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In his seminal work from the 1950s, William Feller classified all one-
dimensional diffusions on −∞ ≤ a < b ≤ ∞ in terms of their ability to ac-
cess the boundary (Feller’s test for explosions) and to enter the interior from
the boundary. Feller’s technique is restricted to diffusion processes as the cor-
responding differential generators allow explicit computations and the use of
Hille–Yosida theory. In the present article, we study exit and entrance from
infinity for the most natural generalization, that is, jump diffusions of the
form

dZt = σ(Zt−) dXt ,
driven by stable Lévy processes for α ∈ (0,2). Many results have been
proved for jump diffusions, employing a variety of techniques developed af-
ter Feller’s work but exit and entrance from infinite boundaries has long re-
mained open. We show that the presence of jumps implies features not seen
in the diffusive setting without drift. Finite time explosion is possible for
α ∈ (0,1), whereas entrance from different kinds of infinity is possible for
α ∈ [1,2). Accordingly, we derive necessary and sufficient conditions on σ .

Our proofs are based on very recent developments for path transfor-
mations of stable processes via the Lamperti–Kiu representation and new
Wiener–Hopf factorisations for Lévy processes that lie therein. The argu-
ments draw together original and intricate applications of results using the
Riesz–Bogdan–Żak transformation, entrance laws for self-similar Markov
processes, perpetual integrals of Lévy processes and fluctuation theory, which
have not been used before in the SDE setting, thereby allowing us to employ
classical theory such as Hunt–Nagasawa duality and Getoor’s characterisa-
tion of transience and recurrence.

1. Introduction. In his seminal work in the 1950s, Feller [17, 18] classified one-
dimensional diffusion processes and their boundary behaviour on an interval [a, b] with
−∞ ≤ a < b ≤ ∞. Feller identified four types of boundaries of the domain. The definition of
each is given in terms of combinations of two fundamental properties (or the absence thereof),
namely accessibility, that is, reachable in finite time from within (a, b), and enterability, that
is, the diffusion started at that point can enter (a, b). The four types of boundary points are:
regular, if it is both accessible and enterable; exit, if it is accessible but not enterable; en-
trance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.
Feller’s definitions and proofs are purely analytic, using Hille–Yosida theory to characterise
all possible subdomains of C([a, b]), the space of continuous functions on [a, b], for second-

order differential operators A := κ d
dx

+ σ 2

2
d2

dx2 to generate a Feller semigroup. Feller’s study
can be recovered probabilistically using stochastic differential equations (SDEs) and excur-
sion theory to construct so-called sticky boundary behaviour; a historical summary can be
found in [40]. In the present article, we will not discuss sticky behaviour so we focus on
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SDEs of the form

dZt = κ(Zt) dt + σ(Zt) dBt , Z0 = z ∈ R,(1.1)

where (Bt , t ≥ 0) is a standard Brownian motion. A simple change of space allows to simplify
the degree of generality in the choices of κ . Indeed, transforming space with the so-called
scale function allows a reduction of (1.1) to the driftless SDE

dZt = σ̃ (Zt ) dBt , Z0 = z ∈R,(1.2)

on a new interval (ã, b̃). In the setting of the entire real line, that is, a = −∞ and b = +∞,
the notion of entrance (in applications also called coming down from infinity) and exit (explo-
sion) for (1.2) becomes interesting as they necessitate the range of the diffusion to be infinite
over an almost surely finite period of time, a property not seen for the Brownian motion alone.
It is a standard property (random time-change of a recurrent process) that solutions to (1.2)
cannot explode in finite time, hence, neither +∞ nor −∞ are accessible. This can also be
verified by plugging-into Feller’s test for explosions; see, for instance, Karatzas and Shreve
[24], Section 5.5.C. On the other hand, depending on the growth of σ at infinity the infinite
boundary points can be of entrance type. Feller’s results for this scenario imply that +∞ is
an entrance boundary if and only if∫ +∞

xσ(x)−2 dx <∞,(1.3)

that is, σ growth slightly more than linearly at infinity. An analogous integral test at −∞
holds in the case that −∞ is an entrance point.

In the present article, we study a new type of boundary behaviour, namely exit and entrance
simultaneously from +∞ and −∞; see Figure 1. The simultaneous infinite boundary point
will be denoted by ±∞. We define entrance (resp., explosion at a finite random time T )
from ±∞ if almost surely liminft↓0Zt = −∞ and limsupt↓0Zt = +∞ (resp., liminft↑T Zt =
−∞ and limsupt↑T Zt = +∞). Entrance and exit at ±∞ are forced by an alternation of
increasingly big jumps that avoid compact sets in R.

We focus our study on so-called stable jump diffusions, that is, stochastic differential equa-
tions

dZt = σ(Zt−) dXt , Z0 = z ∈ R,(1.4)

driven by a stable Lévy process (Xt , t ≥ 0) with index α ∈ (0,2) up to a (possibly infinite)
explosion time. The boundary case α = 2 corresponds to the Brownian case studied by Feller.
More precisely, we derive necessary and sufficient conditions on σ so that (i) nonexploding
solutions exist and (ii) the corresponding transition semigroup of Z extends to an entrance
point at ‘infinity’ in an appropriate Fellerian way.

FIG. 1. Entrance from ±∞ and exit at ±∞.
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2. Main results. Before stating the results, let us clarify our notation. A stable process
is a Lévy process with the additional property that, for all c > 0 and x ∈R,

(cXc−αt , t ≥ 0) under Px is equal in law to (Xt , t ≥ 0) under Pcx,

where (Px, x ∈ R) are the probabilities of X and α ∈ (0,2). As a Lévy process, a stable pro-
cess is a Feller process and the semigroup of X is entirely characterised by its characteristic
exponent. More precisely, �(z) := − logE[eizX1] satisfies

(2.1) �(z)= |z|α(eπ iα( 1
2 −ρ)1{z>0} + e−π iα( 1

2 −ρ)1{z<0}
)
, z ∈R,

where we have reserved the special notation P, with expectation operator E, for the law of
X when issued from the origin and ρ = P(X1 > 0) is the positivity parameter. The Lévy
measure associated with � can be written in the form

�(dx)/dx = 	(1 + α)sin(παρ)

π

1

x1+α 1(x>0)

+ 	(1 + α)sin(παρ̂)

π

1

|x|1+α 1(x<0), x ∈ R,

(2.2)

where ρ̂ := 1 − ρ. In the case that α = 1, we take ρ = 1/2, meaning that X corresponds to
the Cauchy process. If X has only upwards (resp., downwards) jumps, we say X is spectrally
positive (resp., negative). If X has jumps in both directions, we say X is two-sided. A spec-
trally positive (resp., negative) stable process with α ∈ (0,1) is necessarily increasing (resp.,
decreasing). See, for example, the recent review Kyprianou [30] for more on this parametric
classification of stable processes.

For a driving stable process X on a filtered probability space (
,A,Ft ,P) and an initial
value z ∈R, a stochastic processZ on (
,A,P) is called a solution to (1.4) up to an explosion
time if Z is Ft -adapted, has almost surely càdlàg sample paths and, with T n = inf{t : |Zs | ≥
n}, the stopped integral equation

Zt∧T n = z+
∫ t∧T n

0
σ(Zs−) dXs, t ≥ 0,(2.3)

is satisfied almost surely for all n ∈ N. We denote by T = limn→∞ T n the (finite or infinite)
explosion time of the solution. We note that with this notion, a solution Z is a ‘local solution
on (−n,n)’ (in the sense of Zanzotto [51] or [52]) for all n ∈ N.

When α ∈ (1,2), the study of weak existence and uniqueness of solutions to (1.4) (resp.,
(2.3)) in R is due to Zanzotto [52], complementing the classical Engelbert–Schmidt theory
for one-dimensional Brownian SDEs (see Chapter 5.5 of [24]). In fact, the main difficulty is
to understand existence and uniqueness for solutions at zeros of σ . The focus of the present
article lies on finite time explosion and entrance from infinity, so we always work under the
following simplifying assumption that avoids all difficulties in the interior of R.

ASSUMPTION 2.1. σ is continuous and strictly positive.

Time-change techniques are a useful tool in the study of one-dimensional diffusions; see,
for instance, Karatzas and Shreve [24], Section 5.5.A. For stable SDEs, time-change was the
main tool in the study of Zanzotto [51], [52]. Under weaker assumptions than our Assump-
tion 2.1, Zanzotto proved that for all n ∈ N there is a unique local solution on (−n,n) so
that (Zt , t ≤ T n)= (Xτt , t ≤ T n) in distribution, where τt = inf{s > 0 : ∫ s

0 σ(Xs)
−α ds > t}.

Note that continuity of σ > 0 on R implies that σ is bounded away from zero on all intervals
(−n,n). Local solutions have a simple consistency property. For m> n, a local solution on
(−m,m) stopped at T n is a local solution on (−n,n). Hence, we immediately obtain the
following time-change representation of (possibly exploding) solutions.
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PROPOSITION 2.1. Suppose that σ satisfies Assumption 2.1 and z ∈ R. Then there is a
unique (possibly exploding) weak solution Z to the SDE (1.4) and Z can be expressed as
time-change under Pz via

Zt :=Xτt , t < T ,(2.4)

where

τt = inf
{
s > 0 :

∫ s

0
σ(Xs)

−α ds > t
}

(2.5)

and the finite or infinite explosion time is T = ∫ ∞
0 σ(Xs)

−α ds.

Henceforth, the law of the unique solution Z as a process on D([0,∞),R) will be denoted
by Pz, z ∈ R, where D([0,∞),R) is the space of càdlàg paths mapping [0,∞) to R, equipped
with the Borel σ -algebra induced by the Skorokhod topology. We call a finite-time explosion
a Feller explosion if the explosion time T is weakly continuous in the Skorokhod topology
with respect to the initial condition on R and T converges weakly to zero as |x| → ∞.

In the following two sections, we present and discuss tests for Feller explosion and Feller
entrance from infinity. All proofs are based solely on the time-change representation (2.4) for
solutions of the jump diffusion (1.4); no further SDE calculus is used. The main focus of our
constructions lies on entrance from infinity.

2.1. (Non)explosion of stable jump diffusions. In theory, the question of finite time ex-
plosion could be resolved immediately from (2.4) and (2.5) by studying finiteness versus
infiniteness of the so-called perpetual integral

∫ ∞
0 σ(Xs)

−α ds for the stable process X. This
is trivial for α ≥ 1 and the Brownian case due to (set-)recurrence of X. For α ∈ (0,1), the
transience of X implies that finiteness of

∫ ∞
0 σ(Xs)

−α ds will depend on the growth of σ at
infinity. Except for a general 0–1 law for perpetual integrals of Lévy processes, which im-
plies that finite time explosion is an event of probability 0 or 1 (see Lemma 5 of [15], the
stronger assumptions of [15] are not used for the 0–1 law), we are not aware of a sufficiently
general result for perpetual integrals that is helpful in this respect. Our first main theorem
gives necessary and sufficient conditions for Feller explosion of stable SDEs (1.4) and iden-
tifies the infinite almost sure limit at the explosion time which is either +∞, −∞ or ±∞.
Divergence of the solution Z to ±∞ at the explosion time means lim supt↑T Zt = +∞ and
lim inft↑T Zt = −∞ almost surely.

In terms of other work that are in close proximity to our own, we are only aware of the
recent article Li [37] for continuous state polynomial branching processes which coincides
with our Theorem 2.1 below for polynomials σ(x)= xθ and spectrally positive driving stable
process. However, the use of technology for branching processes excludes generalizations of
that article to two-sided jumps.

In Table 1 below, a tick stands for Feller explosion to the corresponding infinite boundary
point, a cross for almost sure nonexplosion. We use the symbols ↑, ↓ and ↑ & ↓ to indicate
the direction of jumps of the driving stable process. The table is complemented with a final
row (α = 2) representing Feller’s test for explosions for Brownian SDEs.

THEOREM 2.1. Suppose that σ satisfies Assumption 2.1 and let

Iσ,α(A)=
∫
A
σ(x)−α|x|α−1 dx.

Then Table 1 exhaustively summarises Feller explosion for the SDE (1.4) issued from any
z ∈ R, depending only on α,σ and the directions of jumps of the stable driving Lévy process.



1224 L. DÖRING AND A. E. KYPRIANOU

TABLE 1
Necessary and sufficient conditions for exit at infinite boundary points

α Jumps +∞ −∞ ±∞
only ↓ ✗ ✓ iff Iσ,α(R−) <∞ ✗

< 1 only ↑ ✓ iff Iσ,α(R+) <∞ ✗ ✗

↑ & ↓ ✗ ✗ ✓ iff Iσ,α(R) <∞
= 1 ↑ & ↓ ✗ ✗ ✗

only ↓ ✗ ✗ ✗

> 1 only ↑ ✗ ✗ ✗

↑ & ↓ ✗ ✗ ✗

= 2 none ✗ ✗ ✗

2.2. Entrance from infinity. After the characterisation of infinite exit points, we continue
with the characterisation of entrance from infinity. By analogy to the three types of infinite
boundary points for explosion, we distinguish entrance points +∞, −∞ and ±∞. Alternat-
ing entrance from ±∞ is a new phenomenon. A rigorous formulation will be given in terms
of semigroup extensions under which trajectories enter continuously from infinity. Although
in the spirit of Feller’s work, our construction is completely different. Feller constructed semi-
groups through the Hille–Yosida theorem (which gives a Markov process through the Riesz
representation theorem) whereas we give explicit probabilistic constructions and then prove
the corresponding semigroup is Feller. It is not clear if the Hille–Yosida approach for diffu-
sions can be extended to jump diffusions as it involves the need to understand the resolvent
equations (A − λI)f = g. Those are ordinary differential equations for the diffusive case
and can be solved using the variation of constants formula. For jump diffusions, the resolvent
equations are integro-differential equations for which explicit solutions are not available.

Suppose that S is a locally compact metrizable topological space. We write Cb(S) for the
space of bounded continuous functions mapping S to R. Then Cb(S) is a Banach space with
the supremum norm ‖ · ‖.

DEFINITION 2.1. A Cb-Feller semigroup is a collection of linear operators P = (Pt , t ≥
0) mapping Cb(S) into Cb(S) satisfying:

(i) Pt1 ≤ 1 for all t ≥ 0 (contraction),
(ii) Pt f ≥ 0 for all f ≥ 0 and t ≥ 0 (positivity),

(iii) P0 = id and Pt+s =PtPs for all t, s ≥ 0 (semigroup),
(iv) limt→0 Pt f (x)= f (x) for all f ∈ Cb(S) and x ∈ S (weak continuity).

Additionally, P is called conservative (or not killed) if:

(i′) Pt1 = 1 for all t ≥ 0.

Semigroups are the natural language with which to describe the transitions of a Markov
process. A (possibly killed) Markov process (Yt , t ≥ 0) on S with cemetery state � /∈ S is
a collection (Py, y ∈ S) of probability laws on the càdlàg trajectories D([0,∞), S ∪ {�}),
mapping [0,∞) to S ∪ {�}, equipped with the Borel σ -algebra induced by the Skorokhod
topology, such that the canonical process Yt (ω) := ωt , t ≥ 0, is absorbed at � and satisfies

Ey
[
f (Yt )|σ(Yu,u≤ s)] = Ey

[
f (Yt )|σ(Ys)], Py-almost surely,

for all y ∈ S, 0 ≤ s ≤ t and f ∈ Cb(S). If P is conservative, then the killing time is infi-
nite almost surely. If we define from a Markov process (Py, y ∈ S) the so-called transition
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operators

(2.6) Pt f (y) := Ey
[
f (Yt )

]
, t ≥ 0, y ∈ S,f ∈ Cb(S),

then conditions (i)–(iii) hold. However, it is not necessarily the case that Pt f is continuous
and (iv) holds. Conversely, for a given Feller semigroup P there is a (possibly killed) strong
Markov process (Px : x ∈ S) on S with transition semigroup P in the sense of (2.6). In that
case, we refer to Y as a (conservative) Feller process. We refer the reader for instance to
Chapter 17 of Kallenberg [23] for a full account of the theory.

The main finding of this article is that there are three types of infinite entrance boundaries
under the presence of jumps. In this respect, let us denote

R := R∪ {∞}, R := R∪ {−∞} and R := R∪ {±∞}(2.7)

with the usual extensions of the Euclidian topology, that is, the smallest topology containing
all open sets of R and sets

(c,+∞] for R, [−∞, c) for R and

[−∞, c)∪ (d,+∞] for R.
(2.8)

Note that all these sets are metrizable as they are homeomorphic to intervals. It will later play
a role that in this way R is the one-point compactification of R.

DEFINITION 2.2. We say that +∞ is a (continuous) entrance point for a Feller pro-
cess (Px : x ∈ R) if there is an extension (Px : x ∈R) on the Skorokhod space, specifically,
meaning Skorokhod continuity in the initial position, so that:

(i) the point +∞ is not accessible under Px for all x ∈ R,
(ii) the corresponding transition semigroup P is Feller on Cb(R),

(iii) there is continuous entrance in the sense that P+∞(limt↓0 Yt = +∞)= 1.

Analogously, we define entrance from −∞ as extension to Cb(R) and entrance from ±∞ as
extension to Cb(R)= C(R).

Our next result extends Feller’s characterisation of infinite (continuous) entrance points to
stable jump diffusions. In Table 2, a tick stands for entrance from the corresponding infinite
boundary point, a cross for no entrance point. We use the symbols ↑, ↓ and ↑ & ↓ to indi-
cate the direction of jumps of the driving stable process. The table is complemented with a
final row representing Feller’s criterion for entrance from infinity in the Brownian case. We
also note that, when the driving noise only has positive jumps, the necessary and sufficient
condition in the table is a special form of the one given by (1.25) in [37], where some other
equivalent conditions are also given.

