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QUENCHED INVARIANCE PRINCIPLES FOR THE MAXIMAL PARTICLE
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We consider branching random walk in spatial random branching envi-
ronment (BRWRE) in dimension one, as well as related differential equa-
tions: the Fisher—-KPP equation with random branching and its linearized ver-
sion, the parabolic Anderson model (PAM). When the random environment
is bounded, we show that after recentering and scaling, the position of the
maximal particle of the BRWRE, the front of the solution of the PAM, as
well as the front of the solution of the randomized Fisher—KPP equation ful-
fill quenched invariance principles. In addition, we prove that at time ¢ the
distance between the median of the maximal particle of the BRWRE and the
front of the solution of the PAM is in O(Int). This partially transfers classi-
cal results of Bramson (Comm. Pure Appl. Math. 31 (1978) 531-581) to the

setting of BRWRE.
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1. Introduction. Branching random walk as well as branching Brownian motion, and in
particular the position of their maximally displaced particles, have been the subject of highly
intensive research during the last couple of decades; see the monographs [8, 63] as well as
the references in these sources.

Indeed, in [32, 42] and [7] it has successively been shown that under suitable assumptions
the position of the maximal or rightmost particle M (n) of the branching random walk at time
n satisfies a law of large numbers; that is, almost surely

(1.1 lim n~'"M@n) =9
n—oo

for some nonrandom vy € R. Subsequently, concentration results for M (n) around its median
m(n) (cf. [15, 20, 53, 61]), as well as corresponding results on the distributional convergence
have been obtained; see [2, 4, 12, 13]. In particular, in [1, 35] the law of large numbers of
(1.1) has been improved in that for a wide class of branching random walks the position of
the maximal particle M (n) at time n satisfies

(1.2) M(n) = don — %clnn-ﬁ—O(l),

where ¢ > 0 is a parameter depending on the specifics of the branching and displacement
mechanisms.

In the continuum setting of branching Brownian motion (BBM) with binary branching,
replacing n by t in a suggestive way for the respective quantities, even more precise asymp-
totics, namely

3
(1.3) m(t) =2t — ——=1Int +o(1),
272
has been proved much earlier in seminal works by Bramson [11, 14] already. Bramson made
use of the fact that the function wBBM(z, x) :=P(M(¢) > x), t > 0, x € R, solves the Fisher—
KPP equation

JuwBBM _ lAwBBM n wBBM(l _ wBBM)

a2 ’

with the initial condition wBBM(0, -) = 1(—0,01- He then investigated the solution to this equa-
tion through an impressively refined analysis of its Feynman—Kac representation.

While the above results for branching random walk have been derived in the context of
homogeneous branching mechanisms, there has recently been an increased activity in the
investigation of branching random walk with nonhomogeneous branching rates that depend
on either time or space in special deterministic ways; see [5, 9, 10, 21, 22, 45, 46, 49, 50, 59].
Among other things, as an interesting consequence of the inhomogeneous branching rates, in
these sources second-order terms that differ from the logarithmic correction of [14] and (1.2)
have been obtained.

While the above sources focus on the case of deterministic branching environments, there
are very compelling reasons for trying to achieve a better understanding of the case of spa-
tially random branching environments. On the one hand, this is already interesting from a
purely mathematical point of view. On the other hand, when it comes to modeling real world
applications, though branching environments are not random, they oftentimes are locally ir-
regular but exhibit certain spatial averaging properties. One natural approach is then to model

(1.4)
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the environment as random and try to understand the evolution of the process either condition-
ally on a realization of the branching environment or averaged over all such environments. In
this setting, notable research has been conducted over the past decades on a variety of aspects
such as survival and growth properties, transience versus recurrence, diffusivity, as well as
localization properties (see, e.g., [16, 17, 24, 29, 34, 36, 48, 56, 60] for a nonexhaustive list).

To the best of our knowledge, the only source that in some sense focuses on the maximal
particle is Comets and Popov [17]. They prove a shape theorem for a BRWRE on Z¢, d > 1,
from which, as a corollary, one can infer that the maximal particle has an asymptotic velocity,
that is, (1.1) holds.

Finally, branching random walk in an environment that is changing randomly in fime was
studied in [37, 52] recently. Among other results, Huang and Liu [37] proved a law of large
numbers for the maximal particle. Mallein and Mito$ [52] considered the backlog of the
maximal particle behind what can be interpreted as the breakpoint in their setting (cf. (2.5)
below) and proved that it is strictly larger than in the setting of constant branching rates. As
a corollary, their displaced particle. It should be noted here that the time-dependent random
environment seems to be easier to handle since certain techniques of the theory of multitype
branching processes apply in this case. We were not able to use them for the model considered
in this paper.

2. Definition of the model and main results. Let us now introduce the model of branch-
ing random walk in random (branching) environment considered in this paper. The random
environment is given by a family & = (§(x)),cz of random variables defined on some proba-
bility space (€2, F, [P). We assume that the environment is i.i.d. and bounded:

E(x) are i.i.d. under P,
(POT) ( )er
0 <ei:=essinf£(0) < esssup&(0) =: es < oo.

We presume that the i.i.d. property can be relaxed with some additional technical effort,
but we prefer to work in this context for the sake of simplicity. The same holds true for the
condition ei > 0 which could be relaxed to ei > ¢ € R, with negative branching rates being
interpreted as killing rates. On the other hand, some form of boundedness of &£(x) from above
is essential for our investigations.

We furthermore assume, again for reasons of simplicity, that the initial configuration ug :
Z, — Ny is such that

(INI) Cl_n, > ug>1y0 forsome C €[1,00).

In particular, ug = 1j0y and uo = 1_p, fulfill (INI). Later, as a consequence of Lem-
mas 4.15 and 5.1 below, we show that any initial configuration satisfying (INI) is compa-
rable for our purposes to ug = 1o in the results that follow. Hence, the reader may assume
uo = 1y0) from now onward without loss of generality.

Let us now describe the dynamics of the BRWRE in detail. Given a realization of £ and
an initial condition ug : Z — No, at each x € Z we place ug(x) particles at time 0. As time
evolves, all particles move independently according to continuous time simple random walk
with jump rate 1. In addition, and independently of everything else, while at a site x, a particle
splits into two at rate £(x), and if it does so, the two new particles evolve independently
according to the same diffusion mechanism as the remaining particles. This defines branching
random walk in the branching environment & with binary branching, where again the latter is
for simplicity but not essential. Given a realization of &, we write Pio for the quenched law

of the process conditional on starting with a particle configuration uq at time 0, and Eio for



QUENCHED INVARIANCE PRINCIPLES FOR BRWRE 97

the corresponding expectation. We use [P x Pio to denote the averaged law of the process. To

simplify notation, we abbreviate Pi = P‘im.

We use N (#) to denote the set of particles alive at time ¢ in this BRWRE. For any particle
Y € N(t), we denote by (¥s)se(0,7) the trajectory of itself and its ancestors up to time 7. We
will also call (Y)se(o,7] the genealogy of Y. For t > 0 and x € Z, we define

N(t,x):=|{Y e N@#):Y,=x}| and

2.1 NZ(t,x) = |{Y e N : Y = x}| = SN, y)

y=x

as the number of particles in the process at time ¢ which are located at or to the right of x.

To state our last assumption, we recall that it is well known from the studies on the
parabolic Anderson model (cf. Section 2.2 below) that there is a deterministic function
AR — R, the Lyapunov exponent, such that for a.e. realization of £ the quenched expecta-
tion of N (z, x) satisfies

22) M) = lim ;lnEE[N(t, )], veR.

Under (POT), one can show that A is even, concave everywhere and strictly concave exactly
on (v., 00) for some nontrivial critical velocity v, € (0, 00); see Figure 1 for the illustration
and Proposition A.3 in the Appendix for the proof. Furthermore, the asymptotic velocity of
the maximally displaced particle (cf. (1.1)) is given by the unique vy € (0, 00) such that

(2.3) A(vg) = 0.

Throughout the paper, we will assume that the maximally displaced particle is faster than v,
that is,

(VEL) Vo > Ve

This assumption will ensure that there is certain tilted Gibbs measure related to BRWRE (cf.
(4.4) and below) under which the particles have the speed vg; the existence of such a measure
is crucial for the techniques employed in this paper. While condition (VEL) is not easy to
check in general, in Lemma A.4 of the Appendix we show that it is satisfied for a rich family
of random environments. Moreover, so far we have found no examples where (VEL) fails
to hold, but a proof that (VEL) is always fulfilled eludes us so far. Figure 1 covers possible
shapes of the Lyapunov exponent in terms of convexity and the locations of vy and v,.

A)\(v)

Ve
Vo "\ v

FI1G. 1. Qualitative illustration of the behavior of the Lyapunov exponent )(v) with (VEL) satisfied (left) or
not (right). In particular, the Lyapunov exponent is a linear function on two nondegenerate symmetric intervals
adjacent to the origin, and strictly convex otherwise; see Proposition A.3 for details.
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2.1. Behavior of the maximally displaced particle. From a probabilistic point of view, in
this article we are mainly interested in the behavior of the position of the maximally displaced
particle at time ¢,

M(t) :=max{Y;:Y € N(1t)},
for which we prove the following functional central limit theorem.
THEOREM 2.1. Assume (POT), (INI) and (VEL). Then there is 7, € (0, 00) given ex-
plicitly in (5.20) below, such that the sequence of processes
M (nt) — vont

oo/

converges as n — oo in P x Pio -distribution to standard Brownian motion.

[0,00)>t+—~ eN,

REMARK 2.2. Without further mentioning, in the functional central limit theorems we
prove, we consider the space of cadlag functions endowed with the Skorokhod topology as
the underlying space.

Theorem 2.1 will directly follow from three intermediate results (Proposition 2.3 and The-
orems 2.4, 2.6 below) which are of independent interest. To state these results, we define m(¢)
as the quenched median of the distribution of M (¢),

(2.4) m(t) :==sup{x € Z: P5 (M (1) > x) > 1/2}.

uo

Note here that m(¢) is a random variable on (2, F, P).

We further introduce a quantity 7 (¢) which is sometimes referred to as the breakpoint in
the case of homogeneous branching rates; incidentally, we already remark at this point that
in our setting it is also instructive to interpret it as the front of the solution to the parabolic
Anderson model; cf. Section 2.2 below. It is defined as

(2.5) m(t) :==sup{x € Z: E; [N=(t,x)] > 1/2}.

As the first ingredient of the proof of Theorem 2.1, we show that M (¢) is sufficiently close
to its median so that, for the sake of the functional central limit theorem, M (¢) can effectively
be replaced by m(t).

PROPOSITION 2.3.  Under assumptions (POT), (INI) and (VEL), there is a constant C €
3

(0, 00) such that P x P, -a.s.,
M(t) — t
limsup| () —m(1)| <
t—00 Int

C.

The second substantial step to show Theorem 2.1 is the following approximation result. It
is one of the main results of this article and it is interesting in its own right.

THEOREM 2.4. Assume (POT), (INI) and (VEL) to hold. Then m(t) < m(t), and there
exists a constant C € (0, co) such that for P-a.e. realization of &,

m() —m) _

(2.6) lim sup <C.

t—00 Int
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REMARK 2.5. This result should be compared to the classical results of Bramson [11,
14] for homogeneous BBM (and to corresponding results for branching random walk [1, 35]).
In the case of BBM, the breakpoint satisfies m(t) = V2r — 217 Int + o(1) which can be
proved easily using Gaussian tail estimates. Together with (1.3), this yields that for BBM,

y m(t) —m(t) 1
im ———=—.
t—00 Int J2
Our result thus shows that in the case of random branching rates we can recover an upper
bound whose order matches that of the homogeneous branching setting. The question of
whether there is a limit in (2.6) remains open.

The third and last ingredient of the proof of Theorem 2.1 is the functional central limit
theorem for a suitably rescaled and centered version of the process i (¢). In fact, we prove a
slightly more general statement: As a generalization to (2.5), we define

1
2.7) my(t) == sup{x eN: EiO[Nz(t,x)] > Eem(”)}, v>0,1>0,

where A is the Lyapunov exponent defined in (2.2). Note that due to the definition (2.3) of vg
we have m(t) = my, (7).

THEOREM 2.6. Under assumptions (POT) and (INI), for every v > v., the sequence of
processes

my(nt) — vnt

oyn
converges as n — oo in P-distribution to standard Brownian motion. The value of o, €
(0, 00) is given in (5.20) below.

[0,00)3¢t > neN,

Theorem 2.1 follows directly from Proposition 2.3 and Theorems 2.4, 2.6. Combining
these results, we also immediately obtain a functional limit theorem for the median m(¢).

COROLLARY 2.7.  Assuming (POT), (INI) and (VEL), with &, as in Theorem 2.6, the
sequence of processes

m(nt) — vont
To/n

converges as n — oo in P-distribution to standard Brownian motion.

[0,00) 3¢t~ neN,

2.2. Implications for the PAM and randomized Fisher—-KPP equation. As we have
touched upon previously in the Introduction, there is a close connection between certain
partial differential equations and branching processes: In the case of BBM, it is easy to see
that the density uBBM(z, x) of the expected number of particles satisfies

9 sem_ 1, BBM , BBM
(2.8) o7 u =3 Au +u
As this equation is essentially the heat equation (write #B8M = ¢/7), this allows to estimate
the corresponding breakpoint sup{x > 0 : u(¢, x) > 1/2} with high accuracy using Gaussian
tail estimates. Moreover, as we already mentioned, wBBM(¢, x) = P(M (¢) > x) satisfies the
Fisher—KPP equation (1.4). In particular, the front of the solution to (1.4), defined as sup{x €
R : wBBM(z, x) > 1/2}, coincides with the median m(¢) of the distribution of the maximal

BM
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particle of the BBM. Therefore, Bramson’s result (1.3) immediately gives equally precise
information on the position of the front of the solution to (1.4) as well.

In our setting of inhomogeneous branching rates, the situation is both more complicated
but also more interesting. The breakpoint in the case of heterogeneous branching rates cor-
responds to the front of the solution to the parabolic Anderson model (PAM), a discrete
randomized version of (2.8),

. %<Z» x) = Aqu(t, x) + Eu(t,x), 1>0,x€Z,

u(0,x) =up(x), xeZ.

Here, Agf(x) = %( f(x+ 1)+ f(x —1) —2f(x)) stands for the discrete Laplace operator.
It is well known that conditionally on &, the expected number of particles at time ¢ and
position x

(2.10) u(t,x):=E; [N(t,x)]

solves (2.9) (cf. the original source [27] as well as [26] and [44] for more recent surveys).
Hence, due to (2.5) and (2.10), the process (¢) can be viewed as the front of the solution to
the PAM, which according to Theorem 2.6, fulfills a corresponding functional central limit
theorem.

This functional central limit theorem can be supplied with another one, for the logarithm
of the function u(z, x) itself: Since statement (2.2) can be read as a law of large numbers for
t~UInu(z, |tv]), it is natural to inquire about the fluctuations. Our investigations lead to a
corresponding invariance principle which is of independent interest.

THEOREM 2.8. Under assumptions (POT) and (IN), for every v > v, there exists o, €
(0, 0o) given explicitly in (4.25) below, such that the sequence of processes

[0,00) >t (Inu(nt, lvnt]) —ntr(v)), neN,

1
OyA/Vn

converges as n — o0 in P-distribution to standard Brownian motion.

While this result for the front of the solution to the PAM is interesting in its own right, the
question naturally arises of what one can say about the front of the solution to its nonlinear
version, the randomized discrete Fisher—KPP equation

(2.11) aa—l:(t,x) = Aqw(t,x) + EX)wE, x)(1 —w(t, x)), t>0,x€Z,

Previous results (in continuum space) on the front of the solution to (2.11) have been
obtained in [25] (see also [23]), [58] and [31]. First, under suitable regularity and mixing
assumptions, and a Heaviside-type initial condition, w(0, -) =1_y,, as in (1.4), the existence
of the speed of the front

(2.12) m(t) :=supf{x e R:w(r,x) =1/2}
of the solution to the randomized Fisher—KPP equation (2.11) is known [23], Theorem 7.6.1:
For P-a.e. realization of &,
(2.13) lim ¢+~ '7(r) = Do,
—00

where 1g is nonrandom and corresponds to the speed of the front of the linearized equation,
which is a “continuum space PAM.” Here, as in Bramson’s work [11], a precise analysis of
the Feynman—Kac formula plays an important role in the proofs.
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In the case of & periodic instead of random, in [31] it has been shown that there is a
logarithmic correction term between m (¢) and 7i(t), and the authors were able to characterize
the constant in front of the logarithmic correction as a certain minimizer.

