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Single-cell lineage tracking strategies enabled by recent experimental
technologies have produced significant insights into cell fate decisions, but
lack the quantitative framework necessary for rigorous statistical analysis of
mechanistic models describing cell division and differentiation. In this pa-
per, we develop such a framework with corresponding moment-based pa-
rameter estimation techniques for continuous-time, multi-type branching pro-
cesses. Such processes provide a probabilistic model of how cells divide and
differentiate, and we apply our method to study hematopoiesis, the mecha-
nism of blood cell production. We derive closed-form expressions for higher
moments in a general class of such models. These analytical results allow
us to efficiently estimate parameters of much richer statistical models of
hematopoiesis than those used in previous statistical studies. To our knowl-
edge, the method provides the first rate inference procedure for fitting such
models to time series data generated from cellular barcoding experiments.
After validating the methodology in simulation studies, we apply our estima-
tor to hematopoietic lineage tracking data from rhesus macaques. Our anal-
ysis provides a more complete understanding of cell fate decisions during
hematopoiesis in nonhuman primates, which may be more relevant to hu-
man biology and clinical strategies than previous findings from murine stud-
ies. For example, in addition to previously estimated hematopoietic stem cell
self-renewal rate, we are able to estimate fate decision probabilities and to
compare structurally distinct models of hematopoiesis using cross validation.
These estimates of fate decision probabilities and our model selection results
should help biologists compare competing hypotheses about how progeni-
tor cells differentiate. The methodology is transferrable to a large class of
stochastic compartmental and multi-type branching models, commonly used
in studies of cancer progression, epidemiology and many other fields.
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1. Introduction. This paper develops inferential tools for a class of hid-
den stochastic population processes. In particular, we present a correlation-
based M-estimator for rate inference in multi-type branching process models
of hematopoiesis—a mechanism during which self-renewing hematopoietic stem
cells (HSCs) specialize, or differentiate, to produce mature blood cells. Under-
standing the details of this process is a fundamental problem in systems biology,
and progress in uncovering these details will also help shed light on other areas of
basic biology. For example, further advances in hematopoiesis research will yield
insights into mechanisms of cellular interactions, cell lineage programming and
characterization of cellular phenotypes during cell differentiation (Orkin and Zon
(2008)). Moreover, understanding hematopoiesis is clinically important: all blood
cell diseases, including leukemias, myeloproliferative disorders and myelodyspla-
sia are caused by malfunctions in some part of the hematopoiesis process, and
hematopoietic stem cell transplantation has become a mainstay for gene therapy
and cancer treatments (Whichard et al. (2010)).

An HSC can give rise to any mature blood cell. In order to generate new mature
blood cells (e.g., granulocytes, monocytes, T, B and natural killer (NK) cells) an
HSC first becomes a multipotent progenitor cell. This cell then further differenti-
ates into progenitors with more limited potential. An HSC can also divide or self-
renew, giving rise to two daughter HSCs. Cells make fate decisions by a carefully
orchestrated change in gene expression, but the details of these decision making
processes are still not fully understood (Laslo et al. (2008), Whichard et al. (2010)).
Mathematically, hematopoiesis can be represented as a stochastic compartmental
model in which cells are assumed to self replicate and differentiate according to
a Markov branching process (Becker, McCulloch and Till (1963), Kimmel and
Axelrod (2002), Siminovitch, McCulloch and Till (1963)).

Although this mathematical representation of hematopoiesis is more than fifty
years old (Till, McCulloch and Siminovitch (1964)), fitting branching process
models to experimental data remains highly nontrivial. The main difficulty stems
from the fact that estimating parameters of a partially observed stochastic pro-
cess usually leads to intractable computational algorithms. One way to avoid
this intractability is to base inference on deterministic models of hematopoiesis,
as has been done by Colijn and Mackey (2005) and Marciniak-Czochra et al.
(2009), for example. However, deterministic compartmental models are not suit-
able when cell counts are low in some of the compartments (Kimmel (2014)),
which is frequently the case in many experimental protocols (e.g., bone marrow
transplantation followed by blood cell reconstitution). Although working within
the stochastic modeling framework is challenging, researchers were able to fit a
two-compartmental stochastic model to X-chromosome inactivation marker data
(Abkowitz et al. (1990), Fong, Guttorp and Abkowitz (2009), Golinelli, Guttorp
and Abkowitz (2006), Catlin et al. (2011)). Such studies have produced impor-
tant insights, but this simple two-compartmental model cannot distinguish between
stages of differentiation beyond the HSC, and results obtained from analyzing this
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model have not resolved long standing questions about patterns and sizes of cell
lineages descended from individual HSCs. It should be noted that even these sim-
plified models capturing the clonal dynamics descended from an HSC have posed
significant statistical and computational challenges.

Recently emergent experimental techniques now allow researchers to track the
dynamics of cell lineages descended from distinct ancestral progenitor cells or
HSCs. Collecting such high resolution data is made possible by lentiviral genetic
barcoding coupled with modern high-throughput sequencing technologies (Gerrits
et al. (2010), Lu et al. (2011), Wu et al. (2014)). Each cell descended from an
original barcoded population inherits the unique identifier of its ancestor. The data
thus enable us to distinguish individual lineages, and comprise independent and
identically distributed time series. This marked departure from previous batch ex-
perimental data, in which observations were coming from the population of cells
descended from a mixture of indistinguishable cells, potentially allows for investi-
gation of much more realistic models of hematopoiesis. Importantly, the ability to
analyze individual lineage trajectories can be very useful in characterizing patterns
of cell differentiation, shedding light on the larger tree structure of the differentia-
tion process.

While these barcoding data are certainly more informative than those from pre-
vious experiments, statistical methods capable of analyzing such data are only
beginning to emerge. Buchholz et al. (2013) develop a model fitting technique for
in vivo fate mapping data that is closely related to our work, but their approach
lacks a cell sampling model needed to analyze barcoding data. Perié et al. (2014)
model genetic barcoding data in a murine study collected at the end of the mice’s
lifespans, but do not account for the longitudinal aspect of the data. They also do
not fully take advantage of the information in the read count data, instead working
with binary indicators of barcode presence. Goyal et al. (2015) present a neutral
steady-state model of long term hematopoiesis applied to vector site integration
data, but cannot infer crucial process parameters such as the rate of stem cell self-
renewal. Biasco et al. (2016) manage to estimate cell differentiation rates from
blood lineage tracking data, but resort to diffusion approximation and ignore all
variation arising from experimental design in their analysis.

Wu et al. (2014) provide a preliminary analysis of their cellular barcoding data
that reveals important scientific insights (Koelle et al. (2017)), but lacks the abil-
ity to perform statistical tasks such as parameter estimation and model selection.
This paper attempts to fill this methodological gap, developing new statistical
techniques for studying the barcoded hematopoietic cell lineages from the rhe-
sus macaque data. We propose a fully generative stochastic model and efficient
method of parameter estimation that enables much richer hematopoietic structures
to be statistically analyzed than previously possible. The following section de-
scribes the model and experimental design producing the dataset we will analyze.
Next, we motivate our approach by statistically formulating our inferential goal
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and deriving the necessary mathematical quantities in Section 2.3. We then thor-
oughly validate these methods via several simulation studies, fit the models to the
rhesus macaque barcoding data, and compare the fitted models via cross valida-
tion. Finally, we close with a discussion of these results, their implications, and
avenues for future work.

