The Annals of Applied Probability

2020, Vol. 30, No. 3, 1209-1250
https://doi.org/10.1214/19-AAP1528

© Institute of Mathematical Statistics, 2020

COUPLING AND CONVERGENCE FOR HAMILTONIAN MONTE CARLO

BY NAWAF BOU-RABEE!, ANDREAS EBERLE®" AND RAPHAEL ZIMMER%"*

1Department of Mathematical Sciences, Rutgers University—Camden, nawaf.bourabee @ rutgers.edu

2Institutf12r Angewandte Matehmatik, Universitdt Bonn, *eberle@uni-bonn.de; ™" raphael.zimmer@uni-bonn.de

Based on a new coupling approach, we prove that the transition step
of the Hamiltonian Monte Carlo algorithm is contractive w.r.t. a carefully
designed Kantorovich (L1 Wasserstein) distance. The lower bound for the
contraction rate is explicit. Global convexity of the potential is not required,
and thus multimodal target distributions are included. Explicit quantitative
bounds for the number of steps required to approximate the stationary distri-
bution up to a given error € are a direct consequence of contractivity. These
bounds show that HMC can overcome diffusive behavior if the duration of
the Hamiltonian dynamics is adjusted appropriately.

1. Introduction. Markov chain Monte Carlo (MCMC) is a family of methods to ap-
proximately sample from an arbitrary probability distribution. In conjunction with Bayesian
methods, MCMC has revolutionized statistics and enabled applications of statistical inference
to machine learning, pattern recognition, and artificial intelligence [2, 4, 11, 21, 39]. Much
of the classical research activity related to MCMC considered techniques based on random
walks. Regrettably the meandering behavior of these random walks leads to sampling meth-
ods that are slow [12, 22]. Therefore, a more recent focus of MCMC research activity is to
develop faster methods by overcoming this random walk or diffusive behavior. Hamiltonian
Monte Carlo (HMC), in principle, provides one way to do this [6, 13, 32, 35, 36]. The basic
idea is to “give the walker momentum.” With this momentum, the walker intermixes periods
of fast running with slower running to efficiently explore features of a probability distribution.
However, beyond this intuition, the mathematical properties of HMC are not well understood.

In this paper, we use a coupling technique ([29], Chapter 14) to analyse the HMC algo-
rithm. Let p denote a probability measure on R¢ with nonnormalized density e~V®). In
HMC, the function U (x) is viewed as a potential energy. In its simplest form, the algorithm
simulates a Markov chain with state space R? x R¢ and invariant probability measure /i with
nonnormalized density e "V where H(x, v) = %|v|2 + U (x) is viewed as a Hamiltonian.
Below we only consider the first component which is a Markov chain on R with invari-
ant probability measure 1. A transition step of HMC inputs an initial position x € R? and a
duration parameter 7" > 0, and outputs a final position by taking the following steps:

Step 1. Draw an initial velocity & ~ A (0, I).

Step 2. Run the Hamiltonian dynamics associated to the Hamiltonian function H for a
duration T with initial position x and initial velocity &.

Step 3. Output the final position of this Hamiltonian dynamics.

We call the algorithm with this transition step exact HMC. In practice, the Hamiltonian dy-
namics in Step 2 is approximated by a numerical integrator. Furthermore, an accept/reject
step can be added to remove the bias due to time discretization error. In order to distinguish
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these from exact HMC, we call the resulting algorithms unadjusted and adjusted numerical
HMC, respectively.

Below, we introduce a new coupling between the transition steps of two copies of exact
HMC, or numerical HMC, respectively. The approach we use is based on the framework in-
troduced in [18], and the specific coupling of the velocities is strongly inspired by a recently
developed coupling for second-order Langevin dynamics [20]. The underlying idea is to cou-
ple two copies of HMC at different positions x and y by coupling their velocities & and n such
that for a positive constant y < T~!, the event £ — n = —y (x — y) happens with maximal
probability, and otherwise, to apply a reflection coupling to the velocities. In particular, the
coupling is designed such that in the free case when U = 0, the positions approach each other
during the transition step with maximal probability. We use this contractive property of the
coupling to obtain an explicit contraction rate for HMC in a specially designed Kantorovich
(L' Wasserstein) metric.