TABLE 2
Necessary and sufficient conditions for entrance from infinite boundary points

α Jumps +∞ Proof −∞ Proof ±∞ Proof

only ↓ ✗ (Section 5.5) ✗ (Section 5.7) ✗ (Section 5.5)
< 1 only ↑ ✗ (Section 5.6) ✗ (Section 5.4) ✗ (Section 5.4)

↑ & ↓ ✗ (Section 5.1) ✗ (Section 5.2) ✗ (Section 5.3)

= 1 ↑ & ↓ ✗ (Section 5.2) ✗ (Section 5.2) ✓ iff Iσ,1 <∞ (Section 8)

only ↓ ✗ (Section 5.5) ✓ iff Iσ,α(R−) <∞ (Section 7) ✗ (Section 5.5)
> 1 only ↑ ✓ iff Iσ,α(R+) <∞ (Section 7) ✗ (Section 5.4) ✗ (Section 5.4)

↑ & ↓ ✗ (Section 5.1) ✗ (Section 5.2) ✓ iff Iσ,α(R) <∞ (Section 6)

= 2 none ✓ iff Iσ,2(R+) <∞ Feller ✓ iff Iσ,2(R−) <∞ Feller ✗ –
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THEOREM 2.2. Suppose that σ satisfies Assumption 2.1 and let

Iσ,α(A)=
∫
A
σ(x)−α|x|α−1 dx and Iσ,1 =

∫
R

σ(x)−1 log |x|dx.
Then Table 2 exhaustively summarizes entrance points at infinity depending only on α,σ and
the directions of jumps of the stable driving Lévy process.

Without loss of generality, throughout the article we will study entrance from infinity for
the SDE (1.4) killed upon first hitting the origin, denoted by Z†. The time-change represen-
tation from Proposition 2.1 holds unchanged, replacing the stable process X by the stable
process killed at the origin X†. The additional killing is crucial to apply stochastic potential
theory (killing makes solutions transient) but does not restrict the generality of our results for
the following reasons.

(i) If α ≤ 1, then solutions almost surely do not hit the origin, hence, no killing occurs.
This is a consequence of the time-change representation (2.4) and the fact that points are
polar for stable processes with α ≤ 1.

(ii) If α > 1, then solutions to (1.4) might be killed at zero in finite time. For all initial
conditions, solutions are weakly unique, nonexplosive and known to be Cb-Feller on R (see,
for instance, van Casteren [44], but note that his statement is stronger than his proofs and Pt f
does not necessarily vanish at infinity). To construct a Markov process without killing at 0
from the killed solution, one proceeds as follows. Take the killed process up to the killing time
and ‘glue’ thereafter a new unkilled solution withZ0 = 0. The reader should keep in mind that
constructing Markov processes by ‘glueing’ two processes is far from easy and the literature
is limited. For continuous processes, we refer the reader to Nagasawa [39]; the gluing results
needed for the present article can be found for instance in Werner [48], Theorem 1.6. The
process obtained by gluing is not only Markov but also Feller, which follows directly from
inspecting the resolvent operator of the Markov process obtained by gluing.

2.3. Proof strategy for entrance from infinity. (i) Direct arguments using the time-change
representation (2.4). No entrance from infinity in the impossible cases is argued as follows.
If the stable process itself ‘diverges at fixed levels’ for large starting conditions (i.e., does
not hit intervals or has diverging overshoots), then the time-change in the representation (2.1)
cannot prevent solutions to the SDE (1.4) having the same property. Such arguments explain
all the crosses in the tables.

(ii) Spatial-inversion. To construct the semigroup extensions at infinity we proceed sim-
ilarly in all cases. In Section 4, we prove an extension of the so-called Riesz–Bogdan–Żak
transformation, which we then use to write solutions to (1.4) as a time-change of the spatial
inversion x 
→ 1/x of a certain h-transformed process X̂◦. As such, starting the SDE from
infinity is equivalent to starting X̂◦ from 0 and insisting on a suitably well-behaved time-
change. For the first of these two, we can reduce the entrance of the auxiliary process X̂◦ at
0 to recent result on self-similar Markov processes, the time-change can be controlled using
recent explicit potential formulas.

(iii) Time-reversal. If infinity is an entrance point, we show (using the strong Markov
property as a consequence of the Feller property) that 0 for α > 1 (resp., (−1,1) for α =
1) is hit in finite time. For α > 1, we use time-reversal to derive the integral test from a
perpetual integral of a well-behaved Lévy process. For α = 1, we apply an extended version
of a transience result due to Getoor; see the Appendix.

2.4. Proof strategy for explosion. All recurrent cases are easily dealt with since the ex-
plosion time T = ∫ ∞

0 σ(Xs)
−α ds is obviously infinite almost surely if X is recurrent. Since

explosion is equivalent to entrance from 0 of the space-inverted time-reversal (which can be
identified as a time-change of the stable process itself), in the transient case α ∈ (0,1) we can
work with a transience argument for X.
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3. Self-similar Markov processes and stable processes. The techniques we use to
prove Theorem 2.2 make significant use of the fact that the driving stable Lévy process in
the SDE (1.4) is also a self-similar Markov process. We will use a lot of facts and theory that
have only very recently been developed in the field of self-similar Markov processes. As our
desire is to keep the article mostly self-contained, we devote this section to a brief overview
of the recent results that are needed. In particular, we look at how the theory of self-similar
Markov processes plays into the setting of stable Lévy processes.

The reader will quickly realise that there are many different types of processes that are
involved in our analysis, least of all in this section. For this reason, we include as an annex at
the end of this article, a glossary of mathematical symbols.

3.1. Positive self-similar Markov processes. A regular strong Markov family Pz, z > 0,
with càdlàg paths on the state space (0,∞), with 0 being an absorbing cemetery state, is
called positive self-similar Markov process of index α > 0 (briefly pssMp) if the scaling
property holds

The law of (cXc−αt , t ≥ 0) under Pz is Pcz,(3.1)

for all z, c > 0. The analysis of positive self-similar processes is fundamentally based on the
seminal work of Lamperti [36] (see also Chapter 13 of [28] for an overview). Lamperti’s
result gives a bijection between the class of pssMps and the class of Lévy processes, possibly
killed at an independent exponential time with cemetery state −∞, such that, under Pz, z > 0,

Xt = exp(ξϕt ), t ≤ I∞ :=
∫ ∞

0
exp(αξu) du,(3.2)

where ϕt = inf{s > 0 : ∫ s
0 exp(αξu) du > t} and the Lévy process ξ is started in log z.

It is a consequence of the Lamperti representation (3.2) that pssMps can be split into
conservative and nonconservative regimes. If ζ denotes the first hitting time of 0 by X , then

Pz(ζ <∞)= 1 for all z > 0 ⇐⇒ ξ drifts to −∞ or is killed,
(3.3)

Pz(ζ <∞)= 0 for all z > 0 ⇐⇒ ξ drifts to +∞ or oscillates.

The dichotomy (3.3) can be used to decide if a pssMps is transient or recurrent by examining
the corresponding Lévy process ξ . We will see this methodology employed in later sections.

For the present article, we shall need one of several continuations of Lamperti’s work. For
the conservative case Pz(ζ <∞) = 0, an important question to ask is: When is it possible
to treat 0 as an entrance point? More precisely, one asks for a Feller extension (Pz, z ≥ 0)
of (Pz, z > 0). It was shown incrementally in Bertoin and Yor [3], Caballero and Chaumont
[6], Chaumont et al. [11] and also in Bertoin and Savov [2] that, if the ascending ladder
height process of ξ is nonlattice, 0 is an entrance point for X if and only if the overshoot
distribution of ξ over asymptotically large levels converges. That is to say, if (Px, x ∈ R) are
the distributions of ξ and P = P0, then 0 is an entrance point for X if and only if

lim
x↑∞ P(ξς+

x
− x ∈ dy), y ≥ 0,(3.4)

exists in the sense of weak convergence, where ς+
x := inf{t > 0 : ξt ≥ x}. If (3.4) holds, then

one says the Lévy process ξ has stationary overshoots. The probabilistic condition which
is equivalent to stationary overshoots is complicated to verify directly but has an explicit
analytic counterpart in terms of the Lévy triplet (see, for instance, Chapter 7 of [28]). In this
paper, when encountering the need to verify stationary overshoots as such, we will do so
directly.
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3.2. Real-valued self-similar Markov processes. A real self-similar Markov process
(rssMp) extends the notion of a pssMp albeit the requirement that the process is positive
is dropped allowing the exploration of R until absorption in the cemetery state 0 (if at all).
Significant effort has been invested in the last few years to extend the theory of pssMp to the
setting of R. The description below is the culmination of the work in [13, 20, 25, 46] with
more recent clarity given in Chaumont et al. [12], Kuznetsov et al. [27] and Dereich et al.
[14].

Analogously to Lamperti’s representation, for a real self-similar Markov process X there
is a Markov additive process ((ξt , Jt ), t ≥ 0) on R× {−1,1} such that

Xt = Jϕt exp(ξϕt ), t ≤ I∞ :=
∫ ∞

0
eαξs ds,(3.5)

where ϕt = inf{s > 0 : ∫ s
0 exp(αξu) du > t} and (ξ0, J0)= (log |z|, [z]) with

[z] =
{

1 if z > 0,

−1 if z < 0.

The representation (3.5) is known as the Lamperti–Kiu transform. Here, by Markov additive
process (MAP), we mean the regular strong Markov process with probabilities Px,i , x ∈ R,
i ∈ {−1,1}, such that (Jt , t ≥ 0) is a continuous time Markov chain on {−1,1} (called the
modulating chain) and, for any i ∈ {−1,1} and s, t ≥ 0,

given {Jt = i}, the pair (ξt+s − ξt , Jt+s)s≥0 is independent of the past

and has the same distribution as (ξs, Js)s≥0 under P0,i .

If the MAP is killed, then ξ is sent to the cemetery state {−∞}. All background results for
MAPs that relate to the present article can be found in the Appendix of Dereich et al. [14].

The mechanism behind the Lamperti–Kiu representation is thus simple. The modulation J
governs the sign and, on intervals of time for which there is no change in sign, the Lamperti–
Kiu representation effectively plays the role of the Lamperti representation of a pssMp. In a
sense, the MAP formalism gives a concatenation of signed Lamperti representations between
times of sign change.

REMARK 3.1. Typically, one can assume the Markov chain J to be irreducible as other-
wise the corresponding self-similar Markov processes only switches signs at most once and
can therefore be treated using the theory of pssMp.

Analogously to Lévy processes, one knows that an unkilled MAP (ξ, J ) either drifts
to +∞ (i.e., limt↑∞ ξt = +∞), drifts to −∞ (i.e., limt↑∞ ξt = −∞) or oscillates (i.e.,
lim inft↑∞ ξt = −∞ and lim supt↑∞ ξt = +∞), in the almost sure sense. Moreover, just in
the case of pssMp a simple 0–1 law for rssMp holds, distinguishing the case of conservative
processes from nonconservative processes. We have

Pz(ζ <∞)= 1 for all z �= 0 ⇐⇒ (ξ, J ) drifts to −∞ or is killed,

Pz(ζ <∞)= 0 for all z �= 0 ⇐⇒ (ξ, J ) drifts to +∞ or oscillates,

where ζ = inf{t > 0 : Xt = 0}. Generalizing the results for pssMps, the existence of 0 as
an entrance point was addressed by Dereich et al. [14]. It was shown that a necessary and
sufficient condition for the existence of a Feller extension (Pz, z ∈ R) under which trajectories
leave 0 continuously of (Pz, z �= 0) in terms of the underlying MAP is weak convergence of
the overshoots; that is,

lim
a→+∞ P0,i

(
ξς+
a

− a ∈ dy, J+
ς+
a

= j ), y ≥ 0, i, j ∈ {−1,1},(3.6)
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exists in the sense of weak convergence independently of i ∈ {−1,1} and is nondegenerate,
where ς+

a = inf{t > 0 : ξt ≥ a}. Just as in the pssMp setting, this can be thought of as a natural
condition for similar reasons. As for Lévy processes, there is an analytic condition for (3.6)
in terms of the generalised triplet for MAPs; see Theorem 5 of [14].

3.3. Stable processes and their path functionals as rssMp. Stable processes and certain
types of conditioned stable processes are linked to the theory of self-similar Markov pro-
cesses. A little care is needed since the definition of a real self-similar Markov process given
above asks for 0 to be absorbing.

(1) To discuss stable process in the light of self-similarity, we should remind ourselves
of the accessibility of the single point set {0}; see, for instance, Chapter 7 of [28]. If we set
τ {0} = inf{t > 0 :Xt = 0}, then, for all x �= 0,

Px

(
τ {0} <∞) =

{
0 if α ∈ (0,1],
1 if α ∈ (1,2),

for all x �= 0. In other words, {0} is polar if and only if α ≤ 1. In response to this observation,
it is (X†

t , t ≥ 0) which conforms to our definition of a positive or real self-similar Markov
process, where

(3.7) X
†
t :=Xt1(t<τ {0}), t ≥ 0.

This is clearly the case when 0 is polar as X† =X. However, when 0 is not polar, a little more
detail is deserving in order to verify the scaling property. Indeed, suppose momentarily we
write (X(x)t , t ≥ 0), x �= 0, to indicate the initial value of the process, that is, X(x)0 = x. Then,
for c > 0,

τ {0} = inf
{
t > 0 :X(x)t = 0

}
= c−α inf

{
cαt > 0 : cX(x)

c−αcαt = 0
}

=: c−α inf
{
s > 0 : X̃(cx)s = 0

}
=: c−ατ̃ {0},

where X̃(cx)s := cX(x)
c−αs , s ≥ 0, is equal in law to X(cx)s , s ≥ 0. With this in hand, we now

easily verify that, for c > 0,

cX
(x)

c−αt1(c−αt<τ {0}) = X̃(cx)t 1(t<τ̃ {0}), t ≥ 0,

and, as such, the right-hand side is equal in law to (X†,Pcx).
From Section 3.2, we see that there is a family of MAPs corresponding to the family of

killed stable processes through the Lamperti–Kiu representation. A characterisation of this
family (ξ, J ) was uncovered in Chaumont et al. [12] (see also Kuzentsov et al. [27]). From
the characterisation, it can be deduced that

• (ξ, J ) drifts to +∞ if α ∈ (0,1) and ξ is not the negative of a subordinator,
• (ξ, J ) drifts to −∞ if α ∈ (0,1) and ξ is the negative of a subordinator
• (ξ, J ) oscillates if α = 1,
• (ξ, J ) drifts to −∞ if α ∈ (1,2).
This path behaviour is consistent through the Lamperti–Kiu representation with the fact that,
as a Markov process, a stable Lévy process:

• is transient when α ∈ (0,1), in which case 0 is polar, hence, limt→∞ |Xt | = ∞,
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• is recurrent when α = 1 but points are polar, hence, lim supt→∞ |Xt | = ∞ and
lim inft→∞ |Xt | = 0,

• almost surely hits zero when α ∈ (1,2) and limt→τ {0} |Xt | = 0.

See, for instance, the discussion around Theorems 7.4 and 7.5 in [28] for these facts.
(2) More examples of a rssMps that can be derived from stable processes emerge through

special kinds of conditioning. We confine this remark to the setting of two-sided jumps. When
α ∈ (0,1), it was shown in Kyprianou et al. [33] that, for x �= 0, A ∈ Ft := σ(Xs, s ≤ t) and
each a > 0,

P
◦
x

(
A∩{

t < τ (−a,a)
}) = lim

ε→0
Px

(
A∩ {

t < τ (−a,a)
}|τ (−ε,ε) <∞)

,(3.8)

where τ (−a,a) = inf{t > 0 : |Xt | < a}, defines a consistent family of probability laws such
that (X,P◦

x), x �= 0, defines a rssMp, referred to as the stable process conditioned to continu-
ously absorb at the origin. Additionally they show that, irrespective of the point of issue, the
absorption time is almost surely finite and that P◦ is an h-transform of P via

(3.9)
dP◦
x

dPx

∣∣∣∣
Ft

= h(Xt)
h(x)

, t ≥ 0, x ∈ R\{0},
where

h(x) := −	(1 − α)
(

sin(παρ̂)

π
1(x≥0) + sin(παρ)

π
1(x<0)

)
|x|α−1,

x ∈R.

(3.10)

Moreover, when α ∈ (1,2), it was also shown in Kyprianou et al. [33] as well as in Chau-
mont et al. [12] that, for x �= 0 and A ∈ Ft ,

P
◦
x(A)= lim

a→∞Px

(
A∩ {

t < τ (−a,a)c
}|τ (−a,a)c < τ {0}),(3.11)

where τ (−a,a)c = inf{t > 0 : |Xt | ≥ a}, also defines a consistent family of probability laws
such that (X,P◦

x), x �= 0, defines rssMp referred to as the stable process conditioned to avoid
the origin. Moreover, the absolute continuity (3.9) is still valid, albeit with X replaced by X†.

It is a straightforward exercise to show that expectations of the form E
◦
x[f (cXc−αs, s ≤ t)],

where f is bounded and measurable, transform to E
◦
cx[f (Xs, s ≤ t)] thanks to the shape of

the h-transform and the inherent scaling of the stable process. Said another way, the process
(X◦,Px), x �= 0, is a rssMp.

The reader may be left wondering if either of these two conditionings apply when α = 1
even though the h-transform becomes trivial. Clearly, conditioning to avoid the origin is
meaningless as 0 is inaccessible for the Cauchy process. It also turns out that conditioning
the Cauchy process to continuously absorb at the origin cannot be made sense of. In this way,
the Cauchy process asserts itself again as a distinguished intermediary case in the class of
stable processes.

