n∑
k,	,m=1

ak,	,m cos(kx) cos(	y) cos(mz), (x, y, z) ∈ T3,

where a0 and the ak,	,m are independent standard Gaussian variables and where λ > 0 is a
positive parameter. When λ is zero, the random polynomial is spatially centered and neces-
sarily vanishes. The nodal volume is then expected to be fully absolutely continuous which
is consistent with Figure 1. When λ gets higher, the probability for the Gaussian field to keep
a constant sign increases and a Dirac mass appears. The latter is illustrated in red.

REMARK 4. Belonging to the domain of the Malliavin derivative is a true wealth of infor-
mations concerning the distribution. In addition to the celebrated Bouleau–Hirsch criterion,
which provides conditions ensuring the existence of densities, it is proved in [20], Prop. 2.1.7,
p. 106, that a random vector whose components belong to the domain of the Mallavin deriva-
tive has a distribution whose topological support is connected. In the previous diagrams the
nodal volume appears to be supported on intervals of the form [0,M] if λ > 0 and of the form
[M1,M2] with 0 < M1 < M2 when λ = 0.

2. Closed Kac–Rice type formulas. In this section, starting from the classical Kac–Rice
formula and using simple integrations by parts, we establish some exact closed formulas for
the nodal volume associated with nondegenerate functions.

2.1. A closed formula in dimension one. Let us first consider a periodic function f ∈
C2(T,R) which is supposed to be nondegenerate in the sense (1). In this one-dimensional
and periodic setting, the celebrated Kac–Rice formula (2) for the number of zeros of f in
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FIG. 1. Empirical histograms (based on Monte-Carlo Method and the integral representation of Proposition 5
below) of the nodal volume associated with the random trigonometric polynomial Pλ for the different choices
λ = 0,0.3,0.5,0.6,0.7,1 (from left to right, top to bottom).

[0,2π ] simply reads

(3) H0({f = 0})= lim
ε→0

∫ 2π

0
1[−ε,ε]

(
f (x)

)∣∣f ′(x)
∣∣dx

2ε
.

The presence of the limit in ε in the formula (3) is an important drawback since one needs
to track the speed of convergence in the Kac–Rice in order to get accurate estimates of the
number of roots. We shall remove the limit and write the number of roots as a simple integral
of an explicit functional of (f, f ′, f ′′). The price to pay is to require two derivatives whereas
the formula (3) only needs one.

PROPOSITION 1. If f ∈ C2(T,R) is nondegenerate, then we have

H0({f = 0})= −1

2

∫ 2π

0

(
f ′′(x)f (x) − f ′(x)2) |f (x)|

η3
f (x)

dx.

PROOF. By hypothesis, since f is nondegenerate, we have ηf := infx∈[0,2π ] ηf (x) > 0,
so that we can write

|f ′(x)|2√
|f (x)|2 + |f ′(x)|2

− ∣∣f ′(x)
∣∣=√∣∣f (x)

∣∣2 + ∣∣f ′(x)
∣∣2 − ∣∣f ′(x)

∣∣− |f (x)|2√
|f (x)|2 + |f ′(x)|2

= |f (x)|2√
|f (x)|2 + |f ′(x)|2 + |f ′(x)|

− |f (x)|2√
|f (x)|2 + |f ′(x)|2

,

and, in particular, we get∣∣∣∣ |f ′(x)|2√
|f (x)|2 + |f ′(x)|2

− ∣∣f ′(x)
∣∣∣∣∣∣≤ 2f (x)2

ηf

.
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For all ε > 0, if we set

Iε:=
∫ 2π

0
1[−ε,ε]

(
f (x)

) |f ′(x)|2√
|f (x)|2 + |f ′(x)|2

dx

2ε
−
∫ 2π

0
1[−ε,ε]

(
f (x)

)∣∣f ′(x)
∣∣dx

2ε
,

we then have

|Iε| ≤
∫ 2π

0
1[−ε,ε]

(
f (x)

)2f (x)2

ηf

dx

2ε
≤ 2πε

ηf

.

In particular, limε→0 Iε = 0 so that the Kac–Rice formula (3) can be rewritten as

H0({f = 0})= lim
ε→0

Nε where Nε :=
∫ 2π

0
1[−ε,ε]

(
f (x)

) |f ′(x)|2√
|f (x)|2 + |f ′(x)|2

dx

2ε
.

For all ε > 0, let us now consider the function φε defined as

φε(x) :=
⎧⎨
⎩

−1 if x ≤ −ε,

x/ε if −ε ≤ x ≤ ε,

1 if x ≥ ε.

Since f is periodic, integrating by parts, we get that

Nε = 1

2

∫ 2π

0

(
1

ε
1[−ε,ε]

(
f (x)

)
f ′(x)

)
f ′(x)√

|f (x)|2 + |f ′(x)|2
dx

= 1

2

∫ 2π

0

(
φε ◦ f (x)

)′ f ′(x)√
|f (x)|2 + |f ′(x)|2

dx

= −1

2

∫ 2π

0

(
φε ◦ f (x)

)( f ′(x)√
|f (x)|2 + |f ′(x)|2

)′
dx

= −1

2

∫ 2π

0

(
φε ◦ f (x)

)f (x)(f ′′(x)f (x) − f ′(x)2)

ηf (x)3 dx.

Since |φε| is bounded by one uniformly in ε, by the dominated convergence theorem we
deduce that

H0({f = 0})= lim
ε→0

Nε = −1

2

∫ 2π

0
sign
(
f (x)

)f (x)(f ′′(x)f (x) − f ′(x)2)

ηf (x)3 dx

= −1

2

∫ 2π

0

(
f ′′(x)f (x) − f ′(x)2) |f (x)|

ηf (x)3 dx. �

2.2. Understanding the formula and generalizations. In this subsection we shall observe
that the previous procedure hides a simple phenomenon which allows us to derive a family
of analogue formulas. Let F be a C1 function on R such that

lim
x→−∞F(x) = −1, lim

x→+∞F(x) = 1.

The reader can keep in mind the examples

F(x) = x√
1 + x2

, F (x) = 2

π
arctan(x) or F = 2G − 1,

where G is the cumulative distribution function of any continuous random variable.
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FIG. 2. Values of the logarithmic derivative at the successive zero crossings.

PROPOSITION 2. If f ∈ C2(T,R) is nondegenerate, then we have

(4) H0({f = 0})= −1

2

∫ 2π

0
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx.

PROOF. Let us first remark that since f is nondegenerate, it has a finite number of zeros
in [0,2π ]. Moreover, if f does not vanish, then the integrand in the right-hand side of equa-
tion (4) has no singularity and the integral is indeed equal to zero by periodicity. To simplify
the expressions, set N := H0({f = 0}) and denote by x1 ≤ · · · ≤ xN the zeros of f in [0,2π ],
and set xN+1 := x1. We can then decompose the integral in equation (4) as the sum

−1

2

∫ 2π

0
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx = −1

2

N∑
i=1

∫ x−
i+1

x+
i

F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx

= −1

2

N∑
i=1

F

(
f ′

f

(
x−
i

))− F

(
f ′

f

(
x+
i

))
︸ ︷︷ ︸

=−2

= N.

Indeed, as illustrated in Figure 2, each zero crossing contributes to a factor −2, since F takes
values ±1 at ±∞. �

Applying Proposition 2 with F = 2
π

arctan, we obtain in particular the following simple
formula which has the advantage to express the number of roots as an integral of a simple
rational function of (f, f ′, f ′′). It might be of particular interest when dealing with analytic
functions since the integrand in the next equation (5) remains analytic even in degenerate
settings, id est when ηf vanishes.

COROLLARY 1. If f ∈ C2(T,R) is nondegenerate, then we have

(5) H0({f = 0})= 1

π

∫ 2π

0

f ′(x)2 − f (x)f ′′(x)

f 2(x) + f ′(x)2 dx.

Such a formula, or its analogue for other choices of input functions F , can, for example,
be used in order to bound the number of real roots in term of various reformulations of
the nondegeneracy assumption that f and f ′ do not vanish simultaneously. Starting from
equation (5), one gets for instance the following immediate estimate

H0({f = 0})≤ 1

π

∫ 2π

0

|f ′′(x)|
ηf (x)

dx + 2 ≤ 2
(‖f ′′‖∞

ηf

+ 1
)
.

2.3. Extension to the nonperiodic setting. Whereas it is particularly convenient to deal
with periodic functions as boundary terms vanish when performing integrations by parts, the
above approach involving the logarithmic derivative of f allows also to deal with nonperiodic
functions on any interval. Namely, we have
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PROPOSITION 3. Let f be nondegenerate C2 function on R, and let F be a C1 function
on R such that

lim
x→−∞F(x) = −1, lim

x→+∞F(x) = 1.

Fix a < b, and suppose, for simplicity, that f (a)f (b) 
= 0. Then, we have the formula

H0({f = 0} ∩ [a, b])= 1

2

[
F

(
f ′

f
(b)

)
− F

(
f ′

f
(a)

)
−
∫ b

a
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx

]
.

In particular, if a and b are the loci of local extrema of f , then we have

H0({f = 0} ∩ [a, b])= −1

2

∫ b

a
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx.

PROOF. As above, let us denote by x1 ≤ · · · ≤ xN the consecutive zeros of f in [a, b].
We can decompose the integral as

I :=
∫ b

a
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx

=
∫ x−

1

a
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx +

∫ b

x+
N

F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx

+
N−1∑
i=1

∫ x−
i+1

x+
i

F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx,

that is,

I = F

(
f ′

f
(b)

)
− F

(
f ′

f
(a)

)
+

N∑
i=1

F

(
f ′

f

(
x−
i

))− F

(
f ′

f

(
x+
i

))
︸ ︷︷ ︸

=−2

= F

(
f ′

f
(b)

)
− F

(
f ′

f
(a)

)
− 2 × N,

hence, the first formula. If a and b are the loci of local extrema of f , we have f (a)f (b) 
= 0
(since f is nondegenerate) and f ′(a) = f ′(b) = 0 so that f ′/f (a) = f ′/f (b) = 0, and the
boundary terms vanish, hence, the second formula. �

Let us now generalize the previous results to functions which possibly exhibit double, or
higher order zeros. The next proposition shows that the formula obtained in Proposition 3
actually holds for functions with nonflat zeros, in particular, for the large class of quasi-
analytic functions. We stress that the forthcoming formulas hold for the number of roots
without counting multiplicity.

PROPOSITION 4. Let f be a C∞ function on R which does not have flat zero, namely, if
f (x) = 0 for x ∈ R, then there exists r ∈N such that f (r)(x) 
= 0. Let F be a C1 function on
R such that

lim
x→−∞F(x) = −1, lim

x→+∞F(x) = 1.

Fix a < b such that f (a)f (b) 
= 0. Then, the number of zeros of f in [a, b] is finite, and it is
given by the formula

H0({f = 0} ∩ [a, b])= 1

2

[
F

(
f ′

f
(b)

)
− F

(
f ′

f
(a)

)
−
∫ b

a
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx

]
.
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PROOF. As in the proof of Proposition 2 above, let us first note that if f does not vanish
on [a, b], then the right-hand side of the last equation vanishes since the integrand is smooth
on the whole interval. Now, if f (x) = 0 and r := infk∈N{k, f (k)(x) 
= 0} ≥ 2, performing a
Taylor expansion, we have for h small enough

f (x + h) = f (r)(x)hr

r!
(
1 + o(1)

)
,

f ′(x + h) = f (r)(x)hr−1

(r − 1)!
(
1 + o(1)

)
,

f ′′(x + h) = f (r)(x)hr−2

(r − 2)!
(
1 + o(1)

)
.