To the best of our knowledge, nothing is known about the fluctuations of 7i(t) for the
Heaviside-type initial conditions in the case of random branching rates. For a different and
due to technical reasons restricted set of initial conditions, Nolen [58] has derived a central
limit theorem for the position of the front of the solution to (2.11) by analytic means. To put
our results into context, let us describe the assumptions of [58] more precisely: The initial
condition wo(x, &) of [58] is required to depend on the randomness of the environment. It
should satisfy lim,_, o wo(x, &) = 1 (which roughly corresponds to our assumption (INI)),
and more importantly,

(2.14) cE®)Wx, &, y) <wox,&) <CE)w(x,&,y) forallx>0.

Here, w = w(x,&,y), t >0, x > 0, is a nonnegative solution to the ordinary differential
equation %Aﬁ} = (¢ — y)w satisfying w(0, &, y) = 1 and which decays to 0 as x — oo. It
was known previously that w exists whenever y is larger than a certain ¥. In addition, there
is another y* > ¥ such that whenever y > y* and the initial condition satisfies (2.14), then
the law of large numbers for the velocity of the traveling wave, that is, (2.13) holds with
the same speed vg. In order to prove his central limit theorem, Nolen needs to assume that
y € (¥, y™), which leads to traveling waves with a larger velocity v(y) > 0g. The initial
conditions corresponding to such y decay to 0 exponentially as x — oo, but the rate of decay
is slow.

It is worthwhile to remark that such a distinction between the waves with the minimal (or
“critical”) velocity and the waves with strictly larger velocity is present already in the paper
of Bramson [11]. Already there, it turns out that the “supercritical” is easier to handle.

One of our main motivations for writing this paper was to understand the behavior of the
front of the traveling wave solution to randomized Fisher—KPP equation in the “critical” case,
in particular for initial conditions of the form wg = 1_p,, that are, from the point of view of
the BRWRE as well as of the PAM, more natural.

THEOREM 2.9. Let mi(t) be the front of the solution to discrete randomized Fisher—-KPP
equation (2.11) with initial condition wy = 1_y, defined similarly as in (2.12) by

(2.15) m(t) :==sup{x € Z:w(t,x)>1/2}.

Then, assuming that (POT) and (VEL) hold true, (m(t) — vot) /(T y, /1) converges ast — 00
in P-distribution to a standard normal random variable.

The previous theorem is a nonfunctional central limit theorem only, which might look
surprising in view of our previous results. The reason for this is the fact that the connection
between the BRWRE and the corresponding randomized Fisher—KPP equation is slightly
more complicated than in the homogeneous case, due to the fact that the BRWRE is not
translation and reflection invariant (given £): We will prove in Proposition 7.1 that

w(t, x) =P5(M(t) > 0)

solves the randomized Fisher—KPP equation (2.11) with initial condition w (0, -) = 1y,. This
should be contrasted with the definition of wBBM(¢, x) = P(M (¢) > x) used in (1.4).
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3. Strategy of the proof. We now roughly explain the strategy of the proof of our main
results, and describe the organization of the paper. As it is common in the branching random
walk literature, a first moment method is used to provide an upper bound on the maximum of
the BRWRE; a complementary truncated second moment computation gives a lower bound.

Luckily, similar to the homogeneous case, the moments of the number of particles in the
BRWRE (possibly satisfying certain additional restrictions) have an explicit representation.
This representation, in terms of expectations of certain functionals of simple random walk,
is called the Feynman—Kac formula, “many-to-one lemma” or “many-to-few lemma,” de-
pending on the source and context. To introduce it, for x € Z, let P, denote the law of the
continuous-time simple random walk (X;);>0 on Z with jump rate 1 and denote by E, the
corresponding expectation. The following proposition, which is an adaptation of Section 4.2
of [33] or Theorem 2.1 of [30], gives the representation for first and second moments. Its
proof is an easy modification of the proofs of these results, and it is therefore omitted.

PROPOSITION 3.1 (Feynman—Kac formula). Let @1, @2 be cadlag functions from [0, t]
to [—o0, oo] satisfying @1 < @a. Then the first and second moments of the number of particles
in N(t) whose genealogy stays between @1 and ¢, are given by

EgL[{Y € N@©) 1 01(r) < ¥, < @a(r) ¥r €[0.11}]]

3.1 - t 7
— Eo|exp /0 EX)dr b () < X0 < 2 Vr [0, 11].
ES[[{Y € N@©) 1 o1(r) < Y, < pa(r) ¥r €0, 11} ]
=E _exp /Oté(Xr) drt;o1(r) < X, <@a(r) Vr €10, t]_
(3.2)

t K
+2/0 EO[CXP{/(; ";:(Xr)dr}é:(Xs)l(pl(r)erf(pz(r) Vrel0,s]

t—s 2
X (EX.Y [exp{ /0 %‘(Xr)dr}1<o1<r+s>sxrs<pz<r+s> Vre[o,zs]D ]dS-

In particular, (3.1) implies that

(3.3) BS [NZ(t, )] = Y o) E; [eXp{ [ ’ s<x,>dr}; X, > n]

ieZ

In the first principal step of the proof, we analyze the first moment formula (3.3) for n = vt
with v > 0. To understand this analysis, it is useful to recall the corresponding representation
from the homogeneous case (cf. [1]). In that setting, it is almost trivial that Egzl [NZ(t,vt)] =
e' Py(X; > vr). The probability on the right-hand side can then be analyzed using exact large
deviation results (see, e.g., [18], Theorem 3.7.4) to obtain a precise asymptotic formula.

While (3.3) has a different structure, its asymptotics can be understood, at least at a heuris-
tic level, by the same ingredients that are usually used in the proof of exact large deviation
theorems: a tilting and a local central limit theorem. Slightly more in detail, by introducing a
tilting parameter n, using (3.3), we can write

(3.4) Eg[N(t, v)]|=e "E [exp{/ot(é(X,) +n) dr}; X, = vt}.

This suggests to introduce new “Gibbs measures” on the space of random walk trajectories,
whose density with respect to simple random walk is the exponential factor in (3.4) (cf. Sec-
tion 4.1). We then adjust 1 so that the event X; = vt is typical under such a Gibbs measure.
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Next, using a suitable local central limit theorem, the right-hand side of (3.4) can be approx-
imated by (cf. Proposition 4.10)

~ %e—mEo[exp{/Ot(é(Xr) +1) dr}; H, < z},

where H, stands for the hitting time of x by the simple random walk X; see (4.1) below. This
can further be rewritten as

c . vt HX t
~—e '"E ex / X))+ dr}xex {/
¢ "Eo ]:[ p{ Hx_l(é( )+ 1) oy

X 1 vt

(EX) +1) dr”.

If one ignores the last factor in the expectation, which can be justified using the concentration
of the hitting times of the random walk under the Gibbs measure (see Section 4.4), then by
the Markov property

B %e—m}j E [exp{/on (EX.) +1) drH

H
I x
= 7(3_”’ exp{
t

UZI InE, [exp{/o

x=1

(EX:) +1n) dr”}-

The application of a suitable central limit theorem to the above sum then suggests the central
limit theorem behavior of the PAM, Theorem 2.8.

Making the above heuristics rigorous requires a nonnegligible effort. In particular, it turns
out that the tilting parameter n making the event X, = vt typical under the Gibbs measure
is random (i.e., §-dependent). This disallows a straightforward application of a central limit
theorem in the last formula above. Section 4.3 deals with this problem, building on a prepara-
tory Section 4.2. Other approximations appearing in the previous heuristic computation are
treated in Section 4.4; Section 4.5 controls the influence of the initial conditions. The func-
tional central limit theorem for the PAM, Theorem 2.8, then follows easily; cf. Section 4.6.

In order to show the functional central limit theorem for the breakpoint, Theorem 2.6, we
essentially need to find the largest root of the function x — In E%[N =(t, x)], which requires,
in a certain sense, to invert the functional central limit theorem for the PAM; cf. Section 5.2.
In order to perform this inversion, we study how sensitive Eg[N Z(t, x)] is to perturbations in
the space and time direction; cf. Section 5.1.

Let us now comment on the second moment computation required to prove the remaining
main results of this paper. Similar to the homogeneous case, the second moment of N=(z, vt)
explodes too quickly to yield any useful estimates. This explosion is, essentially, due to par-
ticles that are much faster than the breakpoint at times in the bulk of the interval [0, ¢]. In the
case of homogeneous branching rates, this is solved by a truncation which involves consider-
ing only so-called leading particles, that is, the particles that are slower than the breakpoint,
X < wvgs for all s € [0, 7] (here, vpt is a first-order breakpoint asymptotics). The principal
ingredient for the computation of the moments for the leading particles is then a “ballot the-
orem” for the random walk bridge, which gives the probability that a random walk bridge
from (0, 0) to (¢, 0) stays positive for all intermediate times.

Following the above strategy in the case of BRWRE suggests to call a particle Y € N (¢)
leading at time t if (a) Y; is close to the breakpoint 7 (¢), and (b) Y is slower than breakpoint
at intermediate times, Yy < m(s) for all s € [0, 7]." Since 7 (¢) satisfies a functional central
limit theorem itself, it naturally leads to a ballot estimate of the following form: Let B, W

IThe actual definition of leading particles in Section 6 is slightly different for technical reasons.
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be two independent Brownian motions (or centered random walks, possibly not identically
distributed). What is the behavior of

P(B(t) > W(t), B(s) <1+ W(s) Vs €[0,7] | 0 (W))?

Observe that the process W is “quenched” in this computation as we condition on the o -
field o (W) generated by W. This modified ballot problem was recently studied by Mallein
and Mitos [51]. We were however not able to use their results directly due to the lack of the
independence that we encounter in our model.

The first and second moment of the number of leading particles is computed in Section 6.1.
In particular, a lengthy proof of a (relatively weak version of) a ballot estimate can be found
in Section 6.1.1. Subsequently, Theorem 2.4 and Theorem 2.1 are then shown in Section 6.2.
Section 7 proves the functional central limit theorem for the Fisher—KPP equation, Theo-
rem 2.9. Finally, Section 8 discusses some open problems.

Notational conventions. For two functions f, g : [0, o0) — (0, 00), we write f ~ g when
lim; o0 f(#)/g(t) =1, and f = g when 0 < infief0,00) f(#)/8(t) < SUP;cp0 00 S/ (1)/8(1) <
00. We use ¢ and C to denote positive finite constants whose value may change during com-
putations, and sometimes write ¢(€), etc., in order to emphasize their dependence on real-
izations of the branching rates. Indexed constants such as c¢; keep their value from their first
time of occurrence. We use E[ f; A] as an abbreviation for E[ f14].

For x € R\ Z, we define P, by linear interpolation. More precisely, for x = |x] + A we
define Py := (1 — A)P|x| + AP +1. Similarly, other quantities which are only defined for
integers a priori are to be interpreted as the linear interpolation of the evaluations at their
integer neighbors, which will usually be clear from the context.

While we have stated the precise assumptions needed in the main results given above,

we will from now on assume (POT), (INI) and (VEL) to be fulfilled

as standing assumptions without further mentioning. This helps in keeping notation lighter
compared to mentioning a suitable subset of these assumptions at each of the numerous sub-
sequent auxiliary results.

4. Expected number of particles of given velocity. In this section, we study the asymp-

totic behavior of EiO[N (t, vt)] and related quantities, following the strategy described in
Section 3.

4.1. Tilted random walk measures. We introduce the tilted distributions of random walk
in random potential, and show that one can tilt the random walk in a suitable way to make
the extremal behavior typical.

Recall that (X;);>0 denotes continuous-time simple random walk on Z with jump rate 1.
For i € Z, we define the hitting time of i as

4.1) H; :=inf{s € [0,00) : X, =i},
and set 7; := H; — H;_. Recalling (POT) and writing

(4.2) ((x):=E&(kx)—es, xeZ,
we infer

4.3) —oo0 < essinf¢ < esssup¢ =0.

Forn>1,A €0 (XsnH,,s €[0,00)) and n € R, we define

Hn
(4.4) PG (A) = (250! Eo[exp{ /0 (£(Xs) +n) ds}; A],
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where

¢ Hn
Z(,;S’ = Eo[exp{/o (¢(X5)+n) dSH-

We will see below (cf. Lemma 4.1) that these quantities are finite if and only if n <0.

It can be seen easily, using the strong Markov property, that P(i’)" (A) = P(%(A) for every
m>nand A €o(Xsam,,s €[0,00)). We may thus use Kolmogorov’s extension theorem to
extend P(i’)" to a measure P57 on o (X;, s > 0). We write P¢ for P9,

It will be suitable to introduce the following logarithmic moment generating functions:

H;

4.5) Li =B exp] [ 0t + myas)]

_ 1
(4.6) L) =~ Li (),

i=1
4.7 L(n) :=E[L{ (]
By the strong Markov property again,
(4.8) Zfr;;? = exp{Z Lf (n)} =exp{nLi(n)}.
i=1

We now discuss the finiteness of the above objects.

LEMMA 4.1. Under (POT), the quantities defined in (4.5)—(4.7) are finite if and only if
n=<0.

PROOF. Since esssup ¢ (x) <0, the “if” part of the lemma is trivial.

The “only if” part can be proved via the following strategy: For i € Z and n > 0, using the
independence assumption of the potential in (POT), the random walk starting in i can find
arbitrarily large islands to the left of i, where the potential ¢ + 7 takes values larger than /2.
Once such an island is large enough so that the cost of the random walk to stay inside this
island is offset by the exponential gain of a potential value larger than 7/2 in the Feynman—
Kac formula, one infers that Lf(n) is infinite, and then the same applies to the remaining
quantities in question.

Since in the case of random walk with a drift, the “only if” statement is a direct conse-
quence of Proposition 3.1 in [19], we omit making the above proof rigorous. The lengthy
proof of [19], however, can directly be transferred to the case of simple random walk without
drift. O

Recalling that t; = H; — H;_1, as an easy corollary of Lemma 4.1 we obtain In E En[erti] =
Lf n+Ar)— Lf (n) forevery n <0 and A € R, as well as

4.9) ESe*] < oo forevery n <0and A < |n|.
Finally, Birkhoff’s ergodic theorem implies that

(4.10) L) "2 lim LE ().

Other simple properties of functions L® and L are given in the Appendix.
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We will primarily be interested in those values n = 7_75, (v) which make certain large devia-
tions events typical, more precisely for which

4.11) ECTO g 1=" y>o.
v

In order to discuss the existence of such 5, which is random, we introduce, in the next lemma,
its “typical value” 1(v). We recall the critical velocity v. introduced below (2.2). It will be
shown in Proposition A.3, partially using the results of this paper, that the identity

(4.12) (ve) ' =L'(0)

holds true, where the derivative is taken from the left only. Throughout the paper, we use
(4.12) as the primary definition of v,.

LEMMA 4.2. For every v > v, there exists a unique 7j(v) € (—o0, 0) such that
(4.13) L*(1/v) = Suﬂg(n/v — L(m) =n()/v— L(7(v)).
ne

Furthermore, 1j(v) is characterized by
(4.14) L'(fi(w)=v"l

Moreover, (v, 00) 3 v = 7j(v) is a smooth strictly decreasing function.

PROOF. Due to Lemma A.1, L is smooth, strictly increasing and strictly convex on
(—00, 0), finite on (—o0, 0], and infinite on (0, 00); cf. Lemma 4.1. In addition, it can be
seen easily that lim,,, L'(n) =0 (see [19], Lemma 3.5, for the corresponding statement
in the case of a random walk with drift; the proof for simple random walk proceeds in the
same way and is omitted here). Therefore, recalling also (4.12), we see that the solution to
(4.13) exists for every v > v.. Furthermore, due to usual properties of the Legendre trans-
form, it is characterized by (4.14). The last statement follows directly from the previously
mentioned properties. [

We now show that ﬁf, (v) fulfilling (4.11) exists P-a.s. for v > v, and n large enough and,
in fact, concentrates around 7 (v).