Amongst the above examples of rssMp, that is, the stable process X killed on hitting the
origin, the stable process conditioned to continuously absorb at the origin and the stable
process conditioned to avoid the origin, we can examine the existence of 0 as an entrance
point. Clearly, when α ∈ (0,1] we already know that X is well defined as entering from 0 (it
never hits 0 again). Moreover, when α ∈ (1,2), the processX is instantaneously absorbed at 0
when issued there and, hence, the origin cannot serve as an entrance point. When α ∈ (0,1),
it is also clear that 0 cannot serve as an entrance point for the stable process conditioned
to continuously absorb at the origin; cf. Kyprianou [30]. However, when α ∈ (1,2), it is
meaningful to check whether 0 is an entrance point in the sense that there is a Feller extension
P

◦
x , x ∈ R of P◦

x , x �= 0.
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LEMMA 3.1. When α ∈ (1,2) and the stable process has two-sided jumps, then 0 is an
entrance boundary of P◦

x , x �= 0.

PROOF. As remarked above, the conditioned processes are also rssMps so we can apply
the results on entrance from 0 for rssMps (see Section 3.2 and the necessary and sufficient
condition (3.6) in particular). From the Lamperti–Kiu representation, there is a corresponding
MAP that we denote by (ξ◦, J ◦) for which we need to check convergence of overshoots
(3.6). One could either try to appeal to the analytic condition of Dereich et al. [14] for the
convergence of overshoots or invoke known formulas for overshoots for stable processes.

To carry out the second option, we note that, due to the Lamperti–Kiu representation, the
range of J ◦

t exp(ξ◦
t ), t ≥ 0, agrees with that of the conditioned process. Therefore, using the

absolute continuity relation (3.9), (3.6) is equivalent to the existence of the weak limit

lim|x|→0
P

◦
x(Xτ(−1,1)c ∈ dy)

= lim|x|→0

h(y)

h(x)
Px

(
Xτ(−1,1)c ∈ dy, τ (−1,1)c < τ {0}), |y| ≥ 1,

(3.12)

in the sense of weak convergence, where τ (−1,1)c = inf{t > 0 : |Xt | ≥ 1}. Fortunately, there
are fluctuation identities known in explicit form in existing literature, which enables us to deal
with the right-hand side of (3.12) directly. Indeed, in this case, we may appeal to Corollary 2
of Kyprianou [29] which tells us, for example, when y > 1 and x ∈ (0,1), for all α ∈ (0,2),

Px

(
Xτ(−1,1)c ∈ dy, τ (−1,1)c < τ {0})/dy

= sin(παρ)

π
(1 + x)αρ̂(1 − x)αρ(1 + y)−αρ̂(y − 1)−αρ(y − x)−1

(3.13)

− cα sin(παρ)

π
(1 + y)−αρ̂(y − 1)−αρy−1xα−1

×
∫ 1/x

1
(t − 1)αρ−1(t + 1)αρ̂−1 dt,

where cα = max{(α− 1),0}. Recalling the definition of h we use the above identity together
with L’Hôpital’s rule to deduce the right-hand side of (3.12) exists. The details for these and
other combinations of x and y are left to the reader (see also Remark 6 in Profeta and Simon
[42]). Hence, overshoots of (ξ, J ) converge and the theory of rssMps implies the claim. �

To complete this section, we recall a remarkable result which gives a pathwise connection
between X and the conditioned processes given in (3.8) and (3.11). In the following result,
which is due to Bogdan and Żak [5], we write P̂x for the law of −X under Px . Under P̂x , the
canonical process is again a stable process, the so-called dual stable process.

THEOREM 3.1 (Riesz–Bogdan–Żak transform). Suppose that X under Px has two-sided
jumps and

ηt = inf
{
s > 0 :

∫ s

0

∣∣X†
u

∣∣−2α
du > t

}
, t ≥ 0.(3.14)

Then, for all x �= 0, the law of (1/X†
ηt
)t≥0 under P̂x is P◦

1/x .

In words, this theorem gives a pathwise link (spatial inversion and time-change) between
the killed stable process X and the conditioned process (h-transform).
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3.4. Stable processes and their path functionals as pssMp. Stable processes are also nat-
urally linked to pssMp by looking at different functionals of X. Three pertinent cases in point
are that of the censored stable, the radial process and the stable process conditioned to stay
positive.

(1) For the (positive) censored stable process, define the occupation time of (0,∞),

At =
∫ t

0
1
(X

†
s >0) ds,

and let γt = inf{s ≥ 0 :As > t} be its right-continuous inverse. The process (X†
γt
)t≥0 is what

is understood to be the (negatively) censored stable process. In words, this is the process
formed by erasing the negative components of X† and shunting together the resulting sec-
tions of trajectory so that the temporal gaps are closed. The Lévy process that underlies its
Lamperti representation, say ξ>, was found in Theorem 5.5 of Kyprianou et al. [31]; up to a
multiplicative constant, its characteristic exponent has the form

(3.15) �>(z)= 	(αρ − iz)

	(−iz)

	(1 − αρ + iz)

	(1 − α+ iz)
, z ∈R.

Note, here we use the convention that �>(z)= −t−1 log E>[exp(izξ>t )], t > 0, and we con-
sistently use this arrangement when citing characteristic exponents of other Lévy processes.
It is not difficult to imagine that one may also consider the analogue of this process when we
censor away the positive components of X. In that case, the roles of ρ and ρ̂ are exchanged
on the right-hand side of (3.15).

It is also worthy of note at this point that the censoring procedure ofX† leading to a pssMp
is not specific to the stable case. Indeed, any rssMp can be censored in the same way and will
still result in a pssMp. (We leave it as an exercise to verify this fact, however, the proof is
essentially the same as in the stable setting; see Kyprianou et al. [31]) We will see such an
example later in this exposition.

(2) The radial process of X is nothing more than |X|. In general, |X| is not a Markov
process as one needs to know the sign of X to determine its increments. However, when X
is symmetric, that is to say ρ = 1/2, then |X| is Markovian. The same is true of |X†| since
X =X†. Moreover, |X†| is also a pssMp. The latter can be deduced from symmetry and the
Lamperti–Kiu transformation (3.5); see the discussion in Chapter 13 of [28]. The associated
Lévy process, ξ |·|, that underlies the Lamperti transform has characteristic exponent given by

(3.16) � |·|(z)= 	(
1
2(−iz+ 1))

	(−1
2 iz)

	(1
2(iz+ 1))

	(1
2 iz)

, z ∈ R,

up to a multiplicative constant. See Caballero et al. [7] for further details.
(3) The stable process conditioned to stay positive is only of interest for our purposes

when X does not have monotone paths. Introduced in Chaumont [8], it arises from the limit-
ing procedure (which is indeed valid as a definition for any Lévy process conditioned to stay
positive)

(3.17) P
↑
x (A) := lim

q↓0
Px

(
A, t < q−1e|Xs ≥ 0, s ≤ q−1e

)
for A ∈ Ft := σ(Xs, s ≤ t), where e is an independent and exponentially distributed random
variable with unit rate; see also Chaumont and Doney [10]. This defines a new family of
probabilities on D(R+,R+) and the resulting process (X,P↑

x ), x > 0, is what we call the
stable process conditioned to stay positive.
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It turns out that the family P
↑
x , x > 0, is absolutely continuous with respect to Px , x > 0,

on (Ft , t ≥ 0) via the h-transform relation

(3.18)
dP

↑
x

dPx

∣∣∣∣
Ft

= X
αρ̂
t

xαρ̂
1(t<τ (−∞,0)), t ≥ 0, x > 0,

where τ (−∞,0) = inf{t > 0 :Xt < 0}. Note that when X is spectrally negative, the h-function
in the above h-transform is precisely the one given in (3.10), that is,

(3.19) h(x)= −	(1 − α)sin(π(α− 1))

π
xα−1 = 1

	(α)
xα−1, x ≥ 0,

on account of the fact that ρ = 1/α for spectrally negative stable processes.
Similar to the conditioned process from the previous section, stable processes conditioned

to be positive are self-similar. The Lévy process ξ↑ that underpins the Lamperti transform
was computed in Cabellero and Chaumont [6] (see also Section 13.4.2 of Kyprianou [28]),
and takes the form

(3.20) �↑(z)= 	(αρ − iz)

	(−iz)

	(1 + iz+ αρ̂)
	(1 + iz)

, z ∈ R.

They also proved that ξ↑ drifts to +∞ so that according to (3.3), 0 is polar for the stable
processes conditioned to be positive.

(4) Finally, we consider the setting of α ∈ (0,1) and that X has monotone paths. Con-
ditioning ascending (resp., descending) stable subordinator to stay positive (resp., negative)
is an uninteresting concept. However, what is more interesting is to consider an ascending
(resp., descending) stable subordinator to approach the origin continuously from below (resp.,
above).

This was treated by Chaumont [8] and Kyprianou et al. [32], where it was shown that for
all x > b > 0,

P
◦
x

(
A, t < τ−

b

) := lim
ε↓0

Px

(
A, t < τ−

b |Xτ−
0 − ≤ ε), t ≥ 0,A ∈ Ft ,

is well defined such that, for x > 0,

(3.21)
dP◦
x

dPx

∣∣∣∣
Ft

= X
α−1
t

xα−1 1{Xt≥0}.

In the Lamperti representation of (X◦,Px), x ≥ 0, it was also shown by [32] that ξ is the
negative of a subordinator so that its Laplace exponent is given by

−1

t
log Ex

[
eλξt

] = 	(α + λ)
	(λ)

, λ≥ 0.

Similar to the discussion on conditioned stable processes in Section 3.3, we may ask
whether 0 is an entrance point for the process conditioned to stay positive in the sense that
there is a Feller extension P

↑
x , x > 0 allowing the meaningful inclusion of P↑

0 .

LEMMA 3.2. If α ∈ (1,2), then 0 is an entrance point for P↑
x , x > 0.

PROOF. The proof is almost the same as the proof of Lemma 3.1. Analogously to (3.12),
we may appeal to (3.4) and the Lamperti transform (3.2) to deduce that a necessary and
sufficient condition for 0 to be an entrance point is that the right-hand side of

(3.22) lim
x↓0

P
↑
x (Xτ(1,∞) ∈ dy)= lim

x↓0

yαρ̂

xαρ̂
Px

(
Xτ(1,∞) ∈ dy, τ (1,∞) < τ (−∞,0))
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exists weakly. Similar to (3.12), we can verify this directly by appealing to already known
explicit fluctuation identities. In this case, we need the two-sided exit problem which was
solved by Rogozin [43]. For example, under the regime α ∈ (1,2) when 0< αρ < 1 (which
includes the case of spectral positivity),

Px

(
Xτ(1,∞) ∈ dy; τ (1,∞) < τ (−∞,0))

(3.23)

= sin(παρ)

π
(1 − x)αρxαρ̂(y − 1)−αρy−αρ̂(y − x)−1 dy, y > 1,

and when ρ = 1/α (which is the case of spectral negativity), then necessarily Xτ(1,∞) = 1 and

Px

(
Xτ(1,∞) = 1; τ (1,∞) < τ (−∞,0))

= 1 − sin(παρ̂)

π
(1 − x)αρ̂xαρ(3.24)

×
∫ ∞

0
(y − 1)−αρ̂y−αρ(y − x)−1 dy, y > 1.

The limiting computation in (3.22) is now trivial to verify using (3.23) and, with a little care,
straightforward to verify using (3.24) as well. �

In a similar spirit to the previous section, we complete this section by providing another
remarkable pathwise transformation of the processX, connecting it to its conditioned version
P

↑
x , x > 0, but only in the case thatX is spectrally positive and α ∈ (1,2). As before, we write

P̂x , x �= 0 for the probabilities of −X.

THEOREM 3.2 (Chaumont). Suppose that X is spectrally positive with α ∈ (1,2) and
define

(3.25) ηt = inf
{
s > 0 :

∫ s

0

(
X†
u

)−2α
du > t

}
, t ≤

∫ ∞
0

(
X†
u

)−2α
du.

For all x > 0, the law of (1/X†
ηt
)t≥0 under Px is P̂↑

1/x .

PROOF. Strictly speaking, this result is a special case of Theorem 2.4.1 in Chaumont [9],
which demonstrates a more general result of this kind for pssMp. Indeed, suppose X is a
pssMp with associated Lévy process ξ via the Lamperti transform, and, in the same respect,
X̂ is the pssMp associated to the Lévy process −ξ . Then Theorem 2.4.1 of [9] states that X̂,
when issued from y > 0 is equal in law to (1/Xγt , t ≥ 0) when issued from 1/y, where the
endogenous time-change γt is structured as in (3.25).

The special case we are concerned with here makes use of the observation from Caballero
and Chaumont [6] (see also Section 13.4.2 of Kyprianou [28]) that, if X† is the spectrally
positive stable process killed on hitting the origin with α ∈ (1,2), then its Lévy process, say
ξ†, underlying the Lamperti transform has characteristic exponent satisfying

(3.26) �†(z)= iz
	(α − iz)

	(1 − iz)
, z ∈ R,

up to a multiplicative constant. One easily computes from this exponent that the mean of this
Lévy process at time 1 is equal to −i�†′(0)= −	(α), which is strictly negative, accounting
for the almost sure hitting of the origin by X as one would expect. On the other hand, from
(3.20) the Lévy process underlying (X, P̂↑

x ), x > 0, via the Lamperti transform, say ξ̂↑ takes
the form

(3.27) �̂↑(z)= iz
	(α + iz)

	(1 + iz)
, z ∈ R,
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up to a multiplicative constant. Recall that spectral positivity of (X,Px), x ∈ R, means that
ρ̂ = 1/α, and hence in the context of deriving (3.27), where X̂ is used, we have ρ = 1/α.
Note now that −i�↑′(0) = 	(α), which is strictly positive and accounts for the fact that
(X, P̂

↑
x ) is transient to +∞. The statement of Theorem 3.2 now follows by comparing these

two exponents and recalling that the law of a Lévy process is entirely determined by its
characteristic exponent and, moreover, that the law of a pssMp is entirely determined by its
underlying Lévy process (via the Lamperti transform). �

4. Fundamental transformations. In this section, we consider combinations of classi-
cal transformations (change of measure, change of space, random change of time) related
to the SDE (1.4), respectively, the time-change representation (2.4). These will be crucial in
the main part of the proof to apply results for stable Lévy processes and self-similar Markov
processes.

4.1. Time-space inversions. Before we state and prove an extension of the Riesz–
Bogdan–Żak transformation (Theorem 3.1 above), we recall a simple lemma on time-changes
which is essentially a re-wording of Theorem 1.1 and the discussion above in Chapter 6 of
Ethier and Kurtz [16]; see also Proposition 3.5 of Kühner and Schnurr [26].

LEMMA 4.1. Suppose (Yt , t ≥ 0) is a càdlàg trajectory, f ≥ 0 continuous and

t0 = inf
{
t ≥ 0 : f (Yt )= 0

}
and t1 = inf

{
t ≥ 0 :

∫ t

0

1

f (Yu)
du= ∞

}
.

If t0 = t1, then the integral equation υt = ∫ t
0 f (Yυs ) ds has a unique solution which is of the

form

υt = inf
{
s ≥ 0 :

∫ s

0

1

f (Yu)
du > t

}
∧ t0, t ≥ 0.

In what follows, we set

β(x)= σ(1/x)−α|x|−2α, x ∈ R\{0}
and prove an extension of the Riesz–Bogdan–Żak theorem.

PROPOSITION 4.1. Assume the stable process X with distribution Px , x ∈ R, has two-
sided jumps and σ > 0 is continuous.

(i) Define the time-space transformation

Z
†
t = 1

X̂◦
θt

, t <

∫ ∞
0
β

(
X̂◦
u

)
du,(4.1)

where

θt = inf
{
s > 0 :

∫ s

0
β

(
X̂◦
u

)
du > t

}
.

If X̂◦ has law P̂
◦
1/x , x �= 0, then Z† is the time-changed process (2.4) under Px killed at the

origin.
(ii) Define the time-space transformation

X◦
t = 1

Ẑ
†
ϑt

, t ≥ 0,(4.2)
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where

ϑt = inf
{
s > 0 :

∫ s

0

1

β(1/Ẑ†
u)
du > t

}
.

If Ẑ† is the time-changed process from (2.4) under P̂x , x �= 0, killed at the origin, then the
law of X◦ is P◦

1/x .

Keeping in mind the time-change from (2.4) gives the unique (possibly exploding) weak
solution to the SDE (1.4), the proposition tells us how to transform solutions to the SDE via
spatial inversion and time-change into a h-transform of the driving stable process, and vice
versa. Later on, this will be applied as follows: in order to understand solutions started at
infinity, one can equivalently understand the h-process started from zero in combination with
the behaviour of the time-change. Since the h-process is a self-similar Markov process, the
behaviour at zero has been understood in recent years, so it all will boil down to understanding
the time-change.

PROOF OF PROPOSITION 4.1. (i) The Riesz–Bogdan–Żak theorem (Theorem 3.1) states
that under Px the transformation X̂◦

t = 1/X†
ηt

, t ≥ 0, has law P̂
◦
1/x with the time-change ηt =

inf{s > 0 : ∫ s
0 |X†

u|−2α du > t}. Next, according to the statement, we time-change 1/X̂◦
t =X†

ηt

with θ and show that 1/X̂◦
θt

=X†
η◦θt satisfies the time-change relation (2.4). To do so, let us

consider the concatenation η ◦ θ written in terms of X†. Using the chain rule gives

dηt

dt
= ∣∣X†

ηt

∣∣2α and
dθt

dt
= 1/β

(
1/X†

η◦θt
) = ∣∣X†

η◦θt
∣∣−2α

σ
(
X

†
η◦θt

)α
,

and hence,

dη ◦ θt
dt

= dηs
ds

∣∣∣∣
s=θt

dθt

dt
= σ (

X
†
η◦θt

)α
.(4.3)

Defining γt = η ◦ θt , we note that γ satisfies the pathwise equation

(4.4) γt =
∫ t

0
σ

(
X†
γu

)α
du.

Applying Lemma 4.1 to X† with γ playing the role of υ and f (x) = σ(x)α , we see that,
trivially, t0 = t1 = ∞ and (4.4) has a unique solution almost surely given by

γt = inf
{
s > 0 :

∫ s

0
σ

(
X†
u

)−α
du > t

}
, t ≥ 0.