To be more specific, we state a simpified version of one of our main results, which will
later be reformulated rigorously as Corollary 2.8—a corollary of the fundamental contraction
result in Theorem 2.3. Let 7 (x, dy) denote the one-step transition kernel of exact HMC and
let W! denote the standard L!-Wasserstein distance. Assuming sufficient regularity on the
potential energy function U (see Assumption 2.1) including that VU is globally Lipschitz
with Lipschitz constant L, and U is strongly convex outside a Euclidean ball of diameter R
with strong convexity constant K, we prove that if

2 (K 1 1
LT <min| —, -, ———
L’ 4" 256LR?

then for all initial distributions v and 7, and for all n > 0,
WI(UT[”, nn,n) < Me—cnwl(v’ 1)
R

1 1
where ¢ = Emin(l, EKTZ(I + 7>e—73/(2T)>e—272/T and

M = 3 (I+R/T)

More precisely, we prove in Theorem 2.3 that the transition kernel 7 is even contractive with
contraction rate ¢ w.r.t. an L' Wasserstein distance W, based on an explicit metric p that
is equivalent to the Euclidean distance. This statement can be used to quantify the speed of
convergence of HMC to equilibrium, and it also directly implies completely explicit bias and
variance bounds, as well as concentration inequalities for ergodic averages; see, for example,
[27].

A remarkable feature of the contraction rate ¢ is that under our hypothesis on LT?, it
only depends on K and R/T. In particular, it does not depend explicitly on the dimension,
although frequently there will be a hidden dimension dependence through the values of the
constants K and R. If we choose T proportional to R, and assume that K and LR? are fixed
(which excludes the possibility of high energy barriers), then the rate does not deteriorate as
R increases. Noting that the Hamiltonian dynamics is run for time 7 during each transition
step, we can conclude that a given approximation accuracy can be obtained after running the
dynamics for a total time of kinetic order O (R), where R basically is the diameter of a ball
where the distribution @ concentrates in. On the other hand, a Random Walk based method
would require a time of diffusive order O(R?). Hence if T is chosen adequately then HMC
can indeed overcome diffusive behavior.

In Theorems 2.4 and 2.12, we extend our results to numerical HMC with a velocity Verlet
integrator. The corresponding results are more involved than for exact HMC, but the bound
¢ for the contraction rate is the same provided the time discretization step size & is chosen
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sufficiently small depending on the other parameters, including the dimension. We consider
both adjusted and unadjusted numerical HMC. In the unadjusted case, the contraction bounds
are easier to derive and take a nicer form that is close to the corresponding results for exact
HMC, but the price to pay is an additional bias due to the fact that the invariant measure for
unadjusted HMC does not coincide with w. The resulting error has to be controlled by other
techniques that are out of the scope of this work; see [14, 34]. In Theorems 2.6 and 2.7, we
also state versions of our main results where the asymptotic strong convexity assumption is
replaced by a Foster—Lyapunov drift condition, which permits U that are only asymptotically
convex.

Several recent works have studied ergodic properties of HMC methods. In [5], geometric
ergodicity has been proven for a variant of exact HMC (called randomized HMC) where
the lengths of the durations of the Hamiltonian dynamics at the different transitions of the
Markov chain are i.i.d. exponential random variables with mean 7'. The proof relies on Harris’
theorem, which requires a (local) version of Doeblin’s condition: a minorization condition
for the transition probabilities at a finite time and in a compact set. Unfortunately, given
the complicated form of these transition probabilities, the minorization condition involves
nonexplicit constants, and in particular, the dependence of the convergence rate on parameters
in HMC is unclear. We remark that randomized HMC is related to Anderson’s dynamics,
which describes a molecular system interacting with a heat bath [1, 16, 30]. Convergence
of Anderson’s dynamics on an n-torus was proven in Ref. [16] by showing that Doeblin’s
condition holds. Recently, geometric ergodicity for HMC, but without explicit rates, has been
shown by Durmus, Moulines and Saksman [15], cf. also [3] for a related work.