In particular, f has only one zero in a small open neighborhood Vx of x. Being compact in
[a, b], the nodal set of f can be covered by a finite number of the Vx , hence, it is finite. As
above, let us denote by x1 ≤ · · · ≤ xN the consecutive zeros of f in [a, b]. If x is one of these
zeros, we have for h small enough

f ′(x + h)

f (x + h)
= r

h

(
1 + o(1)

)
and, thus, lim

h→0±
f ′(x + h)

f (x + h)
= ±∞.

Moreover, for h small enough we have also

f ′′(x + h)f (x + h) − f ′2(x + h)

f 2(x + h) + f ′2(x + h)
= −1

r
× 1

1 + h2

r2

(
1 + o(1)

)
,

so that the ratio is locally bounded and, hence, locally integrable. As in the proof of Proposi-
tion 3, we can thus decompose the integral

I :=
∫ b

a
F ′
(

f ′(x)

f (x)

)(
f ′(x)

f (x)

)′
dx

= F

(
f ′

f
(b)

)
− F

(
f ′

f
(a)

)
+

N∑
i=1

F

(
f ′

f

(
x−
i

))− F

(
f ′

f

(
x+
i

))
︸ ︷︷ ︸

=−2

= F

(
f ′

f
(b)

)
− F

(
f ′

f
(a)

)
− 2 × N,

hence, the result. �

Applying Proposition 4 with the choice of counting function F = 2
π

arctan, we thus get the
analogue of formula (5) of Corollary 1 for nonperiodic functions with nonflat zeros, namely:

COROLLARY 2. Let f be a C∞ function on R which does not have flat zero, and let
a < b such that f (a)f (b) 
= 0. Then, the number of zeros of f in [a, b] is finite, and it is
given by the formula

H0({f = 0} ∩ [a, b])= 1

π

[
arctan

f ′(b)

f (b)
− arctan

f ′(a)

f (a)
+
∫ b

a

f ′2(x) − f (x)f ′′(x)

f 2(x) + f ′2(x)
dx

]
.

REMARK 5. Note that the hypotheses on the auxiliary function F imply that it is
bounded so that the boundary terms in Proposition 3 and 4 are bounded. Therefore, these
boundary terms are not annoying if we have in mind some applications where the number
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FIG. 3. A sample path of an approximation of the sine cardinal process f , obtained via the spectral represen-
tation method [26], and the corresponding renormalized zero counting function T �→ T −1H0({f = 0} ∩ [0, T ]).
The red horizontal line corresponds to the theoretical limit 1/π

√
3 ≈ 0.184.

of zeros becomes large in a certain regime. Suppose, for example, that the spectral measure
associated to f has no atom. By Maruyama theorem [13], p. 76, it is then ergodic, and, using
Corollary 2 in conjunction with the ergodic theorem, one easily recovers; see [12] p. 238, that
almost surely and in L1, as T goes to infinity, we have

lim
T →+∞

1

T
×H0({f = 0} ∩ [0, T ])=

√
E[f ′2(0)]

π
.

The next figure illustrates this convergence for the Gaussian process f whose covariance
function is given by the sinus cardinal, as illustrated in Figure 3.

2.4. Closed formulas in higher dimensions. Using the exact same approach as above, that
is, using simple integrations by parts starting from the standard Kac–Rice formula (2), let us
now exhibit analogue closed Kac–Rice type formulas in a higher-dimensional framework.

PROPOSITION 5. Let f be a C2 periodic function on Td which is nondegenerate. Then,
the volume of the total nodal set is given by

Hd−1({f = 0})
= −1

2

∫
Td

(
f (x)�f (x) − ∥∥∇f (x)

∥∥2) |f (x)|
ηf (x)3 dx

− 1

2

∫
Td

sign
(
f (x)

)(
�f (x)

∥∥∇f (x)
∥∥2 − ∇f (x)∗ Hessx(f )∇f (x)

) dx

ηf (x)3 .

REMARK 6. Note that in dimension d = 1, the second term on the right-hand side van-
ishes so that the expression is consistent with the one given in Proposition 1. Moreover, the
formula is homogeneous, that is, invariant under f ↔ λf , as it should.

PROOF. The proof follows the same lines as its one dimensional analogue. Namely, as in
dimension one, the classical Kac–Rice formula

Hd−1({f = 0})= lim
ε→0

∫
Td

1[−ε,ε]
(
f (x)

)∥∥∇f (x)
∥∥dx

2ε
,

can be rewritten as

Hd−1({f = 0})= lim
ε→0

Vε where Vε :=
∫
Td

1[−ε,ε]
(
f (x)

) ‖∇f (x)‖2√
|f (x)|2 + ‖∇f ‖2

dx

2ε
.
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We have then

Vε =
d∑

i=1

V i
ε where V i

ε :=
∫
Td

1[−ε,ε]
(
f (x)

) |∂if (x)|2√
|f (x)|2 + ‖∇f ‖2

dx

2ε
.

As in dimension one, an integration by parts in the ith variable yields

V i
ε = 1

2

∫
Td

∂i

(
φε ◦ f (x)

)( ∂if (x)√
|f (x)|2 + ‖∇f ‖2

)
dx

= −1

2

∫
Td

(
φε ◦ f (x)

)
∂i

(
∂if (x)√

|f (x)|2 + ‖∇f ‖2

)
dx

= −1

2

∫
Td

(
φε ◦ f (x)

)(f 2∂2
iif − f (∂if )2 + ∂2

iif ‖∇f ‖2 − ∂if
∑

j ∂jf ∂2
ij f

ηf (x)3

)
dx,

where φε is the function introduced in the proof of Proposition 1. We deduce that

Vε = −1

2

∫
Td

(
φε ◦ f (x)

)(
f 2(x)�f (x) − f (x)

∥∥∇f (x)
∥∥2) dx

ηf (x)3

− 1

2

∫
Td

(
φε ◦ f (x)

)(
�f (x)

∥∥∇f (x)
∥∥2 − ∇f (x)∗ Hessx(f )∇f (x)

) dx

ηf (x)3 .

Letting ε go to zero, one deduces that

Hd−1({f = 0})
= −1

2

∫
Td

(
f (x)�f (x) − ∥∥∇f (x)

∥∥2) |f (x)|
ηf (x)3 dx

− 1

2

∫
Td

sign
(
f (x)

)(
�f (x)

∥∥∇f (x)
∥∥2 − ∇f (x)∗ Hessx(f )∇f (x)

) dx

ηf (x)3 . �

With a slight variation of the proof, it is possible to obtain a more concise expression.

PROPOSITION 6. Let f be a C2 periodic function on Td which is nondegenerate. Then,
the volume of the total nodal set is given by

Hd−1({f = 0})= −1

2

∫
Td

sign
(
f (x)

)× �

(
f (x)

ηf (x)

)
dx.

PROOF. As in the proof of Proposition 5, we have

Hd−1({f = 0})= lim
ε→0

∫
Td

1[−ε,ε]
(
f (x)

) ‖∇f (x)‖2√
|f (x)|2 + ‖∇f ‖2

dx

2ε
.

In other words,

Hd−1({f = 0})= d∑
i=1

lim
ε→0

∫
Td

(
1[−ε,ε](f (x))

2ε
∂if (x)

)
∂if (x)√

|f (x)|2 + ‖∇f ‖2
dx.

Now, we have also

∂if (x)

ηf (x)
= ∂i

(
f (x)

ηf (x)

)
− f (x)∂i

(
1

ηf (x)

)
,
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and, since ∣∣∣∣1[−ε,ε](f (x))

2ε
× f

∣∣∣∣≤ 1

by dominated convergence, we deduce

lim
ε→0

∫
Td

(
1[−ε,ε](f (x))

2ε
∂if (x)

)
f (x)∂i

(
1

ηf (x)

)
dx = 0.

We thus get

Hd−1({f = 0})= d∑
i=1

lim
ε→0

∫
Td

(
1[−ε,ε](f (x))

2ε
∂if (x)

)
∂i

(
f (x)

ηf (x)

)
dx.

As in the proof of Proposition 5, an integration by parts associated with the dominated con-
vergence theorem then yields the desired result. �

REMARK 7. Note that this last formula is compact but it has the disadvantage of having
a sign(f (x)) in it, and Laplacian of the ratio implicitly involves third derivatives of f which
is not the case of the formula of Proposition 5.

2.5. A nonsingular formula for the nodal volume. The main drawback of the closed for-
mulas for the nodal volume obtained in Propositions 5 and 6 is the presence of the term
sign(f ) which is not a Lipschitz functional of f . Indeed, we have in mind to use these for-
mulae associated with Malliavin calculus, and the latter requires Lipschitz regularity. In order
to bypass this problem, one needs to perform an additional integration by parts which will
require, in turn, three derivatives for f . Nevertheless, as we will see just below, the deriva-
tives of order 3 will cancel out in the computations. As a result, without additional regularity
assumptions, a less singular formula holds for the nodal volume which is the content of the
next proposition.

PROPOSITION 7. Let f ∈ C2(Td,R), which is nondegenerate, then we have

Hd−1({f = 0})= −1

2

∫
Td

(
f (x)�f (x) − ∥∥∇f (x)

∥∥2) |f (x)|
ηf (x)3 dx

− 1

2

∫
Td

∣∣f (x)
∣∣(∥∥Hessx(f )

∥∥2 − Tr
(
Hessx(f )

)2) dx

ηf (x)3

− 3

4

∫
Td

|f (x)|
η5

f (x)

(
�f (x)

〈∇f (x),∇η2
f (x)

〉− ∇f (x)∗ Hessx f ∇η2
f (x)

)
dx.

PROOF. Our starting point is the formula established in Proposition 5. We focus on the
singular term, that is, the one containing sign(f ), that we will call A. Let us first suppose that
f ∈ C3(Td,R), and perform the following integrations by parts:

A :=
∫
Td

sign
(
f (x)

)(
�f (x)

∥∥∇f (x)
∥∥2 − ∇f (x)∗ Hessx(f )∇f (x)

) dx

ηf (x)3

=
∫
Td

�f (x)∇∣∣f (x)
∣∣ · ∇f (x)

dx

ηf (x)3 − 1

2

∫
Td

∇∣∣f (x)
∣∣ · ∇∥∥∇f (x)

∥∥2 dx

ηf (x)3

I.B.P.= −
∫
Td

(
�f (x)

)2∣∣f (x)
∣∣ dx

ηf (x)3 −
∫
Td

∣∣f (x)
∣∣∇f (x) · ∇

(
�f (x)

ηf (x)3

)
dx

+ 1

2

∫
Td

∣∣f (x)
∣∣�(∥∥∇f (x)

∥∥2) dx

ηf (x)3 + 1

2

∫
Td

∣∣f (x)
∣∣∇(∥∥∇f (x)

∥∥2) · ∇( 1

η3
f (x)

)
dx.
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Now, we compute

�
(∥∥∇f (x)

∥∥2)= 2
d∑

i=1

d∑
j=1

∂3
i,i,j f (x)∂jf (x) + 2

d∑
i,j=1

(
∂2
i,j f (x)

)2

= 2∇f (x) · ∇(�f (x)
)+ 2

d∑
i,j=1

(
∂2
i,j f (x)

)2
.