Plugging-in, we see that 1/X̂◦
θt

= X†
η◦θt = X†

γt
for t ≥ 0 and the right-hand side obviously

satisfies the claim.
(ii) By assumption Ẑ = X̂†

τ̂
, where the killed dual process X̂† = −X† has probabilities

P̂x , x ∈ R, and τ̂ = inf{s > 0 : ∫ s
0 σ(X̂

†
u)

−α du > t}, t ≥ 0. Now note that, X◦
t = 1/Ẑ†

ϑt
=

1/X̂†
τ̂◦ϑt . If we can show that, almost surely under P̂x , τ̂ ◦ ϑ = η̂, where η̂t = inf{s > 0 :∫ s

0 |X̂†
u|−2α du > t}, then the proof is complete due to the Riesz–Bogdan–Żak theorem. To

this end, as in part (i), we get from the chain rule

dτ̂ ◦ ϑt
dt

= dτ̂s
ds

∣∣∣∣
s=ϑt

dϑt

dt
= σ (

X
†
τ◦ϑt

)α
β

(
1/X†

τ◦ϑt
) = ∣∣X†

τ◦ϑt
∣∣2α,(4.5)

which implies that τ̂ ◦ ϑ solves τ̂ ◦ ϑt = ∫ t
0 |X†

τ̂◦ϑu |2α du. This is the same equation that η̂
satisfies. Our proof is complete as soon as we show that the equation that both τ̂ ◦ ϑ and η̂
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solve has an almost surely unique solution. We do this by applying Lemma 4.1 again but this
time to X̂ with τ̂ ◦ϑ playing the role of τ and with f (x)= |x|2α . The conditions of the lemma
are straightforward to verify, noting in particular from the Riesz–Bogdan–Żak transform that
t0 = t1 = τ {0}. �

In a similar way, we can apply Chaumont’s transformation for spectrally one-sided pro-
cesses, cf. Theorem 3.2, to obtain the theorem below. On account of its similarity to the one
above, we omit the proof.

PROPOSITION 4.2. Suppose that X is a spectrally positive stable process with distribu-
tion Px , x ∈ R and assume that σ > 0.

(i) Define the time-space transformation

Z
†
t = 1

X̂
↑
θt

, t <

∫ ∞
0
β

(
X̂↑
u

)
du,(4.6)

where

θt = inf
{
s > 0 :

∫ s

0
β

(
X̂↑
u

)
du > t

}
.

If X̂↑ has probabilities P̂↑
1/x , x > 0, then Z† is the time-changed process (2.4) under Px killed

at the origin.
(ii) Define the time-space transformation

X
↑
t = 1

Ẑ
†
ϑt

, t ≥ 0,(4.7)

where

ϑt = inf
{
s > 0 :

∫ s

0

1

β(1/Ẑ†
u)
du > t

}
.

If Ẑ† is the time-changed process from (2.4) under P̂x , x > 0, killed at the origin, then the
law of X↑ is P↑

1/x .

Similar to the discussion below Proposition 4.1, we will use the proposition to reduce the
behaviour of solutions to the SDE (1.4) driven by a one-sided Lévy process to the behaviour
at zero of self-similar Markov processes and the time-change. The situation is easier here, as
we only need self-similar Markov processes with positive trajectories for which the theory is
more classical.

4.2. Time-reversal. It was already part of Feller’s [17, 18] analytic treatment of diffu-
sion processes that an entrance point of a diffusion can be related to an exit point of a h-
transformed diffusion. The general structure behind this was revealed by Hunt [21, 22] who
showed how to relate time-reversal and h-transforms for Markov processes. Hunt’s discrete
time arguments were extended to continuous time by Nagasawa. For our purposes, only the
results of Section 3 (reversal of Markov processes at L-times) of Nagawasa [38] are of im-
portance. Even though all the theory involved is very old, the application to the boundary
behaviour of the SDE (1.4) is only possible due to explicit potential formulas for killed stable
processes developed in the past few years.

Let us first recall some definitions. Suppose that Y = (Yt , t ≤ ζ ) with probabilities Px ,
x ∈ R, is a regular Markov process on (a subset of) R with cemetery state � and killing time
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ζ = inf{t > 0 : Yt =�}. Let us denote by P := (Pt , t ≥ 0) the associated semigroup and we
will write Pν = ∫

R
ν(da)Pa , for any probability measure ν on the state space of Y .

Suppose that G is the σ -algebra generated by Y and write G(Pν) for its completion by
the null sets of Pν . Moreover, write G = ⋂

ν G(Pν), where the intersection is taken over all
probability measures on the state space of Y , excluding the cemetery state. A finite random
time k is called an L-time (generalised last exit time) if:

(i) k≤ ζ and k is measurable in G,
(ii) {s < k(ω)− t} = {s < k(ωt )} for all t, s ≥ 0.

Theorem 3.5 of Nagasawa [38] shows that, under suitable assumptions on the Markov pro-
cess, L-times form a family of ‘good times’ at which the pathwise time-reversal

←
Y t :=

Y(k−t)−, t ∈ [0,k], is again a Markov process. The most important examples of L-times are
killing times and last hitting times. To ease the reading, let us state precisely the three main
conditions of Nagasawa’s duality theorem, one of which is redundant in our setting (and we
indicate as such lower down).

(A.3.1) The potential measure GY (a, ·) associated to P , defined by the relation

(4.8)
∫
R

f (x)GY (a, dx)=
∫ ∞

0
Pt [f ](a) dt = Ea

[∫ ∞
0
f (Xt) dt

]
,

for bounded and measurable f on R, is a σ -finite measure. For a σ -finite measure ν, if we
put

μ(A)=
∫
GY (a,A)ν(da) for A ∈ B(R),(4.9)

then there exists a Markov transition semigroup, say P̂ := (P̂t , t ≥ 0) such that the corre-
sponding transition semigroup satisfies∫

Pt [f ](x)g(x)μ(dx)=
∫
f (x)P̂t [g](x)μ(dx), t ≥ 0,(4.10)

for bounded, measurable and compactly supported test-functions f,g.
In other words, (A.3.1) asks for the semigroup P to be in weak duality to a semigroup P̂

with respect to the measure μ taking the form (4.9).
(A.3.2) Nagasawa’s second condition pertains to the finiteness of the semigroup P and

its associated resolvents when randomised by initial distribution ν, which in his most general
setting, need not be a probability measure. However, this condition is redundant in our setting
as we always consider the initial distribution ν to be a probability measure. Hence we do not
dwell on this condition any further.

(A.3.3) For any continuous test-function f ∈ C0(R), the space of continuous and com-
pactly supported functions, and a ∈ R, Pt [f ](a) is right-continuous in t for all a ∈ R and,
for q > 0, G(q)

Ŷ
[f ](←Y t ) is right-continuous in t , where, for bounded and measurable f on R,

G
(q)

Ŷ
[f ](a)=

∫ ∞
0
e−qt P̂t [f ](a) dt, a ∈ R

is the q-potential associated to P̂ .
Nagasawa’s duality theorem, Theorem 3.5. of [38], now reads as follows.

THEOREM 4.1 (Nagasawa’s duality theorem). Suppose that assumptions (A.3.1) and
(A.3.3) hold. For the given starting probability distribution ν in (A.3.1) and any L-time k,
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the time-reversed process
←
Y under Pν is a time-homogeneous Markov process with transition

probabilities

Pν(
←
Y t∈A| ←

Y r,0< r < s)= Pν(
←
Y t∈A| ←

Y s)

= p
Ŷ
(t − s, ←

Y s,A), Pν-almost surely,
(4.11)

for all 0< s < t and Borel A in R, where p
Ŷ
(u, x,A), u≥ 0, x ∈ R, is the transition measure

associated to the semigroup P̂ .

We will apply Nagasawa’s duality theorem to different processes obtained from solu-
tions to the SDE (1.4) by killing in different sets which leads to different processes obtained
through time-reversal at L-times:

(i) Proposition 4.3: two-sided jumps, α > 1, killed at the origin.
(ii) Proposition 4.4: positive jumps, α > 1, killed at the origin, which is the same as

killing at the negative half-line because of the positive jumps.
(iii) Proposition 9.1: two-sided jumps, α ∈ (0,1), no killing but explosion.

Proofs will be similar, in the sense that, to verify (A.3.1), explicit computations with different
killed potential measures will be necessary.

Here is the first application of Nagasawa’s duality theorem.

PROPOSITION 4.3. Consider a stable process with α ∈ (1,2) and two-sided jumps. Sup-
pose that X̂◦ has probabilities P̂◦

x , x ∈ R, defined by the change of measure (3.9) albeit with
respect to the dual P̂x , x ∈ R, and the entrance point 0 from Lemma 3.1. Define Ẑ◦

t = X̂◦
ιt

,
t ≥ 0, where the time-change ι is given by

ιt = inf
{
s > 0 :

∫ s

0
σ

(
X̂◦
s

)−α
ds > t

}
, t <

∫ ∞
0
σ

(
X̂◦
s

)−α
ds.(4.12)

Suppose that Z† is the (nonexploding) process from (2.4) killed on hitting the origin. Then

Z† and Ẑ◦ are in weak duality on R\{0} with respect to

μ(dx)= σ(x)−αh(x) dx,
(4.13)

with h defined in (3.10). Moreover:

(i) The time-reversed process Ẑ◦
(k−t)−, t ≤ k, under P̂

◦
0 is a time-homogenous Markov

process with transition semigroup which agrees with that of Z†, where k is any almost surely
finite L-time for Ẑ◦.

(ii) If ±∞ is an entrance point for Z, then the time reversed process Z†
(k−t)−, t ≤ k, under

P±∞ is a time-homogenous Markov process with transition semigroup which agrees with that
of Ẑ◦, where k is any almost surely finite L-time for Z†.

PROOF. We break the proof of (4.13) in to several steps.
Step 1: At the heart of our proof is weak duality for Lévy processes killed on hitting sets

(in our case, the singleton {0}) with respect to Lebesgue measure. Theorem II.1.5 of Bertoin
[1] gives us Hunt’s classical duality relation

pX†(t, y, dz) dy = p
X̂†(t, z, dy) dx, y, z ∈ R and t ≥ 0,(4.14)

where pX† is the transition kernel associated to the transition semigroup of the stable process
killed at 0 and p

X̂† is the transition kernel associated to the dual stable process killed at 0.
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Step 2: Defining m(dx) = h(x) dx and combining (4.14) and (3.9) with the general for-
mula ‘ph(t, x, dy) = h(y)p(t, x, dy)/h(x)’ for transition kernels of h-transformed Markov
processes, we obtain

pX†(t, y, dz)m(dy)= h(y)
h(z)

pX†(t, y, dz)h(z) dy

= h(y)
h(z)

p
X̂†(t, z, dy)h(z) dx(4.15)

= p
X̂◦(t, z, dy)m(dz)

for y, z ∈ R and t ≥ 0. Here, p
X̂◦(z, dy, t) denotes the transition kernel associated to the

transition semigroup of X̂◦. Hence, the transition kernels of X† and X̂◦ are in weak duality
on R with respect to m(dx).

Step 3: The claim (4.13) can now be deduced from general theory for random time-
changes. Theorem 4.5 of Walsh [47] states that two Markov processes in weak dualiy remain
so when time-changed by the inverse of the same additive functional. The new duality mea-
sure is what is known as the Revuz measure of the additive functional with respect to the
former duality measure (definition given shortly below). To apply Walsh’s result, recall from
the definitions, that Z† (resp., Ẑ◦) are time-changes of X† (resp., X̂◦) with the inverse of the
additive functional

At(ω)=
∫ t

0
σ(ωs)

−α ds, t ≥ 0,(4.16)

on the path space D([0,∞),R). Theorem 4.5 of Walsh [47] implies that Z and Ẑ◦ are in
weak duality with respect to the Revuz measure μ defined by∫

R

f (x)μ(dx)= lim
t↓0

∫
R

m(dz)Ez

[
1

t

∫ t

0
f

(
X†
s

)
dAs

]
(4.17)

for f ≥ 0 bounded and measurable. In order to identify μ, given that the limit (4.17) is
assured in Walsh [47], we can check with the help of Fubini’s theorem, for continuous and
compactly supported f ≥ 0, that∫

R

f (x)μ(dx)= lim
t↓0

∫
R

m(dz)

∫
R

f (x)σ (x)−α 1

t

∫ t

0
pX†(s, z, dx) ds

= lim
t↓0

1

t

∫ t

0

∫
R

∫
R

m(dz)pX†(s, z, dx)f (x)σ (x)
−α ds

(4.18)

= lim
t↓0

1

t

∫ t

0

∫
R

∫
R

m(dx)p
X̂◦(s, x, dz)f (x)σ (x)−α ds

=
∫
R

f (x)σ (x)−αh(x) dx,

where in the third equality we used duality from Step 2 and in the fourth equality we use the
fact that X̂◦ is a conservative process and so

∫
R
p
X̂◦(s, x, dz)= 1. This completes the proof

of the claim (4.13).
To prove the time-reversal statements (i) and (ii), we check the conditions of Nagasawa’s

Theorem 4.1 appealing to the duality established in (4.13).
(i) In order that (A.3.1) holds in the present setting, we need to verify that

μ(dy)=
∫
R

ν(dx)G
Ẑ◦(x, dy) on B(R),
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where ν = δ0 and G
Ẑ◦(x, dy) is the potential measure of Ẑ◦ on B(R) and μ is the duality

measure from (4.13). To this end, we first calculate the potential measure of X̂◦, denoted by
G
X̂◦(0, dy). We use for the second equality the very last (unmarked) formula in Section 4.4

of Kuznetsov et al. [27], Fubini’s theorem and substitution to calculate, for bounded and
measurable f ≥ 0,

G
X̂◦[f ](0)=

∫ ∞
0

Ê
◦
0
[
f

(
X̂◦
t

)]
dt

= 	(−α)sin(απρ)

π

∫ ∞
0

E1
[
I−1∞ f

(−(t/I∞)1/α)]dt
+ 	(−α)sin(απρ̂)

π

∫ ∞
0

E−1
[
I−1∞ f

(
(t/I∞)1/α

)]
dt

= 	(−α)sin(απρ)

π

∫ ∞
0
f

(−u1/α)du
+ 	(−α)sin(απρ̂)

π

∫ ∞
0
f

(
u1/α)du

=
∫
R

f (x)h(x) dx,

(4.19)

with h from (3.10) and I∞ := ∫ ∞
0 eαξs ds for the underlying MAP (ξ, J ); see Section 3.2. It

follows that G
X̂◦(0, dy)= h(y)dy on B(R).

Since by definition Ẑ◦ is a time-change of X̂◦, from the above we can easily compute the
potential measure of Ẑ◦ issued from 0 by change of variables and the explicit form of ι,

G
Ẑ◦[f ](0)= Ê

◦
0

[∫ ∞
0
f

(
X̂◦
ιt

)
dt

]

= Ê
◦
0

[∫ ∞
0
f

(
X̂◦
t

)
σ

(
X̂◦
t

)−α
dt

]

=G
X̂◦

[
f σ−α](0)(4.20)

=
∫
R

f (x)σ (x)−αh(x) dx

=
∫
R

f (x)μ(dx),

for bounded and measurable f ≥ 0. Hence, we obtain that μ(dy)= ∫
R
δ0(dx)GẐ◦(x, dy) as

claimed. Combined with (4.13) we verified assumption (A.3.1) in the current context. The
remaining condition of Nagasawa’s Theorem 4.1 are trivially fulfilled since all processes
involved have càdlàg trajectories. Therefore, part (i) of the theorem now follows from Naga-
sawa’s duality theorem.

(ii) We first show that

μ(dy)=
∫
R

ν(dx)GZ†(x, dy) on B(R),(4.21)

where ν = δ±∞ and GZ†(x, dy) is the potential measure of Z† on B(R) and μ is the duality
measure from (4.13). To do this, let us first prove that

GZ†(±∞,A)= lim|x|→∞GZ†(x,A), ∀A ∈ B(R),(4.22)
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and then compute the right-hand side explicitly. For a bounded Borel set A ⊂ [−L,L] and
|x|>L or x = ±∞, we have by the strong Markov property that

GZ†(x,A)=
∫ L

−L
GZ†(z,A)Px(ZT (−L,L) ∈ dz),

where T (−L,L) = inf{t ≥ 0 : |Zt | ≤ L}. As we have assumed that ±∞ is an entrance point
for Z, we also have the weak convergence

P±∞(ZT (−L,L) ∈ dz)= lim|x|→∞ Px(ZT (−∞,L] ∈ dz) on B(R).(4.23)

See, for example, Chapter 13 of [50], using the regularity of stable processes. The claim (4.22)
now follows from the weak convergence (4.23) if z 
→GZ†(z,A) is bounded and continuous
on [−L,L]. The boundedness and continuity comes from the explicit form ofGX† . The latter
is given in Theorem II.4.3 of Kyprianou [30], who proved that GX†(x, dy) has a density, say
gX†(x, y), such that

gX†(x, y)
(4.24)

= −	(1 − α)
π2

(|y|α−1s(y)− |y − x|α−1s(y − x)+ |x|α−1s(−x)),
where s(x)= sin(παρ)1(x>0) + sin(παρ̂)1(x<0). It follows that

GZ†(x,A)= Ex

[∫ ∞
0

1A
(
Z†
s

)
ds

]

= Ex

[∫ ∞
0
σ

(
X†
s

)−α1A
(
X†
s

)
ds

]

=GX†
[
σ−α1A

]
(x)(4.25)

= −	(1 − α)
π2

∫
A

(|y|α−1s(y)− |y − x|α−1s(y − x)

+ |x|α−1s(−x))σ(y)−α dy.
Using the time-change in (2.4) with killing at the origin in the potential measure of Z† to-
gether with (4.25) and the Riesz–Bogdan–Żak transform in Theorem 3.1, we have, for any
bounded open set A,

GZ†(±∞,A)= lim|x|→∞Ex

[∫ ∞
0

1A
(
X

†
t

)
σ

(
X

†
t

)−α∣∣X†
t

∣∣2α∣∣X†
t

∣∣−2α
dt

]

= lim|x|→∞Ex

[∫ ∞
0

1A
(
X†
ηs

)
σ

(
X†
ηs

)−α∣∣X†
ηs

∣∣2α ds]
(4.26)

= lim|x|→∞ Ê
◦
1/x

[∫ ∞
0

1A(1/Xs)σ (1/Xs)−α|Xs |−2α ds

]

=G
X̂◦[g](0),

where g(x)= 1A(1/x)σ (1/x)−α|x|−2α . The right-hand side was already computed in (4.19)
as

G
X̂◦[g](0)=

∫
R

1A(1/x)σ (1/x)−α|x|−2αh(x) dx

=
∫
A
σ(z)−α|z|2(α−1)h(1/z) dz(4.27)

=
∫
A
σ(z)−αh(z) dz,
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where in the final equality we used the explicit form of h in (3.10) to check that
|z|2(α−1)h(1/z)= h(z), for z �= 0. Putting (4.26) and (4.27) together gives us∫

R

ν(dx)GZ†(x,A)=GZ†(±∞,A)=
∫
A
σ(z)−αh(z) dz= μ(A),

which is (4.21).
The final step consists in deducing from (4.21) and Nagaswa’s duality theorem the state-

ment of (ii). We note that duality (4.13) of the semigroups was proved in R\{0} only, but
we apply Nagasawa’s theorem to R\{0}. This is justified by extending the duality measure μ
with zero mass at the additional state. All conditions hold trivially with this extension. The
claim of part (ii) now follows from Theorem 4.1 as in (i). �

The next proposition offers an analogous result to the first one, but now with respect to en-
trance from +∞ (resp., −∞) in the spectrally positive (resp., negative) setting. Accordingly,
the h-transformed process that is involved in the proposition is taken as the stable process
conditioned to be positive (resp., negative) which was defined in (3.18).