2. Methods.

2.1. Data and experimental setup. During hematopoiesis, self-renewing
hematopoietic stem cells specialize or differentiate via a series of intermediate
progenitor cell stages to produce mature blood cells (Weissman (2000)). A chal-
lenge in studying this system in vivo is that only the mature cells are observable, as
they can be sampled from the blood. We will model hematopoiesis as a continuous-
time stochastic process whose state X(t) is a vector of cell counts of different types
(e.g., HSCs, progenitors, T, B cells). We will provide mathematical formulation of
the stochastic process after a complete description of the dataset Y. In contrast to
previous studies, the single cell lineage tracking dataset we will analyze opens the
possibility of inferring intermediate progenitor behavior. We briefly describe the
cellular barcoding experiment that makes this possible.

Wu et al. (2014) extract HSCs and progenitor cells from the marrow of a rhesus
macaque, and use lentiviral vectors to insert unique DNA sequences into the cells
that will each act as an identifying “barcode.” After the extracted cells are labeled
in this way, the macaque is irradiated so that its residual blood cells are depleted.
Next, the labeled cells are transplanted back into the marrow of the animal; recon-
stitution of its entire blood system is supported from this initial labeled population
of extracted cells. All cells descended from a marked cell—its lineage—inherit
its unique barcode ID; we remark that what we call a lineage is often referred to
as a clone in the hematopoiesis literature. We assume that barcoded lineages act
independently from each other and that each barcoded lineage p ∈ {1, . . . ,N} is a
realization Xp(t) of our stochastic process model of hematopoiesis.

Hematopoietic reconstitution is monitored indirectly over time at discrete obser-
vation times tj . At each tj , the experimental protocol consists of sampling blood
from the macaque and separating the sample by cell type, followed by retrieving
the barcodes via DNA sequencing from each sorted population. Specifically, the
blood sample is sorted into five mature cell categories: monocyte (Mono), granu-
locyte (Gr), T, B and natural killer (NK) cell types. These type-sorted samples will
be denoted ỹm(tj ) for each mature cell type m, and are of fixed size bm at all obser-
vation times. That is, each entry ỹ

p
m(tj ) is the number of type m cells with barcode

p present in the sample, and
∑

p ỹ
p
m(tj ) = bm at every tj . The random number of

barcodes present in the samples is proportional to their prevalence in the total pop-
ulation of labeled type m cells in the population, denoted Bm(tj ) = ∑

p X
p
m(tj ),

where X
p
m(tj ) denotes the true blood count of type m cells from lineage p at
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time tj . Therefore, the distribution of sampled cells can be modeled by a multi-
variate hypergeometric distribution

(2.1) ỹm(t) | X(t) ∼ mvhypergeom
(
Bm(t),Xm(t), bm

)
.

Put another way, Pr(ỹp
m(t) = z) is the probability of drawing z balls of color p out

of an urn containing Bm total balls, X
p
m(t) of which are of color p, in a sample of

size bm. In this setting, each color corresponds to a barcode ID; the distributional
choice is driven by its close mechanistic resemblance to the experimental sampling
itself. Recall that the sample sizes bm are fixed and known from the experimental
protocol. While the latent processes are unknown, the values of their sum Bm(tj )

are observed: the total circulating blood cell (CBC) counts are recorded at each
sampling time. We do not consider potential measurement error in the CBC data,
and therefore do not model Bm(tj ) as random variables throughout, instead treat-
ing Bm(tj ) as external known constants.

Next, individual barcodes must be retrieved or read via sequencing. DNA is ex-
tracted from each of the sorted samples, and polymerase chain reaction (PCR) is
performed to generate many copies of the DNA segments. This step aids barcode
retrieval by increasing detectability of DNA segments present in the sample during
sequencing. It is commonly assumed that PCR amplification preserves the propor-
tion of barcodes present. We disregard experimental noise that may cause negli-
gible departures from this standard assumption in order to avoid modeling PCR
itself as an additional stochastic process. The read count y

p
m(t) = dm(tj ) × ỹ

p
m(tj )

is obtained by sequencing this amplified PCR product; here dm(t) is an unknown
constant representing the linear effect of PCR amplification. Thus, at each obser-
vation time tj , the experiment yields a count y

p
m(tj ) denoting the number of times

barcode ID p was read after sequencing the type m cell sample.. An illustration
summarizing the process for one lineage is provided in Figure 1.

Our assumption that PCR amplification is linear may be less suitable for bar-
coded populations with low counts, as any noise we have chosen not to model from
this process may have a larger relative effect. We therefore further filter the data
similarly to (Wu et al. (2014)) to include only barcode IDs exceeding 1000 reads.
Altogether, our observed dataset consists of over 110 million read counts across
N = 9635 unique barcode IDs, obtained at irregularly spaced times over a total
period of tJ = 30 months. This collection of read counts can be viewed as a three-
dimensional array, where the first array index m corresponds to mature cell type m.
Fixing this index results in a N ×J matrix Ym = (ym(t1),ym(t2), . . . ,ym(tj )). The
second array index, columns of each such matrix described above, correspond to
observation (sampling) times t = (t1, . . . , tJ ). The third array dimension indexes
barcodes: yp

m, the pth row of Ym, encodes the read count time series correspond-
ing to a unique barcode ID p ∈ {1, . . . ,N} among the population of type m mature
blood cells.
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FIG. 1. Illustration of experimental protocol for one single fixed barcode ID. The top panel rep-
resents the latent process starting with a single HSC (pink) at several snapshots in time t0, . . . , t3.
The second panel illustrates blood samples. Note that the barcode only becomes present in the blood
when mature cells, which first appear by time t2 in this example, are sampled in blood; the HSCs and
early progenitors (purple) reside in the marrow and thus are unobservable. Read counts correspond-
ing to the given barcode after PCR and sequencing reflect the number of cells sharing that barcode
in the sample, which in turn reflect the barcoded population in the latent process.

2.2. Multi-type branching model of latent process. The data Y form a partial
observation of a collection of p IID continuous-time latent processes, each evolv-
ing according to the stochastic model X(t). We now provide a biological descrip-
tion of the underlying hematopoietic process we wish to model by X(t), followed
by mathematical details of our proposed class of branching process models.

Hematopoiesis begins with bone marrow residing HSCs, which have the capac-
ity to self-renew (give rise to another HSC) or differentiate into more specialized
progenitor cells. Biologists have not reached a consensus about how many types of
progenitors exist in this intermediate stage, but agree that intermediate progenitor
cells lose the ability to proliferate, and each progenitor type can produce one or
several types of mature blood cells before exhausting its own lifespan (cell death).
These mature blood cells exist at the last phase of development, are found mainly
in the bloodstream and do not give birth to any further cells. Based on this bi-
ological understanding of hematopoiesis, a multi-type branching process taking
values over a discrete state space of cell counts in continuous time provides a nat-
ural modeling choice. Canonical differentiation trees that have been posited in the
scientific literature follow such a structure, and such stochastic models have estab-
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lished their place in the statistical hematopoiesis literature (Kimmel and Axelrod
(2002), Catlin et al. (2011)).