Substituting this equality in the previous equations, we get

A = −
∫
Td

(
�f (x)

)2∣∣f (x)
∣∣ dx

ηf (x)3 −
∫
Td

∣∣f (x)
∣∣�f (x)∇f (x) · ∇

(
1

ηf (x)3

)
dx

+
∫
Td

∣∣f (x)
∣∣ d∑
i,j=1

(
∂2
i,j f (x)

)2 dx

ηf (x)3 + 1

2

∫
Td

∣∣f (x)
∣∣∇(∥∥∇f (x)

∥∥2) · ∇( 1

η3
f (x)

)
dx

=
∫
Td

∣∣f (x)
∣∣(∥∥Hessx(f )

∥∥2 − Tr
(
Hessx(f )

)2) dx

ηf (x)3

+ 3

2

∫
Td

|f (x)|
η5

f (x)

d∑
i,j=1

∂2
i,if (x)∂jf (x)∂j

(
η2

f (x)
)
dx

− 3

2

∫
Td

|f (x)|
η5

f (x)

d∑
i,j=1

∂2
i,j f (x)∂if (x)∂j

(
η2

f (x)
)
dx

=
∫
Td

∣∣f (x)
∣∣(∥∥Hessx(f )

∥∥2 − Tr
(
Hessx(f )

)2) dx

ηf (x)3

+ 3

2

∫
Td

|f (x)|
η5

f (x)

(
�f (x)

〈∇f (x),∇η2
f (x)

〉− ∇f (x)∗ Hessx f ∇η2
f (x)

)
dx.

As a result, under the assumptions of f ∈ C3(Td,R) we have established the desired formula

Hd−1({f = 0})= −1

2

∫
Td

(
f (x)�f (x) − ∥∥∇f (x)

∥∥2) |f (x)|
ηf (x)3 dx

− 1

2

∫
Td

∣∣f (x)
∣∣(∥∥Hessx(f )

∥∥2 − Tr
(
Hessx(f )

)2) dx

ηf (x)3

− 3

4

∫
Td

|f (x)|
η5

f (x)

d∑
i,j=1

(
∂2
i,if (x)∂jf (x) − ∂2

i,j f (x)∂if (x)
)
∂j

(
η2

f (x)
)
dx.

Now, assume that f ∈ C2(Td,R) is nondegenerate. One may approximate f in the space
C2(Td,R) equipped with the norm N(f ) = supx∈Td (|f (x)| + ‖∇f (x)‖ + ‖Hessx f ‖) by a
sequence (gn)n≥1 of functions belonging to C3(Td,R). Since the right-hand side of the last
equation does not have any term with a derivative of f of order 3, one may pass to the limit
under the integral. Besides, since f is nondegenerate, the nodal volume being a continuous
functional for the weaker C1 topology as established in [1], one also has Hd−1({gn = 0}) →
Hd−1({f = 0}) as n goes to infinity. Hence, we get that the last formula indeed holds for
f ∈ C2(Td,R). �

REMARK 8. The previous formulae dealing with nodal volume on tori were recently
extended to the general framework of Riemannian manifolds and intrinsic volumes, or cur-
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vature measures; see [15]. This includes as special cases the Euler–Poincaré characteristic of
sublevel sets and the nodal volumes of functions defined on Riemannian manifolds.

3. On the nonconstancy of the nodal volume associated with a Gaussian field. In this
section we shall give the proof of Theorem 1 stated in the Introduction, which asserts that
under mild conditions on its spectral measure, the nodal volume associated to a stationary
Gaussian field f is not almost surely constant. The proof will require the following lemmas:

LEMMA 1. Let us introduce the topological support of the random variable f in C1(P ):

Sf,P = {φ ∈ C1(P )|∀ε > 0,P
(‖f − φ‖C1(P ) < ε

)
> 0
}
.

Then, Sf,P is a closed vector space for the norm ‖ · ‖C1 .

PROOF. First, since f
Law= −f , we obtain

(6) φ ∈ Sf,P ⇒ −φ ∈ Sf,P .

Next, we give us φ1 and φ2 in Sf,P as well as f1 and f2, two independent copies of the
Gaussian field f . For every t ∈ [0,1], we have{∥∥(√tf1 + √

1 − tf2) − (
√

tφ1 + √
1 − tφ2)

∥∥
C1(P ) < (

√
t + √

1 − t)ε
}

⊃ {‖f1 − φ1‖C1(P ) < ε
}∩ {‖f2 − φ2‖C1(P ) < ε

}
.

We deduce that

P
(∥∥(√tf1 + √

1 − tf2) − (
√

tφ1 + √
1 − tφ2)

∥∥
C1(P ) < (

√
t + √

1 − t)ε
)

≥ P
({‖f2 − φ2‖C1(P ) < ε

})× P
({‖f1 − φ1‖C1(P ) < ε

})
> 0.

It follows that

(7)
√

tφ1 + √
1 − tφ2 ∈ Sf,P .

By choosing φ1 = φ2, we get that (
√

t + √
1 − t)φ1 ∈ Sf,P for every t ∈ [0,1] which

ensures that for every λ ∈ [1,
√

2], λφ1 ∈ Sf,P . Hence, as every λ ≥ 1 is a finite product of
elements of [1,

√
2], we get that

(8) φ ∈ Sf,P ⇒ ∀λ ≥ 1, λφ1 ∈ Sf,P .

If one now chooses φ1 = −φ2, we obtain that for every t ∈ [0,1], (√t −√
1 − t)φ1 ∈ Sf,P

which ensures that

(9) φ ∈ Sf,P ⇒ ∀|λ| ≤ 1, λφ1 ∈ Sf,P .

Gathering properties (6), (7), (8) and (9) ensures that Sf,P is a vector space. Finally, it is a
standard fact that Sf,P is closed; see, for instance, [23], Theorem 2.1, p. 27. �

LEMMA 2. Let � be the topological support of the spectral measure μf :

�μ = {ξ ∈Rd |∀ε > 0,μ
({

x|‖x − ξ‖ < ε
})

> 0
}
.

Then, it holds that

(10) Span
(
cos
(〈·, ξ〉), sin

(〈·, ξ〉)|ξ ∈ �μ

)⊂ Sf,P .
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PROOF. We shall proceed by contradiction. Let assume for instance that for some ξ0 ∈ �,
the mapping cos(〈·, ξ0〉) does not belong to Sf,P . The geometric version of Hahn–Banach
theorem (see, e.g., [10], Thm. 1.7) asserts that for any normed vector space E, any closed
convex set A and any disjoint compact convex set B one may find a continuous linear form
L and α ∈R such that

∀(x, y) ∈ A × B, L(x) < α < L(y).

In our case we set E = C1(P ), endowed with the norm ‖φ‖C1(P ) = maxx∈P |φ(x)| +∑
i |∂iφ(x)|, A = Sf,P and B = {cos(〈·, ξ0〉)}. Sf,P is a closed vector space, according to

Lemma 1, and {cos(〈·, ξ〉)} is compact and disjoint by our assumption. We can use Hahn–
Banach in the aforementioned form and get for some continuous linear form L and some real
number α that

∀φ ∈ Sf,P , L(φ) < α < L
(
cos
(〈·, ξ〉)).

Let us also notice that, for every φ ∈ Sf,P , we get L(φ) < α which implies for every
t ∈ R that L(tφ) = tL(φ) < α and, necessarily, L(φ) = 0. Let us now observe that C1(P ) is
isometric to a closed linear subspace of C0(P )d+1. Indeed, it suffices to consider the mapping

T :
{

C1(P ) �→ C0(P )d+1

f �→ (f, ∂1f, . . . , ∂df )

which is clearly isometric. In particular, we derive that T (C1(P )) is a closed subspace of
C0(P )d+1. Then, for every u = T (f ) belonging T (C1(P )), one can set L̃(u) = L(f ) which
is a continuous linear form on T (C1(P )). Besides, L̃ can be extended to a continuous linear
form on C0(P )d+1 thanks to the standard form of Hahn–Banach theorem ([10], Cor. 1.2). In
virtue of Riesz representation theorem, we can find ν0, ν1, ν2, . . . , νd , which are real Radon
measures on P , such that

(11) L(φ) =
d∑

j=1

∫
P

∂iφ(x) dνi(x) +
∫
P

φ(x) dν0(x).

On the other hand, the space C1(P ) is separable, and one can use, for instance, [23],
Thm. 2.1, to infer that P(f ∈ Sf,P ) = 1. Since it has been previously observed that L = 0 on
Sf,P , we deduce that L(f ) = 0 almost surely. Setting ∂0 = Id for convenience we get

0 = E
[
L(f )2]

=
d∑

i,j=0

∫
P×P

E
[
∂if (x)∂jf (y)

]
dνi(x) dνj (y)

=
d∑

i,j=0

∫
P×P

∂

∂xi

∂

∂yj

E
[
f (x)f (y)

]
dνi(x) dνj (y)

=
d∑

i,j=0

∫
P×P

∂

∂xi

∂

∂yj

r(x − y)dνi(x) dνj (y)

=
∫
Rd

∣∣L(ei〈ξ,·〉)∣∣2 dμf (ξ).

The assumption of a second spectral moment justifies the interchanges of derivatives and
integrals in the above computations. Moreover, for any ξ0 ∈ �μ, the latter implies

0 = 1

μ({‖ξ − ξ0‖ < ε})
∫
‖ξ−ξ0‖<ε

∣∣L(ei〈ξ,·〉)∣∣2 dμf (ξ) −−−→
ξ→ξ0

∣∣L(ei〈ξ0,·〉)∣∣2.
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Finally, we get L(ei〈ξ0,·〉) = L(cos(〈ξ0, ·〉))+ iL(sin(〈ξ0, ·〉)) = 0. This is contradictory since,
by definition of L, one should have L(cos(〈ξ0, ·〉)) > α > 0. �

LEMMA 3. Let (G1,G2) two independent standard Gaussian r.v. and ξ1 and ξ2 two
vectors of Rd such that

(12) ∀t ∈ [0,1], E
(‖√tG1ξ1 + √

1 − tG2ξ2‖2
)=
√

2

π
.

Then, we have ‖ξ1‖2 = ‖ξ2‖2 = 1 and ξ1 = ξ2 or ξ1 = −ξ2.

PROOF. First of all, choosing t = 0 or t = 1, we get ‖ξ1‖2 = ‖ξ2‖2 = 1 because

E[|G1|] =
√

2
π

. Next, using Box–Muller representation, (G1,G2) = R(cos(θ), sin(θ)) with

R2 being exponential random variable of parameter 1
2 and θ being an independent random

variable uniformly distributed on [0,2π ]. Using the aforementioned independence, equation
(12) becomes

∀t ∈ [0,1], E
[∥∥√t cos(θ)ξ1 + √

1 − t sin(θ)ξ2
∥∥

2

]=
√

2√
πE[R] .

