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The classical inverse first passage time problem asks whether, for a
Brownian motion (Bt )t≥0 and a positive random variable ξ , there exists a
barrier b : R+ → R such that P{Bs > b(s),0 ≤ s ≤ t} = P{ξ > t}, for all
t ≥ 0. We study a variant of the inverse first passage time problem for killed
Brownian motion. We show that if λ > 0 is a killing rate parameter and
1(−∞,0] is the indicator of the set (−∞,0] then, under certain compatibility
assumptions, there exists a unique continuous function b : R+ →R such that
E[−λ

∫ t
0 1(−∞,0](Bs −b(s)) ds] = P{ζ > t} holds for all t ≥ 0. This is a sig-

nificant improvement of a result of the first two authors (Ann. Appl. Probab.
24 (2014) 1–33).

The main difficulty arises because 1(−∞,0] is discontinuous. We associate
a semilinear parabolic partial differential equation (PDE) coupled with an
integral constraint to this version of the inverse first passage time problem. We
prove the existence and uniqueness of weak solutions to this constrained PDE
system. In addition, we use the recent Feynman–Kac representation results of
Glau (Finance Stoch. 20 (2016) 1021–1059) to prove that the weak solutions
give the correct probabilistic interpretation.

1. Introduction. Suppose (Bt )t≥0 is a standard Brownian motion on a probability space
(�,F, {Ft}t≥0,P) with a filtration {Ft }t≥0 satisfying the usual conditions. For any Borel
measurable function b :R+ →R, we define the stopping time

(1.1) τ̂ := inf
{
t > 0 : Bt ≤ b(t)

}
.

This is the first time the Brownian motion (Bt )t≥0 goes below the barrier b. There are two
interesting classical problems involving first passage times.

• The classical first passage time problem (FPT): For a given function b : R+ → R, find
the survival distribution of the first time that (Bt )t≥0 crosses b. In other words, find

P{τ̂ > t} for all t ≥ 0.

• The classical inverse first passage time problem (IFPT): For a given survival function
G : [0,∞) → [0,∞), does there exist a Borel measurable function b :R+ →R such that

G(t) = P{τ̂ > t}
for all t ≥ 0?

First passage times of Markov processes through constant or time-dependent barriers have
been used extensively to model phenomena in finance ([2, 14, 15]), neuroscience ([3]), me-
teorology, engineering, and biology—see [8, 11, 19, 22] for further references.
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There have been numerous papers looking at the first passage time problem ([6, 16, 18,
21]). Due to applications in mathematical finance, the inverse first passage time problem has
seen increased interest in recent years. The aim of this paper is to solve the first passage and
inverse first passage time problems for killed diffusions.

The classical inverse first passage time problem has originally been posed by A. Shiryaev
in 1976 for the special case when the distribution of the first passage time is exponential.
A first step towards solving the problem was taken in [1] where the author showed that there
exists a stopping time with the given distribution. Nevertheless, this stopping time is not the
first hitting time of a barrier b by a Brownian motion (Bt )t≥0.

A large class of first passage time problems can be analyzed using a partial differential
equations (PDE) framework. Let w(t, x) := ∂

∂x
P{Bt ≤ x, τ̂ > t} be the sub-probability den-

sity of (Bt )t≥0 killed at τ̂ . Using the Kolmogorov forward equation, one can see that w

satisfies

(1.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tw(t, x) = 1

2
∂2
xw(t, x) − ∂xw(t, x), x > b(t), t > 0,

w(t, x) = 0, x ≤ b(t), t > 0,

w(0, x) = f (x), x ∈ R,

where the function f is the probability density of B0. When the function b is smooth enough,
(1.2) has a unique smooth solution, and we can express the survival probability as

G(t) := P{τ̂ > t} =
∫ ∞
b(t)

w(t, x) dx for all t ≥ 0.

An important step towards solving the IFPT was taken in [2] where the authors show that for
sufficiently smooth barriers b and survival probabilities G, the density w and the barrier b

are a solution to the following free boundary problem:

(1.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tw(t, x) = 1

2
∂2
xw(t, x) − ∂xw(t, x), x > b(t), t > 0,

w(t, x) = 0, x ≤ b(t), t > 0,

w(0, x) = f (x), x ∈ R,

G(t) =
∫ ∞
b(t)

w(t, x) dx, t ≥ 0.

The existence and uniqueness of viscosity solution of (1.3) was established in [5]. In the
follow-up paper [4] the authors show that, when G is continuous, the solution b of (1.3) gives
the correct probabilistic interpretation and therefore solves the IFPT. The recent paper [9]
provides a different proof for the classical IFPT problem by using an elegant connection to
optimal transport. We were inspired to study these problems after reading the preprint [7]
which describes how first passage times can be used to quantify the credit risk of certain
financial transactions.

Let U be an exponentially distributed random variable with mean one that is independent
of (Bt ), and let 1(−∞,0] be the indicator function of the set (−∞,0]. Assume 0 ≤ ψ ≤ 1 is
a suitably smooth approximation of 1(−∞,0] that is nonincreasing with limx→−∞ ψ(x) = 1
and limx→∞ ψ(x) = 0. We can define the random times

(1.4) τ := inf
{
t > 0 : λ

∫ t

0
1(−∞,0]

(
Bs − b(s)

)
ds > U

}

and

(1.5) τ̃ := inf
{
t > 0 : λ

∫ t

0
ψ

(
Bs − b(s)

)
ds > U

}
,
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where λ > 0 is a fixed rate parameter. The integral
∫ t

0 1(−∞,0](Bs − b(s)) ds is the time spent
by the Brownian motion (Bt )t≥0, during the period [0, t], under the barrier b. Similarly,∫ t

0 ψ(Bs − b(s)) ds is an approximation of this time.
The random time τ (and τ̃ ) is a “smoothed-out” version of the stopping time τ̂ from (1.1).

Instead of killing (B)t≥0 as soon as it hits the barrier b, we kill (B)t≥0 at rate λ if it is in a
state y (and y ≤ b(t)) at time t ≥ 0. Note that if we let λ → ∞ in (1.4) or (1.5) we recover
the time τ̂ .

REMARK 1.1. We have the following possible financial interpretation if one assumes
(Bt )t≥0 models the credit index of a company. When Bt is large, corresponding to a time t

when the counterparty is in sound financial health, the killing rate λ1(−∞,0](B(t) − b(t)) is
0 and default in an ensuing short period of time is unlikely, whereas the killing rate is equal
to its maximum possible value, λ, when Bt is low and default is more probable.

It is straightforward to check that since U is an exponentially distributed random variable
with mean 1 that is independent of (Bt ), we have

(1.6) P{τ > t} = E

[
exp

(
−λ

∫ t

0
1(−∞,0]

(
Bs − b(s)

)
ds

)]
for all t ≥ 0.

ASSUMPTION 1.2. We suppose for the remainder of the paper that the Brownian motion
(Bt )t≥0 has a random starting position B0. Furthermore, we suppose that B0 has a density
f ∈ L2(R) that is supported on R, that is, f (x) > 0 for all x ∈ R.

As a result of Assumption 1.2, equation (1.6) becomes

(1.7) P{τ > t} =
∫
R

E

[
exp

(
−λ

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx for all t ≥ 0.

REMARK 1.3. From now on we will assume without loss of generality that λ = 1.

In [11] the IFPT for the random time τ̃ defined in (1.5) was analyzed thoroughly. We note
that τ̃ is an approximation of the more natural choice of stopping time τ . It was shown in
[11], Theorem 2.1, that if (Bt )t≥0 is a Brownian motion with a given suitable random initial
condition B0 and the survival function G is twice continuously differentiable then there is a
unique differentiable function b such that the stopping time τ̃ has the survival function G.

In the current paper we are interested in the FPT and IFPT problems for the random time
τ from (1.4). More specifically:

• The First Passage Time Problem for Killed Brownian Motion (FPTK): For a given Borel
measurable function b :R+ →R, find the survival distribution of the time when the Brownian
motion (Bt )t≥0 is killed while being under the barrier b. That is, find for all t ≥ 0,

P{τ > t} =
∫
R

E

[
exp

(
−λ

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx.

• The Inverse First Passage Time Problem for Killed Brownian Motion (IFPTK): For a
given survival function G : [0,∞) → [0,∞), does there exist a function b such that

G(t) = P{τ > t} =
∫
R

E

[
exp

(
−λ

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx

for all t ≥ 0?
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REMARK 1.4. It was key in the arguments from [11] to assume that ψ was a smooth
enough approximation of the indicator 1(−∞,0]. Theorem 4.1 from [11] shows that there
exists a solution to the IFPT problem for τ . However, it does not yield the uniqueness of the
barrier function b nor any regularity properties.

In order to find the barrier b satisfying the IFPTK we will study the following related PDE
problem: for any given initial data

u(0, x) = u0(x) > 0 for any x ∈ R and b(0) = b0 ∈ R,

and any smooth function G := G(t) satisfying appropriate compatibility condition(s) that we
will discuss below, we want to find a barrier function b := b(t) such that the unique solution
u := u(t, x) to

(1.8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu = 1

2
∂2
xu − 1(−∞,b(t)]u,

u(0, x) = u0(x) > 0,

b(0) = b0 ∈ R

satisfies the following identity:

(1.9) G(t) =
∫ ∞
−∞

u(t, x) dx for all t ≥ 0.