A continuous-time branching process is a Markov jump process in which a
collection of independently acting particles (cells) can reproduce and die accord-
ing to a probability distribution. Each cell type has a distinct mean lifespan and
reproductive probabilities, and can give rise to cells of its own type as well as
other types at its time of death. Our branching process models consist of an HSC
stage, progenitor stage, and mature cell stage, and allow for an arbitrary number
of progenitor and mature cell types to be specified. We use alphabetic subscripts
a, b . . . ∈ A to denote progenitors, with mature cell types indexed numerically by
m = 1,2, . . .M. The subscript 0 indicates quantities relating to HSCs. In our mod-
els, HSCs self-renew with rate λ, or become type a progenitor cells with differen-
tiation rates νa . Progenitor cells exhaust their lifespan with rates μa , and produce
type m mature blood cells with rates νm. Each mature cell type m is descended
from only one progenitor type, so that its corresponding production rate νm is
unique and well defined. Finally, these mature cells exhaust with rates μm. Figure 2
depicts several example structures contained in this class. In a given branching
model, let C = 1 + |A| +M be the total number of cell types. The process state is
a length C random vector X(t) = (X0(t),Xa(t), . . . ,X|A|(t),X1(t), . . . ,XM(t))

taking values in the countably infinite state space � = N
C , whose components

represent sizes of the cell populations at time t ≥ 0. Recall the read count
data Y are obtained by sequencing blood samples from the mature populations
X1(t), . . . ,XM(t); the early stage populations X0(t),Xa(t), . . . ,X|A|(t) are en-
tirely unobserved.

The behavior of X(t) is then defined by specifying a set of length C instanta-
neous rate vectors. To introduce the remaining notation, we focus on the simplest
model displayed in Figure 2(a) with C = 5 total cell types for concreteness. Model
2(a) features one progenitor type and three mature cell types. The instantaneous
rate α0(n0, na, n1, n2, n3) (Dorman, Sinsheimer and Lange (2004), Lange (2010))
contains the rate of an event occurring in which an HSC cell produces n0 HSCs, na

progenitors, and nm of each type m mature cells. These rate vectors are analogous
for other parent cell types: for instance, αa(n0, na, n1, n2, n3) denotes the same
rates of production from one type a progenitor cell rather than an HSC cell. The
offspring descended from each cell subsequently behave according to the same set
of rate vectors, which do not change with t—the process is time-homogeneous.

The assumption that cells act independently implies that the process rates are
linear: overall event rates at the population level are multiplicative in the number of
cells. Together, these assumptions imply that the lifespan of each HSC follows an
exponential distribution with parameter −β0 := ∑

(n0,na,n1,n2,n3) �=(1,0,0,0,0) α0(n0,

na, n1, n2, n3). After this exponential waiting time, the probability that the cell is
replaced by (n0, na, n1, n2, n3) cells of each respective type is given by normaliz-
ing the corresponding rate: α0(n0, na, n1, n2, n3)/β0. The same holds analogously
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FIG. 2. Differentiation trees to be considered in simulation study and real data analysis. In the
first two models, mature cells are descended from one common multipotent progenitor: (a) groups
similar mature cells (i.e., T and B cells are not distinguishable), leading to a model with three mature
cell types, and (b) models each observed mature cell type separately. Note that previous statistical
studies by Catlin, Abkowitz and Guttorp (2001), Fong, Guttorp and Abkowitz (2009), Golinelli, Gut-
torp and Abkowitz (2006) model only two compartments (types), containing HSC and “other” cells.
Models (c)–(f) include several biologically plausible topologies featuring two or three oligopotent
progenitors, each specializing to produce only particular mature cells.

for all cells after replacing subscripts appropriately, and therefore X(t) evolves
over time as a continuous-time Markov chain (CTMC) (Guttorp (1995), Chap-
ter 3).

As an example, we see from Figure 2 that model 2(a) is characterized by the
parameters θ = (λ, νa,μa, ν1, ν2, ν3,μ1,μ2,μ3). Specifying such a process as a
CTMC classically using the rate matrix (infinitesimal generator) is mathematically
unwieldy—this is an infinite matrix with no simplifying structure for these models.
However, the process can be compactly specified using the following instantaneous
rate vectors of a branching process:

α0(2,0,0,0,0) = λ, α0(0,1,0,0,0) = νa,

α0(1,0,0,0,0) = −(λ + νa), αa(0,0,0,0,0) = μa,

αa(0,1,1,0,0) = ν1, αa = (0,1,0,1,0) = ν2,

αa(0,1,0,0,1) = ν3, αa(0,1,0,0,0) = −(μa + ν1 + ν2 + ν3),

α1(0,0,0,0,0) = μ1, α1(0,0,1,0,0) = −μ1,
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α2(0,0,0,0,0) = μ2, α2(0,0,0,1,0) = −μ2,

α3(0,0,0,0,0) = μ3, α3(0,0,0,0,1) = −μ3,

with all other rates zero. An equivalent representation in terms of chemical kinetic
rate notation is provided in Appendix A.1 in the Supplementary Material (Xu et al.
(2019)). Given that the instantaneous branching rates of each model can be speci-
fied this way from the parameter vector θ , methods of inference in the next section
target (θ ,π), where π is an initial distribution vector π = (π0, πa,πb, . . .). The
components πa represents the probability that a lineage is originally descended
from a transplanted progenitor rather than from a transplanted HSC: this is un-
known since the initial barcoding is applied to a heterogeneous transplanted cell
population containing HSCs and early progenitors.

2.3. Parameter estimation procedure. We estimate model parameters using
the generalized method of moments, a computationally simpler alternative to max-
imum likelihood estimation that yields consistent estimators. Perhaps more ap-
pealing than their simplicity, moment-based methods feature more robustness to
model misspecification than techniques relying on a completely prescribed like-
lihood (Wakefield (2013)). The choice is well motivated when a large number
of samples is available, as is the case for our dataset consisting of thousands of
IID barcoded lineages. The method relies on deriving equations relating a set of
population moments to the target model parameters to be estimated. Next, the dis-
crepancy between the population and sample moments is minimized to estimate
parameters of interest. Our estimator seeks to match pairwise empirical read count
correlations across barcodes with their corresponding model-based population cor-
relations.

We find explicit analytic forms for the first and second moments of the models
presented in Section 2.2, allowing for fast computation of the marginal correlations
between any two mature cell type counts. Our derivations hold for all instances
of a rich class of models, including those displayed in Figure 2, enabling arbi-
trary groupings of cell types and candidate branching pathways to be investigated.
To perform model selection, we use cross-validation with respect to the objective
function introduced below. Further, nonparametric bootstrap confidence intervals
can be obtained by repeating the estimation procedure on resampled data.

The advantage of working with correlations in the data is twofold: first, the ob-
served correlation profiles between types are more time-varying and thus more
informative than the mean and variance curves of read counts. Second, the scale
invariance of correlations allows us to avoid modeling PCR amplification on top
of an already complex model, as the amplification constants dm(t) cancel out. This
robustness also comes with a caveat—we may not expect all rates to be identi-
fiable. For instance, we cannot detect a proportional increase in the differentia-
tion rate into a mature cell compartment and its death rate without scale infor-
mation. Indeed, the same phenomenon was reported in fitting simpler models of
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hematopoiesis (Catlin, Abkowitz and Guttorp (2001)). Fortunately, because mature
blood cells are observable in the bloodstream, their lifespans have been well stud-
ied separately in the biological literature (Kaur et al. (2008), Zhang et al. (2007)).
We fix the death rates μi at these known quantities, providing scale information
for our estimator. Doing so allows the remaining free parameters to be well esti-
mated by the same procedure. This is further discussed in the following section,
and empirically shown to be an effective strategy in Section 3.1.