PROPOSITION 4.4. Suppose that X is a spectrally positive stable processes with α ∈
(1,2). Suppose that X̂↑ has probabilities P̂↑

x , x ≥ 0. Define Ẑ↑
t = X̂↑

ιt , t ≥ 0, where the time-
change ι is given by

ιt = inf
{
s > 0 :

∫ s

0
σ

(
X̂↑
s

)−α
ds > t

}
, t <

∫ ∞
0
σ

(
X̂↑
s

)−α
ds.(4.28)

Suppose that Z† is the process (2.4) killed on hitting the origin. Then

Z† and Ẑ↑ are in weak duality with respect to

μ(dx)= σ(x)−αh(x) dx on [0,∞),
(4.29)

where h is given by (3.19). Moreover:

(i) The time-reversed process Ẑ↑
(k−t)−, t ≤ k, with Ẑ↑

0 = 0, is a time-homogenous Markov
process with transition semigroup which agrees with that of Z, where k is any almost surely
finite L-time for Ẑ↑.

(ii) If +∞ is an entrance point for Z†, then the time reversed process Z†
(k−t)−, t ≤ k, with

Z
†
0 = +∞ is a time-homogenous Markov process with transition semigroup which agrees

with that of Ẑ↑, where k is any almost surely finite L-time for Z.

PROOF. The proof is similar to that of Proposition 4.3 but needs adjustment of the in-
volved h-transforms. Consequently, different (more classical) results from fluctuation theory
are needed.

We first deal with (4.29). The analogues to Step 1 and Step 2 of the proof of Proposition 4.3
are due to Theorem 1 of Bertoin and Savov [2]. That is to say, the transition measures of
X† and X̂↑ are in weak duality with respect to m(dx) = h(x) dx = 	(α)−1xα−1 dx. The
analogue of Step 3 in the proof of Proposition 4.3 is the same here, and hence (4.29) is
verified without appealing to any other further results from fluctuation theory.

(i) In order that (A.3.1) holds in the present setting, we need to verify that

μ(dy)=
∫
[0,∞)

ν(da)G
Ẑ↑(a, dy) on B(R+),

where ν = δ0 and G
Ẑ↑ is the potential measure of Ẑ↑ and μ is the duality measure from

(4.29). We first calculate the potential measure G
X̂↑(0, dy) of X̂↑ on B(R). Using the ex-

pression for the entrance law of X↑ in Theorem 1 of Bertoin and Yor [3] (see also Remark 4
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of Chaumont et al. [11]), Fubini’s theorem and substitution, we calculate, for bounded and
measurable f ≥ 0,

G
X̂↑[f ](0)=

∫ ∞
0

Ê
↑
0

[
f

(
X̂

↑
t

)]
dt

= 1

αE[ξ↑
1 ]

∫ ∞
0

E
[
Î−1∞ f

(−(t/Î∞)1/α)]dt(4.30)

= 1

	(α)

∫
R

f (x)xα−1 dx

=
∫
R

f (x)h(x) dx

with h from (3.10) and Î∞ = ∫ ∞
0 eαξ̂

↑
s ds, where the Lévy process (ξ̂↑,P) is characterised by

its exponent in (3.27). Thus, G
X̂↑(0, dx)= h(x) dx, x ∈ R.

Since Ẑ↑ is a time-change of X̂↑, from the above we can easily compute the potential
measure by change of variables, namely

G
Ẑ↑(0,A)= Ê

↑
0

[∫ ∞
0

1A
(
X̂↑
ιt

)
dt

]

= Ê
↑
0

[∫ ∞
0

1A
(
X̂

↑
t

)
σ

(
X̂

↑
t

)−α
dt

]
(4.31)

=
∫
A
σ(x)−αh(x) dx,

= μ(A)
for bounded and open sets A. Hence, we obtain that

∫
R
ν(dx)G

Ẑ↑(x, dy)= μ(dy) which is
the condition (A.3.1) of Theorem 4.1. Noting again that the other conditions of Nagasawa
are trivially fulfilled since all processes involved have càdlàg trajectories, the proof is now
complete.

(ii) In order that (A.3.1) holds in the present setting, we need to verify that

μ(dy)=
∫
R

ν(dx)GZ†(x, dy) on B(R+),

where ν = δ+∞ andGZ†(x, dy) is the potential measure of Z† on B(R+) and μ is the duality
measure from (4.29). As in the proof of Proposition 4.3(ii), it is straightforward to show that

GZ†(+∞,A)= lim
x→+∞GZ†(x,A) ∀A ∈ B(R+).(4.32)

Indeed, for x > L or x = +∞ and A⊂ [0,L] we have (recall that X is assumed to only creep
downwards) by the strong Markov property that

GZ†(x,A)=
∫ L

0
Px(ZT (−∞,L] ∈ dz)GZ†(z,A)=GZ†(L,A),

where T (−∞,L] = inf{t ≥ 0 :Zt ≤ L} = inf{t ≥ 0 :Zt =L}. The claim (4.32) now follows.
Now we combine (4.32), the time-change in Theorem 2.1 and the Chaumont’s transform

in Theorem 3.2, to get, for bounded and open set A,

GZ†(+∞,A)= lim
x→∞Ex

[∫ ∞
0

1A
(
X

†
t

)(
X

†
t

)2α(
X

†
t

)−2α
σ

(
X

†
t

)−α
dt

]

= lim
x→∞Ex

[∫ ∞
0

1A
(
X†
γs

)(
X†
γs

)2α
σ

(
X†
γs

)−α
ds

]
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= lim
x→∞ Ê

↑
1/x

[∫ ∞
0

1A(1/Xs)X−2α
s σ (1/Xs)

−α ds
]

=G
X̂↑[g](0),

where g(x) = 1A(1/x)x−2ασ (1/x)−α and (as above) the continuity at the origin of G
X̂↑

is a consequence of 0 being an entrance boundary for X̂↑; see Lemma 3.2. The right-hand
side was already computed in (4.30). Plugging it into the right-hand side above gives us for
bounded A ∈ B(R),

GZ†(+∞,A)=
∫

1A(1/x)x−2ασ (1/x)−αh(x) dx

=
∫

1A(z)z2(α−1)σ (z)−αh(1/z) dx

=
∫
A
σ(z)−αh(z) dz,

where in the final equality we used the explicit form of h to obtain z2(α−1)h(1/z) = h(z)
for z �= 0. We can now conclude that GZ†(+∞, dy)= μ(dy) on R+ which is the condition
(A.3.1) of Theorem 4.1. The claim in part (ii) now follows from Theorem 4.1 of Nagasawa
as before with the same slight adjustment mentioned in the final paragraph at the end of the
proof of Proposition 4.3. �

5. Entrance from infinity, the impossible cases. This first section of the main proof
gathers the cases where entrance from infinity is impossible irrespectively of σ , that is, a
cross appears in the table of Theorem 2.2. Recall that entrance stands for enterable but not
exit. All proofs are indirect and based on the triviality of certain limiting hitting distributions
(overshoots, inshoots) of stable processes for which explicit formulas are available.

Recall that for x ∈ R, Px denotes the law of the unique weak solution to the SDE (1.4)
issued from x, Px denotes the law of the stable process issued from x ∈ R and Px can be
expressed via the time-change (2.4) in terms of Px . To study P for infinite entrance points,
we use the strong Markov property (consequence of Feller assumption) at first hitting times
and then use Proposition 2.1 to obtain formulas in terms of the stable process. First hitting
distributions under Px are identical to those under Px as the time-change does not influence
the jump sizes. Note that, since σ > 0 is assumed continuous, σ is bounded away from zero
within all compact sets. Hence, the time-change in (2.4) does not level off in R so that solu-
tions to the SDE (1.4) visit the same sets as the driving stable process.

5.1. Entrance from +∞, two-sided jumps, α ∈ (0,2). In this first proof, we show that di-
vergence of overshoots for stable Lévy processes implies that under P+∞ trajectories would
jump instantaneously from +∞ to −∞ which contradicts continuous entry. We consider
R = (−∞,+∞] and assume (Px, x ∈ R̄) is a Feller extension of (Px, x ∈ R), satisfying
P+∞(limt↓0Zt = +∞) = 1. Recall that the Feller property of the extension implies the
strong Markov property which we apply to the first hitting times T (−∞,L] = inf{t ≥ 0 : Zt ≤
L} for L ∈R.

Using the time-change representation (2.4), we find that, for all L ∈ N and compact sets
A⊂ R,

lim
z→+∞ Pz(ZT (−∞,L] ∈A)= lim

z→+∞Pz(Xτ(−∞,L] ∈A)= 0,(5.1)

where τ (−∞,L] = inf{t < 0 : Xt ≤ L} and we have used that the ranges of Z and X agree
and the fact that X has no stationary overshoots (recall the discussion around (3.4)). This last
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claim can be verified directly by recalling the classical result which states that

Pz(Xτ(−∞,L] ≤ L− y)= sin(παρ̂)

π

∫ y/(z−L)
0

t−αρ(1 + t)−1 dt, z≤ L.(5.2)

See, for example, equation (2) of Rogozin [43] for the above formula. For bounded and
measurable A, define the auxiliary function

f (z)=
{

Pz(ZT (−∞,L] ∈A) if z ∈ R,

0 if z= +∞,
so that 0 ≤ f ≤ 1. Thanks to (5.1) and the explicit overshoot distribution (5.2), f is con-
tinuous on R. Hence, for every ε > 0, there is some L so that 0 ≤ f (z) ≤ ε for all z > L.
Applying the strong Markov property at T (−∞,L′] for L′ >L gives

P+∞(ZT L ∈A)= lim
L′→+∞

∫
Py(ZT L ∈A)P+∞(ZT (−∞,L′] ∈ dy)

= lim
L′→+∞

(∫
y>L

f (y)P+∞(ZT (−∞,L′] ∈ dy)

+
∫
y≤L

f (y)P+∞(ZT (−∞,L′] ∈ dy)
)

≤ ε + lim
L′→+∞ P+∞(ZT (−∞,L′] ≤ L)

= ε,
where the final equality follows since trajectories enter from infinity continuously by assump-
tion. Hence, limL′→∞ P+∞(ZT (−∞,L′] ∈A)= 0 for every bounded and measurable subsets A
of R which implies that under P+∞ no compact subset of R is visited.

5.2. Entrance from −∞, two-sided jumps, α ∈ (0,2). The proof follows the same lines
as before with R = [−∞,+∞), replacing T (−∞,L] by T [L,∞) = inf{t ≥ 0 : Zt ≥ L} and
using, for all L ∈ N and A⊂ [−L,L], the continuous function

f (z)=
{

Pz(ZT [L,∞) ∈A) if z ∈ R,

0 if z= −∞,
with analogous formulas forcing an instantaneous jump from −∞ to +∞.

5.3. Entrance from ±∞, two-sided jumps, α ∈ (0,1). The proof follows the same idea
as in Section 5.1 replacing overshoots by ‘inshoots’ into compact intervals and then using
that transience of stable processes for α ∈ (0,1) does not allow to reach arbitrary compact
sets from infinity.

The differences are the use of first hitting times T (−L,L) = inf{t ≥ 0 : Zt ∈ (−L,L)}, the
auxiliary function

f (z)=
{

Pz(ZT (−L,L) ∈A) if z ∈ R,

0 if |z| = ±∞,
on R and the argument for continuity of f . Here, f is continuous in the interior of R due
to the explicit form of Pz(ZT (−L,L) ∈A)= Pz(Xτ(−L,L) ∈A)= Pz/L(Xτ(−1,1) ∈A/L) given in
Theorem 1.1 of Kyprianou et al. [31]. Specifically, it says that, for α ∈ (0,1),

Px(Xτ(−1,1) ∈ dy)
(5.3)

= sin(παρ̂)

π
(1 + x)αρ(1 + y)−αρ(x − 1)αρ̂(1 − y)−αρ̂(x − y)−1 dy.
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Continuity of f at ±∞ is due to the transience of stable Lévy processes for α ∈ (0,1), so
that, using again the time-change representation (2.4), lim|z|→∞ Pz(ZT (−L,L) ∈A)= 0 which
implies that under P±∞ no compact subset of R is visited.

5.4. Entrance from ±∞ or −∞, spectrally positive jumps, α ∈ (0,2). First, note that
spectral positivity excludes the case that α = 1 (which is necessarily symmetric). We there-
fore only need to deal with the cases α ∈ (0,1)∪ (1,2).

On account of the fact that we know the law of the overshoot of X into (L,∞) (see, e.g.,
again, Rogozin [43]), we can apply a similar argument to the one in (5.1) and deduce that
limz→−∞ Pz(ZT [L,∞) ∈ A)= 0 for all compact sets A so that entrance from −∞ is impossi-
ble.

Next, we consider the limit of Pz(ZT (−L,L) ∈A) as |z| → ∞ for all compact sets A. When
α ∈ (0,1), the processX is a subordinator, and hence the paths of Z are monotone increasing.
Therefore, the aforesaid limit does not exist. On the other hand, when α > 1, we can appeal
to the spectrally positive analogue of (5.4); see Proposition 1.3 of [31] or [41]. This tells us
that, for z <−1,

Pz(Xτ(−1,1) ∈ dy)= sinπ(α− 1)

π

(|z| − 1
)α−1

(1 + y)1−α(|z| + y)−1
dy

+ δ−1(dy)
sinπ(α − 1)

π

∫ |z|−1
|z|+1

0
tα−2(1 − t)1−α dt,

and Pz(Xτ(−1,1) = 1)= 1 for z > 1 (positive jumps). With the help of scaling, it is therefore
clear that limits of Pz(ZT (−L,L) ∈ A)= Pz(Xτ(−L,L) ∈ A) do not exist. Indeed, one need only
compare the probabilities Pz(ZT (−L,L) = L) as z→ ∞ and z→ −∞.

5.5. Entrance from ±∞ or +∞, spectrally negative jumps, α ∈ (0,2). The proof is anal-
ogous to the one above.

5.6. Entrance from +∞, spectrally positive jumps, α ∈ (0,1). By virtue of the increasing
nature of the paths in this setting, entrance at +∞ is trivially impossible.

5.7. Entrance from −∞, spectrally negative jumps, α ∈ (0,1). By virtue of the decreas-
ing nature of the paths in this setting, entrance at +∞ is trivially impossible.

6. Entrance from ±∞, two-sided jumps, α ∈ (1,2). In this section, we discuss the
main arguments of the article for which we have seen significant preparation in the earlier
sections. Proofs of Section 7 go along the lines.

We break the proof into necessity and sufficiency of the integral test

Iσ,α(R)=
∫
R

σ(x)−α|x|α−1 dx <∞(6.1)

for ±∞ as an entrance point.
Idea for necessity: Suppose solutions enter from infinity. Since for α > 1 solutions will hit

the origin almost surely (as they are time-changes of the stable process which hits points), we
can time-reverse at the first hitting time of 0; see Figure 2. From Proposition 4.3, we know the
dynamics of the reversed process. It is a time-change under P̂◦

0, the stable process conditioned
to avoid 0. Since the conditioned process itself is conservative, necessarily the time-change
(4.12) needs to explode under P̂◦

0. Recall P̂◦
0 is well defined due to Lemma 3.1. Hence, we

obtain the necessity of an almost surely finite perpetual integral under P̂◦
0. Since the condi-

tioned process is a self-similar Markov process, we can employ the Lamperti representation
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FIG. 2. Time-reversing SDE entering at ±∞ to give time-change of h-transform X̂◦ entering at 0.

for the positive part and the negative part (alternatively the Lamperti–Kiu transformation to
the entire process) to get two almost surely finite perpetual integrals over two Lévy processes
with positive finite means and local times. For such perpetual integrals, we can employ the
article [15] to obtain an integral test which gives (6.1).