Here, 1(−∞,b(t)] := 1(−∞,b(t)](x) = 1(−∞,0](x − b(t)) is the indicator function of the set
(−∞, b(t)]. We assume that G ∈ C1. Here we consider that u0, b0 and G are given, and u

and b are the unknowns. We will study the existence and uniqueness of solutions (u, b) for
the system (1.8) with the constraint (1.9).

REMARK 1.5. We note that (1.8) cannot have smooth classical solutions. If one assumed
that b ∈ C(R) and u ∈ C1,2([0, T ]×R) for some T > 0 then one could obtain from (1.8) that
for any t ∈ (0, T ), the function

x �→ 1(−∞,0]
(
x − b(t)

)
u(t, x)

is continuous; something which is clearly false. As such one needs to work with suitable
weak solutions.

The hazard rate of the random time τ is given by

P{τ ∈ dt | τ > t}
dt

.

The following heuristic shows that, due to the specific form (1.4) of τ , there will be restric-
tions on the hazard rates that can be covered by our model. A straightforward computation
yields

P{τ ∈ dt | τ > t}
dt

:= lim
	t↓0

P{τ ∈ (t, t + 	t)}
	tP{τ > t}

= lim
	t↓0

P{∫ t
0 1(−∞,0](Bs − b(s))ds ≤ U ≤ ∫ t+	t

0 1(−∞,0](Bs − b(s)) ds}
	tP{∫ t

0 1(−∞,0](Bs − b(s)) ds ≤ U}
(1.10)

= lim
	t↓0

E[e− ∫ t
0 1(−∞,0](Bs−b(s)) ds − e− ∫ t+	t

0 1(−∞,0](Bs−b(s)) ds]
	tE[exp(− ∫ t

0 1(−∞,0](Bs − b(s)) ds)]

= E[1(−∞,0](Bt − b(t)) exp(− ∫ t
0 1(−∞,0](Bs − b(s)) ds)]

E[exp(− ∫ t
0 1(−∞,0](Bs − b(s)) ds)] .
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On the other hand, suppose that ζ is a nonnegative random variable with survival function
t �→ G(t) := P{ζ > t}. The corresponding hazard rate is

−G′(t)
G(t)

= − d

dt
logG(t).

As a result of (1.10), a necessary condition for a function b to exist such that the correspond-
ing random time τ has the same distribution as ζ is that

(1.11) 0 < −G′(t) < G(t) for all t ≥ 0.

Clearly if (u, b) is a solution to the IFPTK, we must have

(1.12) G(0) =
∫ ∞
−∞

u0(x) dx = 1,

and by formal differentiation,

(1.13) G′(t) = −
∫ b(t)

−∞
u(t, x) dx for all t ≥ 0.

This will be proven rigorously below in Lemma 4.2. The above discussion gives us the fol-
lowing compatibility conditions:

DEFINITION 1.6 (Compatibility conditions). We say that (G,u0, b0) is a compatible data
if G ∈ C1(R+), u0 ∈ H 2(R) and b0 ∈ R satisfy the following properties:

(i) u0(x) > 0 for all x ∈ R,
(ii) G satisfies the compatibility condition (1.11),
(iii) G(0) satisfies the initial compatibility condition (1.12), and
(iv) G′(0), u(0, x) := u0(x) and b(0) = b0 satisfy (1.13).

DEFINITION 1.7 (Weak solutions). Let T > 0, u ∈ C([0, T ];H 1(R)) ∩ L2([0, T ];
H 2(R)) and b ∈ C([0, T ]). We say that (u, b) is a weak solution to the problem (1.8)–(1.9) if

(1.14)

∫ T

0

∫ ∞
−∞

u∂tφ dx dt =
∫ ∞
−∞

uφ|t=T dx −
∫ ∞
−∞

u0φ|t=0 dx

− 1

2

∫ T

0

∫ ∞
−∞

u∂2
xφ dx dt +

∫ T

0

∫ ∞
−∞

1(−∞,b(t)]uφ dx dt

holds for all φ ∈ C∞
c ([0, T ] ×R), and

G(t) =
∫ ∞
−∞

u(x, t) dx for all t ≥ 0.

The following is our main result.

THEOREM 1.8. Let (G,u0, b0) be a compatible data. Then for any fixed T > 0,
the system (1.8) has a unique weak solution (u, b) on [0, T ] × R with b ∈ C(R+) and
u ∈ C([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R)) such that u > 0 in [0, T ] ×R.

Furthermore, the solution (u, b) satisfies

u(t, x) = E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
, x ∈ R, t ∈ [0, T ]
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and as a result

G(t) =
∫
R

E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
dx, t ∈ [0, T ]

=
∫
R

E

[
exp

(
−λ

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx, t ∈ [0, T ],

where f := u0. This implies that the IFPTK has a unique continuous solution b.

Structure of the paper. Section 2 is devoted to the study of a linearized version of our PDE.
This linearized version is used in Section 3 to construct an approximation scheme which will
be shown to converge to a weak solution (u, b) of the constrained PDE system in Sections 4.1
and 4.2. With the existence of a solution in hand we use in Section 4.3 a general version
of the Feynman–Kac formula to prove that the weak solution gives the correct probabilistic
interpretation. Making use of Feynman–Kac formula, we can prove some further properties of
the weak solution (u, b) which lead in Section 4.4 to the proof that the solution we constructed
is actually the unique solution to the constrained PDE system. We put all these pieces together
in Section 4.5 where we show that the constructed barrier b is the unique solution to the
Inverse First Passage Time Problem for Killed Brownian Motion (IFPTK). The solution to
the First Passage Time Problem is given in Section 5. Applications to mathematical finance
are showcased in Section 6. We finish by conjecturing in Section 7 a result for general one-
dimensional diffusions.

List of notation. The following is a list of spaces that we will use throughout the paper:

• For any nonnegative integers m,n and T > 0 we define the space

Cm,n([0, T ] ×R
) :={

f : [0, T ] ×R :
f (x, ·) ∈ Cn([0, T ]), x ∈ R, f (·, t) ∈ Cm(R), t ∈ [0, T ]}.

• For any nonnegative integer s, and nonempty subset A ⊂ R, we define the space

Hs(A) := {
f : A →R : ‖f ‖Hs(A) < ∞}

,

where the Hs norm is given by

‖f ‖Hs(A) :=
(

s∑
k=0

∫
A

∣∣∂k
xf (X)

∣∣2 dx

)1/2

.

When A := R, we may lighten the notation by ignoring the A-dependence, namely, write
Hs := Hs(R) and ‖ · ‖Hs := ‖ · ‖Hs(R). In particular, when s = 0, we will follow the standard
notation to write L2 := H 0 and ‖ · ‖L2 := ‖ · ‖H 0 .

• For any positive constant T and nonnegative integer s, we define the spaces

C
([0, T ];Hs(R)

) :=
{
f : [0, T ] ×R →R : sup

0≤t≤T

∥∥f (t, ·)∥∥Hs < ∞
}

and

L2([0, T ];Hs(R)
) :=

{
f : [0, T ] ×R →R :

∫ T

0

∥∥f (t, ·)∥∥2
Hs dt < ∞

}
.

2. Linearized problem. In this section we will study the linearized problem, which will
be one of the key ingredients used in Section 4 for solving the problem (1.8) under the con-
straint (1.9).

Let us begin with a simple inequality.
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LEMMA 2.1. For any real number k > 0 and any measurable function z : R → R, the
following holds:

∣∣z(x)
∣∣ ≤ √

2‖z‖
1
2
L2((−∞,x])‖∂xz‖

1
2
L2((−∞,x]) ≤ k‖∂xz‖L2((−∞,x]) + 1

2k
‖z‖L2((−∞,x]).

As a consequence

‖z‖L∞(R) ≤ √
2‖z‖

1
2
L2(R)

‖∂xz‖
1
2
L2(R)

≤ k‖∂xz‖L2(R) + 1

2k
‖z‖L2(R).

Furthermore, for any x, y ∈R, one has∣∣z(x) − z(y)
∣∣ ≤ |x − y| 1

2 ‖∂xz‖L2 .

The proof of Lemma 2.1 follows immediately from the Agmon inequality, Young’s in-
equality, and the Cauchy–Schwarz inequality, so the details will be omitted. In the following,
we study a linearized problem.

CLAIM 2.2. Let c : [0,∞) →R be a given curve, and

ψ(t, x) := 1(−∞,c(t)](x),

where 1(−∞,c(t)] is the indicator function of the set (−∞, c(t)]. Then for every u0 ∈ H 1(R),
there exists a unique solution u ∈ C([0,∞);H 1(R)) ∩ L2([0,∞);H 2(R)) to the Cauchy
problem

(2.1)

⎧⎨
⎩∂tu − 1

2
∂2
xu = −ψu,

u(0, x) = u0(x) for all x ∈ R.

Furthermore, we also have the following estimate:

(2.2) sup
0≤t≤T

∥∥u(t)
∥∥
H 1 +

(∫ T

0

∥∥∂xu(t)
∥∥2
H 1 dt

) 1
2 ≤ 3‖u0‖H 1 .

PROOF. For any fixed time T > 0, we define a map L : C([0, T ];H 1(R)) → C([0, T ];
H 1(R)) by L(u) := v where v is the unique C([0, T ];H 1(R)) solution to

∂tv − 1

2
∂xxv = −ψu,

v(0, x) = u0(x) for all x ∈ R.