2.4. Correlation loss function. To estimate the parameter vector θ containing
process rates and initial distribution π , we seek to closely match model-based cor-
relations to the empirical correlations between observed read counts. We overload
the notation so that if any components of the parameter vector (such as death rates)
are assumed fixed at their true values, then θ is understood to denote the remaining
free parameters of the model. We estimate free parameters θ via minimizing the
loss function

(2.2) L(θ;Y) = ∑
tj

∑
m

∑
n�=m

[
ψmn,j (θ;Y) − ψ̂mn,j (Y)

]2
,

where ψmn,j represents model-based correlation between reads of type m, n ma-
ture cells at time tj :

ψmn,j (θ;Y) := ρ
(
Ym(tj ), Yn(tj ); θ) = Cov[Ym(tj ), Yn(tj ); θ ]

σ(Ym(tj ); θ)σ (Yn(tj ); θ)
,

and ψ̂mn,j denotes the corresponding sample correlations across barcodes p =
1, . . . ,N at time tj :

ψ̂mn,j (Y) := ρ̂
(
ym(tj ),yn(tj )

)
=

∑N
p=1(y

p
m(tj ) − ym(tj ))(y

p
n (tj ) − yn(tj ))√∑N

p=1(y
p
m(tj ) − ym(tj ))2

√∑N
p=1(y

p
n (tj ) − yn(tj ))

2
.

The problem of estimating hematopoietic rates now translates to seeking

θ̂N = argmin
θ

L(θ;Y) = argmin
θ

∥∥GN(θ;Y)
∥∥2

2, GN(θ;Y) := ψ(θ;Y)−ψ̂(Y),

and ψ(θ;Y), ψ̂(Y) are vectors containing all pairwise model-based and empiri-
cal correlations at each time point, respectively. Again, if a subset of parameters
is fixed, θ̂N is understood to contain the estimates of all free parameters in the
model. Denoting the true data generating parameters by θ0, the law of large num-
bers implies that E[GN(θ0;Y)] → 0 as the number of processes N → ∞. Our
method is therefore an M-estimator, also known as generalized method of mo-
ments (GMM) (van der Vaart (1998), Chapter 5). M-estimators are known to be
consistent under general conditions as summarized in the following theorem. We
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note that the regularity conditions, detailed in the Appendix, are often assumed
rather than proven—in particular, identifiability is notoriously difficult to establish
in nonlinear models. However, in Section 3 we provide strong empirical evidence
that fixing the death rates ensures identifiability of the remaining parameters.

THEOREM 2.1. Under regularity conditions A1–A3 (see Appendix A.2), the
sequence {θ̂N } converges in probability to θ0, where θ̂N = argminθ L(θ;Y),
L(θ;Y) = ‖GN(θ)‖2

2, and N is the number of processes or rows in Y.

In addition to serving as a useful context for analyzing properties of θ̂N , it is
worth mentioning that the GMM framework provides a natural extension of our
loss function estimator by replacing the �2 norm ‖·‖2 by a general family of norms
‖·‖W induced by positive definite weight matrices W. The estimator is now given
by

θ̂W = argmin
θ

∥∥GN(θ;Y)
∥∥2
W := argmin

θ
GN(θ;Y)T ŴGN(θ;Y);

notice minimization of L(θ;Y) is the special case of Ŵ = I. The norm induced
by W allows moment equations to have unequal contributions to the objective
function; Ŵ intuitively may assign less weight to components which have higher
variance and thus provide less information. GMM estimators θ̂W enjoy asymptotic
normality under additional regularity assumptions (Pakes and Pollard (1989), van
der Vaart (1998)), and are asymptotically efficient under the optimal Ŵ (Hansen
(1982)). While many algorithms exist for estimating Ŵ, the task is nontrivial
(Hansen, Heaton and Yaron (1996)). Because we have a large enough dataset such
that finite-sample efficiency is of lesser concern, we opt for the simple case with
Ŵ = I, avoiding the inclusion of many additional entries of the weight matrix as
parameters to be estimated.

Having established the data generating model and estimation framework, next
we derive the second moments of the latent process X(t) using branching process
techniques.

2.5. Moments of the multi-type branching process. Here we derive the ana-
lytic expressions for the first and second moments of the latent branching processes
defined in Section 2.2, enabling efficient computation of model-based correlations
ψmn,j (θ ,Y) appearing in the loss function. For quantities relating to all types, we
will use the common index i = 0, a, b, . . . ,1, . . . ,M, and adopt the notation ei to
represent the vector of length C (denoting total number of cell types) with a 1 in
the type i component and is 0 elsewhere. The indicator 1{a→m} equals 1 if mature
cell type m is descended from progenitor type a in a given model, and 0 otherwise.

Our approach is similar to the random variable technique introduced by Bailey
(1964), but we derive expressions by way of probability generating functions rather



2102 J. XU ET AL.

than appealing to the cumulants. We begin by writing the pseudo-generating func-
tions, also called progeny generating functions (Dorman, Sinsheimer and Lange
(2004)), defined as

(2.3) ui(s) = ∑
k0

∑
ka

· · ·∑
kM

ai(k0, . . . , kM)s
k0
0 ska

a · skM
M ,

where s is a vector of dummy variables confined to the [0,1] interval. For our class
of models, these are given by

(2.4)

u0(s) = λs2
0 + ∑

a∈A
νasa −

(
λ + ∑

a∈A
νa

)
s0,

ua(s) =
M∑

m=1

νmsasm1{a→m} + μa −
(
μa +

M∑
m=1

νm1{a→m}
)
sa ∀a ∈ A,

um(s) = um(sm) = μm − μmsm ∀m = 1, . . . ,M.

Next, we can write the probability generating function (PGF) of the process, begin-
ning with one HSC, via a relation to the pseudo-generating function u0 as follows:

(2.5)

φ0(t; s) = E
[∏

i

s
Xi(t)
i

∣∣∣X(0) = e0

]

=
∞∑

k0=0

· · ·
∞∑

kM=0

Pre0,(k0,ka,...kM)
(t)s

k0
0 ska

a · · · skM
M

=
∞∑

k0=0

· · ·
∞∑

kM=0

[
1{k0=1,ka=···=kM=0}

+ a0(k0, . . . , kM)t + o(t)
]
s
k0
0 ska

a · · · skM
M

= s0 + u0(s)t + o(t).

Analogously defining φi for processes beginning with one type i cell (i =
1, . . . ,C), equation (2.5) yields the relations

(2.6)
∂

∂t
φi(t, s) = ui

(
φ0(t, s), . . . , φM(t, s)

)
.

That is, the right hand side of each ordinary differential equation (ODE) in the
Kolmogorov backward equations (2.6) takes the form of the right hand sides of
(2.4) with si everywhere replaced by φi(t, s). Though the system is generally not
solvable except in simple models, the full solution is not necessary as our method
uses only the moments rather than all of the transition probability information.
In fact, we only require moments conditional on one initial cell, since each la-
tent process represents barcode lineages descended from a single marked cell. Let
Ml|k(t) denote the expected number of type l cells at time t , given one initial type
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k cell. From definition of φi , we see that we can relate the probability generating
functions to these first moments via partial differentiation:

Mm|i (t) = ∂

∂sm
φi(t, s)

∣∣∣∣
s0=sa=···=sM=1

.