PROPOSITION 4.3. For each v > v, there exists a P-a.s. finite random variable N =

N (v) such that for all n > N there exists ﬁ,% (v) € (—00,0) satisfying (4.11). Moreover, for
every q € Nand V C (v., 00) compact, there exists a constant C = C(q, V) < oo such that
foralln e N,

(4.15) P(sup\ﬁ(v) -5 )| > c‘/m—”> <Cn™1
veV n

(defining, arbitrarily, 1_7,{, (v) =0 if the solution to (4.11) does not exist).

PROOF. By Lemma A.1, for n <0, ES"[H,] = n(Zg)/(n). Hence, in combination with
(4.11), we may define r‘;,%(v) as the solution to

(4.16) (L) (75 () = 1/,

if this solution exists, and by 7‘75 (v) = 0 otherwise. If we show that this 7‘75, (v) satisfies (4.15),
then the fact ﬁ,%(v) € (—00,0) for all n > N follows by a Borel-Cantelli argument, using
also that sup, .y 77(v) < 0 by Lemma 4.2, as well as the compactness of V.

Comparing (4.14) and (4.16), we see that we need to understand the concentration proper-

ties of (L5)' first. We claim the following.



QUENCHED INVARIANCE PRINCIPLES FOR BRWRE 107

CLAIM 4.4. Foreveryq € Nand A C (—00,0) compact, there exists C = C(g, A) < o0
such that for all n € N,

(4.17) P(sup|(ig)/(n) —L'(n)|> c,/ln—”) <Cn™1.
neA n

PROOF. We apply a Hoeffding-type bound for mixing sequences which we recall in
Lemma A.5. Define the o -algebras F :=0(§(i) :i <k),k € Z. By Lemma A.1, ((Lf)/(n) —
L'(n))iez is a stationary sequence of bounded random variables. By Lemma A.2, there is
¢ < oo such that |E[(Lf)’(n) | Fil — L'(n)| < ce~ =%/ forall i > k and n € A. Hence, the
assumptions of Lemma A.5 are satisfied with m; = ¢, and thus uniformly over n € A, for C

large enough,
L \
P(I(Li)mn) U= C\/E) < CeCIn _ a1,
n

Hence, by a union bound,

(4.18) P sw (EE) - L] = ¢ 20 ) < cnt,
HG%ZI’WA n

Moreover, by Lemma A.1, L and (Z,ﬁ)/ are both increasing on (—o00, 0) with continuous and
positive derivatives. Hence, for any A C (—oo, 0) compact, there is ¢ < oo such that
(4.19) ¢l <infL” <supL” <ec.

A A

Combining this with (4.18) and the fact that L" and (Zfl)/ are increasing again, this implies
the claim. [

To prove (4.15), fix a compact A C (—oo, 0) such that (V) is contained in the interior of
A, which is possible by Lemma 4.2, and set § = dist(7(V), A°) > 0. By (4.14) and (4.16),
7(v) and 1_75, (v) are the respective solutions to L'(7(v)) = v=! and (Z,i)/(ﬁ,i(v)) =v ! (f
the solution to the second equation exists). Moreover, by (4.19), the slope of L’ on A is
at least ¢~!. Therefore, on the complement of the event in the probability on the left-hand
side of (4.17), for n large enough so that C+/In(n)/n < ¢~ 18, we know that for all v e V
the equation (4.16) has a solution ﬁf,(v) which satisfies |T7,§,(v) — )| <cCy/In(n)/n <.
Hence, (4.15) follows from (4.17) by adjusting constants. [

For future reference, we recall that whenever ﬁ,% (v) exists, then it is characterized, due to
the usual properties of the Legendre transform, by

=
(4.20) (LE)*(1/v) == sup(ﬁ - Zi(n)) =) 7ot ).
neR v v

Technical assumption. In order to keep the constants in the paper independent of the
velocity v, for the rest of this paper we assume that

the velocities v that we are considering are contained in a fixed compact interval

(4.21) V C (v, o0) which has v in its interior.

Such V exists due to (VEL). The constants appearing in the results below may depend on V.
Using Proposition 4.3 and the monotonicity of 7 and 1‘7,% in v and ¢, it is then possible to fix a
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compact interval A C (—o0, 0) such that there is a P-a.s. finite random variable N such that
the event

(4.22) Hy :=Hu(V) := {75 (v) € Aforallve V} occurs for all n > N,

We also recall that we arbitrarily set r‘;,%(v) = 0 in the case when (4.11) does not have any
solution. This occurs on H{, only.
For future use, we state the following easy estimate.

LEMMA 4.5. For each § € (0, 1), there exists a constant C = C(§) such that P-a.s. for
all n large enough, uniformly forve V and h <n'~%,

Ch
|7 (v) — 71, ()] < —.

PROOF. Let A be as in (4.22). We claim that there exists a constant C < oo such that for
alln>1,h<nandn €A,

L . Ch
4.23) (Ly ) G — (L) )| < —

Indeed, plugging in the definitions we obtain

Z{ , ey B h n LC/ 1 n+h L{/
(L) ) = () ) = = S WY O+ (755 ) 2 (L) e,

i=1 nth/) .22

from which we can then deduce (4.23) by observing that (Lf)’ (n) can be bounded uniformly
over [P-a.a. realizations of ¢ and n € A, by Lemma A.1. The claim of the lemma then follows
from (4.14), (4.16), (4.19) and (4.23) by the same arguments as at the end of the proof of
Proposition 4.3. [

4.2. An invariance principle for the empirical Legendre transforms. In this section, we
show an invariance principle for the suitably centered and rescaled Legendre transforms of

the functions Z,% defined in (4.6). In order to state them, we introduce
(4.24) VEr () i=n/v—Li (),

(4.25) o7 = Varp(V{ " (7(1))) +2 Y~ Cove(V{ " (7)), Vi (7(v))).
jz2

Using the nondegeneracy part of assumption (POT), and the exponential decay of correlations
of the Lf proved in Lemma A.2, we see that auz € (0, 0).

PROPOSITION 4.6. For each v € V, the sequence of processes
1 _
(4.26) t= W,(t) = —t\/ﬁ((Lf;,)*(l/v) — L*(l/v)), neN,
Oy
converges as n — 00, in P-distribution to standard Brownian motion.

Heuristically, the proof of this proposition is based on the fact that the fluctuations of
the Legendre transforms (Zfl)* are essentially given by the fluctuations of the functions L,
whereas the influence of the fluctuations of the maximizing argument at which the supremum
is attained in the definition (4.20) of the Legendre transform is negligible.
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PROOF OF PROPOSITION 4.6. Recall that, due to (4.20), on H,,,

n —r 1 - V= v
(4.27) (L) (1/w) = 1) ( ) 2(n2<v>)=;ZVf’ (7 (v)) = S‘“ THO))
i=1
where we set
(4.28) SEvam) =Y VET(p)

i=1
as a shorthand. Using this notation, we expand the quantity of interest as
tn((Liy)"(1/v) = L*(1/v)) = (tn(L,)" (1/v) = S5, (7(0)))
(4.29) + (Si” (7)) — E[S5," (1))
+ (B[S5,;" (A())] — tnL*(1/v)).

We will show that the first and the third summand on the right-hand side are negligible in
a suitable sense, and that the second summand converges in distribution after rescaling by
oyA/n to standard Brownian motion under P.

The third summand in (4.29) is the easiest since it vanishes. Indeed, by (4.7) and (4.13),

tnL*(1/v) =1tn <M — L(7 (v))> = mE[@ — L, (ﬁ(v))} =E[S5" (7(v)].

The next lemma deals with the second summand in (4.29).

LEMMA 4.7. The sequence of processes

[0,00) 3 1 > W, (1) := (S5 (7)) —E[S5"(()]), neN,

vf

converges as n — oo in P-distribution to standard Brownian motion.

PROOF. By the definition of S5",

—— (85" (7)) — E[S," (7(v))]) = ZV“nw)) E[V" (7)]-

Uv[ v\/_

The Vf’v(ﬁ(v)) form a nondegenerate stationary sequence of random variables, which are
coordinatewise decreasing in the ¢’s. Therefore, by the FKG-inequality, they also form an
associated sequence in the sense that any two coordinatewise decreasing functions of the
Vf’v(ﬁ(v))’s of finite variance are nonnegatively correlated. Hence, the functional central
limit theorem for associated random variables proved in [57], Theorem 3, supplies us with
convergence in C ([0, M]) for each M € (0, c0), and the result is then extended to C([0, c0))
in the standard fashion. [J

Finally, for the first summand in (4.29), we have the following estimate.
LEMMA 4.8. There is C < oo such that P-a.s. for every M € (1,00) andv eV,

1
limsup— sup |rn(L,)"(1/v) = 85" (1(w)| < C.
n—oo N7 te[0,M]
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PROOF. By Proposition 4.3 and (4.22), the representation (4.27) holds for all n > N/,
with A} a P-a.s. finite random variable. As a consequence, it is sufficient to show that P-a.s.,

. 1 _ _
(4.30) lim sup mMga}Mnm,ﬁ’”(n,{(u)) — 85 ()| < C.

Assuming k > N in what follows, using a Taylor expansion of the smooth function § ,f v

around 7‘7,{ (v) we get

S (@) =S¢ (7 ) = (S£Y) (7 W) (7(w) — 7 (v)

7(v) — 7if (v))2
2

4.31)
+(S77)" () ,
for some 7j; € A with |7y — 75 (V)| < [7(v) — 73 ()]
By (4.20), ;" (1) is maximized for n = 7j; (v), so (S¢"")'(7i; (v)) = 0 and the first term on
the right-hand side of (4.31) vanishes.
To bound the second term, observe that (S,f’v)”(ﬁ,f) = —k(f,,i)”(ﬁ,g). By Lemma A.1, P-
a.s., (Lf)” (n) is bounded from above, uniformly over n € A (cf. (4.22)). Hence, P-a.s.,

(4.32) (50" (77) € [=Ck,0] forallk >N, veV.

Going back to (4.31), P-a.s. for all k > N7,
|SEU () =S¢ (7 )] < ck|i) — 7E ).

Using the concentration estimates for r‘]fc (v) from Proposition 4.3, it is possible to fix a
constant C < oo and a P-a.s. finite random variable A > N such that for all k > A5,
|ﬁ,€(v) — 71(v)| < C+/Ink/k. Putting all together, this implies that P-a.s. the left-hand side
in (4.30) is bounded by

1
: LV =C o\ b=
h,?lso%p - [NI?I?;(NJS" (1 () =S¢ (M (W)] +N2r§r}<anMnC1nk} <C.

This completes the proof. [J
Proposition 4.6 now follows from (4.29) and Lemmas 4.7 and 4.8. [J

The proof of Proposition 4.6 has the following corollary which provides a useful explicit
approximation to W, (¢).

COROLLARY 4.9. There is a constant C < oo such that P-a.s. for every M € (0, 00) and
veV,

nt

lim sup 1 sup |oyn/nW, (1) — Y (L(7i(v)) — Li (A(w)))| < C.

n—o00 Inn te[0,M] =

PROOF. It suffices to use the definition (4.26) of W, (¢) together with Lemma 4.8.
The claim then follows after a straightforward computation by inserting the definition of
S,C,;v(ﬁ(v)) and using that L*(1/v) =7(v)/v — L(7(v)). O
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4.3. An auxiliary invariance principle. 'We now prove an invariance principle for the
logarithm of the auxiliary process

Hy,
Y,(n) = Eo[exp{/ {(Xs)ds};anz}, neNyveV,
0 v

which we will relate to quantities considered in the Feynman—Kac representation (3.1) later
on. Observe that this invariance principle can be seen as a first step to exact large deviation
estimates, as explained in Section 3 above.

For convenience, we split the process Y, into the two summands

~ Hy n n
Yy (n) = Eo[exp{ ;(Xs)ds};Hn c [— —K,—H and
(4.33) 0 v v

H, n
YU<(n):= E()|:6Xp{ 0 {(Xs)ds},Hn <;—Ki|a

where K > 0 is a large constant which will be fixed later on.
For n e N and v € V, we define random variables a,f (v):

75 )| Var e, [Hal on Hy,

(4.34) o'nC (v) =
max A,/ Varpemaxa[H,] onH,.

Under every P%", we can write H, =Y.', 7; as a sum of independent random variables
(see (4.1) and below). Moreover, by Lemma A.1, there is a constant ¢ < oo such that c <
Varpey[1;] <cforalln e N, n € A and P-a.e. £, and thus

4.35) c/n < o*,f (v) <c/n forallneN,veV and P-ae. ¢.

PROPOSITION 4.10. Let V be asin (4.21), and let K from (4.33) be a large enough fixed
constant. Then there exists a constant C < oo such that

(4.36) Y (n)of (v) exp{nL*(1/v) + op/nWa(D} € [C7, C]

forallveV,neNonH,, where Wi is given in (4.26) of Proposition 4.6 and o, € (0, 00)
is as in (4.25). In addition, for some C < 00,

Yy (n)

(4.37) Y.<)

€ [5_1,6] forallveV,neN,onH,.

In particular, each of the three sequences of processes
1

N
1

N
1

AN

converges as n — oo in P-distribution to standard Brownian motion.

t—

(InY,”(tn) + tnL*(1/v)), neN,

(4.38) t— (InY,; ~(tn) +tnL*(1/v)), neN,

t—

(InY,(tn) +tnL*(1/v)), neN,

PROOF. Throughout the proof, we assume that n is large enough so that #,, occurs. To
simplify the notation, we also omit the dependence of 1‘7,% and crn; on the parameter v.
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~ 7 . ... .
Let 7; := 1; — E®"[1;]. Using the definition of the tilted measure P%" (see (4.4) and

below) with (4.8), and the fact that "7 Ef”_"{’ [ti] = EC”_’g [H,] =n/v, we can rewrite Yf (n)
as

Xy = ES T S P n_
Y, (n)=E*" |:exp{ H”Z:Tl} Zr, [ K, v]:|

% e~ I =Li (i)

_g“ n =¢
~C Kn
:Ef”’"|:exp{ 3 E ,},— ~e|:0,——§n:|:|
Un 1 On =1 Opn

i=

(4.39)

% e~ ML (1/v)

.. . . it ~ 7t . . ..
Writing /,Lf, for the distribution of 22 " | 7; under P%: i (depending implicitly on v), we
On

obtain

(4.40) Y (n) = e " Ln)(1/0) /O e” 7% dpd (x)

and, in a similar vein,

(4.41) Y (n) = e ") “/“>/ e~ dpd ().
Knn/gn

The first factor in (4.40), (4.41) can be controlled by Proposition 4.6 and Corollary 4.9. The
following lemma gives estimates for the second factors.

LEMMA 4.11. LetV and K be as in Proposition 4.10. Then there exists C € (1, 00) such
that on H,, forallv eV,

Kﬁﬁ/ang
(4.42) ol /0 e duf(x) e [C, C],
o0 ¢
¢ —op X ¢ -1
(4.43) o, /—Knﬁ/o,f e dus,(x) e [C, C].

In order not to hinder the flow of reading, we complete the proof of Proposition 4.10 first.
Using Lemma 4.11, (4.40) and recalling the definition (4.26) of W,, directly yields (4.36).
From (4.41), (4.40) and Lemma 4.11 we deduce (4.37). Finally, replacing n by nt in (4.36),
observing that /tW,;(1) = W, (t), and using (4.37), the fact that H, occurs P-a.s. for n
large, in combination with and Proposition 4.6, yields the convergence of the three sequences
in (4.38) to standard Brownian motion. []

We now show Lemma 4.11 which was used in the last proof.