It follows from the standard theory for nonhomogeneous heat equations that L is well defined.
The standard energy estimate for the heat equation yields

∥∥L(u1) − L(u2)
∥∥
C([0,T ];L2) ≤ T

1 − T
‖u1 − u2‖C([0,T ];L2).

As a result, L is a contraction mapping on C([0, T ];L2(R)) provided that T ∈ (0,1/2).
Hence, by the contraction mapping principle, we can solve (2.1) in C([0, T ];L2(R)) uniquely
within a short time T , say T = 1/4. Note that this time T = 1/4 does not depend on the
initial condition u0. The solvability in C([0,∞);L2(R)) follows directly from the semi-
group property for linear parabolic equations. Since one can obtain the C([0, T ];H 1(R))

and L2([0, T ];H 2(R)) regularities by using the standard regularizing argument and estimate
(2.2), it remains to verify (2.2).
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REMARK 2.3. The following steps have to be justified by arguments such as mollifica-
tion or approximation by smooth functions. Technically, a weak solution to (2.1) only satisfies
the equation in the distributional sense, like (1.14). Therefore, in order to make the formal
argument below rigorous, one can regularize the weak solution as follows: for any ε > 0
and (y, s) ∈ R × [ε,∞), one may choose the test function φ(x, t) := ϕε(y − x, s − t) :=
ϕ((y − x)/ε, (s − t)/ε, ) where ϕ is a standard Friedrichs mollifier with a compact support
in [−1,1]2. As a result, the smooth function uε := u ∗ ϕε satisfies the equation

(2.3) ∂tuε − 1

2
∂2
xuε = −ψuε − {

(ψu)ε − ψuε

}
classically in R×[ε,∞), where the smooth function (ψu)ε := (ψu)∗ϕε . Now, one can apply
the formal estimations below directly to (2.3), and obtain unifrom (in ε) estimates with error
terms that come from the commutator of multiplying φ and convoluting with the ϕε . These
error terms can be shown to vanish as ε → 0+ by using the standard properties of mollifiers
and commutator estimates. For example, while deriving an analogue of (2.4) for uε , one will
have an extra error term

2
∫
R

uε

{
(ψu)ε − ψuε

}
dx = O

(‖u‖L2
{∥∥(ψu)ε − ψu

∥∥
L2 + ‖ψ‖L∞‖u − uε‖L2

})
,

which converges to 0 since φu and u ∈ C([ε,∞);L2(R)). Hence, using the fact the uε → u

as ε → 0+, one can obtain (2.4) by passing to the limit in the corresponding estimate for uε .
One can also make other formal estimates below rigorous in the same manner. We will skip
these technicalities since they are standard, tedious, and not the main idea of the proof. This
types of standard arguments for mollification or approximation can be found in [20].

Next, we are going to derive estimate (2.2). Multiplying equation (2.1) by the solution u,
and then integrating over R, we have, by integrating by parts,

(2.4)
d

dt
‖u‖2

L2 + ‖∂xu‖2
L2 + 2‖u‖2

L2((−∞,c(t)]) = 0.

This is the energy identity on the L2 level.
Furthermore, we differentiate equation (2.1) with respect to x, and obtain an equation for

w := ∂xu as follows:

(2.5) ∂tw − 1

2
wxx = −ψw + δc(t)u,

where δc(t) is the Dirac delta function at the position c(t). We estimate u(t, c(t))w(t, c(t))

via Lemma 2.1:

(2.6)

∣∣u(
t, c(t)

)
w

(
t, c(t)

)∣∣ ≤ 1

2

∣∣u(
t, c(t)

)∣∣2 + 1

2

∣∣w(
t, c(t)

)∣∣2
≤ ‖u‖2

L2((−∞,c(t)]) + ‖w‖2
L2((−∞,c(t)]) + 1

3
‖∂xw‖2

L2 .

Multiplying (2.5) by w, and then integrating over R, we obtain

d

dt
‖w‖2

L2 + ‖∂xw‖2
L2 + 2‖w‖2

L2((−∞,c(t)] ≤ 2
∣∣u(

t, c(t)
)
w

(
t, c(t)

)∣∣.
We apply the estimate (2.6) to obtain

d

dt
‖w‖2

L2 + 1

3
‖∂xw‖2

L2 ≤ 2‖u‖2
L2((−∞,c(t)]).
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The L2 energy identity (2.4) implies that 2‖u‖2
L2((−∞,c(t)]) = − d

dt
‖u‖2

L2 −‖w‖2
L2 , and there-

fore, after integrating in time, we have∥∥u(t)
∥∥2
H 1 + 1

3

∫ t

0
‖∂xu‖2

H 1 ≤ ∥∥u(0)
∥∥2
H 1,

which concludes the proof. �

We next investigate what happens to the solution of the equation above when the initial
data is positive and integrable.

CLAIM 2.4. For every nonnegative u0, which is not identically zero, there exists fd(t, x)

which is strictly positive for t > 0 such that every C([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R))

solution of (2.1) satisfies, for all 0 < t ≤ T ,

(2.7) u(t, x) ≥ fd(t, x) := e−t

√
2πt

∫
R

e− (x−y)2

2t u0(y) dy.

In addition, if the initial data u0 is also integrable, then there exists a function fh(t, x), which
can be written explicitly as well, such that u(t, x) ≤ fh(t, x) and

∫
R

fh(t, x) dx = ∫
R

u0 dx.

PROOF. As long as u stays nonnegative, it satisfies

∂tu − 1

2
∂xxu + u ≥ 0

in the sense of distribution, and hence, by the comparison principle for linear parabolic equa-
tions,

u ≥ fd,

where the function fd can be written explicitly as

fd(t, x) = e−t

√
2πt

∫
R

e− (x−y)2

2t u0(y) dy,

which is a solution of the initial value problem of damped heat equation⎧⎨
⎩∂tf − 1

2
∂xxf + f = 0,

f (x,0) = u0.

One can easily see that fd is strictly positive for all t > 0. Similarly, u also satisfies

∂tu − 1

2
∂xxu ≤ 0,

in the sense of distribution, so by the comparison principle for heat equations,

u ≤ fh,

where

fh(t, x) = 1√
2πt

∫
R

e− (x−y)2

2t u0(y) dy.

The function fh has the required property as it is a solution of the homogeneous heat equation.
�

A direct consequence of Claim 2.4 is the following.

COROLLARY 2.5. Let c ∈ C(R+) and u be a C([0,∞);H 1(R)) ∩ L2([0,∞);H 2(R))

solution to (2.1) with a nonnegative initial data u0 satisfying u0(c(0)) > 0. Then u(c(t), t) >

0 for all t ≥ 0.
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3. Approximate scheme. In this section we will introduce and study the approximate
scheme for the problem (1.8)–(1.9). More precisely, we will construct a sequence of approx-
imate solutions by using an iteration scheme. The convergence of the approximate solutions
will be studied in Section 4.

First of all, let us introduce the iteration scheme as follows:

(i) Define u1 := u1(t, x) as the unique C([0, T ];H 1(R)) ∩ C∞((0, T ] ×R) solution to
the homogeneous heat equation

(3.1)

⎧⎨
⎩∂tu1 − 1

2
∂2
xu1 = 0,

u1(0, x) = u0(x) > 0.

(ii) For any given uk , we define the approximate barrier function bk := bk(t) by

(3.2) −
∫ bk(t)

−∞
uk(t, x) dx = G′(t).

(iii) For any given bk , we define uk+1 := uk+1(t, x) ∈ C([0, T ];H 1(R)) ∩ L2([0, T ];
H 2(R)) as the unique weak solution to the parabolic equation

(3.3)

⎧⎨
⎩∂tuk+1 − 1

2
∂2
xuk+1 = −1(−∞,bk(t)]uk+1,

uk+1(0, x) = u0(x) > 0.

Regarding this iterative scheme, one may ask whether the sequence of approximate solutions
can be defined iteratively for any given initial data u0 > 0 and G that satisfies the compati-
bility conditions (1.11) and (1.12). The answer is affirmative because of the following result.

PROPOSITION 3.1 (Solvability of approximate scheme). For any fixed T > 0, let G ∈
C1([0, T ]) and u0 ∈ H 2(R) satisfy the compatibility conditions (1.11) and (1.12). Assume
that u0 > 0 on R. Then there exists a unique sequence {(uk, bk)}∞k=1 ∈ C([0, T ];H 1(R)) ∩
L2([0, T ];H 2(R)) × C([0, T ]) that satisfies (3.1), (3.2) and (3.3) in the weak sense.

Furthermore, the estimate (2.2) holds for all solutions uk , and the sequence {(uk, bk)}∞k=1
has the following monotonicity property: for any integer k ≥ 1,

(3.4)

{
0 < fd ≤ uk+1 ≤ uk,

bk+1 ≥ bk,

where the positive function fd is defined in (2.7).

PROOF. The existence proof is based on a monotonicity argument and mathematical
induction.

It follows directly from the standard theory for the homogeneous heat equation that:

(i) we can always define a unique positive solution u1 in C([0, T ];H 1(R)) ∩ L2([0, T ];
H 2(R)) via the explicit solution formula for the homogeneous heat equation;

(ii) for all times t ≥ 0,

(3.5)
∫ ∞
−∞

u1(t, x) dx =
∫ ∞
−∞

u0(x) dx.