Choosing t = 1
2 in the above equation leads to

(13) E
[∥∥cos(θ)ξ1 + sin(θ)ξ2

∥∥
2

]= 2√
πE[R] .

On the other hand, taking into account that ‖ξ1‖2 = ‖ξ2‖2 = 1, a simple calculation gives
‖ cos(θ)ξ1 + sin(θ)ξ2‖2 = √

1 + sin(2θ)〈ξ1, ξ2〉. Let us now introduce the function

α : [−1,1] �−→ E
[√

1 + sin(2θ)α
]= 1

π

∫ 2π

0

√
1 + α sin(x) dx,

which is even and strictly concave, since

� ′′(α) = − 1

4π

∫ 2π

0

sin2(x)

(1 + α sin(x))
3
2

dx < 0, � ′(0) = 1

2π

∫ 2π

0
sin(x) dx = 0.

Hence, � is increasing on [−1,0] and decreasing on [0,1]. To conclude, we note that equa-
tion (13) yields �(〈ξ1, ξ2〉) = 2√

πE[R] and that equation (12) holds in the cases ξ1 = ξ2 or
ξ1 = −ξ2. Therefore, we must have �(〈ξ1, ξ2〉) = �(1) = �(−1) from which we deduce
that 〈ξ1, ξ2〉 ∈ {−1,1}. �

PROOF OF THEOREM 1. Again, we proceed by contradiction, and for some C ≥
0 we assume that almost surely Hd−1({f = 0} ∩ P) = C. We start the proof by the
following observation. Take any φ ∈ Sf,P which is nondegenerate in the sense that
minx∈P |φ(x)| + ‖∇φ(x)‖ > 0, then Hd−1({φ = 0}∩P) = C. Indeed, by definition of Sf,P ,
for all ε > 0, P(‖f − φ‖C1 < ε) > 0, and one can find a sequence of realizations of f

having nodal volume C inside P and converging to the nondegenerate mapping φ for the
norm ‖ · ‖C1 . Using the continuity of the nodal volume with respect to the C1 topology at
nondegenerate functions (see [1]), one gets the announced claim.

The covariance matrix of ∇f (0) is given by (
∫
Rd ξiξj dμ(ξ))1≤i,j≤d and, by our assump-

tion, is positive. Besides, the spectral measure μf can be weakly approximated by symmetric
atomic probability measures whose atoms lie into �μ. Hence, for m ≥ 2 sufficiently large,

one can find ξ1, . . . , ξm ∈ �μ and some convex linear combination ν = ∑m
i=1 ti(

δξi
+δ−ξi

2 )



ON THE ABSOLUTE CONTINUITY OF RANDOM NODAL VOLUMES 2161

which generates a Gaussian field g such that ∇g(0) is again a nondegenerate Gaussian vec-
tor. The fact that m ≥ 2 in the above statement is ensured by the assumption that μf 
= δa+δ−a

2 .
Without loss of generality, we may also assume that for every 1 ≤ i ≤ m, ti > 0 and that, up
to the sign, (ξi)1≤i≤m are pairwise distinct. One has then the following explicit representation
for g:

g(x) =
m∑

i=1

√
ti
(
Gi cos

(〈ξi, x〉)+ G̃i sin
(〈ξi, x〉)),

where (Gi)1≤i≤m and (G̃i)1≤i≤m are two independent and standard Gaussian vectors. Since
∇g(0) is nondegenerate, we get that almost surely minx∈P |g(x)| + ‖∇g(x)‖ > 0. The Gaus-
sian vector (Gi, G̃i)1≤i≤m admitting a positive density with respect to the Lebesgue measure
on R2m, Lebesgue almost all linear combinations of (cos(〈ξi, x〉), sin(〈ξi, x〉))1≤i≤m are non-
degenerate. Let us denote by D the set of such linear nondegenerate combinations. Relying
on Lemma 2 and the previous observation, for every (si)1≤i≤m of positive real numbers of
sum one, the Gaussian field

h(x) =
m∑

i=1

√
si
(
Gi cos

(〈ξi, x〉)+ G̃i sin
(〈ξi, x〉)),

takes value in the set D∩Sf,P . Hence, under the assumption that nodal volume associated to
f is almost surely constant, we would also have Hd−1({h = 0}∩P) = C almost surely. Now,

applying the Kac–Rice formula to the field h, we would obtain that E[‖∇h(0)‖] = C
√

2π
Vol(P )

for
all choices of positive (si)1≤i≤m. Since m ≥ 2, on can let s1 → t, s2 → 1 − t and si → 0 for
3 ≤ i ≤ m (in the case m > 2) in the previous equation. Noticing that in that case ∇h(0) =√

tG̃1ξ1 + √
1 − tG̃2ξ2, one can properly renormalize and use Lemma 3 to get ξ1 = ξ2 or

ξ1 = −ξ2 which is contradictory. Indeed, we recall that (ξ)1≤i≤m have been chosen pairwise
distinct up to the sign. �

4. On the absolute continuity of the nodal volume. In this last section we give the
proof of our main absolute continuity results, namely, Theorems 2 and 3 stated in the Intro-
duction. In order to keep the article as self-contained as possible, we first recall in the next
subsection the basics of Malliavin calculus and Bouleau–Hirsch criterion.

4.1. A quick and self-contained introduction to Malliavin calculus. The purpose of this
section is to introduce, in a self-contained way, the necessary material from Malliavin cal-
culus theory that we will use in the sequel. All results presented here are classical. We nev-
ertheless chose a particular gradient, called the sharp operator, which has been previously
introduced by N. Bouleau; see [9], page 135, or [8], p. 80. This choice of gradient is some-
times convenient since it preserves in some sense the Gaussian structure of the objects with
opposition with the standard choice of the literature to introduce an auxiliary Hilbert space
of the form L2([0, T ]). Among others, in our case we take benefit from this specific gradient
in the proof of Proposition 6, because the gradient of the underlying Gaussian field is itself
continuous ensuring the convergence of Riemann sums.

4.1.1. The sharp operator and its domain. Let us give (Xi)i≥1 an i.i.d. sequence of stan-
dard Gaussian random variables and the underlying probability space (�,F,P). Without loss
of generality, we shall assume that F = σ(Xi; i ≥ 1). We will also need a copy (�̂, F̂, P̂) of
this probability space as well as (X̂i)i≥1 a corresponding i.i.d. sequence of standard Gaussian
such that F̂ = σ(X̂i; i ≥ 1). For any m ≥ 1 and any F ∈ C1

Pol(R
m,R), the set of functions
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of C1(Rm,R), whose gradient has a polynomial growth, one may define the following sharp
operator:

(14) �F (X1, . . . ,Xm) :=
m∑

i=1

∂iF (X1, . . . ,Xm)X̂i .

Notice that the previous expression is in
⋂

p≥1 L
p(�,L2(P̂)) thanks to the fact that ∇F has

a polynomial growth and that the Gaussian distribution has moments of any order. Let us
introduce now,

(15) P := {F(X1, . . . ,Xm)|F ∈ C1
Pol
(
Rm,R

);m ≥ 1
}
.

For any F := F(X1, . . . ,Xm) ∈ P, we define the so-called Malliavin norm

(16) ‖F‖1,p := (E[|F |p]+E
[
Ê
[(�F )2]p

2
]) 1

p ,

where E represents the expectation with respect to P and Ê denotes the expectation for P̂.
Again, the fact that the gradient of F has a polynomial growth (hence, so does F ) implies
that the quantity ‖F‖1,p is well defined. We are now in position to extend the domain of the
sharp operator to the set

(17) D1,p := {X ∈ Lp(P)|∃(Fn)n≥1 ∈ PN,Fn
Lp−−−→

n→∞ X and (Fn)n≥1 is Cauchy for ‖ · ‖1,p

}
which is the completion of the vector space P with respect to the norm ‖ · ‖1,p . Now, for any
X ∈ D1,p it remains to say what is �X. Since X ∈ D1,p , one can find (Fn)n≥1 ∈ PN which
converges toward X and is a Cauchy sequence for the norm ‖ · ‖1,p . In particular, we get

E
[
Ê
[(�Fn − �Fm

)2]p
2
]−−−−−→

n,m→∞ 0.

Besides, in virtue of the definition (14), conditionally to the sigma-field F , the random
variables �Fn − �Fm are Gaussian. Since all Lp norms are equivalent for Gaussian random
variables, the latter condition turns out to be equivalent to

E
[
Ê
[∣∣�Fn − �Fm

∣∣p]]−−−−−→
n,m→∞ 0.

Hence, �Fn − �Fm is a Cauchy sequence in Lp(P⊗ P̂) which is a Banach space. The limit,
denoted by �X ∈ Lp(P ⊗ P̂), defines the sharp operator of the random variable X. Since
E[Ê[|�Fn − �X|p]] → 0, one can extract a subsequence such that P-a.s., Ê[|�Fn − �X|p] → 0.
Since �Fn is Gaussian conditionally to the sigma field F , the same property holds for �X.
Relying again on the equivalence of Lp norms for Gaussian distribution, one also gets that
�X ∈ Lp(�,L2(P̂)) as well as the two useful facts

(18) �Fn
Lp(P⊗P̂)−−−−−→

n→∞
�X and �Fn

Lp(�,L2(P̂))−−−−−−−→
n→∞

�X.

4.1.2. Closability of the sharp operator. We must then show that this definition is unam-
biguous. Concretely, we must prove that �X does not depend on the chosen Cauchy sequence
(for the norm ‖ · ‖1,p) approximating X. This procedure consists in proving that the sharp
operator is closable, namely,

Fn
Lp(P)−−−→
n→∞ 0

∃Z ∈ Lp
(
�,L2(P̂)

)
s.t. E

[
Ê
[(

�Fn − Z
)2]p

2
]→ 0

⎫⎬
⎭ ⇒ Z = 0.
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To do so, we take θ : Rm → R which belongs to the Schwartz class and χM a smooth and
compactly supported approximation of 1[−M,M]. We have the following integration by parts
formula:

E
[
θ(X1, . . . ,Xm)χM(Xi)Ê

[�FnX̂i

]]= E
[
θ(X1, . . . ,Xm)χM(Xi)XiFn

]
−E
[
FnÊ

[�[θ(X1, . . . ,Xm)χM(Xi)
]
X̂i

]]
.

(19)

By construction, χM(Xi)Xi is bounded; θ(X1, . . . ,Xm) is also bounded, hence, we have

E
[
θ(X1, . . . ,Xm)χM(Xi)XiFn

]→ 0.

Moreover, we have by the standard chain rule,

�[θ(X1, . . . ,Xm)χM(Xi)
]= �[θ(X1, . . . ,Xm)

]
χM(Xi) + �[χM(Xi)

]
θ(X1, . . . ,Xm)

=
m∑

j=1

∂j θ(X1, . . . ,Xm)X̂jχM(Xi) + θ(X1, . . . ,Xm)χ ′
M(Xi)X̂i .

Hence we get,

E
[
FnÊ

[�[θ(X1, . . . ,Xm)χM(Xi)
]
X̂i

]]= E
[
Fn∂iθ(X1, . . . ,Xm)χM(Xi)

]
+E
[
Fnθ(X1, . . . ,Xm)χ ′

M(Xi)
]
.