Closely related to our results is [34], which significantly extends ideas from [37]. In [34],
Mangoubi and Smith apply coupling techniques in order to analyse the properties of HMC in
high dimension under the assumption of strong convexity of U see also [8] for related work
on second-order Langevin dynamics. They obtain quite sharp results on the dimension de-
pendence caused by different numerical integrators of the Hamiltonian dynamics, at the price
of imposing very restrictive assumptions on U. Complementary to this, the approach pre-
sented here is more broadly applicable and offers significant flexibility for further extensions.
It provides a suitable basic framework for studying dimension dependence caused by intrinsic
properties of the underlying model, but in contrast to [34], we do not provide sharp bounds for
the dimension dependence caused by time discretization. A major difference of our approach
to [8, 34] is that these works rely on synchronous couplings of the initial velocities in HMC,
that is, they set n = £. This simplifies the analysis considerably, but as a consequence, the
couplings are contractive only if the stationary distribution is strongly log-concave. Another
difference is that in [34] and [8], the coupling is applied to the exact dynamics, whereas the
numerical discretization is controlled by a perturbative approach. In contrast, the coupling
introduced below is contractive both for exact and numerical HMC. Its superiority to syn-
chronous couplings is supported both by theoretical results and by numerical simulations. In
connection with [25], the coupling may also be useful to parallelize HMC.

Let us finally remark that the Hamiltonian flow is what, in principle, enables HMC to make
large moves in state space that reduce correlations in the resulting Markov chain. One might
hope that, by increasing the duration 7" further, the final position moves even further away
from the initial position, thus reducing correlation. However, simple examples show that this
outcome is far from assured. For example, for a standard normal distribution, the correspond-
ing Hamiltonian flow is a planar rotation with period 2. It is easy to see that, if the initial
position is taken from the target distribution, as 7" increases from O to 77 /2, the correlation be-
tween the initial and final positions decreases and for 7 = 7 /2, the initial and final positions
are independent. However increasing 7' beyond 7t /2 will cause an increase in the correlation
and for T = 7, the chain is not even ergodic. For general distributions, it is likely that a small
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T will lead to a highly correlated chain, while choosing T too large may cause the Hamil-
tonian trajectory to make a U-turn and fold back on itself, thus increasing correlation [26].
Generally speaking the performance of HMC may be very sensitive to changes in T as first
noted by Mackenzie in [33]. This sensitivity is reflected in our conditions on the duration
parameter 7.

2. Main results.

2.1. Hamiltonian Monte Carlo. Fix afunction U € C*(R?) such that [ exp(—U (x)) dx <
00, and denote by

1
(1) H(x,v>=U<x)+§|v|2, x,veR?,

the corresponding Hamiltonian. Hamiltonian Monte Carlo (HMC) is an MCMC method for
approximate sampling from probability measures of the form

() p(dx) = 27 Vexp(—=U (x)) dx, f(dx dv) = 27! exp(—H (x, v)) dx dv,

on RY, RY x RY, respectively, where Z = [exp(—U (x)) dx and Z=0n)2z.
We consider HMC as a Markov chain on R? (not on the phase space R? x R?). The
transition step from x is given by x — X’(x) with

3) X'(x) = qr(x, E)a) +x1 g c

Here the duration T : Q — R is in general a random variable on the underlying probability
space (€2, A, P) with a given distribution v (e.g., v=4§; or v = Exp()\*l)), E~N(, I;) and
U ~ Unif(0, 1) are independent random variables, and the acceptance event for a proposed
transition is either

4 A(x) ={U <exp(H(x,8) — H(gr (x,§), pr(x,8)))} or Ax)=Q,

corresponding to adjusted and unadjusted HMC, respectively. Below we only consider the
case where T € (0, 00) is a given deterministic constant. Moreover,

¢ (x,v) = (g (x, v), pr(x,v)) (£ €[0,00),x,v€ Rd)

is the exact Hamiltonian flow, or a numerical approximation of the Hamiltonian flow. The
exact Hamiltonian flow is the solution of the ODE
d

d
) eq = Dz, Ept =-—-VU(qy), ((J()(X,U),po(x,v)) = (x,v).

The corresponding Markov chain with transition step determined by (3), (4) and (5) is called
exact HMC. Notice that for exact HMC, H(gr(x, &), pr(x,§)) = H(x,&). Hence all pro-
posed transitions are accepted without adjustment, and the transition step is simply given
by

(6) X'(x) = qr(x,8).

In practice, the Hamiltonian flow has to be approximated by a numerical integrator. Here,

we focus on the velocity Verlet integrator with discretization step size & > 0. In this case,

¢: = (q:, pr) is the solution of the equation
(7 2 = hVU( ) 4 = 1(VU( )+ VU (qrn,))
2; =Pl T 5 qltln)s a7 qitly qreiy

with initial condition (go(x, v), po(x, v)) = (x, v), where

(8) lt]l, =max{s € hZ:s <t} and [t], =min{s € hZ:s > t}.
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The corresponding Markov chain with transition step determined by (3), (4) and (7) is called
adjusted resp. unadjusted numerical HMC. For brevity, whenever i > 0 is fixed, we write
Lt] and [t] instead of [¢], and [f],,, respectively. Since the velocity Verlet integrator does
not preserve the Hamiltonian exactly, the rejection event A(x)€ is not empty in general for
adjusted numerical HMC. However, for fixed x, the rejection probability goes to 0 as 4 |, 0.