According to the identity (3.5) and conditions (1.12) and (1.11), we have, for any t ≥ 0,∫ ∞
−∞

u1(t, x) dx =
∫ ∞
−∞

u0(x) dx = G(0) ≥ G(t) > −G′(t),
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and hence, we can always define b1 := b1(t) via the identity (3.2) by using the implicit func-
tion theorem.

Given that we have already constructed (uk, bk) ∈ C([0, T ];H 1(R)) ∩ L2([0, T ];
H 2(R)) × C([0, T ]), we can construct (uk+1, bk+1) as follows.

First of all, according to Claim 2.2, we can always define uk+1 via solving the initial value
problem (3.3) provided that bk is known. In addition, uk+1 ≥ fd > 0 according to Claim 2.4.

Now, using the fact that bk(t) ≥ bk−1(t) for all t ∈ [0, T ], we can show the monotonicity
uk+1 ≤ uk by the maximum principle. Formally, since bk(t) ≥ bk−1(t) and uk+1 > 0,(

∂t − 1

2
∂xx + 1(−∞,bk−1]

)
(uk+1 − uk) = −1(−∞,bk]uk+1 + 1(−∞,bk−1]uk+1

= −1(bk−1,bk]uk+1 ≤ 0.

As a result, if both uk and uk+1 were classical solutions, one would be able to prove the
monotonicity uk+1 ≤ uk directly by using the standard maximum principle. However, both
uk and uk+1 are just weak solutions instead of classical solutions, so we have to modify the
proof of the comparison principle by using the standard duality argument. The proof will be
provided in Proposition A.1 for readers’ convenience.

Having defined uk+1, we can define bk+1 as follows. For any fixed time t ∈ [0, T ] define
bk+1(t) as the unique β ∈ R such that

−
∫ β

−∞
uk+1(t, x) dx = G′(t).

In other words, β is a zero of the continuous function

F(α, t) := G′(t) +
∫ α

−∞
uk+1(t, x) dx.

Since uk+1 is positive, F(·, t) is injective. Due to the compatibility condition (1.11), we know
that

lim
α→−∞F(α, t) = G′(t) < 0.

Therefore, we can always find the unique zero of F(·, t) by the implicit function theorem for
continuous functions provided that

(3.6) lim
α→∞F(α, t) > 0.

As a result, in order to show that bk+1 is well defined, it suffices to prove

(3.7)
∫ ∞
−∞

uk+1(t, x) dx ≥ G(t)

for all t ∈ [0, T ] because (1.11) and (3.7) imply (3.6).
Formally, one can show (3.7) very easily by using the equation (3.3) and the monotonicity

uk ≥ uk+1 > 0. A direct computation yields

d

dt

∫ ∞
−∞

uk+1(t, x) dx = −
∫ bk(t)

−∞
uk+1(t, x) dx

≥ −
∫ bk(t)

−∞
uk(t, x) dx = G′(t),

where the last equality follows from the definition of bk . Integration implies (3.7) because
of the initial compatibility condition (1.12). However, this argument is not rigorous because
uk+1 is not a classical solution to (3.3). The rigorous way to show (3.7) is to justify the above
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argument by using the standard test function technique. More precisely, one can choose a
sequence of test functions that approximate the indicator/characteristic function of [0, t]×R.
Applying these test functions to the definition of weak solution, and passing to the limit
appropriately, one will obtain an integral version of the above argument, and this justifies
(3.7).

Finally, we can also prove the monotonicity bk+1 ≥ bk by using the monotonicity uk ≥
uk+1 > 0. More precisely, since uk ≥ uk+1 > 0, it follows from the definitions of bk and bk+1
that ∫ bk+1(t)

−∞
uk+1(t, x) dx = −G′(t) =

∫ bk(t)

−∞
uk(t, x) dx ≥

∫ bk(t)

−∞
uk+1(t, x) dx,

and hence,

bk+1(t) ≥ bk(t) for all t ∈ [0, T ],
since uk+1 > 0. This completes the proof of Proposition 3.1. �

4. Existence and uniqueness. In this section we will first show the existence of solu-
tions stated in Theorem 1.8 by proving the convergence of the iterative sequence that was
constructed in Section 3. The convergence of approximate solutions and consistency of the
limit of the sequence will be shown in Sections 4.1 and 4.2 respectively. We show in Sec-
tion 4.3 that the solution of the PDE gives the correct probabilistic interpretation. Finally, we
will prove uniqueness in Section 4.4 and put all the pieces together in Section 4.5.

4.1. Convergence of the iterative scheme. In this section we will prove that the sequence
{(uk, bk)}∞k=1 of approximate solutions converges uniformly to the limit (ũ, b̃).

According to Proposition 3.1, we know that the sequence {uk}∞k=1 of approximate so-
lutions is uniformly bounded in C([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R)) because the esti-
mate (2.2) holds for the approximate sequence {uk}∞k=1 as well. In addition, by using the
evolution equation (3.3), we know that the sequence {∂tuk}∞k=1 is also uniformly bounded in
L2([0, T ];L2(R)).

As a result, by the Banach–Alaoglu theorem, there exist a subsequence {ukj
}∞j=1 and a

function ũ ∈ L∞([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R)) with ∂t ũ ∈ L2([0, T ];L2(R)) such
that ⎧⎪⎪⎨

⎪⎪⎩
ukj

→ ũ a.e.,

ukj
⇀ ũ in L2([0, T ];H 2(R)

)
,

∂tukj
⇀ ∂t ũ in L2([0, T ];L2(R)

)
,

as j → ∞. This implies that ũ ∈ C([0, T ];H 1(R)), and hence, that ũ is continuous on
[0, T ] ×R.

On the other hand, it follows from the monotonicity (3.4) that the whole sequence (instead
of the subsequence) of continuous functions {uk}∞k=1 actually converges pointwise in [0, T ]×
R because they are uniformly bounded below by fd according to Claim 2.4. Due to the
uniqueness of the pointwise limit we have that for any (t, x) ∈ [0, T ] ×R,

ũ(t, x) = lim
k→∞uk(t, x).

According to Dini’s theorem, the above convergence is uniform on any compact subset of
[0, T ] ×R due to the continuity of ũ and the monotonicity (3.4).

Furthermore, using the monotonicity (3.4) and Claim 2.4, we have, for any positive integer
k and any (t, x) ∈ [0, T ] ×R,

0 < fd(t, x) ≤ ũ(t, x) ≤ uk(t, x) ≤ fh(t, x),
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where fh(t, x) ∈ L1(R) for all time t ≥ 0. Since ũ is a pointwise limit of {uk}∞k=1, using
Lebesgue’s dominated convergence theorem, we can pass to the limit k → ∞ in (3.7), and
obtain

(4.1)
∫ ∞
−∞

ũ(t, x) dx ≥ G(t).

It follows from the positivity of ũ, inequality (4.1) and compatibility condition (1.11) that we
can always define a unique continuous function b̃ := b̃(t) via∫ b̃(t)

−∞
ũ(t, x) dx = −G′(t)

by using the implicit function theorem.
Using the fact that 0 < ũ ≤ uk , we have∫ b̃(t)

−∞
ũ(t, x) dx = −G′(t) =

∫ bk(t)

−∞
uk(t, x) dx ≥

∫ bk(t)

−∞
ũ(t, x) dx,

and hence,

bk ≤ b̃.

By the definitions of bk and b̃ and Lebesgue’s dominated convergence theorem, we obtain∫ b̃

bk

ũ dx =
∫ bk

−∞
uk − ũ dx ≤

∫ ∞
−∞

uk − ũ dx → 0,

as k → ∞. Since ũ > 0, we have

lim
k→∞bk(t) = b̃(t) for all t ∈ [0, T ].

Since b̃ is continuous, the above convergence is actually uniform according to Dini’s theorem.

4.2. Consistency of the limit. In this section we will show that the limit (ũ, b̃), which
was constructed in Section 4.1, is a weak solution to the problem (1.8)–(1.9) in the sense of
Definition 1.7.

Note that for any k ≥ 2, (uk+1, bk) is a weak solution to the approximate system (3.3), and
hence, we have, for any test function φ ∈ C∞

c ([0, T ] ×R),

(4.2)

∫ T

0

∫ ∞
−∞

uk+1∂tφ dx dt =
∫ ∞
−∞

uk+1φ|t=T dx −
∫ ∞
−∞

u0φ|t=0 dx

− 1

2

∫ T

0

∫ ∞
−∞

uk+1∂
2
xφ dx dt

+
∫ T

0

∫ ∞
−∞

1(−∞,bk(t)]uk+1φ dx dt.

Since both the sequences {uk}∞k=1 and {bk}∞k=1 converge uniformly on the support of φ, we
can pass to the limit k → ∞ in (4.2), and show that (ũ, b̃) satisfies the integral identity (1.14).
The convergence of the last term on the right hand side of (4.2) is guaranteed by Lebesgue’s
dominated convergence theorem and the fact that 0 < fd ≤ uk ≤ fh for all positive integer k,
where fh is the L1 function given in Claim 2.4.