Similarly, we may further differentiate the PGF to derive second moments used to-

ward variance and covariance calculations. The relationship Umn|i (t) = ∂2φi

∂sm∂sn
|s=1

holds, where

Umn|i (t) := E
[
Xm(Xn − 1{m=n})|X(0) = ei

]
.

These identities via partial differentiation enables us to write a system of differ-
ential equations governing the moments. Applying the multivariate chain rule and
the Faà di Bruno formula,

∂

∂t
Mm|i (t) = ∂2φi

∂t∂sm

∣∣∣∣
s=1

= ∑
k

∂ui

∂sk

∂φk

∂sm

∣∣∣∣
s=1

,(2.7)

∂

∂t
Umn|i (t) = ∂3φi

∂t∂sm∂sn

∣∣∣∣
s=1

= ∑
j=1

(
∂ui

∂φj

∂2φj

∂sm∂sn

)
+ ∑

j,k=1

(
∂2ui

∂φj∂φk

∂φj

∂sm

∂φk

∂sn

)∣∣∣∣
s=1

.

(2.8)

Notice equation (2.7) defines a system of ordinary differential equations (ODEs)
determining the mean behavior, whose solutions can be plugged in to solve the
second system of equations (2.8) governing second moments. These systems are
subject to the initial conditions Mm|i (0) = 1{m=i} and Umn|i (0) = 0. We introduce
the notation κij = ∂ui

∂sj
|s=1 for brevity; as an example, for all a ∈ A, m = 1, . . . ,M,

κ00 = λ − ∑
a∈A

νa, κaa = −μa, κmm = −μm,

κ0a = νa, κam = νm1{a→m}.

While the number of equations increases in going from PGFs to conditional
moments, surprisingly, the new system admits closed form solutions. To provide
some intuition, we may solve the equations (2.7) beginning with the mature cells
separately, and successively back-substitute to obtain solutions for the means con-
ditional on beginning with a progenitor, and in turn with an HSC. These mean ex-
pressions can then be plugged into the system of second moment equations (2.8),
where the strategy can be repeated. While the equations become more and more
complicated, they retain the same general form owing to linearity of the branch-
ing process—if the model had feedback loops from interaction between cells, this
approach would fall apart. Finally, we arrive at the unconditioned moments by
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marginalizing over π , accounting for uncertainty of initial cell type. Because ma-
ture cells cannot give rise to additional types, their ODEs are pure death equations,
which are solved straightforwardly to obtain

Mm|m(t) = eκmmt = e−μmt .

These solutions are substituted into moment expressions conditional on beginning
with a marked progenitor: by (2.7), these equations are given by

∂

∂t
Mm|a(t) = κaaMm|a(t) + 1{a→m}κamMm|m(t),

and upon rearrangement are of the general form

(2.9)
d

dt
Mm|a(t) + P(t)Mm|a(t) = Q(t).

Upon inspection, this differential equation remains first order and can be solved
using the integrating factor method: multiplying both sides by e

∫
P(t) dt and rear-

ranging for Mm|a(t) allows us to solve by applying the product rule in reverse,
yielding

Mm|a(t) = 1{a→m}
κam

κaa − κmm

(
eκaat − eκmmt ) = 1{a→m}

νm

μm − μa

(
e−μat − e−μmt ).

These expressions are intuitive: a higher rate of differentiation νm leads to an in-
crease in the mean population of type m cells, while a larger death rate μm relative
to the death rate of progenitors μa producing the type m cells decreases their mean
population. Next, (2.7) again gives us mean equations conditional on beginning
with one marked HSC:

∂

∂t
Mm|0(t) = κ00Mm|0(t) + ∑

a∈A
1{a→m}κ0aMm|a(t),

which clearly is also of the form (2.9). Thus, we can plug in the solutions we’ve
obtained for Mm|a(t) and solve the system using the same technique, yielding

Mm|0(t) = eκ00t
∑
a∈A

1{a→m}
κ0aκam

κaa − κmm

(
e(κaa−κ00)t − 1

κaa − κ00
− e(κmm−κ00)t − 1

κmm − κ00

)

= e(λ−∑
a νa)t

∑
a∈A

1{a→m}
νaνm

μm − μa

(
e((

∑
a νa)−μa−λ)t − 1

(
∑

a νa) − μa − λ

− e((
∑

a νa)−μm−λ)t − 1

(
∑

a νa) − μm − λ

)
.

These expressions characterize the mean behavior of the system, and furthermore
may now be used toward solving for the second moments. We introduce for sim-

plicity the additional notation κi,jk := ∂2ui

∂sj ∂sk
|s=1; for instance, κ0,00 = 2λ. Further,
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the equations Umm|m(t) = κmmUmm|m(t), and together with the initial condition
are only satisfied by the trivial solution Umm|m(t) = 0 for all final types m. Now,
many terms in equation (2.8) have zero contribution, and the remaining equations
in the system can be simplified to yield

d

dt
Umn|a(t) = 1{a→m}1{a→n}

(
∂ua

∂sa

∂2φa

∂sm∂sn
+ ∂2ua

∂sa∂sm

∂φa

∂sn

∂φm

∂sm

+ ∂2ua

∂sa∂sn

∂φa

∂sm

∂φn

∂sn

)
= 1{a→m}1{a→n}(κaaUmn|a + κa,amMn|aMm|m + κa,anMm|aMn|n),

d

dt
Umn|0(t) =

(
∂u0

∂s0

∂2φ0

∂smsn
+ 2

∂2u0

∂s2
0

∂φ0

∂sm

∂φ0

∂sn

+ ∑
a∈A

1{a→m}1{a→n}
∂u0

∂sa

∂2φa

∂smsn

)∣∣∣∣
s=1

= κ00Umn|0 + 2κ0,00Mm|0Mn|0 + ∑
a∈A

1{a→m}1{a→n}κ0aUmn|a.

Similarly,

d

dt
Umm|a(t) = 1{a→m}

(
∂ua

∂sa

∂2φa

∂s2
m

+ 2
∂2ua

∂sa∂sm

∂φa

∂sm

∂φm

∂sm
+ 0

)
= 1{a→m}(κaaUmm|a + 2κa,amMm|aMm|m),

d

dt
Umm|0(t) =

[
∂u0

∂s0

∂2φ0

∂s2
m

+ ∂2u0

∂s2
0

(
∂φ0

∂sm

)2
+ ∑

a∈A
1{a→m}

∂u0

∂sa

∂2φa

∂s2
m

]∣∣∣∣
s=1

= κ00Umm|0 + κ0,00M
2
m|0 + ∑

a∈A
1{a→m}κ0aUmm|a.

Since we already have expressions for the means M·|·, these equations U·|a(t) each
become a first order linear ODE and can now each be solved individually. Indeed,
they again take the form (2.9), and we find

Umm|a(t) = 1{a→m}eκaat
∫ t

0
2 · e−κaaxκa,amMm|a(x)Mm|m(x)dx,

Umn|a(t) = 1{a→m,a→n}eκaat

×
∫ t

0
e−κaax(

κa,amMn|a(x)Mm|m(x) + κa,anMm|a(x)Mn|n(x)
)
dx.