The HMC algorithm induces a time-homogeneous Markov chain on R with transition
kernel

7(x, B) = P[X'(x) € B]

= P[{gr(x,&) € B}NA(x)]+ (1 — P[A(x)])8x(B).

Here 1 — P[A(x)] is the rejection probability for a proposed transition from x. For exact
and adjusted numerical HMC, the probability measure p defined by (2) is invariant for
under the assumptions made below, cf. for example, [6, 35]. For unadjusted numerical HMC,
the invariant probability measure for 7 in general does not agree with w, but when it exists,
typically approaches w as 4 |, 0.

€))

2.2. Assumptions. For our first main result we impose the following regularity condition
onU:
ASSUMPTION 2.1. U is a function in C*(R?) satisfying the following conditions:

(A1) U has alocal minimum at 0, and U (0) = 0.
(A2) U has bounded second, third and fourth derivatives. We set

(10) L =sup|VU|, M = sup|V3U|, N =sup|V*U|.

(A3) U is strongly convex outside a Euclidean ball, that is, there exist constants R €
[0, 00) and K € (0, 00) s.t. for all x, y € R? with [x — y| > R,

(1n (x =y (VU@ = VU®Y) = K|x = yI*.
Notice that (A3) implies that U has a local minimum. Hence if (A3) holds then (Al)

can always be satisfied by centering the coordinate system appropriately and subtracting a
constant from U. Conditions (A1) and (A2) imply

12) |[VUx)|=|VU(x) = VU(0)| < L|x]| foranyxe]Rd.
Alternatively, it is possible to replace (A3) by a Lyapunov type drift condition.
ASSUMPTION 2.2. U is a function in C*(R?) satisfying (A1) and (A2). Moreover, there

exists a measurable function ¥ : R? — [0, 0o) and constants A, « € (0, 00) and R; € (0, oo]
such that:

(A4) The level set {x € R? : W(x) < 4a /A} is compact.
(A5) For all x € R? with |x| < R,

TV <A —-N¥(x)+a.

If Assumption 2.2 is satisfied then we set
(13) R :=sup]{|x| : x € R? such that W(x) < 4a/A}.

In the results below, this constant will play a similar réle as the constant R in (A3). For
exact and unadjusted HMC, we usually choose Ry = oo in Assumption 2.2. For adjusted
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numerical HMC, Lyapunov functions satisfying (A5) globally may fail to exist since on larger
balls smaller step sizes may be required to ensure stability. In this case, we can still prove a
contraction result on a large ball of radius Ry < oo if a corresponding Lyapunov condition is
satisfied.

Although the drift condition (AS5) is not stated as explicitly as condition (A3), it can be
verified in an explicit way for several important classes of examples.

EXAMPLE 2.1 (Quadratic Lyapunov functions). Suppose that Assumptions (Al) and
(A2) are satisfied, and there exist constants «, C € (0, co) such that

(14) x-VU@x) >«klx|>?—C forallx e RY.

Then there exists ng € N such that for exact HMC and for unadjusted numerical HMC with
step size h = T /n, the Lyapunov condition

(15) @) (x) < (1 —kT?/8)W(x) + (C +2d)T* with ¥(x) :=|x|?

is satisfied for all x € R? provided n > ng and L(T? + hT) < k/(10L). For adjusted nu-
merical HMC, the same assertion holds for |x| < R, where R» is an arbitrary finite constant,
provided thg’ is sufficiently small.

EXAMPLE 2.2 (Exponential Lyapunov functions). Suppose that Assumptions (A1) and
(A2) are satisfied and there exist constants «, C, Q € (0, co) such that

(16) X-VU@X)>k|x|—C and |[VU@x)|<Q forallxeR?.