We next show that the limit ũ satisfies the mass identity (1.9). Since |1(−∞,bk(t)]uk| ≤ fh ∈
L1(R) for any time t ∈ [0, T ], we can apply Lebesgue’s dominated convergence theorem to
(3.2) to obtain the following identity: for any t ∈ [0, T ],

(4.3)
∫ b̃(t)

−∞
ũ(t, x) dx = −G′(t).
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Integrating (4.3) with respect to the time t , we also have, for any time t ∈ [0, T ],

(4.4)
∫ t

0

∫ b̃(s)

−∞
ũ(s, x) dx ds = G(0) − G(t).

On the other hand, we have already shown that (ũ, b̃) satisfies the integral identity (1.14)
for any arbitrary test function φ ∈ C∞

c ([0, T ] × R). Applying (1.14) with a sequence of test
functions that approximate the indicator/characteristic function of [0, t] × R, one can prove
that

(4.5) −
∫ ∞
−∞

ũ(t, x) dx = −
∫ ∞
−∞

u0(t, x) dx +
∫ t

0

∫ b̃(s)

−∞
ũ(s, x) dx ds.

The identity (4.4) and the initial compatibility condition (1.12) combined with (4.5) imply
that ũ satisfies the mass identity (1.9).

4.3. Probabilistic interpretation. We have shown that for any T > 0 there exists u ∈
C([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R)) and b ∈ C([0, T ]) such that

∂tu(t, x) = 1

2
∂xxu(t, x) − u(t, x)1(−∞,0]

(
x − b(t)

)
,

u(0, x) = f (x) > 0 for all x ∈ R,∫
R

u(t, x) dx = G(t) for all t ∈ [0, T ],
(4.6)

in the weak sense of Definition 1.7.
We want to show that u(t, x) and b(t) give the correct probabilistic interpretation. Our

solutions do not have enough regularity and the killing rate is discontinuous and as such we
cannot use the classical Feynman-Kac formula. Instead, we will make use of the recent result
[12], Theorem 3.4.

THEOREM 4.1. Suppose that for some T > 0, we have u ∈ C([0, T ];H 1(R)) ∩
L2([0, T ];H 2(R)), b ∈ C([0, T ]) and (4.6) is satisfied in the weak sense. Assume further-
more that u0 = f ∈ L2(R) with

∫
R

f (y) dy = 1. Then for a.e. x ∈R,

(4.7) u(t, x) = E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
, t ∈ [0, T ]

and as a result,

(4.8) G(t) =
∫
R

E

[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx, t ∈ [0, T ].

PROOF. It is worth noting that our solutions are more regular than the requirement stated
in [12], for example C([0, T ];H 1(R))∩L2([0, T ];H 2(R)) ⊂ W 1((0, T ;H 1(R),L2(R)). In
the notation from [12] we have:

• Weight η = 0.
• Symbol A(ξ) = 1

2ξ2.
• Killing rate κ(t, x) = 1(−∞,0](x − b(t)).

It is easy to check that the symbol A satisfies [12], Conditions 3.2. In particular, conditions
(A1) and (A4) are trivial, and conditions (A2) and (A3) hold for α = 2. Furthermore, the
interior of the set {x ∈ R | P{|Bt − x| < ε} > 0for allε > 0} is clearly R. As a result, in the
notation of [12], we have supp(Bt ) = R, for all t > 0.
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Applying [12], Theorem 3.4, yields that for a.e. x ∈R,

u(t, x) = E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
, t ∈ [0, T ].

By time-reversal for the Brownian motion (Bt )t≥0, we obtain

G(t) =
∫
R

E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
dx

= E

∫
R

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
dx

=
∫
R

E

[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx,

which completes the proof. �

The following result shows that any weak solution of the problem (1.8)–(1.9) needs to
satisfy the compatibility conditions (1.11)–(1.13).

LEMMA 4.2. Suppose that for some T > 0, we have b ∈ C([0, T ]), u ∈ W 1((0, T ;
H 1(R),L2(R)) and (4.6) is satisfied in the weak sense. Assume furthermore that u0 = f ∈
L2(R) with

∫
R

f (y) dy = 1 and f > 0. For any t ∈ [0, T ], we have

(4.9) G′(t) = −
∫ b(t)

−∞
u(t, x) dx

and

(4.10) 0 < −G′(t) < G(t).

PROOF. By Theorem 4.1, we have, for any t ∈ [0, T ],

G(t) =
∫
R

E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
dx

=
∫
R

E

[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx.

Using the dominated convergence theorem, the time-reversal property for Brownian motion
(see [13]), and equation (4.7), we have

G′(t) = −E

∫
R

1(−∞,0]
(
x + Bt − b(t)

)[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx

= −E

∫
R

1(−∞,0]
(
x − b(t)

)[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
f (x + Bt) dx

= −
∫ b(t)

−∞
E

[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
f (x + Bt) dx

= −
∫ b(t)

−∞
u(t, x) dx.

Note that u > 0 and b < ∞ imply that for all t ∈ [0, T ],

0 < −G′(t) =
∫ b(t)

0
u(t, x) dx <

∫ ∞
0

u(t, x) dx = G(t). �
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4.4. Uniqueness. In this subsection we will prove the uniqueness of the weak solution
to (4.6) by deriving an L1 estimate for the difference between any two solutions (u1, b1) and
(u2, b2). Technically, we will apply the doubling variables argument to derive the comparison
between two weak solutions; see (4.20) below. This method is a standard way to estimate the
difference between weak solutions; see Kružkov’s famous work [17] on scalar conservation
laws in several spatial dimensions for instance. The main observation for this proof is iden-
tity (4.22), which, in a certain sense, allows us to “convert” the difference between b1 and b2
to the difference between u1 and u2. The details of the proof will be provided as follows.

Let (u1, b1) and (u2, b2) be two weak solutions to the problem (1.8)–(1.9) in the sense
of Definition 1.7 with the same initial data u0, and u2 > 0. For any test function ψ ∈
C∞

c ((0, T ) × R), there exists ε0 > 0 such that suppψ ⊂ (ε0, T ) × R. For any real num-
bers k ∈ R and ε ∈ (0, ε0), we can define [sgn(u1 − k)]ε := [sgn(u1 − k)] ∗ ϕε , where
ϕε(t, x) := ε−1ϕ(t/ε, x/ε) and ϕ is a standard mollifier supported in (−1,1)2. Using φ :=
[sgn(u1 − k)]εψ as a test function in (1.14), we have

(4.11)

∫ T

0

∫ ∞
−∞

(u1 − k)
[
sgn(u1 − k)

]
ε∂tψ dx dt

+
∫ T

0

∫ ∞
−∞

(u1 − k)ψ∂t

[
sgn(u1 − k)

]
ε dx dt

= −1

2

∫ T

0

∫ ∞
−∞

∂2
x (u1 − k)

[
sgn(u1 − k)

]
εψ dx dt

+
∫ T

0

∫ ∞
−∞

1(−∞,b1(t)](u1 − k)
[
sgn(u1 − k)

]
εψ dx dt

+
∫ T

0

∫ ∞
−∞

1(−∞,b1(t)]k
[
sgn(u1 − k)

]
εψ dx dt,

since (u1, b1) satisfies (1.14). As ε → 0+, [sgn(u1 − k)]ε → sgn(u1 − k) in L
p
loc((0, T )×R)

for all 1 ≤ p < ∞. Using this fact and the C([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R)) regularity
of u1, one can pass to the limit ε → 0+ in (4.11), and obtain

(4.12)

∫ T

0

∫ ∞
−∞

|u1 − k|∂tψ dx dt

= −1

2

∫ T

0

∫ ∞
−∞

∂2
x (u1 − k) sgn(u1 − k)ψ dx dt

+
∫ T

0

∫ ∞
−∞

1(−∞,b1(t)]|u1 − k|ψ dx dt

+
∫ T

0

∫ ∞
−∞

1(−∞,b1(t)]k sgn(u1 − k)ψ dx dt.

For any fixed (s, y) ∈ [0, T ] × R, we can consider u2(s, y) as a well-defined constant
since u2 is a continuous function on [0, T ] × R. For any test function ψ := ψ(t, x, s, y) ∈
C∞

c ((0, T ) × R × (0, T ) × R), we can first apply k := u2(s, y) and ψ := ψ(t, x, s, y) to
(4.12), and then integrate with respect to (s, y) over [0, T ] ×R, to obtain∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

∣∣u1(t, x) − u2(s, y)
∣∣∂tψ dx dt dy ds

= −1

2

∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

∂2
x

(
u1(t, x) − u2(s, y)

)
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× sgn
(
u1(t, x) − u2(s, y)

)
ψ dx dt dy ds

(4.13)

+
∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

1(−∞,b1(t)](x)
∣∣u1(t, x) − u2(s, y)

∣∣ψ dx dt dy ds

+
∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

1(−∞,b1(t)](x)u2(s, y)

× sgn
(
u1(t, x) − u2(s, y)

)
ψ dx dt dy ds.

REMARK 4.3. It is worth noting that equation (4.13) is just a consequence of the fact
that (u1, b1) is a weak solution to the problem (1.8)–(1.9). We have not used the fact that
(u2, b2) is also a weak solution to the problem (1.8)–(1.9) yet.

Now, using the fact that (u2, b2) is also a weak solution to the problem (1.8)–(1.9), one
can adapt the above argument, and show that

(4.14)

∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

∣∣u1(t, x) − u2(s, y)
∣∣∂sψ dx dt dy ds

= −1

2

∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

∂2
y

(
u1(t, x) − u2(s, y)

)
× sgn

(
u1(t, x) − u2(s, y)

)
ψ dx dt dy ds

−
∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

1(−∞,b2(s)](y)u2(s, y)

× sgn
(
u1(t, x) − u2(s, y)

)
ψ dx dt dy ds.