PROOF OF LEMMA 4.11. We start with proving (4.42). Throughout the proof, we assume

that H,, occurs. Observe that the 7;, 1 <i < n, are independent under P“75 and have small
exponential moments uniformly in n (cf. (4.9)). Moreover, recalling (4.34), the variance of
the distribution M,% is one by definition. A local central limit theorem for such independent
normalized sequences, Theorem 13.3 (or formula (13.43)) of [6], thus yields

(4.44) sup|u (A) —d(A)| <Ccn™!/?
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where the supremum runs over all intervals in R, and & denotes the standard Gaussian mea-
sure. Applying (4.44) to A = [0, —K 75 /o5 ] and bearing in mind (4.35), this implies that for
all K large enough, uniformly inv e V,

712 < yé([0, = K76 Jof]) < en™ /2.
Since the function e_”'fx is uniformly bounded from above and below in this interval, (4.42)

follows by another application of (4.35).
In order to show (4.43), we observe that uniformly inv € V,

gl L
o*'g /oo e_"’fx dl/v;i(X) > O"f / o e—a,fx dr““i (x)=C""'
~Kiin/on —Kiin/on

by the same arguments as in the proof of (4.42). On the other hand, using (4.35) and (4.44)
again, writing /; = [—jKr‘;,%/a,f, —(j+ I)Kr_),{,/a,f],
¢ [ —oix q,,¢ END E o7y KT
o, / Lo e dug(x) <oy Z wy, (Ij)e "
—Km%/tfn; j=1
(4.45)
n~12=iKIWl < ¢

M2

A

¢
co,
1

~.
Il

uniformly in v € V. This completes the proof of the lemma. [

REMARK 4.12. The arguments of the last proof can be used to show that for arbitrary
a€l0,n/v],neN,veVonH,,
1
Y7 (n)
Indeed, the expectation on the left-hand side of (4.46) can be written as in (4.41) with K
replaced by a. Hence, with help of (4.42), the left-hand side of (4.46) is bounded by the left-

hand side of (4.45) with K replaced by a. Recalling the last-but-one expression in (4.45),
inequality (4.46) easily follows.

Eo[e OHnC(XS)ds; H, < n —a:| <Ce @,
v

(4.46)

REMARK 4.13. The proof of Proposition 4.10 is the only occasion where the random
tilting by ﬁf, (v) is really necessary. The reason for this is the application of (4.44), the local
central limit theorem in spirit, which is useful only for events of sufficiently large proba-
bility. Deterministic tilting by 7(v), which would simplify the remaining parts of the paper,
unfortunately requires dealing with events of much smaller probability.

4.4. The walk lingers in the bulk. We now show that the invariance principles of
Proposition 4.10 are useful in order to analyze the Feynman—Kac representation (3.3) of
EEO[N Z(t, vt)]. We explore the fact that, under the considered distributions, conditioning on
Xy /v = n (as in the Feynman—Kac representation) implies that with high probability H), is
close to n/v, that is the “walk lingers in the bulk.”

LEMMA 4.14. Let K > 0 and V be as in Proposition 4.10. Then there exists a constant
¢ > 0 such that foralln e Nandv e V,on H,,

ch(n) < Eo[exp{/
0

n/v
¢ (Xs) dS}; Xnpw = ni|
4.47)

n/v
< kol exp| [ ot ds )i X zn] =Y.
0



114 J.CERNY AND A. DREWITZ

In particular,
(4.48) eV Y (n) < E, [N(% n>:| <z [NZ(%, n):| <c LSS YE ().

PROOF. The second claim of the lemma follows directly from the first one; it suffices to
recall £(x) = ¢(x) + es and (3.3).
To prove the first claim, we define

pg(s) = En[exp{/sg(X,)dr}; X, =n], nez,s >0,
0

and set t = n /v, to simplify notation. Using the strong Markov property,

t
Eo[exp{fo ;(Xs)ds}; X =n}

H,
_ Eo[exp{fo c(xs>ds}p,§ (t — Hy); Hy < t}

Hn
> £olexpl [ e asfi Hy el - K| inf pco).

Since the ¢(x)’s are bounded from below by assumption (POT), the infimum on the right-
hand side can be bounded from below by a deterministic constant ¢ = c(K) > 0, implying
the first inequality in (4.47).

The second inequality of (4.47) is obvious. For the third one, observe that {X; > n} C
{H, <t}. Therefore, decomposing the integral according to the value of H, and using the
fact that ¢ <0, we obtain

Eo[exp{/ol{(Xs)ds}; X; Zn]

H, t
= Eo[exp{/(; {(Xs)ds}exp{/H {(Xs)ds};Xt 2ni|

Hn
< Eo[exp{/ z(Xs)ds}; Hy < r} — Y, ().
0

By Proposition 4.10, Y, (n) and Y,”(n) are comparable on #,, which proves the third in-
equality. [J

4.5. Initial condition stability. The next lemma shows that initial conditions uq satisfying
assumption (INI) are comparable to the “one-particle” initial condition ug = 1.

LEMMA 4.15. Let V be as in (4.21). There exists a finite constant C such that for all ug
as in (INI) and for alln e N, t > 0 such thatn/t € V, on H,,

Eoo [NZ(t, )]

(4.49) 1< —%
B[N (1, )]

<C.

PROOF. The first inequality in (4.49) is obvious, so we proceed to the second one. More-

over, since EiO[N =(t,n)] is an increasing function of u(x) for every x € —Ny, we can as-
sume that ug = c1_,. Using the Feynman—Kac representation (3.3), and replacing & by ¢,
we see that

Bep,, [N (0.m)] e <o Exlexplf§ £(X,) ds); X, = n]

(4.50) : : _
Eg[N (1, n)] Eolexp{fy ¢ (X)ds}; X, =n]



QUENCHED INVARIANCE PRINCIPLES FOR BRWRE 115

Applying the strong Markov property on the numerator of the right-hand side, we obtain
Z E, [efé ((Xods. x> n]

x<0
<Y Efeh" cX08 g <4
x<0
t
- 2/ Ey[elo €008, by e da] Boleh” 1608, 5 <1 — .
0
x<0

By (4.46), on H,, the second factor on the right-hand side can be bounded from above by
Ce @ Yf}l(n) for all n with n/t € V and a € [0, t]. This implies that the right-hand side of
the last display is bounded from above by

t
€Y, Y [ Pelty € daye™ = €Y, ),

x<0

where for the last inequality we used that due to the stationarity of simple random walk
we have Y o Px(Hp € da) =) - Po(H € da), and the latter is the probability that an
arbitrary point x > 0 is visited for the first time at time da, so it is bounded by da. By
Lemma 4.14, on H,, Y,f/t(n) is comparable to the denominator of the right-hand side in
(4.50), which completes the proof. [

4.6. Proof of Theorem 2.8 (functional CLT for the PAM). We have all ingredients to show
our first main result, the invariance principle for the PAM, Theorem 2.8.

PROOF OF THEOREM 2.8. Recall that we have to show that the sequence of processes
(Inu(nt, lvnt]) — ntA(v))/(oy/vn), with u(t, x) = E,%O[N(t,x)] as in (2.10), satisfies the
functional central limit theorem under P as n — oo.

By Lemma 4.15, we can assume without loss of generality that ug = 1j0). Moreover, by
Lemma 4.14, P-a.s. for all large ¢,

(4.51) Y (e <u(r, vr)) < c 'Y (vr)e'®s.

Replacing ¢ by vt in Proposition 4.10, we see that

t— (InY, (tvn) + tvnL*(1/v))

1
Oya/HV
converges as n — oo to standard Brownian motion. Combining this with (4.51) easily implies
the theorem; incidentally, it also shows that the Lyapunov exponent A(v) defined in (2.2)
satisfies A(v) = es — vL*(1/v) for v > v, as claimed in (A.9) of Proposition A.3. This
completes the proof of Theorem 2.8. [

REMARK 4.16. Theorem 2.8 remains valid when the function u(z, x) is replaced by
EEO[N =(t, x)] with ug as in (INT). This is a consequence of Lemma 4.15 again.

REMARK 4.17. It will be useful to have a more explicit formula for In Eg [NZ(n/vg, n)].
Combining (4.48) with Corollary 4.9, Proposition 4.10 and (A.9) yields the existence of a
constant C < oo and a P-a.s. finite random variable A3 such that P-a.s. for all n > N3,

InE§[N=(n/vo,n)] — Y L (71(v0)) + nL(7i(vo))| < Clnn.

i=1
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5. Breakpoint behavior. The goal of this section is to prove the functional central limit
theorem for the breakpoint, Theorem 2.6. This is done in Section 5.2 after some additional
preparations.

5.1. Perturbation estimates. 'The results of Section 4 provide a reasonably precise de-
scription of the behavior of expectations of N=(z, vt). We are now interested in how sensi-
tive the expectation of N=(-, -) is to perturbations in the space and time coordinate. The first
lemma deals with space perturbations.

LEMMA 5.1. (a) Let () be a positive function with lim,_, o (t)t® = 0 for some § > 0.
Then for each & > 0 there exists a constant Co = Cy(e) < oo such that P-a.s.,
”l . Eo o [NZ(t, vt + h)]
h B INZ(1, vh)]
where & = {(h,v): Colnt < |h| <1E(t),ve V,v+ 2 e V}.

(b) There exist constants C, ¢ € (0, 00) and a P-a.s. finite random variable T| such that
P-a.s. for all t > Ty, uniformly for 0 < h < Y3 and v, v + h/teV,

ce”MEE [NZ(t,v1)] < E§ [NZ(t, vt + h)] < Ce "B [N7 (1, v1)].

(5.1) lim sup sup - L(ﬁ(v))’ :(h,v) € 5,} <e,

t—00

PROOF. (a) Weset v’ :=v + % Without loss of generality, we can assume ¢ to be large

enough so that the events H,; and H,/, occur, and thus ﬁi,(v) and r‘;i,t(v/ ) exist and satisfy
corresponding versions of (4.11). By Lemmas 4.14 and 4.15, the fraction in (5.1) can be
approximated, up to a multiplicative constant that is irrelevant in the limit, by

Yy (') _ Eolexplfy " ¢ (Xy) ds); Hyr <1]
Yot)  Eglexp{ /g™ ¢(X)ds}); Hy <t]

Using the notation from (4.28), this can be rewritten in the same vein as in (4.39) as

(5 2) Efvﬁi/t(v/) [e*ﬁi/t(v/) Zz):tl %;, ;J:I %’l c (—OO, 0]] . e,Si;tv (ﬁi/t(v/))

ECTu®[eTuW L B S0 2 ¢ (—00,0]] - =S5 (75 0)

where, similarly as before 7; := 7; — E’;*ﬁit(“)[n] and T, (=1 — Eg”_’i’t(”/)[r,‘]. By the same
methods as in (4.40)—(4.43), the expectations in the numerator and denominator of (5.2) are
both of order #~!/2. Their ratio is thus bounded from above and below by positive finite
constants and can be neglected in the limit taken in (5.1).

The remaining terms in (5.2) contribute to the minuend of (5.1) as

1 V- V= / 1 W= / o= /
(5.3 (S (0 @) = 831" (s () + (823" (4 () = 8357 (1 ()))-

In order to show that the first summand on the right-hand side of (5.3) is negligible uniformly
as t — 00, we write

St (05, () = S5;” (75 () + (S5:") (75 ) (75, (V') — 75, (v)
+ (S50 G (@5, (V) = 75 (),

for some 77 € A with | — ﬁi,(v)l < |ﬁ§/,(v’) — 71y:(v)|. As observed below (4.31), one has

54

(55;”)/ (F)it(v)) =0, so the second term vanishes. For the third one, note that by Lemma 4.5,
P-a.s. for all 7 large enough,

N = Ch
(5.5) |75, (V) = 10 (V)| < —.



QUENCHED INVARIANCE PRINCIPLES FOR BRWRE 117

Moreover, by the characterizing property (4.16) of ﬁi, (v), Lemma A.1 and the implicit func-

tion theorem, we see that v — ﬁg,(v) is differentiable on the interior of V, with uniformly
bounded derivative. Therefore, on H,;, uniformly for v € V and 4 as in (5.1),

Ch
(5.6) |7 (v) — Ty (0)] < —

Recalling (4.32), we see that, P-a.s., (55;”)” (1) < Ct uniformly in v € V and ¢ large. Com-
bined with (5.4) to (5.6), we thus deduce that P-a.s., the first term on the right-hand side of
(5.3) satisfies

1
(5:7) (57 1t ) = 37" 7, ()| < ==

which is negligible in the limit considered in (5.1).
Plugging in the definitions, the second summand on the right-hand side of (5.3) satisfies

1 ~ r 1 V't ~
63) (S 5, 00) = ST 5, 00D = 5 Y LEGS,00)
i=vt+1

(where the sum should be interpreted as — lv’: vipl If v’ < v). The right-hand side of (5.8)

can be approximated with the help of the following claim.

CLAIM 5.2. For each ¢ > 0 and each q € N, there exists a constant C = C(q, &) < 00
such that for all t large enough,

% Zt L{ (i, () = L(7(v)

i=vt+1

IP’( sup

> &, Hyt, Hvt) <Cr1

veV
C(g,e)Int<|h|<t&(t)

with €(t) and v’ as in Lemma 5.1.

We postpone the proof of this claim after the proof of Lemma 5.1. Inequality (5.7) and
Claim 5.2 together imply that the left-hand side of (5.3) IP-a.s. satisfies

timsup sup | (55", ) = 57 0, ) — Lnw) |} <
=00 (t,v)

where the supremum is taken over all (¢, v) satisfying C(2,¢)Int < |h| <t€(t) and v € V.

This is what is necessary to prove Lemma 5.1(a).

(b) Using the same arguments as in the proof of (a), it is sufficient show that the exponential
factors in (5.2) are bounded from above and below by exponential functions, that is, the right-
hand side of (5.3) is bounded away from 0 and co. However, for the second summand on the
right-hand side this easily follows from (5.8), because c < Lf (ﬁi,t(v’ )) < ¢ < 0 uniformly
ini >0, v e V,and & satisfying (POT). The first summand can be neglected for ¢ sufficiently
large due to (5.7). U

PROOF OF CLAIM 5.2. We rewrite

V't

> Ly, () = L)
i=vt+1
5.9)

V't V't

= 3 @) -LEGo) + Y (L) - LHW))).

i=vt+1 i=vt+1



118 J.CERNY AND A. DREWITZ

Observing that the family of functions (1 — Lf (M))iez,—es<t(j)<0 Vjez 1S equicontinuous on
A, Proposition 4.3, (5.5) and (5.6) yield that

/

1 )
P |2 - o> S )
(5.10) O Lyt

<Ct™1.

Regarding the second summand on the right-hand side of (5.9), it suffices to observe that for
C(q, €) large enough,

1 U’l‘
(5.11) IP( sup — 3 Lix) - L) = e/2) <Ct7,
XEA h i=vt+1
C(q.e)Int<|h|<t&(r)

which follows from the Hoeffding-type bound (Lemma A.5) using the same steps as in the
proof of Claim 4.4. Combining (5.9)—(5.11) with (4.22) completes the proof of the claim. [

We now deal with time perturbations, where it is possible and useful to obtain more precise
estimates.

LEMMA 5.3. (a) Let (t) be a function such that lim;_, 5, €(t) = 0. Then there exists a
constant C € (0, 00) and a P-a.s. finite random variable T, such that P-a.s. for all t > T5,

13 >
E,[N=(t + h, vt Int h
612 sup [ EOEROL oo i) <o o[04+ ),
(h,v)e& Euo[N=(t, vt)] t t

where & = {(h,v) : |h| <te(t),ve V,vt/(t+h) e V}.
(b) In particular, there exist constants C, ¢ € (0, 00) such that for T as in (a) the following
holds true: P-a.s. for all t > T, uniformly in 0 < h <te(t) and v,vt/(t +h) €V,

ceES [NZ(t,v)] <Ej [NZ(t + h,vt)] < Ce“"ES [NZ (¢, v1)].

ug

REMARK 5.4. By interchanging the roles of vt and vz + & as well as of # and 7 + & in the

claims (b) of Lemmas 5.1 and 5.3, respectively, it follows that they hold also for & € [—¢ % 0]
and & € [—te(¢), 0], respectively, with minimal modifications: in Lemma 5.3, the prefactors
ce and CeC" should be replaced by ce®” and Cec", respectively; a similar replacement
applies also in Lemma 5.1.