Proof of necessity: Let us assume ±∞ is an entrance point for the SDE (1.4) in the sense of
Definition 2.2. Necessarily, we must have under P±∞ that T (−L,L) = inf{t > 0 : |Zt |<L}<
∞ with positive probability for some L > 0 and that this probability tends to 1 as L→ ∞.
From Proposition 2.1 and the recurrence of stable processes for α ∈ (1,2), we also know that
ζ = inf{t > 0 : Zt = 0} is almost surely finite when Z is issued from any point in R (this
uses the assumption that σ is positive and continuous, hence, the time-change cannot level
off in R). It follows by the strong Markov property that the first hitting time of zero ζ is finite
almost surely under P±∞. We also note that ζ is an L-time for the SDE killed at 0. Hence,
we will consider the time-reversal under P±∞ from k= ζ .

As we have assumed that ±∞ is an entrance point for P±∞, Proposition 4.3(ii) tells us
that ±∞ is accessible in an almost surely finite time for Ẑ◦, where Ẑ◦

t = X̂◦
ιt

with Ẑ◦
0 = 0.

The conservative process X̂◦ has probabilities P̂◦
x , x ∈R, and the time-change ι is given by

ιt = inf
{
s > 0 :

∫ s

0
σ

(
X̂◦
s

)−α
ds > t

}
, t <

∫ ∞
0
σ

(
X̂◦
s

)−α
ds.

The finite-time accessibility of ±∞ for Ẑ◦ and the fact that X̂◦ is a conservative process
implies that the time-change has to explode in finite time or, equivalently,∫ ∞

0
σ

(
X̂◦
s

)−α
ds <∞(6.2)

almost surely under P̂◦
0. The first exit time of X̂◦ from (−ε, ε), for any ε > 0, occurs before

X̂◦ reaches ±∞. Moreover, appealing to (3.13) in combination with the h-transform that
defines P̂

◦
0, it is clear that the law of the overshoot of P̂

◦
0 outside of (−ε, ε) is absolutely

continuous with respect to Lebesgue measure. Hence, it follows that (6.2) is almost surely
finite under P̂◦

x , for Lebesgue almost every x ∈ R. In what follows we continue with two such
x > 0 and x < 0.

To show that the necessary almost sure finiteness in (6.2) implies the finiteness of the
integral test (6.1), we need to introduce a path transformation of X̂◦. We note that in the spirit
of the example in Section 3.4, we can censor out the negative parts of the path of X̂◦ to create
a positive self-similar Markov process, say X̂◦>. That is to say

X̂◦>
t = X̂◦

γ̂ ◦
t
, with γ̂ ◦

t = inf
{
s > 0 :

∫ s

0
1
(X̂◦
u<0) du > t

}
.(6.3)
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Let us write ξ̂◦> for the Lévy process appearing in Lamperti’s representation (3.2) of X̂◦>.
The finiteness of (6.2) implies the almost sure finiteness of the integrals∫ ∞

0
σ

(
X̂◦
t

)−α1
(X̂◦
t >0) dt =

∫ ∞
0
σ

(
X̂◦>
s

)−α
ds

=
∫ ∞

0
σ

(
e
ξ̂◦>
ϕ̂u

)−α
du(6.4)

=
∫ ∞

0
σ

(
eξ̂

◦>
v

)−α
eαξ̂

◦>
v dv.

To the (almost surely finite) right-hand side we will apply [15] to obtain the integral test (6.1).
The result of [15] that we apply states the following: If ξ is a Lévy process with local times
and finite positive mean, then

P
(∫ ∞

0
f (ξs) ds <∞

)
= 1 ⇐⇒

∫ ∞
0
f (x) dx <∞.

We will now check that ξ̂◦> has local times (equivalently: ξ̂◦> hits points, compare for in-
stance Theorem 7.12 of [28] and Theorem V.1 of [1]) and finite positive mean.

(i) Local times. Note that, for the stable process, as α ∈ (1,2), we have P̂x(τ
{y} <∞)=

1 for all x, y ∈ R, where τ {y} = inf{t > 0 : Xt = y}. It follows from (3.9) (albeit with X
replaced by X†) that P̂◦

x(τ̂
{y}◦ <∞) > 0 for all x, y ∈ R, where τ̂ {y}◦ = inf{t > 0 : X̂◦

t = y}.
But then the censored processes hit points (same range) and also the Lévy processes through
the Lamperti transformation hit points (exponential change of space, time-change irrelevant).
Hence, ξ̂◦> has local times.

(ii) Finite positive mean. We can derive the characteristic exponent of ξ̂◦> from the char-
acteristic exponent of, say ξ̂>, the Lévy process that lies behind the stable process X̂†, which
has been negatively censored. Indeed, from (3.15), its characteristic exponent takes the form

(6.5) �̂>(z)= 	(αρ̂ − iz)

	(−iz)

	(1 − αρ̂ + iz)

	(1 − α+ iz)
, z ∈ R.

On account of the fact that, for t ≥ 0 fixed, ω 
→ inf{s > 0 : ∫ s
0 1(ωu<0) du > t} is a sequence

of almost surely finite stopping times under P̂x , x �= 0, as well as the same being true of the
time-change in the Lamperti transform (3.2) for the process X̂◦>, the Doob h-transform that
defines X̂◦ is tantamount to an Esscher transform (exponential change of measure) on ξ̂>.
In particular, note that �

ξ̂>
(−i(α − 1))= 0 and exp((α − 1)ξ̂>t ), t ≥ 0, is a P̂-martingale. It

follows that the characteristic exponent of ξ̂◦> takes the form

(6.6) �̂◦>(z)= 	(1 − αρ − iz)

	(1 − α− iz)

	(αρ + iz)

	(iz)
, z ∈ R.

By computing −i� ′
ξ̂◦>(0), we can verify directly that the mean of ξ̂◦>

1 is finite.

With local times and finite positive mean we apply Theorem 1 of [15] for which the starting
value of ξ̂◦> is irrelevant. This tells us that∫ ∞

0
σ

(
eξ̂

◦>
v

)−α
eαξ̂

◦>
v dv <∞ a.s. ⇐⇒

∫ ∞
0
σ

(
ey

)−α
eαy dy =

∫ ∞
1
σ(x)−αxα−1 dx <∞.

The analogous argument in which we censor away the positive parts of X̂◦ (the negative of
this censored process is a pssMp) shows that∫ ∞

0
σ

(
X̂◦
t

)−α1
(X̂◦
t <0) dt <∞ a.s. ⇐⇒

∫ 0

−∞
σ(x)−α|x|α−1 dx = ∞.
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FIG. 3. Space inversion and time-change of h-transform entrance law P̂
◦
0 to give SDE started at ±∞.

We thus conclude that∫ ∞
0
σ

(
X̂◦
t

)−α
dt <∞ a.s. ⇐⇒

∫
|x|>1

σ(x)−α|x|α−1 dx <∞.

The integral test (6.1) thus follows from (6.2).

Idea for sufficiency. From Proposition 4.1, we know that the SDE started from x with
law Px can be built under spatial-inversion (x 
→ 1/x) as a time-change of the h-transformed
(conditioned) process X̂◦ started in 1/x. The natural guess is to construct P±∞ as spatial
inversion of the same time-change of X̂◦ started from 0. Two facts need to be established:
the limit law P̂

◦
0 = limx→0 P̂

◦
x needs to be well defined and the time-change needs to be

well defined under P̂◦
0. The first follows from [14] as explained in Section 3.2, the latter by

computing the expectation of the time-change which leads to the integral test (6.1). Finally,
we show that the semigroup extension defined like this is indeed a Feller extension of (Px :
x ∈ R) to R. Since P±∞ is constructed explicitly through space-inversion and time-change
from P̂

◦
0, under which trajectories leave 0 continuously, we see immediately that under P±∞

paths almost surely start from infinity continuously; see Figure 3.

Proof of sufficiency. Suppose the integral test (6.1) is satisfied. We first use (6.1) to prove
that

Ê
◦
0

[∫ ∞
0
β

(
X̂◦
u

)
du

]
<∞(6.7)

with β(x)= σ(1/x)−α|x|−2α for x �= 0.
Recalling that when X̂◦ is negatively censored as in (6.3), as a positive self-similar Markov

process, thanks to the type of underlying Lévy process described in (6.6), the origin is left in-
stantaneously and not hit again; see, for example, the discussion in [11]. A similar statement
holds when X̂◦ is positively censored. It follows that under P̂

◦
0, the origin is left instanta-

neously and 0 is not hit again, thus, the integral is well defined but possibly infinite.
To prove (6.7), note that, for each fixed t > 0, ω 
→ ∫ t

0 β(ωs) ds is a continuous functional
in the Skorohod topology. Using that x 
→ P

◦
x is weakly continuous, Fatou’s lemma and β ≥

0, we first get

(6.8) Ê
◦
0

[∫ t

0
β

(
X̂◦
u

)
du

]
≤ lim|x|→0

Ê
◦
x

[∫ t

0
β

(
X̂◦
u

)
du

]
< lim|x|→0

Ê
◦
x

[∫ ∞
0
β

(
X̂◦
u

)
du

]
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for all t ≥ 0. Hence, to prove (6.7) we show that the righthand side of (6.8) is finite. Recalling
that X̂◦ is an h-transform of X†, using ĥ defined as in (3.10) albeit the roles of ρ and ρ̂
are interchanged, and the general h-transform formula for potential measures ‘Gh(x, dy)=
h(y)G(x, dy)/h(x)’ yields

Ê
◦
x

[∫ ∞
0
β

(
X̂◦
u

)
du

]
=

∫
R

G
X̂◦(x, dy)σ (1/y)−α|y|−2α

=
∫
R

G
X̂†(x, dy)

ĥ(y)

ĥ(x)
σ (1/y)−α|y|−2α.

(6.9)

In order to take the limit in (6.9) as |x| → 0, we can appeal to the expression for GX†(x, dy).
Recall from (4.25) that GX†(x, dy) has a density

gX†(x, y)
(6.10)

= −	(1 − α)
π2

(|y|α−1s(y)− |y − x|α−1s(y − x)+ |x|α−1s(−x)),
where s(x)= sin(παρ)1(x>0)+ sin(παρ̂)1(x<0). It was also noted there that, following clas-
sical potential theory (see also Theorem 6.5 of [19]),

|y|α−1s(y)− |y − x|α−1s(y − x)+ |x|α−1s(−x)
|y|α−1(s(y)+ s(−y)) = gX†(x, y)

gX†(y, y)

= Px

(
τ {y} < τ {0})(6.11)

≤ 1,

for τ {y} = inf{t > 0 :Xt = y}. Using the assumption that∫
R

σ(1/y)−α|y|−α−1 dy =
∫
R

σ(z)−α|z|α−1 dz <∞
and α ∈ (1,2) together with (6.10) and (6.12), we compute, with a floating unimportant con-
stant C, which can take different values in each line,

lim|x|→0
− π2

	(1 − α) Ê
◦
x

[∫ ∞
0
β

(
X̂◦
u

)
du

]

= lim|x|→0
− π2

	(1 − α)
∫
R

GX†(x, dy)
h(y)

h(x)
σ (1/y)−α|y|−2α

= lim|x|→0

∫
R

s(−y)(|y|α−1s(y)− |y − x|α−1s(y − x)+ |x|α−1s(−x))
s(−x)|x|α−1

σ(1/y)−α

|y|α+1 dy

≤ C
∫
R

lim|x|→0

(|y|α−1s(y)− |y − x|α−1s(y − x)+ |x|α−1s(−x))
|x|α−1

σ(1/y)−α

|y|α+1 dy

≤ C
∫
R

lim|x|→0
|x|2−αsign(x)

(|y|α−1 − |y − x|α−1)

x

1

|y|α+1 σ(1/y)
−α dy

+C
∫
R

1

|y|α+1 σ(1/y)
−α dy

= C
∫
R

|z|α−1σ(z)−α dz

<∞,
where in the first inequality we have used dominated convergence in combination with (6.12)
and the right-hand side was assumed to be finite. Hence, (6.7) is verified.



1252 L. DÖRING AND A. E. KYPRIANOU

Now we come to the crucial step. We write down explicitly the process that plays the role
of the SDE (1.4) started from infinity. First, note that (6.7) implies that P̂◦

0-almost surely∫ ∞
0 β(X̂◦

u) du <∞. In turn, this implies that the time-change (θt , t ≥ 0), in Proposition 4.1(i)
explodes in finite time. Moreover, on account of the fact that (X̂◦, P̂◦

0) is well defined (cf.
Lemma 3.1), the space-time transformation

Z
†
t = 1

X̂◦
θt

, t <

∫ ∞
0
β

(
X̂◦
u

)
du,(6.12)

where

θt = inf
{
s > 0 :

∫ s

0
β

(
X̂◦
u

)
du > t

}

is well defined under P̂◦
0.

Given the conclusion of Proposition 4.1 (i), it thus follows that we have constructed a
candidate for the Feller extension of (Pz, z ∈ R) with P±∞ defined as (6.12) under P̂◦

0. Note
that trajectories enter instantaneously with alternations between +∞ and −∞ as trajectories
under P̂

◦
0 leave 0 instantaneously with alternations of sign. We still need to verify, for the

extension at ±∞, the weak continuity of (Pz, z ∈ R) in the Skorokhod topology and the
Feller property. Note, the latter means that, for continuous and bounded f on R, we need

lim|x|→∞ Ex
[
f

(
Z

†
t

)] = E±∞
[
f

(
Z

†
t

)]
and

lim
t→0

E±∞
[
f

(
Z

†
t

)] = f (±∞).
(6.13)

Proposition 4.1 and the definition of P±∞ allows us to equivalently write (6.13) as

lim|x|→∞ Ê
◦
x

[
f

(
1/X̂◦

θt

)] = Ê
◦
0
[
f

(
1/X̂◦

θt

)]
and

lim
t→0

Ê
◦
0
[
f

(
1/X̂◦

θt

)] = f (±∞).
(6.14)

Thanks to (6.7) and the continuity of composition, first hitting and θ with respect to the
Skorokhod topology for sufficiently regular processes (cf. Chapter 13 of Whitt [49]), the
weak continuity and the Feller property follow from the Skorokhod continuity of X◦ from
Lemma 3.1.

7. Entrance from +∞, spectrally positive, α ∈ (1,2). The entire proof is along the
lines of the previous section, albeit that we work with the duality relation explored in Propo-
sition 4.4, replacing P̂

◦
0 by P̂

↑
0 , in order to show the sufficiency and necessity of the condition

Iσ,α(R+)=
∫ ∞

0
σ(x)−αxα−1 dx <∞.(7.1)

The proof for entrance from −∞ in the spectrally negative regime is analogous.

Proof of necessity. Suppose that +∞ is an entrance point. Then the duality of Ẑ↑ and
Z† in Proposition 4.4 means that, by time reversing Z from its first hitting of the origin, +∞
must be accessible for Ẑ↑. Reasoning in a similar way to the ‘necessity’ part of the proof in
Section 6, we must have that ∫ ∞

0
σ

(
X̂↑
s

)−α
ds <∞(7.2)
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almost surely under P̂↑
x , for x ≥ 0. Recalling that X̂↑ is a positive self-similar Markov process,

we use Lamperti’s representation to rewrite (7.2) as a perpetual integral of the Lévy process
ξ̂↑ discussed at the end of Section 3.4. The Lévy process hits point (because X and hence
X↑ do), thus, has local times. The Lévy process also has finite positive mean as can be seen
similar to the proof in Section 6 using the characteristic exponent (3.27). Hence, Theorem 1
of [15] is applicable to deduce via change of variables that (7.2) holds if and only if (7.1)
holds.

Proof of sufficiency. We are again guided by the sufficiency argument in Section 6. We ap-
peal to the representation in Proposition 4.2 to provide a candidate for P+∞ built from 1/X̂↑

θt
,

t ≥ 0, under P̂↑
0 from Lemma 3.2. For this to work, we need to ensure that

∫ ∞
0 β(X̂

↑
u ) du <∞,

P̂
↑
0 -almost surely. As in Section 6, this will be achieved by proving

Ê
↑
0

[∫ ∞
0
β

(
X̂↑
u

)
du

]
<∞.

To this end, let us write G
X̂‡(x, dy), x, y > 0, for the potential measure of X̂ killed on enter-

ing (−∞,0). Appealing to Corollary 8.8 and Exercise 8.2 of [28], it is shown that, up to a
multiplicative constant,

(7.3) G
X̂‡(x, dy)= (

xα−1 − (x − y)α−11(x≥y)
)
dy, x, y ≥ 0.

Thus, we have that, up to a multiplicative constant on the left-hand side,

Ê
↑
x

[∫ ∞
0
β

(
X̂↑
u

)
du

]

=
∫ ∞

0
G
X̂‡(x, dy)

h(y)

h(x)
σ (1/y)−αy−2α

=
∫ ∞

0
σ(1/y)−αy−α−1 dy −

∫ x

0

(x − y)α−1

xα−1 σ(1/y)−αy−α−1 dy

so that thanks to Fubini’s theorem and Fatou’s lemma

Ê
↑
0

[∫ ∞
0
β

(
X̂↑
u

)
du

]
≤

∫ ∞
0

lim
x↓0

Ê
↑
x

[
β

(
X̂↑
u

)]
du

=
∫ ∞

0
σ(1/y)−αy−α−1 dy

=
∫ ∞

0
σ(z)−αzα−1 dz

<∞
as required.

Now we come to the construction. We write down explicitly the process that plays the
role of the SDE (1.4) started from infinity. Since we proved that

∫ ∞
0 β(X̂

↑
u ) du is almost

surely finite under P̂↑
0 , the time-change θt , t ≥ 0, in Proposition 4.2 explodes in finite time.