Summing up (4.13) and (4.14), we finally obtain

(4.15)

∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

∣∣u1(t, x) − u2(s, y)
∣∣(∂tψ + ∂sψ)dx dt dy ds

= −1

2

∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

{
∂2
xu1(t, x) − ∂2

yu2(s, y)
}

× sgn
(
u1(t, x) − u2(s, y)

)
ψ dx dt dy ds

+
∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

1(−∞,b1(t)](x)
∣∣u1(t, x) − u2(s, y)

∣∣ψ dx dt dy ds

+
∫ T

0

∫ ∞
−∞

∫ T

0

∫ ∞
−∞

{
1(−∞,b1(t)](x) − 1(−∞,b2(s)](y)

}
u2(s, y)

× sgn
(
u1(t, x) − u2(s, y)

)
ψ dx dt dy ds.

Now, for any test function ρ := ρ(τ, ξ) ∈ C∞
c ([0, T ] ×R) and h > 0, we choose

(4.16) ψ(t, x, s, y) := ρ

(
t + s

2
,
x + y

2

)
σh(t − s)σh(x − y),

where σh(·) := 1
h
σ ( ·

h
) is a sequence of positive and smooth functions approximating the

Dirac delta mass at the origin, namely

σ ∈ C∞
c (R), σ ≥ 0,

∫ ∞
−∞

σ(z) dz = 1, and suppσ ⊆ [−1,1].
A direct computation yields

(∂t + ∂s)ψ(t, x, s, y) = ∂τρ

(
t + s

2
,
x + y

2

)
σh(t − s)σh(x − y),
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so applying the test function ψ defined in (4.16) to (4.15), and then passing to the limit
h → 0+, we have

(4.17)

∫ T

0

∫ ∞
−∞

∣∣u1(t, x) − u2(t, x)
∣∣∂tρ(t, x) dx dt

= −1

2

∫ T

0

∫ ∞
−∞

∂2
x

{
u1(t, x) − u2(t, x)

}
× sgn

(
u1(t, x) − u2(t, x)

)
ρ(t, x) dx dt

+
∫ T

0

∫ ∞
−∞

1(−∞,b1(t)](x)
∣∣u1(t, x) − u2(t, x)

∣∣ρ(t, x) dx dt

+
∫ T

0

∫ ∞
−∞

{
1(−∞,b1(t)](x) − 1(−∞,b2(t)](x)

}
u2(t, x)

× sgn
(
u1(t, x) − u2(t, x)

)
ρ(t, x) dx dt.

Let τ ∈ (0, T ] be an arbitrary time. In order to obtain the L1 control on u1 −u2 at the time
t = τ , we choose the following test function:

(4.18) ρ(t, x) := [
1(ε,τ−ε)(t)

]
ε · ζR(x).

Here, [1(ε,τ−ε)(t)]ε := [1(ε,τ−ε)(t)] ∗ σε and ζR(x) := ζ( x
R

), where σε is the mollifier that
approximating the Dirac delta mass, and the function ζ ∈ C∞

c (R) satisfies

ζ ≥ 0, ζ ≡ 1 in [−1,1], and supp ζ ⊆ [−2,2].
Substituting (4.18) into (4.17), integrating by parts with respect to x in the first integral on
the right hand side of (4.17), passing to the limit R → ∞ first, and then passing to the limit
ε → 0+, we finally obtain

(4.19)

∫ ∞
−∞

∣∣u1(τ, x) − u2(τ, x)
∣∣dx

≤ −
∫ τ

0

∫ ∞
−∞

1(−∞,b1(t)](x)
∣∣u1(t, x) − u2(t, x)

∣∣dx dt

−
∫ τ

0

∫ ∞
−∞

{
1(−∞,b1(t)](x) − 1(−∞,b2(t)](x)

}
u2(t, x)

× sgn
(
u1(t, x) − u2(t, x)

)
dx dt

since both u1 and u2 satisfy the same initial condition (1.8)2.
Define ũ := u1 − u2. Then estimate (4.19) implies that for any τ ∈ (0, T ],

(4.20)
∥∥ũ(τ )

∥∥
L1(R) ≤

∫ τ

0

∥∥(1(−∞,b1(t)] − 1(−∞,b2(t)])u2(t)
∥∥
L1(R) dt.

On the other hand, using (4.9), we have

(4.21)
∫ b1(t)

−∞
u1(t, x) dx = −G′(t) =

∫ b2(t)

−∞
u2(t, x) dx,

and hence, by u2 > 0,

(4.22)

∥∥(1(−∞,b1(t)] − 1(−∞,b2(t)])u2(t)
∥∥
L1(R)

=
∫ ∞
−∞

sgn
(
b1(t) − b2(t)

)(
1(−∞,b1(t)](x) − 1(−∞,b2(t)](x)

)
u2(t, x) dx

= − sgn
(
b1(t) − b2(t)

) ∫ ∞
−∞

1(−∞,b1(t)](x)ũ(t, x) dx.
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Applying (4.22) to (4.20), we finally obtain

∥∥ũ(τ )
∥∥
L1(R) ≤

∫ τ

0

∥∥1(−∞,b1(t)]ũ(t)
∥∥
L1(R) dt ≤

∫ τ

0

∥∥ũ(t)
∥∥
L1(R) dt.

It follows from Grönwall’s inequality that ũ ≡ 0, or equivalently u1 ≡ u2. Using u1 ≡ u2 and
the strict positivity of u2, we can conclude from (4.21) that b1 ≡ b2.

4.5. The solution to the IFPTK. We are ready to put all the pieces together and prove our
main theorem.

THEOREM 1.8. Let (G,u0, b0) be a compatible data. Then for any fixed T > 0,
the system (1.8) has a unique weak solution (u, b) on [0, T ] × R with b ∈ C(R+) and
u ∈ C([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R)) such that u > 0 in [0, T ] ×R.

Furthermore, the solution (u, b) satisfies

u(t, x) = E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
, x ∈ R, t ∈ [0, T ]

and as a result

G(t) =
∫
R

E

[
f (x + Bt) exp

(
−

∫ t

0
1(−∞,0]

(
x + Bt−s − b(s)

)
ds

)]
dx, t ∈ [0, T ]

=
∫
R

E

[
exp

(
−λ

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx, t ∈ [0, T ],

where f := u0. This implies that the IFPTK has a unique continuous solution b.

PROOF. From Sections 4.1 and 4.2, combined with Theorem 4.1 we obtain the existence
of a continuous barrier solving the IFPTK. The uniqueness follows from Section 4.4. By
Theorem 4.1, the probabilistic interpretation works. This completes the proof. �

5. The first passage time problem for killed Brownian motion. We briefly describe
how one can use PDE to study the first passage time problem for killed Brownian motion.
Suppose we are given an initial density of the starting point of the Brownian motion f (x) for
x ∈ R, and a barrier function b :R+ →R.

THEOREM 5.1. Assume b :R+ →R is measurable, f ∈ L2(R), f > 0 and
∫
R

f (y) dy =
1. Then for T > 0 the system⎧⎨

⎩∂tu = 1

2
∂2
xu − 1(−∞,b(t)]u for all t ∈ [0, T ],

u(0, x) = f (x) for all x ∈ R

has a unique weak solution with u ∈ W 1((0, T );H 1(R),L2(R)). Furhermore, one can com-
pute the survival function of the stopping time τ as

P{τ > t} =
∫
R

E

[
exp

(
−

∫ t

0
1(−∞,0]

(
x + Bs − b(s)

)
ds

)]
f (x) dx

=
∫
R

u(t, x) dt, for all t ∈ [0, T ].
(5.1)

PROOF. The proof follows once again from [12], Theorem 3.4, and as such is omitted.
�
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6. Applications to mathematical finance. We provide a brief overview as to how one
can use our model in mathematical finance. The random time τ can be seen as the default time
of one of the parties involved in a financial agreement. This idea is not new. For example, in
[15] the authors model the default time as the first time a Brownian motion hits a time-
dependent barrier. In our setting the Brownian motion can be seen as a credit index process.
When the Brownian motion Bt is large, this corresponds to a time t when the counterparty is
in sound financial health. As such, the killing rate 1(−∞,b(t)](Bt ) is 0 and default is unlikely.
However, when Bt is low, the killing rate 1(−∞,b(t)](Bt ) is at its maximum value 1 and default
is more probable.

We remark that one can follow the method proposed in [7] to calibrate the default time
distribution of τ using the rates of credit default swaps (CDS).

We follow the strategy of [11] in order to showcase how one can price claims in this setting.
Suppose that the asset price (Xt)t≥0 is given by a geometric Brownian motion

(6.1) dXt = μXt dt + σXt dWt,

where (Wt)t≥0 is a standard Brownian motion. Just as before, the default time is modeled
by the Brownian motion (Bt )t≥0. We do not assume that (Wt)t≥0 and (Bt )t≥0 are indepen-
dent. Instead, we suppose that the two Brownian motions are correlated with correlation
ρ ∈ [−1,1]. Without loss of generality one can write

Bt = ρB ′
t +

√
1 − ρ2B ′′

t

and

Wt = B ′
t

for two independent Brownian motions (B ′
t )t≥0 and (B ′′

t )t≥0. Suppose one wants to price
contingent claims with a fixed maturity T > 0 and payoff of the form

F(XT )1{τ>T }.