Then there exists § > 0 and a smooth function ¥ : R? — (0, 00) with ¥ (x) = exp(8|x|) for
|x| > 1/8 such that for exact or unadjusted HMC

(17) (W) (x) < 8kT>(5 — W(x)/7)

is satisfied for all x € R? provided L(T? +hT) < 1. Explicitly, one can choose § = « /(4C +
8d 4+ Q°T?). Again, a corresponding assertion holds for adjusted HMC provided |x| < R,
and 4 is chosen sufficiently small depending on R;.

A sketch of the proofs of (15) and (17) is included in the Appendix.

2.3. Coupling. We now introduce a coupling for the transition steps of two copies of
the HMC chain starting at different initial conditions x and y. The coupling is defined in a
different way depending on whether x and y are far apart or sufficiently close.

2.3.1. Synchronous coupling for |x — y| > 2R. The easiest way to couple the transition
probabilities 7 (x, ) and 7 (y, -) for two states x, y € R? is to use the same random variables
& and U in both cases for the momentum refreshment and to decide whether a proposed move
is accepted. The corresponding coupling transition is given by (x, y) — (X'(x, y), Y'(x, y))
where
as) X'(x,y) =qrx, §)Iaw) + X1y,

Y'(x,3) =qr (v, &) acy) + ylac,

with A(x), A(y) defined as in (4) above with the same & and U/ in both cases. We will apply
synchronous coupling for |x — y| > 2R. Here we can exploit the strong convexity condition
(A3) to ensure contractivity for the coupling transition.
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fr) S px+T§=y+T77

‘n=E+nz

FI1G. 1. A diagram showing the basic idea behind the coupling in the case y = T~L. The dotted lines connect the
initial positions x and y with the final position qr (x, &) = qr(y,n) for U =0. When U #0, q:(x, &) — q:(y, n)
is still contracting for small t.

2.3.2. A contractive coupling for |x —y| < 2R. For |x —y| < 2R we use a different cou-
pling that enables us to derive a weak form of contractivity even in the absence of convexity.
Let y > 0 be a positive constant. The precise value of the parameter y will be chosen in an
appropriate way below. The coupling transition step is now given by

. X'(x,y) =qr(x, ) Iac) + X1y C
Y'(x, ) =qr(v. Mz, + 315

with the event A(x) defined as in (4) above, and

(20) A() = U <exp(H(y,n) — H(qgr(y.m), pr(y,m)} or A(y)=

in the adjusted and unadjusted case, respectively. Here the same random variable U/ as in (4)
is used to decide whether the proposed move to g7 (y, 1) is accepted. Moreover, we set

£4yz ifa<€0o,1(€-§+)/lzl)

2D = po,1(e- &)
& —2(e-&)e otherwise,

where z =x — y, e = z/|z|, 0,1 denotes the density of the standard normal distribution, and
U~ Unif(0, 1) is independent of T, & and .

This coupling is partially motivated by a coupling for second order Langevin diffusions
introduced in [20]. It is defined in such a way that £ — n = —yz holds with the maximal
possible probability, and a reflection coupling is applied otherwise. As illustrated in Figure 1,
the reason for this choice is that the difference process g;(x, £) — g:(y, n) is contracting in a
time interval [0, 7] if the difference & — 5 of the initial velocities is negatively proportional
to the difference of the initial positions.

In order to verify that (X'(x, y), Y'(x, y)) is indeed a coupling of the transition probabil-
ities 7 (x, -) and 7 (y, -), we remark that the distribution of 7 is N (0, I;) since, by definition
of n in (21) and a change of variables,

Plye Bl = E[IB(S TV AALGHL b d U 1}

vo,1(e-§)

Cpoale-E+ VIZI)>+]

+E[’B(g_2(6'5)e)(l o1(c-E)

= / Ig(x +y2)o,1,(x +y2) A o,1,(x)dx
+ / 15 (x — 2(e - x)e) (¢0.1, () — po.1, (6 + y2)  dx

- f I5()g0.1,(x) dx = P& € B]
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FI1G. 2. This figure illustrates realizations of the coupling with T = 1 and y = 1. The different components of
the coupling are shown as different color dots. The size of the dots is related to the number of steps: points along
the trajectory corresponding to a larger number of steps have smaller markers. A contour plot of the underlying
potential energy function is shown in the background. The inset plots the distance r; between the components of
the coupling as a function of the step index i. The simulation is terminated when this distance first reaches 10714,
In (a), (b) and (c), this occurs in 20, 29, and 51 steps, respectively.

for any measurable set B. Here a A b denotes the minimum of real numbers a and b, and we
have used that ¢g 1, (y —2(e-y)e) = ¢o,1,(y) = ¢o,1,(—y). As a byproduct of this calculation,
note also that

Pln#&+yz) = / (60.1, () — 0.1, Cx +y2))F dx = dry(N (O, 1), N' (v 2, 1),

where dtv is the total variation distance. Hence, by the coupling characterization of the total
variation distance, £ — n = —yz does indeed hold with maximal possible probability.