Similarly, since ‖θ‖∞ + ‖∇θ‖∞ + ‖χM‖∞ + ‖χ ′
M‖∞ < ∞ and Fn → 0 in Lp(P), we get

E
[
FnÊ

[�[θ(X1, . . . ,Xm)χM(Xi)
]
X̂i

]]→ 0.

We now treat the left-hand side of the equation (19), we have∣∣E[θ(X1, . . . ,Xm)χM(Xi)Ê
[�FnX̂i

]]−E
[
θ(X1, . . . ,Xm)χM(Xi)Ê[ZX̂i]]∣∣

≤ E
[∣∣θ(X1, . . . ,Xm)χM(Xi)

∣∣Ê[∣∣�Fn − Z
∣∣|X̂i |]]

C.S.≤ E
[∣∣θ(X1, . . . ,Xm)χM(Xi)

∣∣√Ê[(�Fn − Z
)2]]

,

which tends to zero, since θ(·)χM(·) is bounded and since√
Ê
[(

�Fn − Z
)2] Lp−−−→

n→∞ 0,

by assumption and, thus, in L1. Gathering all theses facts and passing to the limit in the
equation (19) entails that

E
[
θ(X1, . . . ,Xm)χM(Xi)Ê[ZX̂i]]= 0.

Letting first M → ∞ and using dominated convergence (since 0 ≤ χM ≤ 1) entails that, for
any θ ∈ S(Rm,R), we have

E
[
θ(X1, . . . ,Xm)Ê[ZX̂i]]= 0.

Taking the conditional expectation with respect to Fm := σ(X1, . . . ,Xm) yields to

E
[
θ(X1, . . . ,Xm)E

[
Ê[ZX̂i]|Fm

]]= 0,

which, by density arguments, yields to P-a.s.,E[Ê[ZX̂i]|Fm] = 0. Letting m → ∞ and re-
minding that F = σ(Xi; i ≥ 1) implies that P-a.s., Ê[ZX̂i] = 0. The latter being valid for
any i ≥ 1, we deduce that ∀n ≥ 1,P-a.s., Ê[Z�Fn] = 0. But �Fn tends to Z in Lp(�,L2(P̂)),
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hence, up to extracting a subsequence we may assume that P-a.s., Ê[(Z − �Fn)
2] → 0. On

the other hand, using Cauchy–Schwarz inequality, we also have∣∣Ê[Z2 − Z�Fn

]∣∣≤√Ê[Z2
]√

Ê
[(

Z − �Fn

)2]→ 0.

Finally, we obtain that P-a.s. we have Ê[Z2] = 0 and P⊗ P̂-a.s.,Z = 0.

REMARK 9. Based on the definition (14), one has the following formal interpretation
of �. Take � := �(X1, . . . ,Xi, . . .) some functional of the sequence (Xi)i≥1 which belongs
to D1,p for some p ≥ 1. Then, one has formally

(20) �� = lim
ε→0

�(X1 + εX̂1, . . . ,Xi + εX̂i, . . .) − �(X1, . . . ,Xi, . . .)

ε
.

In some sense, the sharp operator represents the directional derivative along an independent
copy of the input.

Main properties of the sharp operator. In this paragraph we gather the main properties of
the sharp operator that we will use in our proof of the existence of densities for the nodal
volumes. The following property may be seen as an analogue of the usual chain rule for the
sharp operator �.

PROPOSITION 8. Let (X1, . . . ,Xm) in the domain D1,p for some p ≥ 1. Let � ∈
C1

b(Rm,R), that is, to say � is continuously differentiable with a bounded gradient. Then,
�(X1, . . . ,Xm) ∈ D1,p , and we have

(21) ��(X1, . . . ,Xm) =
m∑

i=1

∂i�(X1, . . . ,Xm)�Xi.

PROOF. Coming back to our definition of the gradient and the convergence properties
(18), for each i ∈ {1, . . . ,m}, one can find a sequence (Fn,i)n≥1 in the space P which
converges towards Xi for the norm ‖ · ‖1,p . Moreover, since � ∈ C1

b(Rm,R), we also get
�(Fn,1, . . . ,Fn,m) ∈ P, and the usual chain rule of differential calculus asserts that

��(Fn,1, . . . ,Fn,m) =
m∑

i=1

∂i�(Fn,1, . . . ,Fn,m)�Fn,i .

Up to extracting a subsequence, we may assume that Fn,i → Xi almost surely for every i ∈
{1, . . . ,m}. Besides, �Fn,i converges towards �Xi in Lp(�,L2(P̂)) (as well as in Lp(P⊗ P̂)

since these norms are equivalent in our framework), and ∇� is bounded and continuous. This
ensures that

m∑
i=1

∂i�(Fn,1, . . . ,Fn,m)�Fn,i
Lp(�,L2(P̂))−−−−−−−→

n→∞
m∑

i=1

∂i�(X1, . . . ,Xm)�Xi.

Relying on the global Lipschitz property of � , we also have

�(Fn,1, . . . ,Fn,m)
Lp(P)−−−→
n→∞ �(X1, . . . ,Xm)

which achieves the proof. �

The cornerstone of our approach is the next criterion of density which is due to N. Bouleau.
Originating from Dirichlet forms theory, it is customarily called the property of density of the
energy image.
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THEOREM 4. For any p ≥ 1 and any X ∈ D1,p , we have

(22) X∗
(√

Ê
[(

�X
)2]

dP
)� λ,

where μ � ν means that μ is absolutely continuous with respect to ν and λ stands for the
Lebesgue measure on R.

PROOF. We reproduce here, using our notations, the original proof of Nicolas Bouleau
which has been taken from [8], p. 42, and which we slightly adapt. Take A a Borel set with

zero Lebesgue measure, and denote by μ the probability X∗(
√
Ê[(�X)2]dP). The key idea is

to consider a sequence φn of continuous functions such that 0 ≤ φn ≤ 1 and which converge
towards 1A almost surely for the mixed positive measure λ + μ. The existence of such a
sequence of functions is ensured by the density of continuous compactly supported functions
in the space L1(λ + μ). Now, one sets �n(x) = ∫ x

0 φn(t) dt . We shall prove that �n(X) is a
Cauchy sequence in the space D1,p . First, we notice that �n is one-Lipschitz and vanishes at
zero, hence |�n(X)| ≤ |X|. Besides, using dominated convergence we have

�n(X) =
∫ X

0
φn(t) dt −−−→

n→∞

∫ X

0
1A(t) dt = 0.

Gathering these two facts ensure that E[|�n(X)|p] → 0. On the other hand, one has by the
usual chain rule that a.s.√

Ê
[(

�
(
�n(X) − �m(X)

))2] = ∣∣φn(X) − φm(X)
∣∣√Ê[(�X)2]

−−−−−→
n,m→∞

∣∣1A(X) − 1A(X)
∣∣√Ê[(�X)2]

= 0.

Recall that φn is uniformly bounded and that
√
Ê((�X)2) is in Lp(P), one can use again

dominated convergence. It follows that

E
[√

Ê
[(

�
(
�n(X) − �m(X)

))2]p]−−−−−→
n,m→∞ 0.

As a result, �n(X) is a Cauchy sequence in the Banach space D1,p , and the limit has to be
zero since it tends to zero in Lp . It remains to says that

E
[√

Ê
[(

��n(X)
)2]p]−−−→

n→∞ E
[
1A(X)

√
Ê
[(

�X
)2]]

,

which is necessarily zero, since �(X) tends to zero in D1,p . �

We end our introduction by the following chain rule criterion for Lipschitz regularity. It
is important in our framework since it will allow us to take the Malliavin derivative of the
absolute value of a Gaussian process. The reader will find a proof of the next result in [8],
Proposition III.15, p. 41.

PROPOSITION 9. Let us assume here that p > 1. Take X ∈ D1,p and � a globally Lips-
chitz function, then �(X) ∈ D1,p and we have

(23) ��(X) = �′(X)�X,

where �′ is any Borelian representation of the derivative of �, which exists Lebesgue almost
everywhere, according to the Rademacher theorem.
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4.2. Computing the Malliavin derivative of the nodal volume. Let us now describe how
the closed Kac–Rice formulas established in Section 2 associated with the Bouleau–Hirsch
criterion allow to derive the absolution continuity of the nodal volume.

4.2.1. Generating Gaussian processes on suitable probability spaces. On a probability
space (�,G,P), we consider a continuous Gaussian process (Xt)t∈Td . The very first step of
our approach is the standard Karhunen–Loeve decomposition, which consists in generating
(Xt)t∈Td in a probability space (�,F,P) where F = σ(Yi; i ≥ 1) and where (Yi)i≥1 is an
i.i.d. sequence of standard Gaussian random variables; see [14]. Relying on the continuity,
(Xt)t∈Td is also measurable with respect to the sigma-field F := σ(Xt ; t ∈ Qd). Moreover,
using Gram–Schmidt procedure, one can find an i.i.d. sequence of standard Gaussian (Yi)i≥1
such that the L2-closures coincide: AdhL2(Vect(Yi; i ≥ 1)) = AdhL2(Vect(Xt ; t ∈ Qd)) and,
necessarily, σ(Yi; i ≥ 1) = F . Hence, the claim follows. Now, in order to use the tools of
Malliavin calculus introduced in Section 4.1, we give us a copy of the previous probability
space, namely, (�̂, F̂, P̂) with F̂ = σ(Ŷi; i ≥ 1). For any t ∈ Td , there exists (αi(t))i≥1 ∈
l2(N∗) such that

Xt
L2=∑

i≥1

αi(t)Yi, and, similarly, X̂t
L2=∑

i≥1

αi(t)Ŷi .

It follows that (Xt)Td
Law= (X̂t )t∈Td . Besides, up to a modification, we shall always assume

that the process (X̂t )t∈Td has the same regularity as (Xt)t∈Td . Without loss of generality,
we shall assume that the various Gaussian processes considered below are generated on a
suitable probability space and that we can deploy the Malliavin calculus tools introduced in
Section 4.1.

4.2.2. Some technical lemmas. The next lemmas are essentially technical and will be
used in the computations of the Malliavin derivatives of the nodal volume. For the sake of
clarity, we introduce the two followings domains:

D1,∞ := ⋂
p≥1

D1,p, D1,p− := ⋂
1≤q<p

D1,q .

LEMMA 4. Let p > 1, let α > 0 and (X1, . . . ,Xm,Xm+1) ∈ D1,∞. Let us assume that:

(i) P-a.s.,Xm+1 > 0,

(ii)
X1X2 · · ·Xm

Xα
m+1

∈ Lp(P),

(iii)
m∑

i=1

∣∣�Xi

∣∣∣∣∣∣
∏

j 
=i Xj

Xα
m+1

∣∣∣∣+
(

m∏
i=1

|Xi |
)∣∣∣∣ �Xm+1

Xα+1
m+1

∣∣∣∣ ∈ Lp(P⊗ P̂).

Then, we get that X1X2···Xm

Xm+1
∈ D1,p as well as the formula

(24) �

[
X1X2 · · ·Xm

Xα+1
m+1

]
=

m∑
i=1

�Xi

∏
j 
=i Xj

Xα
m+1

− α
�Xm+1

Xα+1
m+1

m∏
i=1

Xi.