PROOF OF LEMMA 5.3. (a) Let v/ := vt/(¢t + h). Through the proof, we assume ¢ to
be large enough such that H,, and H,; hold true. Using Proposition 4.10 and the same
arguments as in the proof of Lemma 5.1, the fraction in (5.12) satisfies, for some c € (1, 00),

~ £ ~
ehes YD) _ EMOENZ(t DL es Yo (00
Yr) T B [NZ(t, vh)] Y2 (vn)
In addition, similar to (4.39),

~ =& = ’ vt~ ~ TP
Y7 (vr) _ s ES Mo W) [o=o ) XL, T YV % e[-K, 0] ce~Sor (y ()
Y (vr) ECTuW [T DL T S 2 e (K 0]] - =St 6 )

N =C ~ =8 .
where again 7; :=1; — ECTu®Wg;]and T; := 1 — EST ™) [;]. Asin the proof of Lemma 5.1,
the ratio of the expectations in the numerator and denominator is asymptotically bounded
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from above and below. It follows that the expression in the supremum of (5.12) is bounded
from above by

C + |ni() + 85" (75, @) — 857 (15, ()]
(5.13) < C + () + (S5° (75, (') = S5 (75, ()]

(S5 (o () = S5:” (e (V)]

Plugging in the definitions (4.28) and (4.24), the second summand on the right-hand side
satisfies

[y ’ v ’ _ _ P 1 1
)+ (55 () = 85 G W) = i) + oy ) (5 = )]

= |hl]7i(v) — Tis; (V).

Using (5.6) and (4.15) of Proposition 4.3 in combination with the Borel-Cantelli lemma, this
can then be bounded by the right-hand side of (5.12). The last summand on the right-hand
side of (5.13) can be shown to be smaller than Ch? /t using the same steps as in (5.4)—(5.7)

of the proof of Lemma 5.1, completing the proof of (a). Claim (b) directly follows from (a).
O

5.2. Proof of Theorem 2.6 (functional CLT for the breakpoint). We now have all the
ingredients to show our second main result, the invariance principle for the breakpoint, The-
orem 2.6.

PROOF OF THEOREM 2.6. 'We must show that the sequence of processes ﬁ (my(nt) —
vnt) converges to standard Brownian motion, where

N =

my(t) = sup{n eN: EiO[NE(;, n)] > etk(v)}

was defined in (2.7).
We assume that ug = 1yo) first. Let u= (¢, x) := EE[Nz(t, x)], t >0, x € Z, and extend it
to x € R by linear interpolation. Furthermore, set

(5.14) Uy(t) :=tA(v) — Inu=(t, vt) — In2.
Recalling the definition of avz from (4.25), by Remark 4.16,
U, (nt
(5.15) (t — v(t) > converges as n — oo to Brownian motion.
/O'vzvn neN

Obviously, u=(t,x) is decreasing in x with lim,_ o % Inu=(t,0) = A(0) > A(v) and
limy_, oo u= (¢, x) = 0; see Proposition A.3. Let r = r(¢) be the largest solution of the equation

(5.16) u=(t, vt +r) = %e”‘(”),

which exists [P-a.s. for ¢ large enough by the previous considerations. Moreover, by the defi-
nition of m (1),

(5.17) r(t) —1 <my(t) — vt <r(t).

Combining equations (5.14) and (5.16), we see that r(¢) is the largest solution to

u=(t, vt +r(t)) _
IHW = Uv(t).
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Let €(¢) be an arbitrary positive function with E(t)tzl’t — 0 and E(t)t% — 00 as t — 00. By
the space perturbation Lemma 5.1, using also the monotonicity of u=(z, -) and the fact that
L(7(v)) < 0, we obtain that for every

(5.18) 5 € (0,

L(7())]).

P-a.s. for all ¢ large enough,

u=(t, vt +r(t))

@1 (r(O)L(7(v)) = 8|r()] <In u=(t, vt)

<@ (r®)L(7(W) +8|r@®)];
here, for Co = Co(§), the functions @, and @, are given by

@, (r)= sup{s :s <rand Colnz < |s| <72(1)},

@:(r)=inf{s :s >r and CoInt < |s| < 18(r)},

and satisfy @, (r)=@;(r) =r for Colnt < |r| <te(t) and ¢, = This implies that when-
ever

(5.19) |Uv(t)| € [Co(]L(ﬁ(v))\ +38)Int, tE(t)(\L(r‘;(v))| - 8)]
then, due to (5.18),

Uy () Uy(t) ]
L(@(v)£8 L(@(w) F81
where the upper signs correspond to U, (¢) > 0 and the lower signs to U, (¢) < 0. In particular,

since U, satisfies the invariance principle (5.15), property (5.19) is satisfied with probability
tending to 1 as t — oo. Since § is arbitrary, it thus follows that in P-distribution

lim ——r(n) = lim — . 22
n—o00 /n _neoo\/ﬁ L(7(v))

as processes defined on [0, 0o), which together with (5.17) and (5.15) implies the claim of
the theorem for

[y2
(5.20) Oy = &.
LG

The case of general ug satisfying (INI) then follows from Lemmas 4.15 and 5.1. This
completes the proof. [J

r(t) €|:

5.3. Invariance principle for the breakpoint inverse. We will later on need the following
invariance principle for a generalized inverse of the breakpoint defined by 7p = 0 and, for
n>1,

5.21 T, :=inf{t >0:E [N= > M it = 0:m() =
(5.21) ni=inflr >0:E; [ (t,n)]_E =inf{r > 0:m(t) > n}.
Observe that by definition

(5.22) Ty <1.

THEOREM 5.5. There exists a P-a.s. finite random variable C = C(€) and a constant
C| < oo such that P-a.s. for alln > 1,

T, — <£ + L i(Lf(ﬁ(vo)) - L(ﬁ@o))))

(5.23) -
vo  voL(@(vo))

<C+ Cilnn.
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In particular,
(5.24) lim —=—, P-as,

and, a fortiori, the sequence

L(n t
voL(77(vo)) (Tm _ n_>’ w0,
/Oyt

converges as n — oo in P-distribution to standard Brownian motion.

PROOF. To show (5.23), we set
1 " ¢/ _
= L; —L .
W AC TN ;( i (M(v0)) — L(7(v0)))

Observe that P-a.s. for all n large enough
(5.25) |hy,| < C~/ninlnn.

Indeed, the random variables Lf (7(vo)) — L(5(vo)) are centered and mixing as in (A.5). We
can thus apply Azuma’s inequality for mixing sequences, Lemma A.5, which can be turned
into a maximal inequality using [41], Theorem 1, to deduce that for all a > 0,

—ca2/n
P(r@(mu > a) <Ce :

The usual steps of the proof of the upper bound in the classical law of the iterated logarithm
then provide us with (5.25).

We now fix @ € R and estimate In EiO[Nz(n/vo + h + alnn,n)]. To this end, we use
the time perturbation Lemma 5.3 which can be applied due to (5.25). Combining this with

Remarks 4.16 and 4.17, in order to rewrite In Eio [NZ(n/vg, n)], we obtain that

lnEi [N=(n/vo+ h, +alnn,n)]
(5.26) = Z (11(v0)) — L(7(v0))) + (hy + alnn)(es — 7(vo)) + &(a, n)

=a(es — 7j(vo)) Inn + &(a, n),

where the last equality follows from es — 7j(vg) 4+ voL (17(vo)) = 0; cf. (A.9). Furthermore,
the error term e (o, n) satisfies

I h vl
le(ot, )| < C + C(1hn |+(|oz|\/1)1nn)(1/ on Vel + (el v 1) “”)+cmn,
n

n

with C depending on neither @ nor n. Choosing « sufficiently large positive (resp., negative)
the right-hand side of (5.26) converges to 400 (resp., —o00). Recalling the definition (5.21) of
T, claim (5.23) follows for all n sufficiently large. Adjusting C then deals with the remaining
n’s.

The law of large numbers (5.24) directly follows from (5.23) in combination with the
ergodic theorem and the definitions from (4.6) and (4.7). The invariance principle is then
again a consequence of this formula and Remark 4.16. [J

Theorem 5.5 can be used to deduce a strong law of numbers for the breakpoint which does
not follow easily from the previous argumentation.
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COROLLARY 5.6. Under (POT), (INI) and (VEL),

m(t
lim Q =g, P-a.s.
t—>o00 t

PROOF. Consider first the case ug = dp. Then for € > 0, by (2.2), liminfm(¢)/t > (1 —
€)vp, P-a.s. On the other hand, since m(¢) diverges P-a.s. and t > T5(;) due to (5.22),
hmmf— > liminf T l, P-a.s.,

m(t) — m(t) o
by (5.24), completing the proof for ug = §g. General ug satisfying (INI) can then be handled
using Lemmas 4.15 and 5.1. [

6. The breakpoint approximates the maximum. In this section, we prove the main
results about the position of the rightmost particle M (¢) and its median m(¢). We will see
that those are well approximated by the breakpoint, and thus satisfy the same invariance
principles.

It is elementary to obtain upper tail estimates for M (¢) and an upper bound on m(¢): the
definition of 7 (¢) and the Markov inequality imply directly that

6.1) m(t) >m(t).
In addition, by Lemma 5.1(b), P-a.s. for ¢ large enough,
(6.2) P, (M(@t)=m(t)+h) <E, [N(t.m(t)+h)]<Ce™", he(0,1'7).

uo
Note that these estimates are rather coarse. One expects (6.2) to hold with m(¢) instead of
m(t) and m(t) — m(¢t) < Int. These bounds, however, are more than sufficient to show the
stated functional limit theorems.

As usual in the branching random walk literature, the lower bounds are more difficult, and
are obtained via second moment estimates on the so-called leading particles. Since m(¢) and
M (t) are stochastically increasing in the initial condition, we will assume, without loss of
generality, that ug = 1{g) throughout this section.

6.1. Leading particles. We consider a special class of particles Y € N (¢) with trajecto-
ries satisfying
Y, >m(t), Y10 = >m(t) and
(6.3) v
H > Ty —ayb (k) forall 1 <k <m(),

where HkY =inf{s > 0: Y, =k}, o > 2 is a fixed constant, T} is the breakpoint inverse intro-
duced in (5.21) of Theorem 5.5, and wé is defined by

(6.4) ¥ (k) =C() + C1(1VInk),

where C(£¢) and C| are as in (5.23). Analogously to the literature on homogeneous branching
random walk, we will call such particles leading at time t. We further set

NE=|{Y € N(t) : Y is leading at time ¢}|.
The probability of finding a leading particle at time ¢ is bounded from below in the following
proposition.
PROPOSITION 6.1. There exists a constant y > 0 such that P-a.s. for all t large enough

B (NE=1) =177,
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The proof of this proposition will be based on the classical Paley—Zygmund inequality
ErarL2
EJ[N
(6.5) P (NF>1) > %
EoL(N{)?]
Estimates for the expectations on the right-hand side are provided in the following two sub-

sections. Since we do not strive to find the optimal constant y in this paper, we use y to
denote a generic large constant whose value can change during the computations.

6.1.1. First moment for the leading particles.

LEMMA 6.2. There exists a constant y > 0 such that P-a.s. for all t large enough
B[N =17

PROOF. Let = Tj(s). Then by (5.22), 1 < t. Hence, every particle satisfying Y; > m(t)
has probability at least 1/2 to satisfy also Y; > m(¢). Further, by the definitions of ¢ and m(z),
we have By [NZ (7, m(1))] = 1/2. Therefore,
Egll{Y € N(D): ¥; 2 (1), Hi = T — apé (k) Yk < mOiH

4EO[N>(t m(t))]

Using the Feynman—Kac representation (Proposition 3.1), this implies that

BG[NF] =

Eolef 6945, X- > mm(r), Hy > Ty — aré (k) Vk < m1

AEq[elo ¢ X9 s, X > (1)

Following the same steps as in the proof of the lower bound in Lemma 4.14, the numerator
in (6.6) satisfies

Eo[e$X9%: X7 > i(r), Hy = Tic — ap (k) Vk < i (1)]

(6.6) B [NF] >

Hmr) i r )
> Eo[ef0 TS s Eg [ SXO X, > m(r)]

r:f—Hm(” ’

Ha( € [F — K, T, Hy = Ti — ay® (k) Vk < (1) |

Hizir) _ _
> cEolelo " ¢X0ds, e [T — K11, Hy > Ty — e (k) Yk < ()],

where in the last step we used essinf; ,<x vez Ex [efor tXs)ds. ¥ > x]> ¢ > 0, due to (POT).
On the other hand, by Lemma 4.14, the denominator of (6.6) is bounded from above by

Hiz _ _ _
CEo[ejo (t)g(XS)ds; Hp 1) € [t — K, t]]. Replacing now mi(t) by n, and thus ¢ by 7,, and
using the law of large numbers (5.24) for 7;,, we observe from the previous reasoning that in
order to show the lemma, it is sufficient to prove that P-a.s., for all n large enough,

67 Eolel " €X0ds. g e (T, — K, T, ], Hy > T — aré (k) Vk<n] -
’ Eo[eho " ¢X0ds. g1 e [T, — K. T, 1] '

To prove (6.7), we set n = 1(vg) below and rewrite its left-hand side as
ESNe " H, [T, — K, T,], Hy > Ty — ay® (k) Yk < n]
E&n[e=ntn; H, € [T, — K, T, 1]
PY(Hy, € [T, — K, Ty,], Hy > T — apé (k) Yk < n)
=< PEI(H, € [T, — K, T, )
>c- PS1(H, € [T, — K, T,], Hy > Ty — ay® (k) Yk < n).
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Setting f—fn := H, — E®"[H,] and R, := T, — ES"[H,] in the last formula, we thus see that
(6.7) is equivalent to
(6.8) PS"(H, € [R, — K, R,], Hx > Ry — ayy® (k) Yk <n) =n~7

P-a.s. for all n large enough. Note that R,, depends on the random environment £ only, so it
is not random under P%".

The next two claims will show that, after rescaling, the processes R, and H, behave like
Brownian motions. To approximate R, whose increments are not stationary, we introduce an
auxiliary process with stationary increments

n
R, 1=Z,0i, n>1,
i=1

where

T 2 7O e (Y U A
(6.9) = o (L0 = L) = (E1) ~ E[ESMm])), = 1.

LEMMA 6.3. The random variables R), are adapted to the filtration F,, = o (§£(i) : i <
n), and R}, approximates R, in the sense that P-a.s.,
(6.10) IR, — R,| <¥*(n) foralln=>0,

with § as in (6.4). Moreover, the sequence of increments (p,) is bounded, stationary and
there exist some constants c, C € (0, o0) such that

6.11) [Elppsm | Fal| < Ce™.
Finally, there is 012 € (0, 00) such that both processes, [0, 00) > t > n—12R,; and [0, 00) >

t>n"1/2 R),, converge as n — oo in P-distribution to a Brownian motion with variance 012.

PROOF. The adaptedness of (R),) to (F,), as well as the stationarity and the boundedness
of (p,) follow directly from their definitions, recalling the assumption (POT). The estimate
(6.10) follows from (5.23) of Theorem 5.5 after a straightforward computation. Furthermore,
Lemma A.2 yields

[E[Lp 4 () — L(0) | Fu]| < Ce™™,
and analogically, bearing in mind that (Lf)/ (n) = ES"[1],
|E[E§’U[Tn+m] - E[Egvn[fn—l—m]] | ]:n]} = Ce—cm’

proving (6.11).

Finally, observing that the increments of R), are centered, the functional central limit the-
orem for n~!/2R) follows directly from a functional central limit theorem for stationary
mixing sequences (see, e.g., Theorem 11 and Corollary 12 of [55]), the assumptions of which
can be checked easily from (6.11). The functional central limit theorem for n~1/2R,. then
follows from (6.10). O

CLAIM 6.4. Thereis 022 € (0, oo) such that P-a.s., under P57, n_l/zﬁn. converges to a

Brownian motion with variance 022.