2106 J. XU ET AL.

Replacing κ· with explicit rates, we integrate and simplify these expressions to
obtain

Umm|a(t) = 1{a→m}
2ν2

m

μm − μa

e−μat

[
μa − μm

μm(μa − 2μm)
− e−μmt

μm

− e(μa−2μm)t

μa − 2μm

]
,

Umn|a(t) = 1{a→m}1{a→n}
{

νmνn

μn − μa

e−μat

×
[

μa − μn

μm(μa − μm − μn)
− e−μmt

μm

− e(μa−μm−μn)t

μa − μm − μn

]

+ νmνn

μm − μa

e−μat

[
μa − μm

μn(μa − μm − μn)
− e−μnt

μn

− e(μa−μm−μn)t

μa − μm − μn

]}
.

It is worth noting here that the product 1{a→m}1{a→n} is zero for any pair of types
m, n not descended from the same progenitor type, which may occur in models
with specialized oligopotent progenitors. Recall that Cov[Xm(t),Xn(t)|X(0) =
ea)] = Umn|a(t) − Mm|a(t)Mn|a(t). We see that in this case, Umn becomes
zero, leading to lower values of the model-based covariance. In particular,
Cov[Xm(t),Xn(t)|X(0) = ea)] may be negative when m, n do not share a progeni-
tor type. This gives some intuition on the substantial effect of progenitor structure,
which becomes apparent in the results presented in Section 3.

Finally, we plug in these solutions into the differential equations beginning with
an HSC governing U·|0(t), which now take on the same general form and again
can be solved by the integrating factor method:

Umn|0(t) = eκ00t
∫ t

0
e−κ00x

(
κ0,00Mn|0(x)Mm|0(x)

+ ∑
a∈A

1{a→m}1{a→n}κ0aUmn|a(x)

)
dx,

Umm|0(t) = eκ00t
∫ t

0
e−κ00x

(
κ0,00M

2
m|0(x) + ∑

a∈A
1{a→m}κ0aUmm|a(x)

)
dx.

These integrals have closed form solutions since their integrands only differ
from the previous set of equations by additional exponentials contributed from
the U·|a(t) expressions. We omit the integrated forms in the general case for
brevity, but remark that while they appear lengthy, they are comprised of sim-
ple terms and can be very efficiently computed within iterative algorithms. For
completeness, we include the explicit solutions to the simplest model in the Ap-
pendix A.3.

2.6. Marginalized moments. With closed form moment expressions in hand,
we can readily recover variance and covariance expressions for mature cells and
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thus calculate model-based correlations. For instance,

Cov
[
Xm(t),Xn(t)|X(0) = ej

] = Umn|j (t) − Mm|j (t)Mn|j (t).

Because the initial state is uncertain, unconditional variances and covariances be-
tween mature types can be computed by marginalizing over the initial distribution
vector π . Derivations for all of the following expressions in this section are in-
cluded in the Appendix A-3. We arrive at the marginal expressions by applying
the law of total (co)variance:

Var
[
Xm(t)

]
=

K∑
k=1

πkE
[
X2

m|k
] −

K∑
k=1

π2
k

(
E[Xm|k])2

)

− 2
∑
j>k

πjπkE[Xm|j ]E[Xm|k]

=
K∑

k=1

πk

[
Umm|k(t) + Mm|k(t)

] − π2
k Mm|k(t)2

− 2
∑
j>k

πjπkMm|k(t)Mm|j (t),

(2.10)

Cov
[
Xm(t),Xn(t)

]
=

K∑
k=1

πkE[Xm|kXn|k] −
K∑

k=1

π2
k E[Xm|k]E[Xn|k]

− ∑
k �=l

πkπlE[Xm|k]E[Xn|l]

=
K∑

k=1

πkUmn|k(t) − π2
k Mm|k(t)Mn|k(t)

− ∑
k �=l

πkπlMm|k(t)Mn|l(t).

(2.11)

It remains to relate these expressions to the correlations between read counts
ψmn(θ;Y). Applying the law of total (co)variance again with respect to the mul-
tivariate hypergeometric sampling distribution, we obtain the following expres-
sions:

Cov
[
Ym(t), Yn(t)

] = bmbn

Bm(t)Bn(t)
Cov

[
Xm(t),Xn(t)

]
,(2.12)
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Var
[
Ym(t)

] = bm(Bm(t) − bm)

Bm(t)(Bm(t) − 1)
E

[
Xm(t)

]
− bm(Bm(t) − bm)

Bm(t)2(Bm(t) − 1)
E

[
X2

m(t)
]

+ b2
m

Bm(t)2 Var
[
Xm(t)

]
.

(2.13)

We note that the last set of variance and covariance expressions is an approx-
imation, because we treated Bm(t) as a constant. In Appendix A.3 we provide a
justification for this approximation, and in our empirical evaluation did not observe
any negative effects of this approximation.

2.7. Implementation. We implemented these methods in the R package
branchCorr, available at https://github.com/jasonxu90/branchCorr. Software
includes algorithms to simulate and sample from this class of branching process
models, to compute model-based moments given parameters, and to estimate pa-
rameters by optimizing the loss function objective. We provide a vignette that steps
through smaller-scale reproductions of all simulations in this paper.

3. Results.

3.1. Simulation study. We examine performance of the loss function estima-
tor on simulated data, generated from several hematopoietic tree structures in our
branching process framework. Specifically, we consider models with three or five
mature types with varying progenitor structures displayed in Figure 2. Under each
model, we simulate 400 independent datasets, each consisting of 20,000 realiza-
tions representing distinct barcode IDs, from the specified continuous-time branch-
ing process. Since we observe fairly constant in vivo cell populations in the real
data, true rates for simulating these processes were chosen such that summing over
the 20,000 barcodes, the total populations of each mature cell type are relatively
constant after time t = 2. Note that while total populations are stable, individual
barcode trajectories display a range of heterogeneous behaviors, with many trajec-
tories becoming extinct and others reaching very high counts. This reflects what
we see in the real data.

From each synthetic dataset, we then sample an observed dataset according to
the multivariate hypergeometric distribution, mimicking the noise from blood sam-
pling. Observations are recorded at irregular times over a two year period similar to
the span and frequency of the experimental sampling schedule. Parameter estima-
tion is then performed on the simulated datasets. To minimize the loss function, we
use the general optimization implementation in R package nlminb. Optimization
is performed over 250 random restarts per dataset. We constrain rates to be nonneg-
ative, and include a log-barrier constraint to ensure that the overall growth of the

https://github.com/jasonxu90/branchCorr
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FIG. 3. Performance of loss function estimator on synthetic data from model with five mature types
and two progenitor types, that is, model (c). Parameters are successfully estimated despite the pa-
rameter rich setting. Additional plots assessing identifiability along with medians, median absolute
deviations and standard errors appear in Appendix A-5.

HSC reserve is nonnegative. The initial distribution vector is constrained to a prob-
ability simplex via a multinomial logistic reparametrization. Finally, we remark
that optimizating over all free parameters leads to mild identifiability problems as
anticipated. As mentioned in Section 2.3, correlations in the objective function are
invariant to scale, and we expect some parameters to be distinguishable only up to
a ratio. Intuitively, additional information to fix a sense of scale is required. Our
simulation studies show that fixing the death rates μi at their true value remedies
this problem: the corresponding intermediate rates νi , together with all other free
parameters, can be recovered successfully. Results displayed in Figure 3 illustrate
that estimates have low median error and are stable in that variation in the esti-
mates and objective value is lower across random restarts of the optimization algo-
rithm than across independent simulated datasets. The analogous findings for other
models as well as detailed tables are reported in Appendix A-5. For real data, the
strategy of fixing death rates is actionable since average lifespans of mature blood
cells are available in the scientific literature.