An immediate computation yields

E
x[

F(XT )1{τ>T }
] = E

x

[
F(XT ) exp

(
−

∫ T

0
1(−∞,0]

(
Bs − b(s)

)
ds

)]
.

In general, one is interested in the expected value of the payoff, given the past of the asset
price and given that default did not happen yet. Therefore, one wants to be able to compute

E
x[

F(XT )1{τ>T } | (Xs)0≤s≤t , τ > t
]
,

or equivalently

E
x

[
F(XT ) exp

(
−

∫ T

t
1(−∞,0]

(
Bs − b(s)

)
ds

)
|(Xs)0≤s≤t , τ > t

]
.

Consider the Markov process Zt := (Xt ,Bt ). One can see that its generator acts on smooth
enough functions f via

Lf = 1

2
∂2
xxf + μx∂xf + 1

2
∂2
yyf + ρσ∂x∂yf − 1(−∞,0]

(
y − b(t)

)
.

The Feynman–Kac formula from [12] tells us that if F ∈ L2(R) and we set

w(t, x, y) := E
(x,y)

[
F(XT ) exp

(
−

∫ T

t
1(−∞,0]

(
Bs − b(s)

)
ds

)]
,
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then w is the unique solution to{
∂tw = Lw for all t ∈ [0, T ),

w(T , x, y) = F(x) for all x ∈ R+, y ∈ R

and w ∈ W 1((0, T );H 1(R),L2(R)). If we assume that the Brownian motion (Bt ) has a ran-
dom starting point B0 with density f , then we get

E
x

[
F(XT ) exp

(
−

∫ T

t
1(−∞,0]

(
Bs − b(s)

)
ds

)]
=

∫
R

w(t, x, y)f (y) dy.

With this in hand we can follow the method from [11], Section 5, to show that computing
the price of a contingent claim in our setting reduces to solving certain PDE with coefficients
depending on the path of the asset price.

7. Killed diffusions. In this Section we will provide conjectures that generalize our re-
sults from a Brownian motion to general one-dimensional diffusions.

As before, suppose that (Bt )t≥0 is a standard Brownian motion on a probability space
(�,F, {Ft}t≥0,P) with a filtration {Ft }t≥0 satisfying the usual conditions. Define the one-
dimensional diffusion (Yt )t≥0 via the SDE

(7.1) dYt = μ(Yt ) dt + σ(Yt ) dBt .

We suppose that the functions σ(·) and μ(·) ∈ C(R) satisfy:

• σ(x) > 0 for all x ∈ R; and
• 1

σ 2(·) and μ(·)
σ 2(·) are locally integrable on R.

Under these conditions it is well known that the SDE (7.1) has a solution that does not explode
and is unique in law; see [10] for instance. The process (Yt )t≥0 is a regular one-dimensional
diffusion with scale function and speed measure densities given by

m(dx) = m(x)dx = 2

σ 2(x)
exp

(∫ x

0

2

σ 2(y)
μ(y) dy

)
,

S(dx) = s(x) dx = exp
(
−

∫ x

0

2

σ 2(y)
μ(y) dy

)
.

(7.2)

One can then define the random time

(7.3) τY := inf
{
t > 0 : λ

∫ t

0
1(−∞,0]

(
Ys − b(s)

)
ds > U

}
,

where U is an independent exponential random variable with mean one. If Y0 has a distribu-
tion with probability density f , then the lifetime of τY can be computed as

(7.4) P
x{τY > t} =

∫
R

E
x

[
exp

(
−

∫ t

0
1(−∞,0]

(
Ys − b(s)

)
ds

)]
f (x) dx.

One can define the FPT and IFPT problems for the random time τY from (7.3). More
specifically:

• The First Passage Time Problem for Killed Diffusions (FPTKD): For a given function
b : R+ → R, find the survival distribution of the first time that (Yt )t≥0 crosses b. That is,
characterize

P{τY > t} for all t ≥ 0.
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• The Inverse First Passage Time Problem for Killed Diffusions (IFPTKD): For a given
survival function G on (0,∞) does there exist a function b such that (using (1.7))

G(t) = P{τY > t} =
∫
R

E
x

[
exp

(
−

∫ t

0
1(−∞,0]

(
Ys − b(s)

)
ds

)]
f (x) dx

for all t ≥ 0?

Any one-dimensional diffusion is time-reversible with respect to its speed measure, m. That
is, if Y0 is distributed as m, then (Ys)0≤s≤t has the same distribution as (Yt−s)0≤s≤t (see [13]
for more general results). Using this we can rewrite (7.4) as

P
x{τY > t} =

∫
R

E
x

[
exp

(
−

∫ t

0
1(−∞,0]

(
Ys − b(s)

)
ds

)]
f (x) dx

=
∫
R

E
x

[
exp

(
−

∫ t

0
1(−∞,0]

(
Ys − b(s)

)
ds

)]
f (x)

m(x)
m(x)dx

=
∫
R

E
x

[
f (Y0)

m(Y0)
exp

(
−

∫ t

0
1(−∞,0]

(
Ys − b(s)

)
ds

)]
m(x)dx

=
∫
R

E
x

[
f (Yt )

m(Yt )
exp

(
−

∫ t

0
1(−∞,0]

(
Yt−s − b(s)

)
ds

)]
m(x)dx.

(7.5)

If we set

u(t, x) := E
x

[
f (Yt )

m(Yt )
exp

(
−

∫ t

0
1(−∞,0]

(
Yt−s − b(s)

)
ds

)]
,

then by Feynman–Kac formula in [12], u should satisfy

∂tu = 1

2
σ 2(x)∂2

xxu + μ(x)∂xu − 1(−∞,b(t)]u,

u(0, x) = f (x)

m(x)
for all x ∈ R.

(7.6)

The IFPT problem in this setting therefore reduces to studying the existence and uniqueness
of solutions (u, b) to

∂tu = 1

2
σ 2(x)∂2

xxu + μ(x)∂xu − 1(−∞,b(t)]u,

u(0, x) = f (x)

m(x)
for all x ∈ R,

G(t) =
∫
R

u(t, x)m(x)dx for all t ≥ 0

(7.7)

when the functions G,f are given and m is the speed measure from (7.2).

CONJECTURE 7.1. Assume that G ∈ C2(R+) is a function such that G(0) =∫
R

f (x) dx = 1, f is strictly positive on R and f/m ∈ L2(R). Then for any fixed T > 0,
(7.7) has a unique weak solution (u, b) on [0, T ] such that u/m ∈ C([0, T ];H 1(R)) ∩
L2([0, T ];H 2(R)) and b ∈ C([0, T ]). Furthermore, this implies that b is the unique bar-
rier such that

G(t) = P{τY > t} =
∫
R

E
x

[
exp

(
−

∫ t

0
1(−∞,0]

(
Ys − b(s)

)
ds

)]
f (x) dx, t ∈ [0, T ].
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APPENDIX: COMPARISON PRINCIPLE

Below we prove a comparison principle for distributional solutions.

PROPOSITION A.1. Let (ui, bi) ∈ C([0, T ];H 1(R)) ∩ L2([0, T ];H 2(R)) × C([0, T ])
satisfy the integral identity (1.14) for any test function φ ∈ C∞

c ([0, T ] × R) with the same
initial data u0 in (1.8), for i = 1, 2. Assume that b1 ≤ b2 in [0, T ] and u2 ≥ 0 in [0, T ] ×R.
Then

(A.1) u1 ≥ u2 in [0, T ] ×R.

PROOF. Let ũ := u1 − u2. We will show that ũ ≥ 0. For any arbitrary smooth and non-
negative function h with compact support, we consider the following adjoint problem: for
any j = 1, 2, , . . . ,

(A.2)

⎧⎨
⎩−∂tϕj − 1

2
∂2
xϕj = −cjϕj + h,

ϕj (T , x) = 0,

where {cj }∞j=1 is a sequence of positive and smooth functions that approximate 1(−∞,b1(t)]
in the following sense:

cj → 1(−∞,b(t)] in L∞([0, T ] ×R
)
.

Since all coefficients of the adjoint problem are smooth, it follows from the classical theory of
scalar parabolic equations that there exists a unique classical solution ϕj ∈ C1,2([0, T ] ×R)

to the adjoint problem (A.2). Furthermore, it follows from comparison principle and uniform
L∞ bound of {cj }∞j=1 that the sequence {ϕj }∞j=1 of unique solutions to the adjoint prob-

lem (A.2) are indeed uniformly dominated by a function in C([0, T ];L1(R)). In addition,
using the facts that h ≥ 0 and cj > 0, one may apply the classical maximum principle to
show that ϕj ≥ 0 in [0, T ] ×R.

Let φ ∈ C∞
c (R) be a smooth cut-off function such that{

φ ≡ 1 for all −1 ≤ x ≤ 1, φ ≡ 0 for all |x| ≥ 2,∣∣φ′∣∣ ≤ 2 for all x ∈ R,
∣∣φ′′∣∣ ≤ 8 for all x ∈ R.