PROOF. Set θε(x) := 1

(x2+ε)
α
2

, and let χM be a smooth function satisfying

χM(x) = x on [−M,M], χM = 2M on
[
2M,+∞[,

χM = −2M on ]−∞,−2M
]
,

∣∣χM(x)
∣∣≤ |x| ∀x ∈ R.
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One can use the content of Proposition 8 and get that θε(Xm+1)
∏m

i=1 χM(Xi) ∈ D1,p together
with the formula

�

[
m∏

i=1

χM(Xi)θε(Xm+1)

]
=

m∑
i=1

χ ′
M(Xi)

�Xi

(∏
j 
=i

χM(Xj )

)
θε(Xm+1)

+
(

m∏
i=1

χM(Xi)

)
θ ′
ε(Xm+1)

�Xm+1.

Let us notice that:

• supx∈R,M>0 ‖χ ′
M(x)‖∞ < +∞,

• ∀x ∈ R, |χM(x)| ≤ |x|,
• ∀x > 0, |θε(x)| ≤ 1

xα ,
• ∀x > 0, |θ ′

ε(x)| ≤ α
xα+1 .

Then, one may use the dominated convergence theorem (with domination given by the
above estimates and our assumptions (ii)–(iii)) to ensure that

m∏
i=1

χM(Xi)θε(Xm+1)
Lp(P)−−−−−−−→

M→∞,ε→0

∏m
i=1 Xi

Xα
m+1

,

�

[
m∏

i=1

χM(Xi)θε(Xm+1)

]
Lp(P⊗P̂)−−−−−−−→

M→∞,ε→0

m∑
i=1

�Xi

∏
j 
=i Xj

Xα
m+1

− α
�Xm+1

Xα+1
m+1

m∏
i=1

Xi.

The result follows from the completeness of D1,p with respect to the norm ‖ · ‖1,p . �

LEMMA 5. We will assume here that f ∈ C2(Td,R) is a stationary Gaussian process,
and we make here the crucial assumption that the covariance matrix of the Gaussian vector
(f,∇f ) is nondegenerate. Then, for any d ≥ 3 and any x ∈ Td , we have:

(a)
(
f (x)�f (x) − ∥∥∇f (x)

∥∥2) |f (x)|
ηf (x)3 ∈D1, d+1

3 −,

(b)
∣∣f (x)

∣∣(∥∥Hessx(f )
∥∥2 − Tr

(
Hessx(f )

)2) 1

ηf (x)3 ∈D1, d+1
3 −,

(c)
|f (x)|
η5

f (x)

d∑
i,j=1

(
∂2
i,if (x)∂jf (x) − ∂2

i,j f (x)∂if (x)
)
∂j

(
η2

f (x)
) ∈ D1, d+1

3 −.

PROOF. Let us fix x ∈ Td ; the stationarity ensures us that the forthcoming computations
do not depend on x. Recall that η2

f (x) = f 2(x) + ‖∇f (x)‖2 is almost surely positive in
virtue of [6], p. 132, Prop. 6.12, and denote by � the covariance matrix of the (d + 1)-
dimensional Gaussian vector (f (x),∇f (x)) which is assumed to be invertible. Set μ the
minimum eigenvalue of �, one has

E

[
1

η
3β
f

]
=
∫
Rd+1

1

‖�x‖3β
exp
(
−1

2
t �x��x

)
dx√

(2π)d+1 det�

≤
∫
Rd+1

1

‖�x‖3β
exp
(
−1

2
μ‖�x‖2

)
dx√

(2πμ)d+1

= 1√
(2πμ)d+1

∫
Sd

∫ ∞
0

1

r3β
e−μ

2 r2
rd dr dσ(u).
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This quantity is finite if and only if d > 3β − 1 or else β < d+1
3 . As a result, for 1 ≤ β < d+1

3
on has η−3

f ∈ Lβ . In order to treat the cases (a)–(b)–(c), one must notice that |f | ≤ ηf and
that for all i ∈ {1, . . . , d} we have also |∂if | ≤ ηf . Next, for each term appearing on the
expressions involved in cases (a)–(b)–(c), one must count n1 the number of factors in the set
{f,∇f } appearing at the numerator and the power n2 of ηf at the denominator. The worst
case possible is given by n2 − n1 = 2, which requires the integrability of η−3

f after derivation

(and η−2
f before), and gives the threshold d+1

3 , according to the previous computation. Hence
all the integrability conditions will be satisfied, and one can apply Lemma 4. As a matter of

fact, all terms (a), (b) and (c) actually belong to D1, d+1
3 −. �

REMARK 10. The previous proof shows that the Malliavin derivative of Hd−1(f = 0)

has moment of any order less than d+1
3 which gives the announced domain D1, d+1

3 . If one

is only interested in the integrability of Hd−1(f = 0), the latter holds as soon as η−2
f is

integrable. Hence, we have

Hd−1(f = 0) ∈ L
d+1

2 −(P).

As noticed in the Introduction, the integrability of the nodal volume thus increases with the
dimension d , under the sole regularity C2.

LEMMA 6. Under the assumptions of the previous lemma, for any d ≥ 3 we have

Hd−1(f = 0) ∈ D1, d+1
3 −, and we have

�Hd−1({f = 0})
= −1

2

∫
Td

�

[(
f (x)�f (x) − ∥∥∇f (x)

∥∥2) |f (x)|
ηf (x)3

]
dx

− 1

2

∫
Td

�

[∣∣f (x)
∣∣(∥∥Hessx(f )

∥∥2 − Tr
(
Hessx(f )

)2) 1

ηf (x)3

]
dx

− 3

4

∫
Td

�

[ |f (x)|
η5

f (x)

d∑
i,j=1

(
∂2
i,if (x)∂jf (x) − ∂2

i,j f (x)∂if (x)
)
∂j

(
η2

f (x)
)]

dx.

(25)

PROOF. The proof consists in approximating the integrals by Riemann sums. Indeed, by
assumption, expressions (a)–(b)–(c) are continuous almost surely, hence, their Riemann sums
converge almost surely. Besides, all the expressions (a)–(b)–(c) are bounded in Lβ for every
β < d+1

3 , hence, so do the Riemann sums. Theses two facts ensure that the Riemann sums
converge in Lβ for every β < d+1

3 . On the other hand, if one applies the sharp operator to
theses Riemann sums, one obtains in turn the Riemann sum of the sharp operator applied to
the expressions (a)–(b)–(c) which are also both continuous in x and bounded in Lβ for every
β < d+1

3 . Hence the same reasoning holds. The completeness of the domains D1,p endowed
with their natural norm ‖ · ‖1,p gives the desired claim. �

4.3. On the nondegeneracy of the Malliavin derivative. Let us begin with the following
well-known result of Malliavin calculus. Again, in order to remain self-contained, we sketch
a proof.

LEMMA 7. Let X ∈ D1,p for p > 1, and we assume that P ⊗ P̂-a.s. we have �X = 0.
Then, the random variable X is constant.
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PROOF. Set M > 0 and χM a C∞ function satisfying χM(x) = x on [−M,M] and
χM(x) = M +1 on [M +1,∞[ and −M −1 on ]−∞,−M −1]. One has χM(X) ∈ D1,2 and
the Poincaré inequality coupled with the usual chain rule ensures that

Var
(
χM(X)

)≤ E
[
χ ′

M(X)2Ê
[�X2]]= 0.

As a result, χM(X) is a constant random variable which tends almost surely to X. Hence, X

is constant, as it was expected. �

Besides, based on Lemma 6, one knows that the nodal volume belongs to some Malliavin
spaces D1,p . Thus, if one can prove that the nodal volume is not a constant random variable,
we can derive that its Malliavin derivative is not almost surely zero. Relying on Theorem 4,
it implies that the distribution of X := H(f = 0) is not singular with respect to the Lebesgue
measure. Indeed, assume that the distribution of X is singular, one can find a Borel set A,
negligible with respect to the Lebesgue measure, such that P(X ∈ A) = 1. The statement (22)
ensures that

E
[
1A(X)Ê

[�X2]]= 0,

which in turn gives that

E
[
Ê
[�X2]]= 0.

Hence, the Malliavin derivative would be almost surely zero and the nodal volume constant.

4.4. Understanding the singularity. In this subsection we will seek for conditions im-
plying that Hd−1({f = 0}) has a density. One very likely condition is that the nodal volume
is absolutely continuous, conditionally to the fact that f vanishes. Indeed, as discussed in
Remark 3, we recall that the nodal volume distribution has an atom on zero if the underly-
ing Gaussian field can be strictly positive on Td . Our strategy consists in proving that f has
a constant sign if the Malliavin derivative is zero. The computations reveal a second order
differential operator whose kernel contains both 1 and sign(f ). Therefore, if this kernel is of
dimension one, one deduces the desired nondegeneracy.

We give us 1 ≤ p < d+1
3 which exists as soon as d ≥ 3. The forthcoming computations

will hold in the domain D1,p . Relying on the property of the energy image density (22), one
is left to show that

(26) P-a.s., Ê
[[�Hd−1({f = 0})]2] 
= 0.

To do so, we fix some ω ∈ � such that

Ê
[[�Hd−1({f = 0})]2]= 0.

Combining the equation (24) with Lemma 6, one may compute in an explicit way the
Malliavin derivative of the nodal volume which is given by �Hd−1({f = 0}). Indeed, us-
ing the chain rule property of the sharp operator, one may find some explicit processes �0,
(�i)1≤i≤d, (�i,j )1≤i,j≤d , which are all of the form

(27) �0 := sign(f )
P0

η7
f

, �i := sign(f )
Pi

η7
f

, �i,j := sign(f )
Pi,j

η7
f

,

with (P0, (Pi)1≤i≤d, (Pi,j )1≤i,j≤d) some polynomial functionals of (f,∇f,∇2f ) which sat-
isfy

(28) P̂-a.s.,
∫
Td

(
�0(x)f̂ (x) +

d∑
i=1

�i(x)∂i f̂ (x) +
d∑

i,j=1

�i,j (x)∂i,j f̂ (x)

)
dx = 0.
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4.4.1. Step 1: Interpreting the conditions via the spectral measure. We denote by μ the
spectral measure associated with the Gaussian process f and which is a probability measure
on Rd supported on Zd because our process is assumed to be periodic. We recall that the
correlation function ρ is defined via its spectral measure by

(29) E
[
f (x)f (y)

]= ρ(y − x) = ∑
�k∈Zd

ei�k·(y−x)μ�k.

By computing the variance of the equation (28) with respect to P̂ and substituting the
correlations functions by their spectral representation (29), one can rewrite the equation (28)
in the following way:

(30) P̂-a.s.,
∑
�k∈Zd

μ�k

(∫
Td

(
�0(x) +

d∑
i=1

i�i(x)ki −
d∑

i,j=1

kikj�i,j (x)

)
ei�k·x dx

)2

= 0.

In order to understand the information contained in the equation (30), we make the stronger
assumption that the support of μ is the whole lattice Zd . In particular, we get that for every
P̂-a.s. and every �k ∈ Zd ,

(31)
∫
Td

(
�0(x) +

d∑
i=1

i�i(x)ki −
d∑

i,j=1

kikj�i,j (x)

)
ei�k·x dx = 0.

Now, taking θ ∈ C∞
c (Td), one deduces from (31) that

(32)
∫
Td

(
�0(x)θ(x) +∑

i=1

�i(x)∂iθ(x) +∑
i,j

�i,j (x)∂i,j θ(x)

)
dx = 0.