PROOF. Since the 7;’s are independent under P*-7, H, is a sum of independent and cen-
tered random variables, which have uniformly exponential tails. Moreover, the sequence of
the variances of the increments is stationary under IP. The claim then follows easily by a func-
tional version of the Lindeberg—Feller central limit theorem (see, e.g., [28], Theorem 9.3.1).

g
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REMARK 6.5. In view of the last claim and Lemma 6.3, the probability in (6.8) can
approximatively be viewed as the probability that one Brownian motion stays above another,
quenched, Brownian motion. This problem was recently studied in [51] for the case of two
independent Brownian motions, where it was shown that this probability behaves like n™7
with ¢ depending on the variances of the Brownian motions. More importantly, it was proved
there that y > 1/2 whenever the variance of the quenched Brownian motion is positive. That
implies that the price for a particle to be leading should be larger than in the homogeneous
case, resulting thus in a larger backlog of m(¢) behind mi ().

In this paper, the situation is more intricate due to the dependencies of the random variables
involved. Hence, we do not strive for the optimal y. Nevertheless, our proof partially builds
on certain ideas appearing in [51].

We proceed by showing (6.8). In view of (6.10),

‘1 PS"(H, € [R, — K, Ry], Hy > Ry — ay® (k) V1 <k < n)

(€12 > PS"(H, — R, € I, Hy — R}, > —(a — 1)y* (k) V1 < k < n),

where I, = [R, — R), — K, R, — R),]. Note that since « > 2, we have that R, — R, — K >
—(a — D& (n) for n large enough.

On the right-hand side of (6.12), we require the process H, — R}, to stay above the barrier
between times 0 and n and to be (almost) fixed at times 0 and #. It turns out useful to split
the problem into two parts: distancing the barrier at 0, and distancing the barrier at n. Thus,
we will consider two independent copies X' and X? of X under the same measure P¢", and
write ﬁ,ﬁ, i = 1,2, for the associated hitting times. We further consider a random variable
%, independent of X 1" X2, which under P%" is uniformly distributed on {1, ...,n — 1}. We
introduce

(6.13) Bi=H —R,, k=0,i=1,2,

as a convenient abbreviation—mind, however, that ,B,i has a part, R,/(, that depends only on the
random environment &, and another part, H;, that depends on both, & and the random walk
X*. Furthermore, define

Bi for 1 <k <X,

6.14 _
( ) i '312,,‘{_(,8]%_,3%”) for ¥, <k <n.

The process 8 has the increments of 8! before %, and the increments of 82 after %,,. Since,
under P¢", the processes H' and H? are independent and have independent increments; it
follows that the process 8 has, under P&, the same distribution as H— R’. Hence, (6.8) will
follow if we show that, IP-a.s. for all n large enough,

(6.15) PONB > —(a— DYS ()Yl <k <n,Byel)=n"".

Finally, we write B,lc = ,3,}+1 — ,311, and B% = ﬁg_k — ,3,%, k=0,...,n,for ﬂl shifted by one,
and “B2 running backwards from n,” respectively. Due to the independence of the increments
of B! under P¢", /311 is independent of B'. We then decompose B, as

(6.16) Bn=RBs, +(Br—B3,) =Bl +Bx,_1—Br_s,

The following lemma, the proof of which is postponed to the end of this subsection, pro-
vides a control on the processes B! and f.
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LEMMA 6.6. (a) There is y' > 0 such that P-a.s. for all n large enough,
PYI(Bi=0V1 <k <n By=n"*)=n""
PENBI =0Vl <k <n,B2>=n"*=n"7

(b) There is C2 > 0 such that P-a.s. for n large enough,

— . — . i
PC’"( max max |8, — B! <C lnn) >1-—n3,
15k§ni:1,2|'3k ’3k_1| =2 -

(c) Let § € (0, 1). There is ¢ > 0 such that P-a.s., for all x > 0,
PE (B € x, x +8]) > cde /¢,

We now complete the proof of (6.15). With (6.14) and (6.16), we get
{Bi=—(@— Dy (k) V1 <k <n, B, € I}

_ — 1 — —
5 ({Bl=0vi <k <n By =niln {lrg]?;(n\ﬁ,i —Bi_i| < Calnn}

ﬂ{B,%ZOVOkan,B%Zn%}ﬂ{max |B%—B,%71}§Czlnn}
1<k<n

N{Bl € (I, — By, 1 + Br_3,) NIO, OO)})'

Indeed, the first and third event on the right-hand side ensure that the trajectories of ! and
B? cross as on Figure 2, and stay above the barrier, which together with ,811 > 0 of the fifth
event ensures that y stays above the barrier as required. The second and the fourth event then
ensure that at the time of crossing they are “sufficiently close” (which is not necessary for the
inclusion to hold, but will be useful later). The fifth event in addition ensures that 8,, € I,,; cf.

(6.16).

1

|
|
|
|
|
|
|
11 . |
|
|
I

~~o

FI1G. 2. Construction of B (thick line) from Bl, ,32 (thin lines) and ,811. For clarity of presentation, Bl is drawn

starting from 1, and 32 is drawn running backwards from n.
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By Lemma 6.6(a), (b) and the independence of B!, B2 under P%", the probability of the
intersection of the first four events on the right-hand side of the last dlsplay is at least n=2' In
addition, if these four events occur, then thereis J € {1, ..., n} such that [,, — ,3 J1t ﬁn_
[0,2C, Inn]. Moreover, P(X, =J)=1/(n — 1). Hence using Lemma 6.6(c), conditionally
on the occurrence of the first four events and X, = J, we can bound the probability of the
fifth event on the right-hand side from below by ¢’ n_1 —Calnn/e > p=y” . Combining these
estimates proves that [P-a.s. for n large, (6.15), and thus also (6.8), is larger than n~7 with
y > 142y’ + y”. This completes the proof of (6.7), and thus of Lemma 6.2. []

We proceed by proving Lemma 6.6 which we used in the last proof.

PROOF OF LEMMA 6.6. Throughout the proof, we use the fact that the three processes
B, B! and ,32 have, under P%", the same distribution as (Hk k)k>0 Since the statements
of the lemma depend only on the respective distribution, we can and will therefore assume
that these three processes are equal to (Hy — R})k=0. In particular, their increments satisfy

Lj () )
voL ()
where the last equality follows from definitions of H, R’ and p. It is also useful to observe
that, due to (POT), the second summand on the right-hand side of (6.17) satisfies

1 Ly

(6-15) c* “wL(n)

for some constant C € (0, 00), and that the 7; are unbounded nonnegative random variables
with uniform exponential tail (cf. (4.9)), that is, there exists ¢ > 0 such that for all £ > 0,
P-a.s.,

(6.19) PN >u) <e “* forallu > 0.

In particular, in combination with (6.18) we infer that there is a small constant ¢ > 0 such
that P-a.s.,

(6.20) PST(By — Br—1 >c)>c and PS"(By — Pr_1 < —c¢) > c.

The claim (b) of the lemma then readily follows from (6.17)—(6.19), using a union bound
and the fact that the increments of B’ correspond directly to increments of g%, i =1, 2.

To prove (c), we write ,Bll =1 — L% (n)/(woL(n)), by (6.17). Recalling (6.18), it is suffi-
cient to show that there exists ¢ > 0 such that, P-a.s., we have P%"(t; € [x + y, x+y+468]) >
ce*/e, uniformly over y € [0, C]. To see this, recall that under P*", X is a Markov chain
whose jump rate from 0 is bounded uniformly in ¢, again by (POT). If the waiting time of X
at 0 is in the required interval, and the first jump of X is to the right, then the required event
is realized, proving (c).

Claim (a) is the most difficult. We first prove it for B!, and explain the modification re-
quired to show it for B2 at the end of the proof. To simplify notation, we consider f instead
of B'. This is possible since B! has the same distribution as 3 in the environment shifted by
one.

In the proof, we often split the random environment § into two parts § (j) = (§(k))x<; and
£(j)= E(k)k>j.-Settp=t_1=0and t; = 2 fori > 1.Fix a € (0, 00) and for i > 1 define
random variables Z; by

Z;:=essinf inf P& (B, > at, 12 Br >t
S(tl 2) x>a[l/2

(6.17) B — o = B — Ry — (e — Ry ) =10 + (—

> —C forall k e N, P-as.

V4V € (tiztsee i) | By =x)

= essinf P*7(B;, >at/ , Bk >t1/4\7’ke{z‘i_1,.. i) | B l—atl/z)

S(Zl 2)
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Here, essinfg(;,_,) means taking the essential infimum with respect to &§(z;—2) and leaving
the remaining £ random. The second equality then follows from the obvious monotonic-
ity of the considered event in the starting position. Observe that the random variable Z; is
o (&(k), ti—» < k <t;) measurable, that is, the sequence (Z;) is 1-dependent.

Setting i (n) = [log, n], using the Markov property, for n large enough,

i(n) i(n)
PO (B = 0Vk <n, B, =n"/*) =[] Zi =exp{Zani}-
i=1 i=1

If we show that P-a.s.,

1 k
(6.21) limsup— » (—InZ;) <c < o0,
k— 00 k ; l
then the first half of claim (a) will follow with y’ > ¢/In2.

First, we claim that, P-a.s., —In Z; < co. Indeed, recalling (6.20), it is easy to see that the
probability in the definition of Z; is always positive. If we show that the (—In Z;)’s have
uniformly small exponential moments, then (6.21) will follow by standard arguments, using
also the 1-dependence of the sequence Z;.

To complete the proof, it is therefore sufficient to show that there exists some small 6 > 0
such that for all i large enough

(6.22) Elexp{—61nZ;}] < ¢ < o0.

Throughout the proof of this inequality, i is considered fixed and we often omit it from the
notation. To gain more independence, again we introduce ,T),(C] ), j <k,by
(6.23) /_)]({j) := ess sup pk-
()

Note that p; is a o (§(n), n < k)-measurable random variable, and thus ﬁ,(cj ) is o), j<
n < k)-measurable. We further write R’ = pIy - ,5,((J ) and note that the increments of RV
provide upper bounds for the increments of R’.

Let My be the essential supremum of the absolute value of the increments pg of R’, which

is finite by Lemma 6.3. Set
(6.24) L:=at”?,

ro :=t;i_1, and define

. / / L
5o :=inf erO:Rk—Rng ANti.

Further, recursively for j > 1, we define

. =5+ ,
Fj+1 =5 [SMR—‘

, 6 e _ L
Sjt1:= mf{k ZTj41: Rksj — R"jﬁ—l > g} AN (i‘j_|_1 + (4 — t,'_1)).

(6.25)

Heuristically, s; is the first time when R (and thus possibly also R’) “increases considerably
after time r;”; due to the definition of S in (6.13), such a behavior of R’ is potentially
dangerous for the event in Z;, in that it might lead to Z; being very small. By definition, s
depends only on &(/) with [ > s;, so the increments s; — r; are independent under P and
bounded by i —ti—1.
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For j > 0, consider the events

~ o~ L

ri<l<s;

/—{ inf H — Hy, > L}
j_ ijlfi”j+1 ! Si= 8 ’
and define

JZil’lf{jZSj—rjEt,'—li_ﬂ.

. J J-1
Finally, set G= ﬂj.:() g;n ﬂj;o gl
‘We claim that this construction ensures that

(6.26) Zi = PG| B, =at!}).

To see this, observe that in each of the time intervals [r;,s;] and [s;, rj+1], the process R
(and thus also R’) moves upward by at most L/8 + Mg by definition of these intervals. On
the other hand, on G the process H moves downward by at most L /8 in any of these intervals.
Since in the probability defining Z; we condition on g,, = L/ V2>1L /2 and, on G, B = 2L,

this ensures that G > cL'/? > ti1/4 for k € [ro, so] and By > L for k € [sg, s7]. Moreover, on
g, sj > t;, proving (6.26).

Using the independence of the increments of H under the measure P%7, the monotonicity
of x = PS"(G; | By, = x), and the fact that J is o (§(x) : x € Z)-measurable, we get

PCJ?(g | ﬂli—l = atilzi)

(6.27) 4 I
> PYGo | Bry = LIV [T PEG; | Bry =20) [ PEY(G)).

j=1 j=0

It is not difficult to show, using the independence and the uniform exponential tail of the
increments of H as well as the fact that they are centered, that if i is large enough, P%"(G }) >

% for all j. On the other hand, for j > 1,

PS(G; | By =2L)

(6.28) .
> P“(Hs_,. — H,, >

Observing that the increments of H are independent under P%" and the considered events
are both increasing in those increments, we can use the Harris-FKG inequality to bound this
from below by

~  ~ 5L - L
P“’(Hsj—Hrjz?)me( inf H —H, >——)

ri<I<s; =8
LZ
> cepl-— 1.
c(sj—rj)

with a sufficiently small constant ¢ > 0. To obtain the last inequality, we used Azuma’s in-
equality (together with the fact that H is a martingale under P®" and the variances of its
increments are uniformly bounded, by (POT)), and as well as Gaussian scaling to infer that
the second factor is bounded from below by a constant (since s; — #; < cL?). By changing
the constant ¢, the same lower bound holds for the first term on the right-hand side of (6.27)
as well.

(6.29)
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Coming back to (6.22), using (6.26)—(6.29), recalling that the increments of R’ are expo-
nentially mixing (cf. (6.11)) and that the intervals [r;, s;] are separated by spaces of length

ﬁ, we obtain

E[exp{—61nZ;}]

L2
< CE|:exp< QJIHE +6 Z —”

c(sj—rj)

k=1 ¢12

(6.30) NPT
= c Z(;) L(Ak e lsk —Trp=ti—li—1 l_[ ec(s i )ISJ—V]<I,—I, 1
k=1

j=0

0k 29L2k 1 9L2

“fi l_[ E G )ls —rj <t,/2]

—ex ()

where in the equality we used the independence of the s; — r;’s under . To upper bound the
last expectation, we rewrite it as

00 oL?
./0 P(eCi™P 1y, —r; <12 > a)da
6.31)

2012 oL

SeWP(sj—rj<r,/2)+/2“2P T > a)da.

. 2 .
Substituting a = exp{%}, the second summand can be written as

/2 ) e
(6.32) P(sj—rj < y)—Ze o dy.
0 cy

Recalling the definition (6.25) of s;, for i sufficiently large we have for 0 <y <f;/2 = 2La_22
that

S08j-1)
P(sj—rj<y)=P (max Zprjﬂi > 8)

0<m<y

L
<P<f<nn?§ 2 Py 2 §>’

here, to obtain the inequality one takes advantage of the estimates (A.6) and (A.8), which
yield that uniformly in 0 < j <k,

@)

0<p; —(k_j)/CA,

— px < Cape
and thus, using r; —s;_1 > cL, that

_(sj-1) —eL L’
Ofprj+k —,Orj+k§C€ Vk € 0,...,@ .

Inequality (6.11) can then be used to verify the assumption of Azuma’s inequality for mixing
sequences of Lemma A.5 for the sequence py, and thus

" L 2/
—cL
P(}; Prj+k = 5) <Ce™¥/™M,
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for some constants C and ¢ and all admissible m. This inequality extends to a maximal
inequality, as follows from [41], Theorem 1,

( max Zp,JJrk > ) < Ce=L*/y,

0<m<y

Inserting these back into (6.32) 1mp11es that the second summand in (6.31) is smaller than

/2 COL? @-aL? 52 CO -0
/ s—e < dy =/ —e = dz,
0 y 0 z

which can be made arbitrarily small by choosing 6 small. In addition, the first summand in
(6.31) is strictly smaller than 1 by the functional central limit theorem from Lemma 6.3, hence
the right-hand side of (6.31) is strictly smaller than one for all 6 > 0 sufficiently small. There-
fore, for 6 small enough the sum in (6.30) converges, which implies (6.22) and completes the
proof of the first claim in Lemma 6.6(a).

The proof of the second claim is very similar, so we only explain the modifications which
need to be introduced due to the fact that B2 is “running backwards,” and thus its depen-
dence on the environment ¢ is different. The first modification involves the definition of Z;
where the ess inf should be taken over £ (n — t;11). This makes Z; measurable with respect to
o(k):n—tiy1<k<n—ti_1),and thus (Z;) stillis a 1-dependent sequence. Furthermore,
the definitions of s, r; should be replaced by ro =#;_1, and

L
) _1nf{k>r0 R(" —k=0 R(" k=0 5 8}/\tl,

n—ro
rjy1:=s;+¢,

. S(n—k—t —k—t) _ L
Sj+1 :=1nf{k >Tjtl: Rfl"_k ) R(" ) > } A (rj+1 + (4 — li—l)),

n=rj+1 —8

with £ := [L/8Mpg], which again makes the increments (s; — r;) independent under PP.
With these modifications, the second claim in (a) can be shown almost exactly as the first
one, which completes the proof of the lemma. [J

6.1.2. Second moment for the leading particles. 'We now estimate the second moment of
the number of leading particles needed for the application of (6.5). The proof is relatively
short because we do not try to get the optimal power y below.