2.4. Numerical illustration of couplings. Before stating our theoretical results, we test
the coupling defined by (19) numerically on the following distributions:

e A normal mixture distribution where the mixture components are twenty two-dimensional
Gaussian distributions with covariance matrix given by the 2 x 2 identity matrix and with
mean vectors given by 20 independent samples from the uniform distribution over the
rectangle [0, 10] x [0, 10]. The energy barriers are not large. This example is adapted from
[28, 31].

e A Laplace mixture distribution where the mixture components are twenty two-dimensional
(regularized) Laplace distributions using the same covariance matrix and mean vectors as
in the preceding example. However, unlike the preceding example, in this example the un-
derlying potential is not strongly convex outside a ball, but instead satisfies Assumption 2.2
with respect to an exponential Foster—Lyapunov function as in Example 2.2.

e A banana-shaped distribution whose associated potential energy U : R> — R is given by
the Rosenbrock function U (x, y) = (1 — x)% + 10(y — x2). This function is highly non-
convex and unimodal with a global minimum at the point (1, 1) where U(1, 1) = 0. This
minimum lies in a long, narrow, banana shaped valley.

For simplicity, we apply the coupling globally and choose the step size 4 to integrate the
Hamiltonian dynamics small enough to ensure that essentially all proposed moves are ac-
cepted. Realizations of the coupling process with 7 =1 and y = 1 are shown in Figure 2. We
chose these parameters only for visualization purposes. The different components of the cou-
pling are shown as different color dots. The insets of the figures show the distance between
the components of the coupling as a function of the number of steps.

Figure 3 shows the average time after which the distance between the components of the
coupling is for the first time within 107°. To produce this figure, we generated 107 samples
of the coupled process for one hundred different values of the duration parameter 7. We
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FI1G. 3. This figure illustrates the average of the random time t after which the distance between the components
of the coupling is for the first time within 1079, The estimated average is plotted as a function of the duration T
of the Hamiltonian dynamics for y = 0 (black) and y = T-1 (gray). The latter choice is motivated by Figure 1.
From (a), note that the minimum of the function is smaller and occurs at a smaller value of T when y =T~
This difference is more pronounced in (b) and (c), because the underlying potential is not strongly convex outside
a ball in (b) and is highly nonconvex in (c). The kinks in the graphs are due to an artificial periodicity phenomena
with respect to the time step size, and can be reduced by reducing the time step size.

chose the coupling parameter y equal to either 7!, or equal to zero which corresponds to a
synchronous coupling. The former choice is motivated by Figure 1.

2.5. Contractivity. We now state our main contraction bounds for the coupling intro-
duced above. For given x, y € R? let

V(X,Y)=|X—Y|, R/(X,Y)=|X/(X,Y)—Y/(x,)’)

denote the coupling distance before and after the transition step. For exact HMC we set
h := 0, whereas for numerical HMC, & > 0 is the discretization step size.

k]

2.5.1. Contractivitiy by strong convexity. The assumed strong convexity of U outside of
a euclidean ball directly implies contractivity of a transition step for exact HMC for initial
values x and y that are sufficiently far apart.

THEOREM 2.1 (Contractivity for exact HMC, strongly convex case). Suppose that As-
sumption 2.1 is satisfied, and let h = 0. Then for any x,y € R? and T € Ry such that
|x —y|>2R and LT?> <KL,

(22) R'(x,y) < (1 — %KT2>r(x,y).

The proof is a direct consequence of Lemma 3.4 below; see Section 5. A similar result is
proven in [34].

Notice that contractivity is only guaranteed for LT? smaller than the conditioning num-
ber K /L. Sometimes, contraction bounds for longer durations can be obtained. However, as
discussed in the Introduction, due to possible periodicity of the Hamiltonian flow, in general
these do hot hold for arbitrary 7.