4.4.2. Step 2: Reasoning on the set of positive values of f . We take a test function in
C∞

c (Td) but which is supported in the open set {f > 0}. Recalling the specific form of
�0, (�i)i≥1, (�i,j )i,j≥1 which is given by the equation (27), one obtains for all i ∈ {1, . . . , d}
and all (k, l) ∈ {1, . . . , d}2 that

�0θ = P0

η7
f

, �i∂iθ = Pi

η7
f

∂iθ, �k,l∂k,lθ = Pk,l

η7
f

∂k,lθ.

As a result, from the equation (31), one derives that

(33)
∫
Td

(
P0(x)

η7
f (x)

θ(x) +∑
i=1

Pi(x)

η7
f (x)

∂iθ(x) +∑
i,j

Pk,l(x)

η7
f (x)

∂i,j θ(x)

)
dx = 0,

as soon as θ is supported on the open set {f > 0}. In order to fix the ideas, we make the
stronger assumption that our process is of class C∞ which implies, in turn, that the following
functions (

P0(x)

η7
f (x)

, ( Pi(x)

η7
f (x)

)i≥1, (
Pk,l(x)

η7
f (x)

)i,j≥1) are of class C∞. Performing two integrations by

parts, equation (33) leads to

(34)
∫
Td

(
P0(x)

η7
f (x)

+∑
i=1

∂i

[
Pi(x)

η7
f (x)

]
+

d∑
i,j=1

∂i,j

[
Pk,l(x)

η7
f (x)

])
θ(x) dx = 0.

Due to the polynomial nature of (P0), (Pi), (Pi,j ) the expression between parenthesis in the
previous equation can be written in the form

R1(f, (∂if )i, (∂i,j f )i,j , (∂i,j,kf )i,j,k, (∂i,j,k,lf )i,j,k,l)

η11 ,
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where R1 is some explicit multivariate polynomial function. For the sake of simplicity, we
shall simply write

R1 := R1
(
f, (∂if )i, (∂i,j f )i,j , (∂i,j,kf )i,j,k, (∂i,j,k,lf )i,j,k,l

)
.

The equation (34) being valid for any test function supported on {f > 0} one deduces that R1

is zero on {f > 0}. The same reasoning holds for the set {f < 0} and leads also to R1 = 0.
Moreover, the set {f = 0} is of empty interior, and each root of f is in the adherence of
{f > 0} ∪ {f < 0}. Finally, the continuity of R1 entails that R1 = 0 on Td . Now, coming
back to the equation (34) and performing again two integrations by parts, one gets that for
every θ ∈ C∞(Td,R), without any support restriction,

(35)
∫
Td

(
P0(x)

η7
f (x)

θ(x) +∑
i=1

Pi(x)

η7
f (x)

∂iθ(x) +∑
i,j

Pk,l(x)

η7
f (x)

∂i,j θ(x)

)
dx = 0.

4.4.3. Step 3: A partial differential equation. Introduce now the partial differential oper-
ator,

L :

⎧⎪⎪⎨
⎪⎪⎩

C∞(Td,R
)−→ C∞(Td,R

)
θ −→ �0(x)θ(x) +

d∑
i=1

�i(x)∂iθ(x) +
d∑

i,j=1

�i,j (x)∂i,j θ(x).

Denoting by L∗, the adjoint of the operator L, the combination of equations (31) and (35)
leads to {

1, sign(f )
}⊂ Ker

(
L∗).

As a result, one has the next corollary:

COROLLARY 3. If dim(Ker(L∗)) = 1 and the Malliavin derivative of the nodal volume
vanishes, namely,

Ê
[[�Hd−1({f = 0})]2]= 0,

then f has constant sign.

Due to the involved form of the coefficients of L, it seems unclear for the authors whether
there is an ellipticity property on the operator L. As a result, we were not able to prove that
dim(Ker(L∗)) = 1. Such a conclusion would have implied that f has a constant sign on Td

if and only if the Malliavin derivative of the nodal volume is zero which is a very natural
statement.

4.5. Extension to the nonperiodic setting. In this section we briefly explain how to extend
the content of Theorem 2 to a nonperiodic setting and to obtain the announced Theorem 3.
We give us a C2 and nonperiodic stationary Gaussian field on some domain P := [a1, b1] ×
· · · × [ad, bd ] ⊂ Rd . One is only left to show that the nodal volume Hd−1(f = 0) is also in
the domain of the Malliavin operator �. The main difference is that the lack of periodicity
creates many boundary terms when performing integrations by parts, and one has to check
that theses boundary terms belong also to the domain of the Malliavin derivative.
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4.5.1. A closed formula for the nodal volume involving boundary terms. Our starting
point is the proof of Proposition 5 and from which we keep the notations. Let us fix some i ∈
{1, . . . , d} and denote by P (i) the Cartesian product of intervals [aj , bj ] where the coordinate
i has been removed and by dx(i) the associated Lebesgue measure.

V ε
i = −1

2

∫
P

(
φε ◦ f (x)

)(f 2∂2
iif − f (∂if )2 + ∂2

iif ‖∇f ‖2 − ∂if
∑

j ∂jf ∂2
ij f

ηf (x)3

)
dx

+ 1

2

[∫
P (i)

φε ◦ f (x)

(
∂if (x)√

|f (x)|2 + ‖∇f ‖2

)
dx(i)

]bi

ai

.

︸ ︷︷ ︸
Wε

i

It still possible to let ε tend to zero and use the dominated convergence theorem. One
recovers, after summation on the indexes i ∈ {1, . . . , d}, that

V = −1

2

∫
P

∣∣f (x)
∣∣(f (x)�f (x) − ‖∇f (x)‖2)

ηf (x)3 dx

− 1

2

∫
P

sign
(
f (x)

)(
�f (x)

∥∥∇f (x)
∥∥2 − ∇f (x)∗ Hessx(f )∇f (x)

) dx

ηf (x)3

+ 1

2

d∑
i=1

[∫
P (i)

sign
(
f (x)

)∂if (x)

η2
f (x)

dx(i)

]bi

ai︸ ︷︷ ︸
Wi

.

As in the proof of formula of Proposition 7, one has to remove the singular terms sign(f ).
To do so, a supplementary integration by parts is required. The first singular term

1

2

∫
P

sign
(
f (x)

)(
�f (x)

∥∥∇f (x)
∥∥2 − ∇f (x)∗ Hessx(f )∇f (x)

) dx

ηf (x)3 ,

can be handled as in the proof of Proposition 7. Nevertheless, the boundary terms do not
vanish anymore, and one get the supplementary terms[∫

P (i)

∣∣f (x)
∣∣�f (x)∂if (x) −∑d

j=1 ∂jf (x)∂2
i,j f (x)

ηf (x)3 dx(i)

]bi

ai

.

In order to handle the other singular terms, Wi , we need some preliminary observa-
tions. Recall that our Gaussian field is such that (f (x),∇f (x)) has a density. Fix some
i ∈ {1, . . . , d}, a ∈ [ai, bi], and consider

gi(x) := gi(x1, x2, . . . , xi−1, xi+1, . . . , xd) = f (x1, . . . , xi−1,a, xi+1, . . . , xd),

the Gaussian field on Rd−1 obtained by setting the ith coordinate equal to a. Then, we infer
that (gi(x),∇gi(x)) has a density on Rd−1. Indeed, gi is self-evidently a stationary Gaussian
process, and its covariance matrix �gi

is obtained by removing the row and line i from the
covariance matrix �f of (f,∇f ). The Sylvester criterion ensures us that �g is invertible. As
a consequence, ηgi

> 0 for every i ∈ {1, . . . , d}. Denote by δa the Dirac measure on a; for
writing convenience we shall write the boundary terms occurring in the integrations by part
as integrals with respect to tensor products of Lebesgue and Dirac measures. We have

d∑
i=1

∫
R

(∫
P (i)

sign
(
f (x)

)∂if (x)

ηf (x)
dx(i)

)
δa(xi)

=
d∑

i=1

∫
R

(∫
P (i)

sign
(
f (x)

)∂if (x)η2
gi

(x)

η2
gi

(x)ηf (x)
dx(i)

)
δa(xi).
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Since we integrate the ith coordinate with respect to δa , we deduce that∫
R

∫
P (i)

sign
(
f (x)

)∂if (x)η2
gi

(x)

η2
gi

(x)η2
f (x)

dx(i)δa(xi)

=
∫
R

∫
P (i)

∣∣gi(x)
∣∣∂if (x)gi(x)

η2
gi

(x)η2
f (x)

dx(i)δa(xi)

+
d∑

j=1,j 
=i

∫
R

∫
P (i)

∂j |gi(x)|∂jgi(x)∂if (x)

η2
gi

(x)η2
f (x)

dx(i)δa(xi)︸ ︷︷ ︸
Zi,j

.

Integrating by parts leads to

Zi,j =
∫
R

∫
P (i)

∂j |gi(x)|∂jgi(x)∂if (x)

η2
gi

(x)η2
f (x)

dx(i)δa(xi)

=
∫
R2

∫
P (i,j)

|gi(x)|∂jgi(x)∂if (x)

η2
gi

(x)η2
f (x)

dx(i,j)δa(xi)
(
δbj

(xj ) − δaj
(xj )

)

−
∫
R

∫
P (i)

∣∣gi(x)
∣∣∂j

[
∂jgi(x)∂if (x)

η2
gi

(x)η2
f (x)

]
dx(i)δa(xi).

Checking the integrability conditions for the sharp operator. Clearly, the terms in common
with the formula corresponding to the periodic case produce the same integrability restric-
tions. One is only left to study each border term occurring the previous computations. First,
the terms of the form[∫

P (i)

∣∣f (x)
∣∣�f (x)∂if (x) −∑d

j=1 ∂jf (x)∂2
i,j f (x)

ηf (x)3 dx(i)

]bi

ai

requires that η−1
f ∈ D1,p which holds true whenever p < d+1

3 ; see the proof of Lemma 5.
One has to focus on the quantities Zi,j . First, the terms of the form

∣∣gi(x)
∣∣∂if (x)gi(x)

η2
gi

(x)η2
f (x)

are already bounded and taking the sharp operator requires a pth moment for the quantity
η−1

gi
which holds whenever p < d and a fortiori p < d+1

3 . As for the last integrand,

∣∣gi(x)
∣∣∂j

[
∂jgi(x)∂if (x)

η2
gi

(x)η2
f (x)

]
,

it requires that η−1
gi

∈ D1,p which in turn requires that η−2
gi

has a moment of order p. Following
the same lines as in the proof of Lemma 4 and noticing that (gi,∇gi) is a d-dimensional
Gaussian vector, one can take the polar coordinates to get the condition d − 1 − 2p > −1,
and so p < d

2 . Finally, we notice that d+1
3 ≤ d

2 as soon as d ≥ 3 which explains why in both
periodic and nonperiodic frameworks, the integrability conditions are the same.

Acknowledgments. We are grateful to the anonymous referees whose suggestions sig-
nificantly helped us to improve the quality of the paper, in particular for suggesting we study
the nonconstancy of the random nodal volume; see Section 3. We also thank Benoît Jubin for
his careful reading of the manuscript and all of his comments.