LEMMA 6.7. There exists a constant y < oo such that P-a.s. for all t large enough,
2
A NELS
PROOF. Recall the definition (6.3) of leading particles. Since we look for an upper bound,

we can ignore the condition Yy ;) > m(t) there. We define a random function (ps Rt - Rt
by

(6.33) ¢°(s):=k foralls e [Ty —ay® k), Tip1 —a¥® (k + 1)), k € No,

where ¢ as in (6.4) and Ty — a ¢ (0) := —o0, by convention. By (3.2) of Proposition 3.1,
we then have

Eg[(NF)’]

t N
(6.34) <EG[Nf]+2 /0 Eo[exp{ /0 s<xr>dr}5(xs>1x,s¢s(r)We[o,s]

t—s 2
X (EXS [CXP{/O E(Xr)dr}lx,-gq)f(s+r) Vre[o,z—s],x,szm(z)]) }ds-
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In the upper bound of (6.34), we will repeatedly use the perturbation Lemmas 5.1 and
5.3 in a neighborhood (¢, m(¢)). This is always justified P-a.s. for ¢ large enough, observing
also that m(t)/t — vg € V, P-a.s., by Corollary 5.6. In particular, by Lemma 5.1(b) and the
definition of 7 (¢), P-a.s. for ¢ large enough,

(6.35) Eo[NZ (1, m(t))] < CES[NZ(t, m(t) +1)] < C/2.
The first summand on the right-hand side of (6.34) then satisfies
B[N/ < Bg[NZ (1, ()] < C.

Since £(X;) < es, the second summand on the right-hand side of (6.34) is bounded from
above by

O] ; -
2esf0 Z Eo[efo g(X’)drle:k(Ek[efO g(x,)dr; X, 2171(t)])2] ds

k=—o00
(6.36)
O]

- 2es/0 3 EG[NGs, B [NZ (1 — s, m(1))] ds.

k=—00

To find an upper bound for the integral on the right-hand side of (6.36), we remark that, by
the first moment formula (3.1) of Proposition 3.1, the Markov property, and (6.35), P-a.s. for
t large enough,

B [N (s, OB [NZ(r — s, m ()] = E§[|[{Y € N(0), Y, = m(t), Yy =k}|]
< Eg[Nz(t, m(r))] <C.
Hence, P-a.s. for ¢ large enough, uniformly in s € [0, 1], k < ¢* (s),
(6.37) By [NZ (1 —s5,m(1))] < C/ES[N (s, b)].

In order to take advantage of (6.37), we treat separately four ranges of parameters s € [0, ]
and k < ¢ (s) in (6.36).
(A) We start with considering the range

(6.38) Ni(E) <k <¢%(s), s>8(&),suchthatk/s eV,

where N (€) and wé are defined in (4.21), (4.22) and (6.33), respectively, and S(&) is a
o (&)-measurable random variable which is a.s. finite and which will be specified below. In
this case, by Lemma 4.15,

ES[N(s, k)] = cBS[NZ (s, k)] = cES[NZ (s, ¢F (5))],

where the last inequality follows from k < (pf (s). Let [ = I(s) be such that s € [T} —
ayé (1), Tr41 — aé (I + 1)); note that ¢f (s) = 1. Let S(£) be a P-a.s. finite random variable
such s > S(&) implies that [/T; € V, 1/(T} —ay()) € V and s > Ty — ay () > T1 V T2,
where 77 and 7, are as in Lemmas 5.1(b) and 5.3(b). The existence of such S is implied by
the law of large numbers (5.24) for 7,,. Using then repeatedly Lemma 5.3(b) and Remark 5.4,
the right-hand side of the previous display can be bounded from below by

B[N (T — g (1).1)] < cBG[N= (7. D]V = '@y 7

for some y € (0, 00) and a positive random variable C'(&), where in the last inequality we
used EE[NZ(TZ, N]=1/2, and wg(l) =C(&) + C1(1 v Inl), the need for which emanates
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from the randomness of y¢. Thus, combining the last two displays with (6.37) we infer that
P-a.s for ¢ large enough, uniformly for &, s as in (6.38),

(6.39) Eo [N (s, k) ]ES [N (1 — s, m(1))]* < CE§[N (s, k)] ' <" &)
(B) We now consider the ranges
(6.40) s€[0,#] and k suchthat|k/s| <v/2,

where v > 0 is the asymptotic speed of the maximal particle in the homogeneous branching
random walk with branching rate ei (cf. (POT)). We assume without loss of generality that V
is fixed so that it contains v/2 in its interior. Since £ (x) > ei, by a straightforward comparison
argument and properties of the homogeneous branching random walk, we infer the existence
of some constant ¢ > 0 such that Ef)[N (s, k)] = c for all s and k as in (6.40). Therefore, by
(6.37), P-a.s. for ¢ large enough, uniformly for s, k as in (6.40),

(6.41) B [N (s, O)]E{[NZ (1 — 5, m(1))]* < cBS[N (s, k)]~
(C) Now let
se[0,t] and k<O.

By the Feynman—Kac formula, using also essinf& > 0,
£ - t—s
2E; [N_(f, ﬁ(l‘))] >2Ey [GXP{/O §(X;) dr}leszm(t)lthﬁ(t):I

> 2B [NZ(t — s, (1)) Po(Xs > 0) = By [NZ(t — s, m(1))].
Therefore,
S [N (s, k) JES [N (1 — s, m (1)) ]*
<2ES[N(s, KBS [NZ(t — s, m(0)) |ES [NZ (¢, m(1))].

For k < 0, by the monotonicity in the initial condition, taking advantage of Lemma 4.15,
P-a.s. for ¢ large enough,

E([NZ (e ()] <Ef IVFm0)] < CES[NZ(t,m(1))] < C
Combining the last two inequalities, applying also Markov property and (6.35), P-a.s. for ¢
large enough, uniformly in s € [0, 7],

0

3 EGING, OE[NZ (1 — s, ()]

k=—00

6.42 0

€42 <C Y B[NGs, IE[N=Z(t — 5, ()]
k=00

< CEO[Nz(t,ﬁ(t))] <C

(D) The remaining part of the range of parameters relevant in (6.36), which is not con-
trolled by (A)—(C), is a subset of

B ={(s,k) €[0,00) x N: 0s/2 <k < ¢(s), s + k <C(&)}

for some finite random variable C (&) depending on N| and S. Observe that B¢ is a bounded
set for P-a.e. &.
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We start with observing that there is a constant L > 0 such that
(6.43) for ¢ large enough, P-a.s., m(t+ 1) —m(t) <L.
Indeed, by the perturbation Lemmas 5.1(b) and 5.3(b), and (6.35),
ES[NZ (1 +1,m(t) + L)] < CeCEj[NZ(t,m(1) + L)]
< C/e_CLEg[NZ(t, ()] < C"e L.

Choosing L to make the right-hand side smaller than 1 then yields (6.43).
The definition of m(¢), inequality (6.43), and Lemma 5.1(b) imply together that, P-a.s. for
t large enough,

1/2> B5[NZ(t + 1, m(t 4+ 1) + 1)]
> Ce—c(ﬁ(t+l)+1—m(t))E(€)[Nz(t +1,m(1))]
> ce LEG[NZ(1 + 1,m(1))].
Hence with C = e /(2¢), P-a.s. for t large enough, using also the Markov property,
C>ES[NZ(t +1,m(0))]
> B5[N(s + 1, )]E; [N (t — s, m(1))].

By the boundedness of 3 and (POT), there is a random variable C(&) € (0, co) such that, for
all (s, k) € B%,

C(E) = B[N (s + 1. k)] = PolX,p1 =kl = C(&) 7.
Combining the last two inequalities then yields
B [NZ(r — s, 7(1)] < C'(€)

for all (s, k) € B, P-a.s. for ¢ large enough. Hence, following the same arguments as before,
using (6.35), we obtain

[N (s, KB [N=(t — 5, (1)) ]°
(6.44) < C'©BG[N (s, O]E{[NZ (1 — s, ()]
<C'()E[N= (1, m(1))] < CC'(E),

uniformly for (s, k) € B, P-a.s. for ¢ large enough.

Using inequalities (6.39), (6.41), (6.42) and (6.44) in their respective domains in the sum-
mation and integration in (6.36) (recalling that V contains v/2 in its interior), we can, P-a.s.
for ¢ large enough, bound the second summand on the right-hand side of (6.34) from above

by
C"E T2+ Cr2 + Cr+CC(&),

where the summands correspond to cases (A)—(D) above. This completes the proof of the
lemma. [

Combining Lemmas 6.2 and 6.7 with (6.5) completes the proof of Proposition 6.1.
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6.2. Proof of Theorem 2.4 and Proposition 2.3. By inserting the estimates from Lemmas
6.2 and 6.7 into the Paley—Zygmund inequality (6.5) we obtain PE(N,‘: > 1) > ¢~V for all
large t, P-a.s. To complete the proof of the lower bound in Theorem 2.4, we need to amplify
this estimate, using a technique adapted from the homogeneous branching random walk liter-
ature (see, e.g., [53]). The first step is the following lemma guaranteeing that with very high
probability the number of particles in the origin grows exponentially in time.

LEMMA 6.8. There exists C3 > 1 and ty < oo such that such that for all t > ty and
P-a.e. &,

S (N(1,0) < Cy) < C5™.

PROOF. Recall from (POT) that the essential infimum ei of the £ is strictly positive.
By the monotonicity of N(¢,0) in £ which can be ensured by a straightforward coupling, it
suffices to show the claim for the homogeneous branching random walk with branching rate
ei. We write Pgi for the law of this process starting in 0.

For t > 0 and ¢ > 0, let D.(¢/3) be the set of direct offsprings of the initial particle until
time ¢ /3 which are at sites [—et, e¢] at time /3. Then, for any € > 0 there exists § > 0 such
that

(6.45) P (|De(t/3)| < 81/3) < e°'/3,

Indeed, the probability that the initial particle? leaves [—et/2, t /2] before ¢ /3 is smaller than
e~ _Tf it stays in this interval, it produces more than rei/4 direct offsprings with probabil-
ity larger than 1 — e~/, by large deviations for the Poisson distribution with parameter zei/3,
and every of these offsprings stays in [—e?, et] with probability at least 1 — e <) again.

For a particle Y € D.(t/3) C N(t/3), we denote by Ay (2¢/3) the set of all offsprings it
produced between times /3 and 2¢/3 and which are at the site Y;/3 at time 2¢/3. We claim
that there exists ¢ > 1 such that

(6.46) pei(|Ay(2t/3)| = ¢') > 0.

Indeed, under P® it is well known (e.g., it follows from the Feynman—Kac formula) that the
expected number of particles in 0 grows exponentially. Hence, we can fix r > 0 such that
E®[N(r,0)] =: u > 1, and consider an auxiliary process evolving as follows:

e start with one particle at an arbitrary site x € Z at time 0,

e particles evolve independently as a continuous time simple random walk and split into two
at rate ei,

e and at each time rn, n € N, all the particles not at x are killed.

Let Z,, be the number of particles at x at time rn in this auxiliary process. It is easy to see that
Z, is a supercritical Galton—Watson process, and thus it survives with a positive probability,
Pgi(Zn > 0Vn>0)> p >0, and on the event of survival it grows exponentially, Pgi(Zn >
" Z,>0Vn>0)>1/2 for some ¢ > 1. Hence, for every Y € D.(t/3), P(e)i(|Ay(2l‘/3)| >
c") > p/2 at all times such that 2¢ /3 = rn for some n € N. A straightforward extension to all
times then yields (6.46).

Combining (6.45) and (6.46) implies that

i t —c't
P (N(21/3,[—¢t,et]) =c') =1 —e ",
2For simplicity of redaction, in a slight abuse of notation we reformulate the original branching mechanism

which replaces a particle by two new particles, by the equivalent branching mechanism where instead particles
are not replaced and give birth to one more particle.
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Moreover, the constant ¢ does not depend on ¢. As a consequence, choosing & > 0 small
enough such that

14+c\ /3
)

and using an easy large deviation argument we obtain that
1+4+¢

. Ct
PS'(N(t,O) < 5( 5

This completes the proof of the lemma. [

Po(Xy3=0) > (

Ht

—t/3
) | N(@t/3,[—et,e0]) = cf) <e

We now obtain a lower bound on M (¢).

PROPOSITION 6.9. For any q € N, there exists a constant C9 < oo such that for P-a.a.
&, forall t large enough

S (M (1) > m(t) — CPnt) = 1 — 2179,

PROOF. Without loss of generality, we assume that g > y for y as in Proposition 6.1. We
fix r = ¢y Int where ¢ is chosen so that for C3 of Lemma 6.8 we have C5° " =¢749, and further
choose C@ large enough so that m(t —r) > m(t) — C @ 1nt. To see that this is possible,
observe that by the perturbation Lemmas 5.1 and 5.3 we have for some ¢, ¢’ € (0, 00),

ES[NZ(t —r,m(t) — CDInt)] = e B [NZ (1, m(t) — CV Int)]

> ¢~ CIMIEE [N (1, im(1))]

- le—crec/C(‘” lnt’
2
and fix C@ so that the right-hand side is smaller than 1/2.
Set x :=i(t) — C'? Int and observe that by considering separately the events {N (r, 0) <
C3}, {N(r,0) > C5} and using the Markov property and the independence of the particles in
the second case

pS (M (1) > x) = Py (NZ(1, x) > 1)
>1—B5(N(r,0) < C}) — (B§(NZ(t —r, x) < 1))
= 1—179 = (BH(Nf, < 1)),

Here, for the last inequality we used Lemma 6.8 as well as x < m(t —r) and so N=(t —r, x) >
NF . Proposition 6.1 then implies

(BHNE, <) < (1—17)" <170

for ¢ large enough. This completes the proof. [

PROOF OF THEOREM 2.4 AND PROPOSITION 2.3. Proposition 6.9 and the Borel-
Cantelli lemma (controlling noninteger ¢ by standard estimates) imply that M (¢) > m(t) —
COlnt, P x Pg—a.s. for all # large enough, and thus P-a.s., m(t) > m(t) — C@ Int, for such
t as well. By the monotonicity and the independence of the particles, these lower bounds
hold for an arbitrary initial condition satisfying (INI). These facts combined with (6.2) and
m(t) <m(t) (cf. (6.1)), complete the proof of Theorem 2.4 and Proposition 2.3. [
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7. BRWRE and the randomized Fisher-KPP. In this section, we prove the central
limit theorem for the front of the randomized Fisher—KPP equation. We begin by establishing
the connection between the BRWRE and this Fisher—KPP equation. Its proof is a straightfor-
ward adaptation of [54], who proved the corresponding result in the case of the homogeneous
BBM (see also [38—40]).

PROPOSITION 7.1. For a bounded (£(x))xez and f : 7 — [0, 1],
w(t, x)=1- Ei[ I1 f(Yt)}

YeN(t)

solves

ow
T Aqw + E@)w(l — w)

with initial condition w(0,-) =1 — f. In particular, w(t,x) = Pi(M(t) > 0) solves this
equation with f =1_p, that is, w(0, -) = 1.