Correlation profiles from estimated parameters corresponding to the results in
the tables above are displayed in Figure 4. Visually, we see the fitted curves are
very close to those corresponding to true parameters. We also note clear qualitative
differences between models, with the two-progenitor model exhibiting two distinct
groupings of correlation profiles, featuring low and negative correlations.

Model misspecification. In the following simulation experiments, we examine
the performance of the estimator in under- and over-specified models. We do so
by incorrectly assuming the data are generated from a model with one common
progenitor or with three intermediate progenitors, and fitting these models to data
simulated from the two-progenitor model (c) considered in the previous section.
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FIG. 4. Pairwise correlation curves between five mature cell types descended from one common
progenitor (left) or two distinct progenitors (right) calculated from our point estimate θ̂ . Solution
curves from best fitting parameter estimates are almost indistinguishable from those corresponding
to true parameters in both cases. Note that in the two-progenitor model, pairwise correlations among
mature cell types display two clusters of behavior, and that negative correlations are possible.

Figure 3 shows that the median over relative errors θ̂i−θi

θi
of each component in

the estimated parameter vector θ̂ is near zero, and we note the median value of
the objective function (2.2) at convergence was 2.78×10−4, with median absolute
deviation 1.31 × 10−4 and standard deviation 2.47 × 10−4.

The fitted correlation curves under misspecified progenitor structures are dis-
played in Figure 5, with detailed tables containing estimates again included in the
Appendix A.5. We also examine the behavior when fitting a model with fewer
types by “lumping” similar mature cells together. To this end, we consider group-
ing mature types 2 and 3 together, and types 4 and 5 together, thus fitting a model
with three total mature types, but with a progenitor structure consistent with the

FIG. 5. Fitted correlation curves corresponding to misspecified model estimates. Data are gener-
ated from a true model with two distinct progenitors and the true correlation profiles are the same
as those displayed in the right panel of Figure 4. While we see a generic lack of fit in the three-pro-
genitor model, notice that specifying one common progenitor fails to exhibit negative correlations
necessary to explain the data. On the other hand, “lumping” mature cells but properly specifying
progenitor structure results in reasonable performance, as evident in the rightmost panel.
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true model. Results in Figure 5 suggest it is reasonable to group cells with shared
lineages together, resulting in a much milder effect on model fit than progeni-
tor structure misspecification. Such a grouping strategy can be important to avoid
overfitting a model to real data when some degree of model misspecification is
inevitable, and is advantageous in settings where limited data suggest aggregation
to reliably estimate fewer model parameters.

3.2. Cell lineage barcoding in rhesus macaques. Having validated our method
on data simulated from the model, we turn to analyze the lineage barcoding
data from Wu et al. (2014). We consider barcoding data collected from a rhe-
sus macaque over a 30 month period following bone marrow transplantation. We
include sampling times at which uncontaminated read data for each of the five
cell types (granulocyte, monocyte, T, B and Natural Killer) are available and, as
in the original study, apply a filter so that only lineages exceeding a 1000 read
count threshold at some time point are considered. After these restrictions, our
dataset consists of 9635 unique barcode IDs, with read data available at 11 un-
evenly spaced sampling times.

As inputs to the loss function estimator, we fix death rates at biologically real-
istic parameters based on previous studies (Hellerstein et al. (1999), Zhang et al.
(2007), Kaur et al. (2008)), reported below. Parameters of the multivariate hyperge-
ometric sampling distribution are treated as known constants based on circulating
blood cell (CBC) data recorded at sampling times. These include Bm(t), the total
population of type m cells in circulation at time t across all barcodes, and bm, the
constant number of type m cells in the sample at each observation time. Though
we do model the measurement error process in CBC data, the measurement noise
allows observed correlation profiles to be nonmonotonic, behavior that is also cap-
tured in the fitted model.

We estimate the remaining rate parameters and initial barcoding distribution
using the loss function estimator in all models displayed in Figure 2. Fitted pair-
wise correlation curves from estimates obtained via loss function optimization with
2000 random restarts in models with one multipotent progenitor type are displayed
in Figure 6. There are three curves in model (a) with three mature types, and 10
curves corresponding to possible pairs among the five mature types in model (b)
plotted on the right. The empirical correlations from raw data are displayed as
solid lines. On a qualitative level, there is visible separation into three clusters of
correlation profiles among the five mature cell groups, consistent with the simpler
lumped model (a). Cells that are “out of sync”—the scale of their differentiation
and death rates are quite different—exhibit lower pairwise correlations. For in-
stance, the abundant and short-lived granulocytes and monocytes have a high pair-
wise correlation compared to other pairs. Notably, empirical correlations between
NK cells and any other cell type are significantly lower than all other pairwise
correlations. This supports the main result in the pilot clustering-based analysis in
the original study (Wu et al. (2014)), reporting on distinctive NK lineage behavior,
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FIG. 6. Dashed lines depict fitted correlations to read data in models (a) and (b) assuming one
early progenitor type. GCSF mobilization dates are marked by vertical red lines. Solid lines connect
the empirical correlations.

from a new perspective. In both plots, fitted curves follow the shape of observed
correlations over time, and we observe that the largest error occurs at the 6.5 month
sample, coinciding with the application of granulocyte-colony stimulating factor
(GCSF), a technical intervention that perturbs normal hematopoiesis in the animal.

Next, we display a comparison of intermediate differentiation rates normalized
as fate decision probabilities in Figure 7 and fitted self-renewal rates in Figure 8
across models. The complete set of parameter estimates (used to generate fitted

FIG. 7. Comparison of fitted intermediate differentiation rates parametrized as fate decision prob-
abilities. Displayed are the bootstrap percentile confidence intervals of normalized commitment rates

to each mature type i, ν̂i∑
j ν̂j

, in each model displayed in Figure 2(a)–(f).
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FIG. 8. Comparison of fitted self-renewal rates λ̂ and 95% confidence intervals across all models
displayed in Figure 2(a)–(f). Point estimates with lowest objective value (best estimates) are marked
by red diamonds, while bootstrap confidence intervals and medians are plotted in black. The con-
fidence interval around λ̂ from model (a) overlaps with the interval obtained in previous telomere
analyses focusing on HSC behavior in primates (Shepherd et al. (2007)), while the interval from
model (b) is close and in reasonable range. Other models without a multipotent progenitor result in
less biologically plausible estimates.

curves in Figure 6) and their corresponding confidence intervals are reported in
Appendix A-5. Rate estimates are parametrized as number of events per five days:
for instance, death rates μ = (0.4,0.04,0.3) in the lumped model correspond to
half-lives of about eight days among granulocytes and monocytes, three months
for T and B cells, and two weeks in NK cells. In all models with five mature types,
we fix death rates at μ = (0.8,0.3,0.04,0.08,0.4).