This work was supported by the ANR Grants UNIRANDOM, ANR-17-CE40-0008.



2174 J. ANGST AND G. POLY

REFERENCES

[1] ANGST, J., PHAM, V.-H. and POLY, G. (2018). Universality of the nodal length of bivariate random trigono-
metric polynomials. Trans. Amer. Math. Soc. 370 8331–8357. MR3864378 https://doi.org/10.1090/
tran/7255

[2] ARMENTANO, D., AZAÏS, J.-M., DALMAO, F. and LEÓN, J. R. (2018). Asymptotic variance of the number
of real roots of random polynomial systems. Proc. Amer. Math. Soc. 146 5437–5449. MR3866880
https://doi.org/10.1090/proc/14215

[3] ARMENTANO, D., AZAÏS, J.-M., GINSBOURGER, D. and LEÓN, J. R. (2019). Conditions for the finiteness
of the moments of the volume of level sets. Electron. Commun. Probab. 24 Art. ID 17. MR3933041
https://doi.org/10.1214/19-ECP214

[4] AZAÏS, J.-M., DALMAO, F. and LEÓN, J. R. (2016). CLT for the zeros of classical random trigonomet-
ric polynomials. Ann. Inst. Henri Poincaré Probab. Stat. 52 804–820. MR3498010 https://doi.org/10.
1214/14-AIHP653

[5] AZAÏS, J.-M. and LEÓN, J. R. (2013). CLT for crossings of random trigonometric polynomials. Electron.
J. Probab. 18 Art. ID 68. MR3084654 https://doi.org/10.1214/EJP.v18-2403

[6] AZAÏS, J.-M. and WSCHEBOR, M. (2009). Level Sets and Extrema of Random Processes and Fields. Wiley,
Hoboken, NJ. MR2478201 https://doi.org/10.1002/9780470434642

[7] BERRY, M. V. (1977). Regular and irregular semiclassical wavefunctions. J. Phys. A 10 2083–2091.
MR0489542

[8] BOULEAU, N. (2003). Error Calculus for Finance and Physics: The Language of Dirichlet Forms. De
Gruyter Expositions in Mathematics 37. de Gruyter, Berlin. MR2079474 https://doi.org/10.1515/
9783110199291

[9] BOULEAU, N. and HIRSCH, F. (1991). Dirichlet Forms and Analysis on Wiener Space. De Gruyter Studies
in Mathematics 14. de Gruyter, Berlin. MR1133391 https://doi.org/10.1515/9783110858389

[10] BREZIS, H. (1983). Analyse fonctionnelle: Théorie et applications. Collection Mathématiques Appliquées
Pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree.] Masson, Paris.
MR0697382

[11] CAMMAROTA, V. and MARINUCCI, D. (2018). A quantitative central limit theorem for the Euler–
Poincaré characteristic of random spherical eigenfunctions. Ann. Probab. 46 3188–3228. MR3857854
https://doi.org/10.1214/17-AOP1245

[12] CRAMÉR, H. and LEADBETTER, M. R. (1967). Stationary and Related Stochastic Processes. Sample Func-
tion Properties and Their Applications. Wiley, New York. MR0217860

[13] DYM, H. and MCKEAN, H. P. (1976). Gaussian Processes, Function Theory, and the Inverse Spectral
Problem. Probability and Mathematical Statistics 31. Academic Press, New York. MR0448523

[14] FERNIQUE, X. (1983). Regularité de fonctions aléatoires non gaussiennes. In Eleventh Saint Flour Proba-
bility Summer School—1981 (Saint Flour, 1981). Lecture Notes in Math. 976 1–74. Springer, Berlin.
MR0722982 https://doi.org/10.1007/BFb0067985

[15] JUBIN, B. (2019). Intrinsic volumes of sublevel sets. Available at arXiv:1903.01592.
[16] KRATZ, M. F. and LEÓN, J. R. (1997). Hermite polynomial expansion for non-smooth functionals

of stationary Gaussian processes: Crossings and extremes. Stochastic Process. Appl. 66 237–252.
MR1440400 https://doi.org/10.1016/S0304-4149(96)00122-6

[17] MARINUCCI, D., PECCATI, G., ROSSI, M. and WIGMAN, I. (2016). Non-universality of nodal length distri-
bution for arithmetic random waves. Geom. Funct. Anal. 26 926–960. MR3540457 https://doi.org/10.
1007/s00039-016-0376-5

[18] NOURDIN, I. and PECCATI, G. (2010). Stein’s method meets Malliavin calculus: A short survey with new
estimates. In Recent Development in Stochastic Dynamics and Stochastic Analysis. Interdiscip. Math.
Sci. 8 207–236. World Sci., Hackensack, NJ. MR2807823 https://doi.org/10.1142/9789814277266_
0014

[19] NOURDIN, I., PECCATI, G. and ROSSI, M. (2019). Nodal statistics of planar random waves. Comm. Math.
Phys. 369 99–151. MR3959555 https://doi.org/10.1007/s00220-019-03432-5

[20] NUALART, D. (1995). The Malliavin Calculus and Related Topics. Probability and Its Applications (New
York). Springer, New York. MR1344217 https://doi.org/10.1007/978-1-4757-2437-0

[21] NUALART, D. and PECCATI, G. (2005). Central limit theorems for sequences of multiple stochastic inte-
grals. Ann. Probab. 33 177–193. MR2118863 https://doi.org/10.1214/009117904000000621

[22] NUALART, D. and VIVES, J. (1992). Chaos expansions and local times. Publ. Mat. 36 827–836.
MR1210022 https://doi.org/10.5565/PUBLMAT_362B92_07

[23] PARTHASARATHY, K. R. (2005). Probability Measures on Metric Spaces. AMS Chelsea Publishing, Prov-
idence, RI. MR2169627 https://doi.org/10.1090/chel/352

http://www.ams.org/mathscinet-getitem?mr=3864378
https://doi.org/10.1090/tran/7255
http://www.ams.org/mathscinet-getitem?mr=3866880
https://doi.org/10.1090/proc/14215
http://www.ams.org/mathscinet-getitem?mr=3933041
https://doi.org/10.1214/19-ECP214
http://www.ams.org/mathscinet-getitem?mr=3498010
https://doi.org/10.1214/14-AIHP653
http://www.ams.org/mathscinet-getitem?mr=3084654
https://doi.org/10.1214/EJP.v18-2403
http://www.ams.org/mathscinet-getitem?mr=2478201
https://doi.org/10.1002/9780470434642
http://www.ams.org/mathscinet-getitem?mr=0489542
http://www.ams.org/mathscinet-getitem?mr=2079474
https://doi.org/10.1515/9783110199291
http://www.ams.org/mathscinet-getitem?mr=1133391
https://doi.org/10.1515/9783110858389
http://www.ams.org/mathscinet-getitem?mr=0697382
http://www.ams.org/mathscinet-getitem?mr=3857854
https://doi.org/10.1214/17-AOP1245
http://www.ams.org/mathscinet-getitem?mr=0217860
http://www.ams.org/mathscinet-getitem?mr=0448523
http://www.ams.org/mathscinet-getitem?mr=0722982
https://doi.org/10.1007/BFb0067985
http://arxiv.org/abs/arXiv:1903.01592
http://www.ams.org/mathscinet-getitem?mr=1440400
https://doi.org/10.1016/S0304-4149(96)00122-6
http://www.ams.org/mathscinet-getitem?mr=3540457
https://doi.org/10.1007/s00039-016-0376-5
http://www.ams.org/mathscinet-getitem?mr=2807823
https://doi.org/10.1142/9789814277266_0014
http://www.ams.org/mathscinet-getitem?mr=3959555
https://doi.org/10.1007/s00220-019-03432-5
http://www.ams.org/mathscinet-getitem?mr=1344217
https://doi.org/10.1007/978-1-4757-2437-0
http://www.ams.org/mathscinet-getitem?mr=2118863
https://doi.org/10.1214/009117904000000621
http://www.ams.org/mathscinet-getitem?mr=1210022
https://doi.org/10.5565/PUBLMAT_362B92_07
http://www.ams.org/mathscinet-getitem?mr=2169627
https://doi.org/10.1090/chel/352
https://doi.org/10.1090/tran/7255
https://doi.org/10.1214/14-AIHP653
https://doi.org/10.1515/9783110199291
https://doi.org/10.1007/s00039-016-0376-5
https://doi.org/10.1142/9789814277266_0014


ON THE ABSOLUTE CONTINUITY OF RANDOM NODAL VOLUMES 2175

[24] PECCATI, G. and TUDOR, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals.
In Séminaire de Probabilités XXXVIII. Lecture Notes in Math. 1857 247–262. Springer, Berlin.
MR2126978 https://doi.org/10.1007/978-3-540-31449-3_17

[25] ROSSI, M. (2019). Random nodal lengths and Wiener chaos. In Probabilistic Methods in Geometry,
Topology and Spectral Theory. Contemp. Math. 739 155–169. Amer. Math. Soc., Providence, RI.
MR4033918 https://doi.org/10.1090/conm/739/14898

[26] SHINOZUKA, M. and DEODATIS, G. (1991). Simulation of stochastic processes by spectral representation.
Appl. Mech. Rev. 44 191–204. MR1097683 https://doi.org/10.1115/1.3119501

[27] WILSON, G. (1978). Hilbert’s sixteenth problem. Topology 17 53–73. MR0498591 https://doi.org/10.1016/
0040-9383(78)90012-5

[28] YAU, S. T., ed. (1982). Seminar on Differential Geometry. Annals of Mathematics Studies 102. Princeton
Univ. Press, Princeton, NJ; Univ. Tokyo Press, Tokyo. MR0645728

http://www.ams.org/mathscinet-getitem?mr=2126978
https://doi.org/10.1007/978-3-540-31449-3_17
http://www.ams.org/mathscinet-getitem?mr=4033918
https://doi.org/10.1090/conm/739/14898
http://www.ams.org/mathscinet-getitem?mr=1097683
https://doi.org/10.1115/1.3119501
http://www.ams.org/mathscinet-getitem?mr=0498591
https://doi.org/10.1016/0040-9383(78)90012-5
http://www.ams.org/mathscinet-getitem?mr=0645728
https://doi.org/10.1016/0040-9383(78)90012-5

	Introduction
	Closed Kac-Rice type formulas
	A closed formula in dimension one
	Understanding the formula and generalizations
	Extension to the nonperiodic setting
	Closed formulas in higher dimensions
	A nonsingular formula for the nodal volume

	On the nonconstancy of the nodal volume associated with a Gaussian ﬁeld
	On the absolute continuity of the nodal volume
	A quick and self-contained introduction to Malliavin calculus
	The sharp operator and its domain
	Closability of the sharp operator
	Main properties of the sharp operator


	Computing the Malliavin derivative of the nodal volume
	Generating Gaussian processes on suitable probability spaces
	Some technical lemmas

	On the nondegeneracy of the Malliavin derivative
	Understanding the singularity
	Step 1: Interpreting the conditions via the spectral measure
	Step 2: Reasoning on the set of positive values of f
	Step 3: A partial differential equation

	Extension to the nonperiodic setting
	A closed formula for the nodal volume involving boundary terms
	Checking the integrability conditions for the sharp operator



	Acknowledgments
	References