PROOF. Actually, we show that v :=1 — w solves

?)—1; =Agqv —E&x)v(l —v)

with initial condition v(0, -) = f, which will establish the claim.
According to whether or not the original particle has split into two before time ¢, the
Feynman—Kac formula in combination with the Markov property at time s supplies us with

t t S
u(t, x) = Ex[e” 080 £x )] + / E [6(Xs)e o8& a2 _ s X()]ds.
0

Using the reversibility of the random walk, and substituting s by ¢ — s, this can be written as

v(t,x) = Y FOE[e 0EXD I (x))]
eZ
(7.1) ’

t t—s
[ X e B e 0L ()] ds,
0
YEZ

Differentiation then yields

0 '
a—'t’(z, ¥ =Y FOVE[—E(x)e BEXDIY (x,)]
VeZ

+ 3 FOVE[e BEXII (A1) (X))
VEZ

—i—é(x)vz(t,x)

! 1—s
+ [ 30 R [epE@e T E I (X, )]ds

VeZ
! t—s

+f0 %vz(s,y)Ey[S(y)e—fo SED(Ag1,)(X—5)] ds.
ye

Comparing this expression with the representation (7.1), the second and fifth summands to-
gether yield Agu, the third is £(x)v?, and the first and fourth together supply us with —& (x)v,
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which completes the proof of the first claim. The second claim is a straightforward conse-
quence of the first one. [

PROOF OF THEOREM 2.9. Observe that the initial conditions in Theorem 2.9 and
the second claim of Proposition 7.1 are related by the reflection x — —x. Hence, setting
§ (x) = &(—x), it is easy to see from the last proposition that the front 7(¢) of the Fisher—
KPP equation defined in (2.15) can be represented as

m(t) =sup{x GZ:PE_X(M(Z‘) >0) > %}

Comparing this to the definition (2.4) of m(t), we see that the role of x and the origin is
reversed, and the environment is reflected. This complication is easy to resolve. By the trans-
lation and reflection invariance of the environment &, for every x € Z,

. 1 |
]P’<PE—X(M(t) >0) > 5) = P(pé(M(t) >x) > 5).
The central limit theorem for 7 (¢) then follows from the one for m(¢). O

8. Open questions. We collect here some open questions which naturally arise from the
investigations of this article.

1. Can we say that m(¢) lags at least Q2 (In¢) behind () ?

2. For x € Z fixed, is the function [0, c0) > # — u(¢, x) increasing? It is not hard to see
that generally this is not the case on [0, 00); however, is it true for ¢ large enough?

3. Is the family M (¢) — m(¢), t > 0, tight? In the case of homogeneous BBM, it already
follows from the convergence to a traveling wave solution (see [43]) that this is the case. In
the case of spatially random branching rates, this remains an open question.

We expect our results to transfer to the continuum setting where the space Z is replaced by
R under suitable regularity and mixing assumptions on &.

APPENDIX: AUXILIARY RESULTS

We prove here several auxiliary results that are used through the text. Most of them use
rather standard techniques, but we did not find any suitable reference for them.

A.1. Properties of logarithmic moment generating functions.

LEMMA A.1. The functions L, Lf, and L}, defined in (4.5)—(4.7) are infinitely differen-
tiable on (—00, 0) and satisfy for n € (—o00, 0],

) ES[Hje"] ’
(A.1) L (77)=E[W}=E[E{ "H;1],
ey ey ESme™ ey
(A2) (L3) () = oy = E°"mi)

(where the derivative in O should be interpreted as the derivative from the left), and thus also
(L5 (n) = LESH,). Further

(A.3) L"(n) =E[ES"[H}E] — ES[H*] > 0,
(A.4) (L?) () = (ES"[7?] — ES"[51%) > 0,
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and thus also (L) () = %(Ef*”[H,%] — ES"[H,1?). Moreover, for every A C (—o0, 0) com-
pact, there is c(A) € (0, 00) such that

sup esssup| L ()] < c(A),
neA

and analogous statements hold for (Lf)/ and (Lf)/ "as well.

PROOF. The fact that L and L}, are infinitely differentiable follows easily from the dom-
inated convergence theorem which allows to interchange the differentiation with the expec-
tations. The equalities (A.1) and (A.2) can then be obtained by a direct computation from the
definitions of the corresponding functions. The equalities (A.3) and (A.4) follow from the
definition (4.4) of P%". The strict inequalities in (A.3) and (A.4) follow from the fact that,
as Hi, t; are nondegenerate random variables, Jensen’s inequality provides us with a strict
inequality.

To prove the last claim, we start with observing that ¢ Lf and ¢ — (Lf)/ are increasing
as mappings from [ei — es, O]Z to (—o0, 0], and ¢ (x) € [ei — es, 0] P-a.s. Therefore,

—00 < In E;_[efliei—estminA)y in£ essinfo )
ne

< sup esssup Lf(n) <InE;_[efimaxA] <

neA

oo,

where the finiteness of the expectations on the left- and right-hand side follows easily since
both ei — es + min A and max A are negative. The proof for (Lf)/ is similar. For (Lf)” we
use (A.4) as well as the definition of E%*" to observe that for n € A,

sup ess sup |(Lf)”(17)| < sup esssup E5"[7?]
neA neA
Ei*l [Hi2eH; maXA]

< - - <
— Ei,l[eHi(mmA+e'*eS)]

00,
which finishes the proof. [J

LEMMA A.2. Let Fx=0(&({):i <k) and A be a compact interval in (—00,0). Then
there exists a constant Cp < 00 such that for all 0 <i < j and n € A, P-a.s.,

(A-5) |E[L§(n) | Fi] = L(n)| < Cpe~0=D/Ca,
(A.6) 0 < (esssup L5 (1)) — L5 () < Cpe”U™D/Ca,
cok=i J

and similarly

(A7) [E[(LS)' () | Fi] = L'()] < Cae™U=D/Cs,
(A.8) 0 < (ess Sup(Li)/(n)) — (Li,)’(n) < CpeUD/Ch,
¢k

PROOF. We only prove the inequalities (A.5) and (A.6), the remaining ones being derived
in a similar manner.
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By translation invariance, we may assume without loss of generality 0 =i < j. Write
L5(n) =In(A + B) where

H.
A:Ej_l[exp{/ ’(;(Xs)+n)ds}, inf XS>O},
0 0<s<H

Hj
B:Ej_l[exp{/o (g“(Xs)+n)ds}, inf ngo].

OSSSH_/'

Let K; denote the number of jumps that the random walk (X, ) has made up to time ¢ > 0,
which has Poisson distribution with parameter ¢. Then, since esssup¢ = 0, for § > 0 suffi-
ciently small, uniformly over n € A,

B <Ej 1[e"; Hj = 8j]+ Pj_1(Ksj = j) <ce /",

where the last inequality follows from standard large deviations for the Poisson random vari-
able. On the other hand, due to (4.3), there is ¢’ € (0, 1) such that IP-a.s. one has A € (¢/, 1).
Therefore, since In(1 + x) < x, we infer that P-a.s.

R (e
n(4) < Lj(n) <In(A) +In( 1+ — ) <In(A) +ce™//%.

Since In(A) is independent of Fq by definition, taking the essential supremum over ¢ (k),
k < 0, this implies the second inequality of (A.6). The first inequality of (A.6) follows from
the definitions. Using the independence of In(A) and F( once again, we also infer that

[E[LS () — L(n) | Fo]| < [E[In(A) — E[In(A)] | Fo]| + 2ce™7/¢ =2ce™//°,
which completes the proof of the lemma. [
A.2. Basic properties of the Lyapunov exponent. We prove here various properties of
the Lyapunov exponent A defined in (2.2) that are used throughout the paper. Some of these

properties are standard, but for some of them we did not find any reference. In particular, the
proof of v, > 0 is presumably new and of independent interest.

PROPOSITION A.3. Assume (POT).

(a) The function ) : R — R is well defined, nonrandom, even and concave. It satisfies
X(0) =es, L(v) < es for every v # 0, and limy_, o A(v) /v = —00. In particular, there exists
a unique vy € (0, 00) such that A(vy) = 0.

(b) There is v, € (0, 00) given by v, = (L'(0))~! (where the derivative is taken from the
left only) such that A is linear on [0, v.], and strictly concave on (v, 00). In addition, for
every v € [0, 00),

(A9) A(v) =es —vL*(1/v),
where for v = 0 the right-hand side is defined as es.
PROOF. (a) For « € (0, 1) and vy, v2 € R, the Markov property yields
In Eg[ef0§X9 %, X, = | (v + (1 — a)va)t]]
(1—a)t

(A.10) >1In Eo[e 0 L((E(XS)dS; X—ay = L(l — a)vth]

10 E|(1—ayupr) [ EX09: X = [ (v + (1 — a)va)e]].
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Hence, choosing v := v7 := v and using Kingman’s subadditive ergodic theorem [47] as
well as the Feynman—Kac formula (Proposition 3.1), we obtain that for each v € R, the limit
A(v) exists and is nonrandom. In addition, A is an even function since X is symmetric simple
random walk and the (§(x)),cz are i.i.d. by assumption.

Dividing both sides of inequality (A.10) by ¢ and taking the limit # — oo, the left-hand
side converges P-a.s. to A(av; + (1 — a)v2), and the first summand on the right-hand side
converges to (1 — a)A(vy). Further, the second summand converges to aA(v1) in distribution,
since it has the same distribution (up to possibly a small error introduced by the use of the
floor function, and which is irrelevant in the limit) as

1 at
;lnEo[eXp{/o S(Xs)ds}lxat:\_avl”}’

which converges IP-a.s. to aA(vy). The concavity of A then follows.
The proof of A(0) = es is standard but we include it for the sake of completeness. By the
Feynman—Kac formula and (4.2),

(A.11) A(0) :es—i—tl_i)r(r)lo;lnEo[exp{/(;tg“(Xs)ds}; X: =O]

Since ¢(x) < 0, the upper bound A(0) < es follows trivially. To show the lower bound, fix
& > 0 arbitrarily and note that by standard i.i.d. properties of ¢’s, there is c(g) > 0 such that
P-a.s. for ¢ large enough, there is an interval I, C [—¢'/4, t!/4] of length at least c(&) In¢ such
C(j) = —¢ for all j € I; N Z. Consider now the event A, = {Xo =X, =0,X,€ I, Vx €
(1121 — tl/z]}. By alocal central limit theorem, Po(X,12 € I;) > ct~1/4, By standard spec-
tral estimates for the simple random walk, for any m € I;,

Pu(Xs €I, Vs <t —2t1/2) > g~/

and, by a local central limit theorem again, P,,(X,12 = 0) > ct~'/4. The Markov property
thus yields Py(A;) > e~/"! Going back to (A.11), restricting the expectation to A,

A(0) > es + llim sup P()(At)e_zeS’l/ze_E(Z_Ztl/z) >es —¢.
I t—o00
Since ¢ > 0 was chosen arbitrarily, A(0) = es follows.

The fact lim,—, o0 A(v)/|v| = —o0 follows from (POT) and large deviation properties of
the continuous time simple random walk X.

(b) The strict concavity of A(v) on (v, 00) is a consequence of the strict convexity of
L*(1/v) on this interval, which in turn follows from definition (4.12) of v, the strict convex-
ity of L on (—o0, 0) and standard properties of the Legendre transform. Also, for v € (v, 00),
claim (A.9) is shown in the proof of Theorem 2.8 in Section 4.6. By the continuity of A (which
follows from concavity and finiteness) and the monotonicity and lower-semicontinuity of L*
(which entails its left-continuity in 1/v.), (A.9) also holds for v = v.. We thus only need to
show the linearity of A and (A.9) on [0, v.), and then v, € (0, 00).

To show the linearity, observe that by the Feynman—Kac representation,

u(t,vt) = e’esEo[exp{ft C(Xs)ds}; X, = vt]
0

vt—1

H v b
< e’esEo|: [] exp{/H C(Xs) ds}i| — 188Xl L (0
i—1

i=1
Taking logarithms and letting ¢t — oo, it follows that

(A.12) A(v) <es+vL(0)=es—vL*(1/v.), ve0,v.],
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where for the inequality we used (4.10), and for the equality we took advantage of (4.12)
again. The concavity of A, the linear upper bound (A.12), and the fact that A coincides with
this linear upper bound for v = 0 (cf. part (a)) and v = v, (by (A.9) for v = v,) then imply the
matching lower bound, proving the claimed linearity on [0, v.]. Claim (A.9) for v € [0, v.)
then follows directly, since we know that the inequality in (A.12) is an equality, and L(0) =
—L*(1/v) = L*(1/v.) for v € [0, v.], by standard properties of Legendre transform.

It remains to show that (L'(0))~! € (0, 0o). We recall that by (A.1), L'(0) = E[ESC[H{]).
Taking advantage of the boundedness from below of ¢ and the definition of E%0, it is suffi-
cient to show that

(A.13) IE[EO[HlefoH1 (XD d57] € (0, 00).

The lower bound follows easily, as Hj is a nontrivial, nonnegative random variable. For the
upper bound, for arbitrary fixed & € (0, es — ei) we introduce an auxiliary random environ-
ment

« . )0 if £(x) € (—h, 0],
(A.14) " (x) = [—h if £00) < —h, x €.
In particular, note that ¢ < ¢* and
(A.15) p:=P(¢*(0)=—h)=1—-P(¢*(©0)=0) € (0, 1).

Furthermore, defining for n € N the events

. 2 1
Gim:={ _inf Xy (-n,—ni)},

we infer by standard large deviation estimates for simple random walk that there exist con-
stants ¢, C € (0, 00) such that

1
(A.16) Po(Hy €[n,n+1),G1(n)°) < Ce™  VneN.

The next ingredient is [3], Theorem 1.3, which implies that thin points for the random walk
are rare in the following sense: Write £ for the local time process

t
(A.17) £ (x) :=/ 8x(X5)ds, xeZ,tel0,00),
0
and, for M € (0, 00), introduce the set of thin points by
Tem:={x €Z:4(x) e (0, M]}.

Then [3], Theorem 1.3, entails that setting G2(¢) := {| 7/ m| < t% }, there exist constants ¢, C €
(0, 0o) such that

1
(A.18) Py(G2(H)) | Hi €[n,n+1)) < Ce " VneN,.

The last ingredient is a simple large deviation bound for i.i.d. Bernoulli variables: recalling p
from (A.15) and setting

n
G3(n) == {!{x e{-n,....0}:*(x) = —h}| > p_}
we have due to (POT) that for arbitrary ¢ > 0,

(A.19) P(G3(l’2)c) < Ce "Up(p/2)—8) <Ce " VneN,
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where [, is the usual rate function of the Bernoulli(p) distribution. Combining (A.16) to
(A.19), we infer that

E[EO[HlefoHl f(Xs)ds]]

© H
< S E[Eo[Hieh 9% b€ n,n+ 1)), G3(n7)]
n=0
1
+C(n+ e’
(A.20)

W=

i H
<Y E[Eo[Hieh XIS Hy € [n,n+1), G1(n), G2(H)], G3(n
n=0

)]

1

+C(pre=’

© 1
< C(P) + Ze—phn3/2 < 00,
n=0

and the upper bound for (A.13) follows. [

Finally, we shortly discuss the existence of random environments which satisfy the con-
dition (VEL) requiring that the speed of the maximum particle, vy is strictly larger than the
critical speed v.. The simple proof of the following result reveals that this is the case for a very
rich family of environments, which heuristically can be interpreted as exhibiting sufficiently
strong branching.

LEMMA A.4. There exist environments & such that (POT) and (VEL) hold true.

PROOF. Choose an arbitrary random environment & fulfilling (POT), and consider a fam-
ily of environments &” := (£(x) + h)yez, h > 0. Writing A" for the Lyapunov exponent asso-
ciated to & k. the Feynman—Kac representation (Proposition 3.1) and the definition (2.2) of A
yield that A (v) = A(v) + h. Hence, by Proposition A.3, the value of v. does not change with
h, and on the other hand, vy) — o0 as & — o0, which entails the desired statement. [

A.3. Hoeffding-type inequality for mixing sequences. We repeatedly make use of the
following concentration inequality for mixing sequences. We state it here for reader’s conve-
nience.

LEMMA A.5 ([62], Theorem 2.4). Let (X;)icz be a sequence of real valued bounded
random variables on some (2, F,P) and let F; = o (Xj, j <i). Suppose that there are real
numbers m; > 0,1 € {1, ..., n} such that

J
sup (||X?||oo +2HXi Y ElXk | Fil
i+1,....n} k=i+1

) <m; foralli <n.
e}
Then for every a > 0,

2
a
(%1 nl_a)_\/geXp{ 22?:1’%;'}
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