These results are easier to visualize in terms of fate decision probabilities, and
estimates along with confidence intervals are reported in Figure 7. Confidence in-
tervals are produced via 2500 bootstrap replicate datasets. Nonparametric boot-
strap resampling was performed over barcode IDs as well as over read count
sampling, to account for both variation across stochastic realizations of barcode
count time series and from sampling noise. We used bootstrap percentile confi-
dence intervals and report them in Figures 7 and 8. We find that granulocytes and
monocytes are produced much more rapidly than T, B and NK cells. Converting
back to the original time scale, the estimates indicate that individual progenitor
cells are long-lived and can each produce thousands of these mature cells per day.
These findings pertaining to the dynamics of intermediate cell stages are biolog-
ically realistic and have not been previously estimated. The dynamics of HSCs,
on the other hand, have been studied in nonhuman primates via telomere analysis
(Shepherd et al. (2007)), which estimates the HSC self-renewal rate at once every
23 weeks with 11–75 week range. This corresponds to an estimate of λ̃ = 0.0310
with interval (0.0095,0.0649) in our parametrization. As we see in Figure 8, these
findings coincide with our estimates and confidence intervals for λ̂ in models with
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TABLE 1
Model selection via fivefold cross-validation, where the first row refers to models illustrated in
Figure 2. The multipotent progenitor model (b) results in a better objective value evaluated on

held-out data than those with multiple oligopotent progenitors

Model (b) (c) (d) (e) (f)

Number of progenitors 1 2 2 3 3
CV Objective 4.34 7.49 6.61 9.15 8.25

one multipotent progenitor. The initial barcoding percentage of HSCs is estimated
at 13% in model (a), depicted in Figure 2. Since we experienced numerical insta-
bilities while fitting models (b)–(f), we used model (a) estimate and fixed the total
progenitor marking percentage at 87% in these more complex models. However,
estimates of π̂ in models with multiple progenitors lie on the boundary of the prob-
ability simplex, even when fixing π̂0 (see Table A-9, Appendix). Along with higher
objective values and less biologically plausible parameters, these results suggest a
poorer model fit, reminiscent of the behavior in the model misspecification exper-
iments in Section 3.1. mature types. We quantify this lack of fit by performing
model selection via fivefold cross-validation (CV). We divide the dataset into five
random subsets of equal size and fit each model to the training data consisting of
four of the subsets while holding one subset out as test data to assess predictive
performance. We then compute the objective function (2.2) using parameters ob-
tained from the training data and empirical correlations computed using the test
data. These cross-validated objective function values for models (b)–(f), displayed
in Table 1, are the average of the objectives evaluated across the five sets of train-
ing and test data. Model (a), not displayed in the table, achieves a CV objective
value of 1.72, but is not directly comparable as its loss function is comprised of
fewer correlation terms since there are only three mature blood cell types. The
CV objective value for the multipotent progenitor model (b) is noticeably lower,
favoring this simple single progenitor model over more complex alternatives. In
addition, models with oligopotent progenitors (c)–(f) visually fit the data worse
than the multipotent progenitor model (b) when fitted and empirical correlations
are plotted together (see Appendix A-5). We also considered additional oligopo-
tent progenitor models (e.g., switching B and T in models (d) and (f) and switching
NK and T as well as NK and B in (e)), but these additional models also performed
worse that the multipotent progenitor model (b), so we do not report these results
here.

4. Discussion. We propose a novel modeling framework and parameter es-
timation procedure for analyzing hematopoietic lineage tracking experiments. To
our knowledge, this is the first such method for fitting time series counts from cell
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lineage tracking data to continuous-time stochastic models featuring HSC, progen-
itor and mature stages of cell development. Detailed simulation studies show that
the loss function estimator yields accurate inference when applied to data gener-
ated from this class of models. Our analysis of in vivo experimental data yields
estimates of HSC self-renewal rates, intermediate cell differentiation rates, and
progenitor death rates. We are the first to estimate most of these parameters in a
large primate system. Moreover, our methodology opens the door for statistically
rigorous selection of models describing the hierarchy of hematopoietic cell spe-
cialization and differentiation.

Our exploration of several models suggests that a model with one unrestricted
multipotent progenitor provides a better fit to the data than models requiring an
ordered hierarchical differentiation. This result may seem counterintuitive, but one
needs to remember that even though our models with multiple progenitors are more
complex, they are also more restrictive in the sense that they include loss of lineage
potential by limiting the types of mature cells that can descend from each distinct
progenitor. If in reality progenitors never fully lose their potential to produce all
mature cell types, this restriction leads to model misspecification. Indeed, recent
studies dispute traditional assumptions about hematopoietic structures prescribing
restricted differentiation pathways. For instance, Kawamoto, Wada and Katsura
(2010) challenge the classical notion of a specialized myeloid progenitor, showing
that lymphocyte progenitors (i.e., T, B, NK) can also give rise to myeloid cells (Gr
and Mono). Recent in vitro studies of human hematopoiesis suggest multipotence
of early progenitors (Notta et al. (2016)) may only occur in mature systems, and
argue that oligopotent behavior is only observed in early stages of development. In
light of this and other recent studies, our model selection results are supportive of
emerging experimental data (Velten et al. (2017)).

Several limitations remain when modeling hematopoiesis as a Markov branch-
ing process. The assumptions of linearity and rate homogeneity imply a possibil-
ity of unlimited growth, and extending analysis to allow for nonlinear regulatory
behavior as the system grows near a carrying capacity is merited. Similarly, the
Markov assumption may be relaxed to include arbitrary lifespan distributions—
age-dependent processes are one example falling under this model relaxation, and
have been applied to analyzing stress erythropoiesis in recent studies (Hyrien et al.
(2015)). Further phenomena such as immigration or emigration in a random en-
vironment may be considered in future studies: for instance, it is known some
cells in the peripheral bloodstream move in and out of tissue. While such exten-
sions are mathematically challenging, they are straightforward to simulate, and
various forward simulation approaches or approximate methods such as approx-
imate Bayesian computation (ABC) (Marjoram et al. (2003), Toni et al. (2009))
may provide a viable alternative. Indeed, a Bayesian framework would further al-
low existing prior information available from previous studies about average lifes-
pans of mature blood cells to be incorporated without fixing some of the model
parameters.
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Our fully generative framework and accompanying estimator immediately en-
able simulation studies and sensitivity analyses, and can be adapted to developing
model selection tools. The larger scientific problem of inferring the most likely lin-
eage differentiation pathway structure directly translates to the statistical problem
of model selection. Many model selection approaches essentially build on param-
eter estimation techniques, balancing model complexity and goodness of fit by
penalizing the number of model parameters. While we perform model selection
by loss function cross-validation, future work can investigate various penalization
strategies applied to this class of models (Tibshirani (1996), Fan and Li (2001)),
or with shrinkage priors in a Bayesian setting (Park and Casella (2008), Griffin
and Brown (2013)). Model selection using ABC, a well studied and active area
of research (Liepe et al. (2014), Toni et al. (2009), Pudlo et al. (2016)), is also
applicable to our modeling framework.

Finally, the class of models we consider and derivations for their moment ex-
pressions are general in that an arbitrary number of intermediate progenitors and
mature cell types can be specified. Nonetheless, these models have several limi-
tations. First, we feature three stages of cell development in our model, and fu-
ture work may extend this to include additional stages. Second, our assumptions
only allow for each mature cell to be descended from one progenitor type, which
limits the ability to investigate fully connected and nested models. Nonetheless,
we have enabled parameter estimation in much more detailed models than previ-
ous statistical studies, while accounting for missing information and experimental
noise. These models commonly arise in related fields such as chemical kinetics,
oncology, population ecology and epidemiology, and our methodology contributes
broadly to the statistical toolbox for inference in partially observed stochastic pro-
cesses, a rich area of research that still faces significant challenges.
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