Moreover, on account of the fact that (X̂↑, P̂0) is well defined (cf. Lemma 3.2), the space-time
transformation

Z
†
t = 1

X̂
↑
θt

, t <

∫ ∞
0
β

(
X̂↑
u

)
du,(7.4)
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where

θt = inf
{
s > 0 :

∫ s

0
β

(
X̂↑
u

)
du > t

}

is well defined under P̂↑
0 . Volkonskii’s theorem, Corollary to Theorem 2 of [45], ensures that

the right-hand side of (7.4) is a strong Markov process. Given the conclusion of Proposi-
tion 4.2 (i), it thus follows that we have constructed a candidate for the Feller extension of
(Pz, z ∈ R) with P+∞ defined by (7.4) under P̂↑

0 . Note that trajectories come down from +∞
continuously as trajectories under P̂↑

0 leave zero continuously and are nonnegative.
Checking for the Feller property of Z† when entering at +∞, we again follow the reason-

ing in Section 6 and appeal to the representation in Proposition 4.2 to conclude that it suffices
to check that for continuous and bounded f on [0,∞]

lim|x|→∞ Ex
[
f

(
Z

†
t

)] = Ê
↑
0

[
f

(
1/X̂↑

θt

)]
and

lim
t→0

Ex
[
f

(
Z

†
t

)] = lim
t→0

Ê
↑
0

[
f

(
1/X̂↑

θt

)] = f (+∞).

As in Section 6, this follows as a consequence of the Feller property of X̂↑ at 0, Lemma 3.2.
The Skorokhod continuity of (Px, x ∈ R) also follows in an easy and similar manner to the
proof at the very end of Section 6.

8. Entrance from ±∞, α = 1. Now we come to the more delicate case of α = 1. The
sufficiency proof is similar to the ones before, the proof of necessity must be different. There
are two reasons why additional arguments are needed. Since the Cauchy process does not
hit points (has no local times) the time-reversal from points does not work unchanged and
the 0–1 law for perpetual integrals of [15] is not applicable. To circumvent these difficulties,
we develop a different approach here, built upon a general theory of transience for Markov
processes highlighted by Getoor [19]. The general result for transient Markov processes we
will use is developed in the Appendix to avoid distraction from the job at hand in this section.

Proof of necessity. We start with an auxiliary lemma, which will be used as part of the
proof of necessity thereafter. We need to compute the potential measure of the extension
killed upon first entry to (−1,1). This is a consequence of recent work on killed stable pro-
cesses given in the lemma below, which is stated under the additional assumptions of the
necessary part of the proof of entrance from ±∞ with α = 1.

LEMMA 8.1. Suppose that Z� the unique solution to the SDE (1.4) (resp., the extension
to infinity) killed upon first entry into (−1,1). Then the potential measure is

GZ�(x, dy)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ(y)−1 1

π

(
log

(|y| + (
y2 − 1

)1/2))
dy

if x = ±∞,
σ (y)−1 1

π
(log

(∣∣∣∣1 − xy
x − y

∣∣∣∣ +
((

1 − xy
x − y

)2
− 1

)1/2)
dy

if x ∈ R\(−1,1),

for |y| ≥ 1.

PROOF. The formula for x ∈ R\(−1,1) follows from Theorem B of Profeta and Simon
[42] or Theorem II.3.3. of Kyprianou [30] (the potential density of the killed Cauchy process),
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the factor σ−1 comes from the time-change and substitution in the time-integral defining the
potential measure.

For x = ±∞, we can use the assumed Skorokhod continuity as in (4.23) and reason as in
(4.26) with x /∈A to deduce thatGZ�(±∞,A)= lim|x|→∞GZ�(x,A), for all bounded Borel
sets in R\(−1,1). In turn, this gives the statement of the lemma. �

To complete the proof of necessity of Theorem 2.2 in the case α = 1, recall that Z� is
the unique solution to the SDE (1.4) killed upon first entry into (−1,1). We first check the
assumptions of Proposition A.1 for Z�. If x ∈ R\(−1,1), then Z� hits (−1,1) in finite time
because of the time-change representation from Proposition 2.1, the (set)recurrence of the
Cauchy process and the assumption that σ > 0 is continuous (thus, locally bounded away
from zero by a constant). Hence, Px(ζ � <∞) = 1 for x ∈ R\(−1,1), where ζ � is the life-
time of Z�. For x = ±∞, we apply (4.23), which is equally valid for α = 1, to deduce that
P±∞(ζ � <∞) = 1, by set recurrence. Since, by definition, Ex[f (ζ �)] = Ex[f (T (−1,1))],
where T (−1,1) = inf{t > 0 : Zt ∈ (−1,1)}, the continuity of x 
→ Ex[f (ζ �)] for f bounded
continuous follows from the assumed weak continuity in the Skorokhod topology of the ex-
tension of Z and Chapter 13 of [50]. Applying Proposition A.1 in the Appendix, we obtain
GZ�(±∞,K) <∞ for all K compact. Choosing K = R\(−1,1), we have from Lemma 8.1∫

(−1,1)c
σ (y)−1 1

π

(
log

(|y| + (
y2 − 1

)1/2))
dy <∞

from which the integral test

Iσ,1 =
∫
R

σ(y)−1 log |y|dy <∞
follows because σ is bounded away from 0 on compacts.

Proof of sufficiency. We want to prove that the condition

(8.1) Iσ,1 =
∫
R

σ(x)−1 log |x|dx <∞
implies that ±∞ is an entrance point. The construction is identical to the one in Section 6 but
simpler as the h-function for α = 1 becomes h = 1 so that X̂◦ = X. Specifically, we relate
via Proposition 4.1 the entrance of Z at ±∞ to the entrance of the Cauchy process at 0. Note
that the Cauchy process leaves zero continuously and never returns. In analogy to the final
paragraphs of Section 6, the guess for the limiting law will be

Zt = 1

Xθt
, t ≥ 0,(8.2)

under P0, where

θt = inf
{
s > 0 :

∫ s

0
β(Xu)du > t

}
.

To show that θ is well defined for all t ≥ 0 we proved in Section 6 that
∫ t

0 β(X̂
◦
u) du <∞

almost surely by checking Ê
◦
0[

∫ ∞
0 β(X̂◦

u) du] <∞ in (6.7). Controlling the integral up to t
by the integral up to ∞ is too coarse here as the latter is infinite due to the (set)recurrence

of the Cauchy process. What we do instead is to show that
∫ τ (−a,a)c

0 β(Xu)du <∞ almost
surely for all a > 0. Since lima→∞ τ (−a,a)

c = ∞ almost surely, as a consequence we obtain∫ t
0 β(Xu)du <∞ almost surely.
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As in Section 6, to verify
∫ τ (−a,a)c

0 β(Xu)du <∞ almost surely, we prove finiteness of
the expectation under P0. To this end, considering only a = 1 for notational convenience
and write (X•

t , t < τ
(−1,1)c ) for the process X killed on exiting (−1,1). Recalling that GX•

denotes its potential measure, we compute

E0

[∫ τ (−1,1)c

0
β(Xu)du

]
=

∫ 1

−1
β(y)GX•(0, dy)

= 1

	(α/2)2

∫ 1

−1
β(y)

∫ 1/|y|
1

(
s2 − 1

)−1/2
ds dy

≤ − 1

	(α/2)2

∫ 1

−1
σ(1/y)−1|y|−2 log |y|dy

=
∫
|z|≥1

σ(z)−1 log |z|dz

≤ Iσ,1 <∞,
where we have taken advantage of the explicit form of GX• ; see, for example, Blumenthal et
al. [4].

The rest of the sufficiency proof goes along the arguments of Section 6 with the guessed
limit (8.2) under P0. Using the above to see that the time-change in (8.2) is well defined, the
argument is as in Section 6.

9. Explosion. We only give the arguments for two-sided jumps, the one sided cases are
modifications just as Section 7 is a modification of Section 6, for example, by replacing X◦
by X↑.

Nonexplosion for α ≥ 1. Recall from Proposition 2.1 that for initial condition x ∈ R,
under the stable law Px , the time-change Zt :=Xτt is the unique solution to the SDE (1.4) up
to the killing time T = ∫ ∞

0 σ(Xs)
−α ds which is a perpetual integral. To show that solutions

do not explode, we only need to verify that Px(T = ∞)= 1. But this is a direct consequence
of the (set)recurrence of stable processes for α ≥ 1.

Explosion and nonexplosion for α ∈ (0,1). Just as in the argument for α ≥ 1, a 0–1 law
Px(T <∞) ∈ {0,1} for the perpetual integral T = ∫ ∞

0 σ(Xs)
−α ds depending on α and σ

would be sufficient to style the remainder of the proof. The 0–1 law for perpetual integrals
is not hard to prove (see Lemma 5 of [15]) but we cannot provide a direct characterisation
of α and σ that leads to respective probabilities of 0 or 1. Instead, we appeal again to our
understanding of how expectation of the perpetual integral serves as an equivalent marker of
almost sure convergence. In the ‘sufficient’ direction, this is straightforward in the ‘necessary’
direction that we will again use our variant of Getoor’s characterisation of transience, given
in Proposition A.1 of the Appendix.

Necessity. The main idea here will be to use a mixture of space inversion together with
time reversal to convert the event of explosion into an event of entrance for a familiar transient
process that lives on R (Proposition 9.1 below). As such, the latter will allow us to invoke
Proposition A.1, whose conclusion can be reinterpreted as ensuring the desired integral test
holds.

Recall from Section 3 that, when α ∈ (0,1), the stable process does not hit points (hence,
X =X†) and its Doob h-transform using h from (3.10) corresponds to conditioning the pro-
cess to be continuously absorbed (in finite time) at the origin. For the next proposition, recall
that β(x)= σ(1/x)−α|x|−2α for x �= 0.
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PROPOSITION 9.1. Suppose that α ∈ (0,1), the stable process X has two-sided jumps
and the solution Z to (1.4) explodes for all points of issue. Under Px, x ∈ R, define Vt =Xιt
for t <

∫ ∞
0 β(Xs) ds, where

ιt = inf
{
s > 0 :

∫ s

0
β(Xs) ds > t

}
(9.1)

and let V̂ ◦
t = Z−1

t for t < T := ∫ ∞
0 σ(Xs)

−α ds. Then

(9.2) V is in weak duality with V̂ ◦ with respect to μ(dx)= β(x)h(x) dx,
where h is given by (3.10). Moreover, when Z is issued from the origin, the time-reversal
(V̂ ◦
(T−t)−, t ≤ T ) is a time-homogenous Markov process with transition probabilities which

agree with that of V started in 0.

PROOF. The proof is similar in spirit to that of Proposition 4.3 so we only highlight the
main points.

Proposition 4.1 tells us that V̂ ◦
t = Z−1

t = X̂◦
θt

, t <
∫ ∞

0 β(X̂◦
s ) ds, where the time-change

(θt , t ≥ 0) is given by

θt = inf
{
s > 0 :

∫ s

0
β

(
X̂◦
s

)
ds > t

}
.(9.3)

Since Z is assumed to explode at the finite T , X̂◦
θ· is absorbed at T .

The proof of the weak duality (9.2) follows by the use of Revuz measures, as in the proof
of (4.13), as soon as we can show that X̂◦ and X are in weak duality with respect to h(x) dx.
This was already shown, however, in (4.15).

For the final part, we note that V̂ ◦ = X̂◦
θ· is a Markov process that hits the origin at the

explosion time T of Z. As before, we want to apply Nagasawa’s duality Theorem 4.1. As
usual, the verification of (A.3.3) is straightforward (appealing to dominated convergence).
Taking account of (9.2), to verify (A.3.1), we are required to check that, for all bounded and
measurable f which is compactly supported in the domain R\{0} of V̂ ◦,

E0

[∫ T

0
f (1/Zt) dt

]
=

∫
R

f (x)β(x)h(x) dx.(9.4)

WritingGX for the potential measure of X, we haveGX(0, dx)= h(x) dx; see, for example,
Theorem I.1.4 in Kyprianou [30]. We may thus write

E0

[∫ T

0
f (1/Zt) dt

]
= E0

[∫ ∞
0
f (1/Xs)σ (Xt)

−α dt
]

=
∫
R

f (1/x)σ (x)−αh(x) dx

=
∫
R

f (y)σ (1/y)−αh(1/y)y−2 dy(9.5)

=
∫
R

f (y)σ (1/y)−αh(y)|y|−2α dy

=
∫
R

f (y)β(y)h(y) dy,

where, just as in (4.27), we have used that h(1/y)|y|−2 = h(y)|y|−2α . Note in particular that
the compact support in R\{0} of f ensures that the right-hand side of (9.5) is finite. The
requirement (9.4) thus holds. This completes the proof. �
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Let us now return to the proof of necessity for the case α ∈ (0,1) in Theorem 2.1 for which
we aim to use Proposition A.1. Recall the notion (X•

t , t < τ
(−1,1)c ) for the stable process X

killed on first exiting (−1,1). Accordingly, X•
ι· denotes the process V = Xι· killed on first

exiting (−1,1). Let us denote the killing time by ζ • and note that ζ • = ∫ τ (−1,1)c

0 β(Xs) ds.
When X•

ι· is issued from a point x �= 0, the aforementioned integral representation of ζ •
and the fact that |X•

ι· | is almost surely bounded away from the origin and 1 implies that
ζ • is almost surely finite. For x = 0, the almost sure finiteness of ζ • is a consequence of
the assumed explosion of Z and the time-reversal statement in Proposition 9.3. In total, the
assumed explosion implies Px(ζ • ∈ (0,∞))= 1 for all x ∈ (−1,1), which is property (a) of
Proposition A.1.

Property (b) of Proposition A.1, requires the weak continuity of ζ •. Weak continuity is
clear when the point of issue is away from the origin, as the trajectory of X is bounded away

from the origin; recall that the integrand of
∫ τ (−1,1)c

0 β(Xs) ds (which equals ζ •) is explosive
if |Xs | → 0. Weak continuity of ζ • at zero is a more complicated issue but, fundamentally, is
a consequence of the assumed Skorokhod continuity of the explosion time T in the point of
issue of the SDE (in particular that it converges weakly to zero as the point of issue tends to
±∞).

To see why, we use duality, h-transforms and dominated convergence. First, note that
the converse to the duality and spatial inversion in Proposition 9.1 (analogously to Propo-
sitions 4.3 and 4.4) is that, if we take the process V =Xι issued from x ∈ (−1,1), x �= 0, and
time reverse it from its last passage out of (−1,1), say �(−1,1), the resulting process is equal
in law to the process V̂ ◦,(x), defined as 1/Z◦,(1/x), where Z◦,(1/x) is the Doob h-transform of
X with the h-function y 
→ h(y − 1/x) on R, where h is given by (3.10) (i.e. X conditioned
to hit 1/x continuously), and time changed in the same way as (2.4). The initial condition
of Z◦,(1/x) is  x(dy) := Px(1/X�(−1,1)− ∈ dy), y ∈ (−1,1)c. Reasoning similarly to that of
Step 1 of the proof of Proposition 4.3 shows that X and X̂◦ are in weak duality and we can
also identify

Ex

[
f (X�(−1,1)−)

] = lim|y|→∞ Êy

[
f (Xτ(−1,1) )ĥ(Xτ(−1,1) − x)/ĥ(y − x)].

See similar calculations in [34]. It follows from the explicit formula (5.4) that  x is abso-
lutely continuous with respect to the Lebesgue measure, for each x ∈ (−1,1), as well as
that ( x, x ∈ (−1,1)) forming a weakly continuous family of measures. We will use these
preparatory remarks to prove

lim|x|→0
Px(t < ζ

•)= P0(t < ζ
•), t ≥ 0.

Define for y ∈ (−1,1)c, x ∈ (−1,1) and t > 0,

Hx(y, t) := Ey

[
1(t<T )|xXτt − 1|α−1|xy − 1|1−α],

so that, due to the duality and spatial inversion mentioned above,

Px(t < ζ
•)=

∫
(−1,1)c

Hx(y, t) x(dy).

In order to deal with the limit of Px(t < ζ •) for |x| → 0, we first prove that

(9.6) lim|x|→0

∫
(−1,1)c

Hx(y, t) x(dy)= lim|x|→0

∫
(−1,1)c

H0(y, t) x(dy),

and then use weak continuity of the measures ( x, x ∈ (−1,1)) and continuity of H0 to
complete the argument. Note that the Doob h-transform in the definition ofHx(y, t) is applied
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at the almost surely finite stopping times (τt , t ≥ 0) which remains a martingale transform,
for example, by Theorem III.3.4 of [35].

Let us start to prove (9.6). As an h-transform, Hx(y, t) is a probability and hence bounded
in [0,1]. To verify (9.6) we show lim|x|→0 sup|y|∈[1,N] |Hx(y, t) − H0(y, t)| = 0 for any
N > 1 which then allows us to replace Hx by H0 in (9.6). To this end, using the spatial
homogeneity of (X,P), we can choose δ > 0 sufficiently small such that, for given ε > 0,

sup
|y|∈[1,N]

∣∣Hx(y, t)−H0(y, t)
∣∣

= sup
|y|∈[1,N]

∣∣∣∣Ey
[
1(t<T )

|xXτt − 1|α−1

|xy − 1|α−1

]
− Py(t < T )

∣∣∣∣
≤ E0

[
sup

|y|∈[1,N]
1(t<T (y),infs≥0 |y+Xs |>δ)

∣∣∣∣ |x + (xXτyt /y)− (1/y)|α−1

|x − (1/y)|α−1 − 1
∣∣∣∣
]

+E0

[
sup

|y|∈[1,N]
1(t<T (y),infs≥0 |y+Xs |≤δ)

∣∣∣∣ |x + (xXτyt /y)− (1/y)|α−1

|x − (1/y)|α−1 − 1
∣∣∣∣
]
,

(9.7)

where T (y) = ∫ ∞
0 σ(y + Xu)−α du and τyt = inf{s > 0 : ∫ s

0 σ(y + Xu)−α du > t}. Note
that the continuity of σ and the restriction of y ∈ [1,N] ensures that cN t ≤ τyt ≤ cN t
for constants cN, cN , depending on N . Next, we note that, for each fixed u > 0, Doob’s
martingale inequality and the fact that X is known to have absolute moments of all or-
ders in (−1, α), ensures that, for p > 1 sufficiently close to 1, fixed u > 0 and z ∈ R,
E0[sups≤u |z + Xs |p(α−1)] ≤ cpE0[|z + Xu|p(α−1)] < ∞, for some unimportant constant
cp ∈ (0,∞). As a consequence, when x ∈ [−1/(2N),1/(2N)] and |y| ∈ [1,N], there are
constants bN1 and bN2 such that

1(t<T (y))

∣∣∣∣ |x + (xXτyt /y)− (1/y)|α−1

|x − (1/y)|α−1 − 1
∣∣∣∣ ≤ bN1 sup

s≤bN2 t
|Xs |α−1 + 1.