Define φR(x) := φ(x/R). Then applying φRϕj as test functions to the weak solutions (u1, b1)

and (u2, b2), we have, via (1.14),

(A.3)

∫ T

0

∫ ∞
−∞

ũ∂t (φRϕj ) dx dt + 1

2

∫ T

0

∫ ∞
−∞

ũ∂2
x (φRϕj ) dx dt

=
∫ T

0

∫ ∞
−∞

1(−∞,b1(t)]φRϕj ũ dx dt −
∫ T

0

∫ ∞
−∞

1(b1(t),b2(t)]φRϕju
2 dx dt.

Applying the adjoint equation (A.2)1 to (A.3), we obtain, since 1(b1(t),b2(t)], φR , ϕj and u2

are all nonnegative functions, that

(A.4)

0 =
∫ T

0

∫ ∞
−∞

φRhũ dx dt −
∫ T

0

∫ ∞
−∞

1(b1(t),b2(t)]φRϕju
2 dx dt + I1 + I2

≤
∫ T

0

∫ ∞
−∞

φRhũ dx dt + I1 + I2,
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where

I1 :=
∫ T

0

∫ ∞
−∞

(1(−∞,b1(t)] − cj )φRϕj ũ dx dt

I2 := −
∫ T

0

∫ ∞
−∞

ũφ′
R∂xϕj dx dt − 1

2

∫ T

0

∫ ∞
−∞

ũφ′′
Rϕj dx dt

=
∫ T

0

∫ ∞
−∞

{
φ′

R∂xũ + 1

2
φ′′

Rũ

}
ϕj dx dt.

It follows from Lebesgue’s dominated convergence theorem that as R → ∞,

I1 →
∫ T

0

∫ ∞
−∞

(1(−∞,b1(t)] − cj )ϕj ũ dx dt and I2 → 0,

so passing to the limit R → ∞ in (A.4), we have

(A.5) 0 ≤
∫ T

0

∫ ∞
−∞

hũ dx dt +
∫ T

0

∫ ∞
−∞

(1(−∞,b1(t)] − cj )ϕj ũ dx dt.

Passing to the limit j → ∞ in (A.5), by using Lebesgue’s dominated convergence theorem
again, we finally obtain

(A.6) 0 ≤
∫ T

0

∫ ∞
−∞

hũ dx dt.

Since inequality (A.6) holds for any arbitrary smooth and nonnegative function h with com-
pact support, we have ũ ≥ 0. This completes the proof of Proposition A.1. �

Acknowledgments. The authors thank Kathrin Glau and Steve Evans for helpful discus-
sions. T. K. Wong is partially supported by the HKU Seed Fund for Basic Research under
the project code 201702159009, and the start-up Allowance for Croucher Award Recipients.
A. Hening is supported by the NSF Grant DMS-1853463.

REFERENCES

[1] ANULOVA, S. V. (1981). On Markov stopping times with a given distribution for a Wiener process. Theory
Probab. Appl. 25 362–366.

[2] AVELLANEDA, M. and ZHU, J. (2001). Modelling the distance-to-default process of a firm. Risk 14 125–
129.

[3] BENEDETTO, E., SACERDOTE, L. and ZUCCA, C. (2013). A first passage problem for a bivariate diffusion
process: Numerical solution with an application to neuroscience when the process is Gauss–Markov.
J. Comput. Appl. Math. 242 41–52. MR2997429 https://doi.org/10.1016/j.cam.2012.10.014

[4] CHEN, X., CHENG, L., CHADAM, J. and SAUNDERS, D. (2011). Existence and uniqueness of solutions to
the inverse boundary crossing problem for diffusions. Ann. Appl. Probab. 21 1663–1693. MR2884048
https://doi.org/10.1214/10-AAP714

[5] CHENG, L., CHEN, X., CHADAM, J. and SAUNDERS, D. (2006). Analysis of an inverse first passage
problem from risk management. SIAM J. Math. Anal. 38 845–873. MR2262945 https://doi.org/10.
1137/050622651

[6] DARLING, D. A. and SIEGERT, A. J. F. (1953). The first passage problem for a continuous Markov process.
Ann. Math. Stat. 24 624–639. MR0058908 https://doi.org/10.1214/aoms/1177728918

[7] DAVIS, M. and PISTORIUS, M. (2010). Quantification of counterparty risk via Bessel bridges. Available at
https://ssrn.com/abstract=1722604.

[8] DAVIS, M. H. A. and PISTORIUS, M. R. (2015). Explicit solution of an inverse first-passage time prob-
lem for Lévy processes and counterparty credit risk. Ann. Appl. Probab. 25 2383–2415. MR3375879
https://doi.org/10.1214/14-AAP1051

[9] EKSTRÖM, E. and JANSON, S. (2016). The inverse first-passage problem and optimal stopping. Ann. Appl.
Probab. 26 3154–3177. MR3563204 https://doi.org/10.1214/16-AAP1172

http://www.ams.org/mathscinet-getitem?mr=2997429
https://doi.org/10.1016/j.cam.2012.10.014
http://www.ams.org/mathscinet-getitem?mr=2884048
https://doi.org/10.1214/10-AAP714
http://www.ams.org/mathscinet-getitem?mr=2262945
https://doi.org/10.1137/050622651
http://www.ams.org/mathscinet-getitem?mr=0058908
https://doi.org/10.1214/aoms/1177728918
https://ssrn.com/abstract=1722604
http://www.ams.org/mathscinet-getitem?mr=3375879
https://doi.org/10.1214/14-AAP1051
http://www.ams.org/mathscinet-getitem?mr=3563204
https://doi.org/10.1214/16-AAP1172
https://doi.org/10.1137/050622651


THE INVERSE FIRST PASSAGE TIME PROBLEM 1275

[10] ENGELBERT, H. J. and SCHMIDT, W. (1991). Strong Markov continuous local martingales and solutions
of one-dimensional stochastic differential equations. III. Math. Nachr. 151 149–197. MR1121203
https://doi.org/10.1002/mana.19911510111

[11] ETTINGER, B., EVANS, S. N. and HENING, A. (2014). Killed Brownian motion with a prescribed lifetime
distribution and models of default. Ann. Appl. Probab. 24 1–33. MR3161639 https://doi.org/10.1214/
12-AAP902

[12] GLAU, K. (2016). A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates. Fi-
nance Stoch. 20 1021–1059. MR3551859 https://doi.org/10.1007/s00780-016-0301-7

[13] HAUSSMANN, U. G. and PARDOUX, É. (1986). Time reversal of diffusions. Ann. Probab. 14 1188–1205.
MR0866342

[14] HULL, J. C. and WHITE, A. (2000). Valuing credit default swaps I: No counterparty default risk. J. Deriv.
8 29–40.

[15] HULL, J. C. and WHITE, A. (2001). Valuing credit default swaps II: Modeling default correlations. J. Deriv.
8 12–22.

[16] KLEIN, G. (1952). Mean first-passage times of Brownian motion and related problems. Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 211 431–443.

[17] KRUŽKOV, S. N. (1970). First order quasilinear equations with several independent variables. Mat. Sb.
(N.S.) 81(123) 228–255. MR0267257

[18] PESKIR, G. (2002). On integral equations arising in the first-passage problem for Brownian motion. J. Inte-
gral Equations Appl. 14 397–423. MR1984752 https://doi.org/10.1216/jiea/1181074930

[19] RICCIARDI, L. M. and SATO, S. (1990). Diffusion processes and first-passage-time problems. In Lectures
in Applied Mathematics and Informatics 206–285. Manchester Univ. Press, Manchester. MR1075228

[20] TAYLOR, M. E. (2011). Partial Differential Equations III. Nonlinear Equations, 2nd ed. Applied Mathe-
matical Sciences 117. Springer, New York. MR2744149 https://doi.org/10.1007/978-1-4419-7049-7

[21] WEISS, G. H. (2007). First passage time problems in chemical physics. Adv. Chem. Phys. 13 1–18.
[22] ZUCCA, C. and SACERDOTE, L. (2009). On the inverse first-passage-time problem for a Wiener process.

Ann. Appl. Probab. 19 1319–1346. MR2538072 https://doi.org/10.1214/08-AAP571

http://www.ams.org/mathscinet-getitem?mr=1121203
https://doi.org/10.1002/mana.19911510111
http://www.ams.org/mathscinet-getitem?mr=3161639
https://doi.org/10.1214/12-AAP902
http://www.ams.org/mathscinet-getitem?mr=3551859
https://doi.org/10.1007/s00780-016-0301-7
http://www.ams.org/mathscinet-getitem?mr=0866342
http://www.ams.org/mathscinet-getitem?mr=0267257
http://www.ams.org/mathscinet-getitem?mr=1984752
https://doi.org/10.1216/jiea/1181074930
http://www.ams.org/mathscinet-getitem?mr=1075228
http://www.ams.org/mathscinet-getitem?mr=2744149
https://doi.org/10.1007/978-1-4419-7049-7
http://www.ams.org/mathscinet-getitem?mr=2538072
https://doi.org/10.1214/08-AAP571
https://doi.org/10.1214/12-AAP902

	Introduction
	Linearized problem
	Approximate scheme
	Existence and uniqueness
	Convergence of the iterative scheme
	Consistency of the limit
	Probabilistic interpretation
	Uniqueness
	The solution to the IFPTK

	The ﬁrst passage time problem for killed Brownian motion
	Applications to mathematical ﬁnance
	Killed diffusions
	Appendix: Comparison principle
	Acknowledgments
	References