For the first summand on the right-hand side of (9.7), we may now appeal to dominated
convergence and take limits as |x| → 0 inside the expectation, noting that the term between
the modulus signs in the previous display tends to zero. The second summand of the right-
hand side of (9.7) vanishes for δ → 0 directly with dominated convergence. The desired
lim|x|→0 sup|y|∈[1,N] |Hx(y, t)−H0(y, t)| = 0 now follows.

To both verify and identify the limit in (9.6), we now note that the just-proved uniform
continuity of Hx(y, t) implies that, for a given choice of ε, by taking N sufficiently large
such that  0([−N,N]c) < ε,

lim sup
|x|→0

∣∣∣∣
∫
(−1,1)c

Hx(y, t) x(dy)−
∫
(−1,1)c

H0(y, t) x(dy)

∣∣∣∣
< lim sup

|x|→0
ε x

([−N,N]) + 2 x
([−N,N]c)

≤ ε+ 2 0
([−N,N]c)< 3ε.(9.8)

Hence, (9.6) is proved. To compute the righthand side of (9.6) we need continuity of y 
→
H0(y, t) = Py(T > t) for all t ≥ 0 fixed, which is a consequence of the weak convergence
assumption on the explosion time T , providing it has no atoms. A variant of Proposition 9.1
states that the SDE started from y and reversed from explosion is equal in law to the stable
process X issued at the origin and conditioned to hit 1/y via an h-transform using (3.10),
with the time change ι in (9.1). It follows that, for y �= 0,

(9.9) Py(T > t)= E0
[
1(ιt<∞)|yXιt − 1|α−1]

.
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Dominated convergence (recall X has absolute moments in (−1, α)) together with quasi-
left/right-continuity of X and the fact that (ιt , t ≥ 0) is a continuous additive functional
ensures that Py(T > t) has no discontinuities for any y �= 0, t > 0. Hence, from (9.6), the
continuity of H0 and the weak continuity of ( x, x ∈ (−1,1)), we have, for t ≥ 0,

lim|x|→0
Px(t < ζ

•)= lim|x|→0

∫
(−1,1)c

H0(y, t) x(dy)= P 0(t < T )= P0(t < ζ
•),

where the final equality follows from the duality of V and 1/Z from Proposition 9.1. Port-
manteau’s Theorem now ensures that we have the desired weak convergence in property (b)
of Proposition A.1.

Both conditions of Proposition A.1 are thus met, and hence, we may deduce as a conclu-
sion of that proposition that, for all 0< ε < 1,

∞> E0

[∫ ∞
0

1(|X•
ιs

|≤ε) ds
]

= E0

[∫ τ (−1,1)c

0
1(|Xu|≤ε)β(Xu)du

]

=
∫
[−ε,ε]

β(x)GX•(0, dx).

(9.10)

From Theorem II.2.3 in [30], equivalently Theorem B of [42], it is known that, for α ∈ (0,1),
GX•(0, dx) has a density which is asymptotically equivalent to h times a constant at 0. From
(9.10), we thus have that

(9.11)
∫
[−ε,ε]

β(x)h(x) dx <∞.

Changing variables as in (9.5) gives the desired integral test Iσ,α(R)= ∫
R
σ(y)−α|y|α−1 dy <

∞.

Sufficiency. First, note that

Ex

[∫ ∞
0
σ(Xt)

−α dt
]

=
∫
R

σ(y)−αGX(x, dy)

=
∫
R

σ(y)−αh(x − y)dy,
(9.12)

where, as before, GX is the potential measure of X and h is the the free potential density of
X given in (3.10). The right-hand side is finite for all x ∈ R if and only if

Iσ,α(R)=
∫
R

σ(y)−α|y|α−1 dy <∞.(9.13)

Hence, if the assumed integral test holds, then the perpetual integral T = ∫ ∞
0 σ(Xt)

−α dt has
finite expectation, thus, is finite Px -almost surely. Proposition 2.1 implies that for all initial
conditions the unique solution to the SDE (1.4) almost surely explodes in finite time. As soon
as we know that T is almost surely finite, identity (9.9) ensures there is Feller explosion.

APPENDIX: A TRANSIENCE RESULT FOR MARKOV PROCESSES

We develop a version of a result of Getoor [19] on transience of Markov processes. Our
version imposes stronger regularity assumptions than the main results in Getoor but gives a
stronger statement also. We adopt here the same notation as in Section 4.2. Let us suppose
Y = (Yt , t ≤ ζ ) is a Markov process with state space E, cemetery state ∂ , killing time ζ =
inf{t > 0 : Yt = ∂} and transition (sub)probabilities (Px, x ∈ E). Denote by P := (Pt , t ≥ 0)
the associated transition semigroup and by UY [f ] = ∫ ∞

0 Pt [f ]dt the potential operator. The
potential measure induced by UY is denoted by GY (·, ·), as in the sections above. As usual,
every function on E is set to 0 at the cemetery state ∂ . We prove the following proposition.
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PROPOSITION A.1. Suppose Y is Markov on E with killing time ζ so that:

(a) Px(ζ ∈ (0,∞))= 1 for all x ∈E,
(b) x 
→ Ex[f (ζ )] is continuous for all continuous and bounded functions on [0,∞),

that is, the killing time is weakly continuous in the initial condition.

Then GY (y,K) <∞ for all y ∈E and K ⊆E compact.

The proof is based on a simple lemma motivated by Lemma 3.1 of Getoor [19]. The lemma
identifies simple functions on E for which the potential operator can be computed explicitly.

LEMMA A.2. Define ha(x) = Px(ζ ≤ a) for all x ∈ E. Then we have UY [ha](x) =
Ex[ζ ∧ a].

PROOF. Using that Pa1E(x)= Px(Xa ∈E)= Px(ζ > a)= 1 − ha(x)= 1E − ha(x) for
x ∈E we find, for x ∈E,

UY [ha](x)= lim
t→∞

∫ t

0
Ps[ha](x) ds

= lim
t→∞

∫ t

0

(
Ps[1E](x)−Ps

[
Pa[1E]](x))ds

= lim
t→∞

(∫ t

0
Ps[1E](x) ds −

∫ t

0
Ps+a[1E](x) ds

)

= lim
t→∞

(∫ t

0
Ps[1E](x) ds −

∫ t+a
a

Ps[1E](x) ds
)

=
∫ a

0
Ps[1E](x) ds − lim

t→∞

∫ t+a
t

Px(ζ > s) ds.

By continuity of measures and Assumption (a), we have lims→∞ Px(ζ > s)= Px(ζ = ∞)=
0, hence,

UY [ha](x)=
∫ a

0
Px(ζ > s) ds = Ex

[∫ a

0
1(s<ζ) ds

]
= Ex[ζ ∧ a],

which completes the proof. �

We can now give the proof of the proposition.

PROOF OF PROPOSITION A.1. Fix x ∈ E. From (a), there is a constant ax > 0 so that
hax (x) > 0. Now fix a continuous bounded fx on E such that

1(z≤ax) ≤ fx(z)≤ 1(z≤ax+1), for all z ∈E,
so that (monotonicity), for all y ∈E,

hax (y)= Ey[1(ζ≤ax)] ≤ Ey
[
fx(ζ )

] ≤ Ey[1(ζ≤ax+1)] = hax+1(y).

Now we have from the choice of ax and the lemma (monotonicity of potential operator for
the second):

• gx(x) > 0 with gx(y)= Ey[fx(ζ )],
• UYgx(y)≤UYhax+1(y) < ax + 1 for all y ∈E.

Using the continuity of gx , we proved that for all x there is an open neighbourhood Ox of
x on which gx is strictly positive and dominates an indicator εx1Ox for some εx > 0. This
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implies GY (y,Ox) < ε−1
x (ax + 1) for all y ∈ E. As

⋃
x∈K Ox is a covering for the compact

set K ⊂E, there is a finite subcovering K ⊂ ⋃n
i=1Oxi . Hence,

GY (y,K)≤
n∑
i=1

GY (y,Oi) <

n∑
i=1

ε−1
xi
(axi + 1) <∞,

for all y ∈E. �

Glossary of some commonly used notation

Notation Description Location

(X,Px), � stable process and exponent (2.1)
�̂ any quantity � built pathwise or in law from −X as

opposed to X
various

τD first entry time into D of X various
�(−a,a) last entry from the interval (−a, a) Proposition 9.1
X† stable process killed on hitting 0 (3.7)
(X◦,P◦

x) stable process conditioned to absorb continuously
at/avoid the origin

(3.8)/(3.11)

(X↑,P↑
x ) stable process conditioned to stay positive and

exponent
(3.17)

h Doob h-function in definiton of X◦ and X↑ (3.10) and (3.19)
X̂◦> negatively censored X̂◦ (6.3)
X̂‡ X̂ killed on entering (−∞,0) above (7.3)
X• X killed on exiting (−1,1) for α ≤ 1 Sections 8 and 9

(V̂ ◦, P̂x) time changed process Xθ· Proposition 9.1
(Z,Px) time-changed process Xτ· (weak solution of SDE) below Proposition 2.1
Z† Z killed on hitting the origin various
Ẑ◦ Nagasawa dual to Z† Proposition 4.3
Z� Z killed on entering (−1,1) for α = 1 Lemma 8.1
Ẑ↑ Nagasawa dual to Z† with spectral positivity Proposition 4.4
T D first entry time of Z into D Section 5.2, Section 5.3

R, R, R extenstion of R using +∞, −∞ and ±∞ (2.7)
(Y,Py) on S general Markov process (2.6)
(Pt , t ≥ 0) semigroup of general Markov process Definition 2.1
μ,ν Nagasawa duality measures (used for duals of Z†, Ẑ◦,

Ẑ↑ and Z�)
various

m,ν Nagasawa duality measures (used for duals of X†, X̂◦,
X̂↑ and X�)

various

GY potential measure of Markov process Y (e.g., for X†,
X◦ etc.)

(4.8)

pY (t, x, dy) transition measure of Markov process Y (e.g., for X†,
X◦ etc.)

e.g., (4.14)

(X ,Px) (positive) self-similar Markov process Section 3.1, Section 3.2
(ξ,P) Lévy process underlying Lamperti transform Section 3.1
((ξ, J ),Px,i ) MAP underlying Lamperti–Kiu transform Section 3.2
(ξ>,P>), �> Lévy process underlying censored stable process and

exponent
(3.15)

(ξ |·|,P|·|), �|·| Lévy process underlying |X| when ρ = 1/2 and
exponent

(3.16)

ξ↑, �↑ Lévy process underlying X↑ and exponent (3.20)
ξ†, �† Lévy process underlying X† in spectrally positive case

and exponent
(3.26)

ξ̂◦>, �̂◦> Lévy process underlying X̂◦> below (6.3)
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[45] VOLKONSKIĬ, V. A. (1958). Random substitution of time in strong Markov processes. Teor. Veroyatn. Pri-
men. 3 332–350. MR0100919

[46] VUOLLE-APIALA, J. and GRAVERSEN, S. E. (1986). Duality theory for self-similar processes. Ann. Inst.
Henri Poincaré Probab. Stat. 22 323–332. MR0871085

[47] WALSH, J. B. (1972). Markov processes and their functionals in duality. Z. Wahrsch. Verw. Gebiete 24
229–246. MR0329056 https://doi.org/10.1007/BF00532535

[48] WERNER, F. (2017). Concatenating and pasting of right processes. Available at arXiv:1801.02595.

http://www.ams.org/mathscinet-getitem?mr=0091349
http://www.ams.org/mathscinet-getitem?mr=0107097
http://www.ams.org/mathscinet-getitem?mr=1464694
http://www.ams.org/mathscinet-getitem?mr=0917065
https://doi.org/10.1007/978-1-4684-0302-2
http://www.ams.org/mathscinet-getitem?mr=0587423
https://doi.org/10.1016/0304-4149(80)90020-4
http://www.ams.org/mathscinet-getitem?mr=3758344
https://doi.org/10.1016/j.spa.2017.06.011
http://www.ams.org/mathscinet-getitem?mr=3183574
https://doi.org/10.1214/EJP.v19-2647
http://www.ams.org/mathscinet-getitem?mr=3155252
https://doi.org/10.1007/978-3-642-37632-0
http://www.ams.org/mathscinet-getitem?mr=3485365
https://doi.org/10.1214/16-EJP4506
http://www.ams.org/mathscinet-getitem?mr=3808900
https://doi.org/10.30757/alea.v15-25
http://www.ams.org/mathscinet-getitem?mr=3161489
https://doi.org/10.1214/12-AOP790
http://www.ams.org/mathscinet-getitem?mr=3619269
https://doi.org/10.1016/j.spa.2016.07.013
http://www.ams.org/mathscinet-getitem?mr=3913275
https://doi.org/10.1016/j.spa.2018.04.001
http://www.ams.org/mathscinet-getitem?mr=3906986
https://doi.org/10.1016/j.spa.2018.02.004
http://www.ams.org/mathscinet-getitem?mr=1943877
https://doi.org/10.1007/978-3-662-05265-5
http://www.ams.org/mathscinet-getitem?mr=0307358
https://doi.org/10.1007/BF00536091
http://www.ams.org/mathscinet-getitem?mr=3980150
https://doi.org/10.1016/j.spa.2018.08.013
http://www.ams.org/mathscinet-getitem?mr=0169290
http://www.ams.org/mathscinet-getitem?mr=0443107
http://www.ams.org/mathscinet-getitem?mr=0217877
https://doi.org/10.1007/BF02786681
http://www.ams.org/mathscinet-getitem?mr=3618135
http://www.ams.org/mathscinet-getitem?mr=0300349
http://www.ams.org/mathscinet-getitem?mr=1157331
https://doi.org/10.1007/BF03323085
http://www.ams.org/mathscinet-getitem?mr=0100919
http://www.ams.org/mathscinet-getitem?mr=0871085
http://www.ams.org/mathscinet-getitem?mr=0329056
https://doi.org/10.1007/BF00532535
http://arxiv.org/abs/arXiv:1801.02595
https://doi.org/10.1214/EJP.v19-2647
https://doi.org/10.1214/12-AOP790
https://doi.org/10.1016/j.spa.2016.07.013
https://doi.org/10.1016/j.spa.2018.04.001


ENTRANCE OF STABLE SDE FROM THE INFINITE BOUNDARY 1265

[49] WHITT, W. (1980). Some useful functions for functional limit theorems. Math. Oper. Res. 5 67–85.
MR0561155 https://doi.org/10.1287/moor.5.1.67

[50] WHITT, W. (2002). Stochastic-Process Limits. Springer Series in Operations Research. Springer, New York.
An introduction to stochastic-process limits and their application to queues. MR1876437

[51] ZANZOTTO, P. A. (1997). On solutions of one-dimensional stochastic differential equations driven by
stable Lévy motion. Stochastic Process. Appl. 68 209–228. MR1454833 https://doi.org/10.1016/
S0304-4149(97)00030-6

[52] ZANZOTTO, P. A. (2002). On stochastic differential equations driven by a Cauchy process and other stable
Lévy motions. Ann. Probab. 30 802–825. MR1905857 https://doi.org/10.1214/aop/1023481008

http://www.ams.org/mathscinet-getitem?mr=0561155
https://doi.org/10.1287/moor.5.1.67
http://www.ams.org/mathscinet-getitem?mr=1876437
http://www.ams.org/mathscinet-getitem?mr=1454833
https://doi.org/10.1016/S0304-4149(97)00030-6
http://www.ams.org/mathscinet-getitem?mr=1905857
https://doi.org/10.1214/aop/1023481008
https://doi.org/10.1016/S0304-4149(97)00030-6

	Introduction
	Main results
	(Non)explosion of stable jump diffusions
	Entrance from inﬁnity
	Proof strategy for entrance from inﬁnity
	Proof strategy for explosion

	Self-similar Markov processes and stable processes
	Positive self-similar Markov processes
	Real-valued self-similar Markov processes
	Stable processes and their path functionals as rssMp
	Stable processes and their path functionals as pssMp

	Fundamental transformations
	Time-space inversions
	Time-reversal

	Entrance from inﬁnity, the impossible cases
	Entrance from +infty, two-sided jumps, alphain(0,2)
	Entrance from -infty, two-sided jumps, alphain(0,2)
	Entrance from ±infty, two-sided jumps, alphain(0,1)
	Entrance from ±infty or -infty, spectrally positive jumps, alphain(0,2)
	Entrance from ±infty or +infty, spectrally negative jumps, alphain(0,2)
	Entrance from +infty, spectrally positive jumps, alphain(0,1)
	Entrance from -infty, spectrally negative jumps, alphain(0,1)

	Entrance from ±infty, two-sided jumps, alphain(1,2)
	Idea for sufﬁciency
	Proof of sufﬁciency

	Entrance from +infty, spectrally positive, alphain(1,2)
	Proof of necessity
	Proof of sufﬁciency

	Entrance from ±infty, alpha=1
	Proof of necessity
	Proof of sufﬁciency

	Explosion
	Nonexplosion for alpha>=1
	Explosion and nonexplosion for alphain(0,1)
	Necessity
	Sufﬁciency

	Appendix: A transience result for Markov processes
	Acknowledgments
	References