EXAMPLE 2.3 (Bivariate normal target). Consider U(x) = %xTE_lx, where ¥ =

2
0 . . . . . .
[o“(l)“ 52 ] with omax > omin > 0. In this case, Assumption 2.1 is satisfied with R = 0,

L= on:ii and K = argazx. Theorem 2.1 gives a global contraction for synchronous coupling
with rate K T2 /2 provided that 7% < o%. / or%ax. In particular, a necessary condition is that T’
is no greater than oy, which avoids periodicities in the Hamiltonian dynamics [33].

min

min
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Next we consider both adjusted and unadjusted numerical HMC. We fix an upper bound
hy > 0 for the discretization step size 4. We assume that

(23) LT(T +h)) <K/L.

Under similar conditions as in Theorem 2.1 we obtain contractivity on average for coupled
HMC transition steps:

THEOREM 2.2 (Contractivity for numerical HMC, strongly convex case). Suppose that
Assumption 2.1 is satisfied, and fix T, R, h1 € (0, 00) such that (23) holds. Then there exists
ho > 0 depending only on K, L, M, N, T, Ry and d such that for any h € (0, min(hg, h1)]
with T/h € Z and for any x,y € RY with |x — y| > 2R and max(|x|, |y|) < Ra,

1
(24) E[R (x,y)] < (1 - ZKTZ)r(x,y).

Moreover, for fixed K, L, M and N, ho can be chosen such that hal is of order O(R3) for
unadjusted numerical HMC and of order O ((1 + T-1/2) (R% + d)) for adjusted numerical
HMC.

The proof is given in Section 5. Key ingredients are the bound for contractivity of the pro-
posal in Lemma 3.4 and a bound for the probability that the proposal move gets accepted for
one of the components of the coupling and rejected for the other component, cf. Theorem 3.8.
For unadjusted HMC, the proof simplifies considerably, and A can be chosen independently
of the dimension.

2.5.2. Contractivity without global convexity. Even if we do not assume convexity, we
can still obtain contractivity for x, y at a bounded distance if we replace r (x, y) = |x — y| by
a modified metric. To this end we consider a distance function of the form

(25) p(x,y) = f(r(x,y), x,yeR?

where f : [0, 0c0) — [0, 00) is a concave function given by

(26) fr)= /Or exp(—amin(s, Ry))ds

with parameters a, Ry € (0, 00) to be specified below.
We again fix an upper bound 4 > 0 for the discretization step size 2. We now replace (23)
by the more stringent assumption

(27) L(T +h )2<min(£ ! L)
= L 4 16A)

where A := 16LR2. Under this condition we obtain contractivity on average w.r.t. the metric
p if the parameters y, a and R; defining the coupling and the metric are adjusted appropri-
ately. Explicitly, we set

(28) Y= min(T_l,R_1/4),
(29) a:=T7"",
(30) Ry = %(R + 7).

For exact HMC, we can prove a global contraction under Assumption 2.1.
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THEOREM 2.3 (Contractivity for exact HMC, general case). Suppose that Assump-
tion 2.1 is satisfied, and fix T € (0, 00) such that LT? < min(K L1 ). Let v, a and Ry be

L’ 4 16A
given by (28), (29) and (30), respectively. Then for exact HMC, for all x, y € R?,
(31) E[f(R'(x,»))] <A =) f(r(x,y),
1 1 R
(32) where c = — min(l, —KT2<1 + —)e_R/(ZT)>e_2R/T.
10 2 T

For numerical HMC, a similar contraction property holds on every finite ball in R?. The
contraction rate does not depend on the radius R, of the ball, but on a larger ball, a smaller
step size is required to ensure contractivity.

THEOREM 2.4 (Contractivity for numerical HMC, general case). Suppose that Assump-
tion 2.1 is satisfied, and fix T, Ry, h € (0, 00) such that (27) holds. Let vy, a and R be given
by (28), (29) and (30), respectively. Then there exists h, > 0 depending onlyon K, L, M, N,
R, T, Ry and d s.t. for any h € (0, min(hy, h1)] with T/ h € Z and for any x,y € R with
max(|x|, |y|]) < Ro, (31) holds with the contraction rate ¢ given by (32). Moreover, for fixed
K, L, M and N, h, can be chosen such that h:l is of order O(R3) for unadjusted, and of
order O((1+T71/2 4 Rl/z)(R% + d)) for adjusted numerical HMC.

The proofs of Theorems 2.3 and 2.4 are given in Section 5.
The following simple example demonstrates that our results provide applicable bounds in
multimodal situations if 7" is adjusted appropriately:

EXAMPLE 2.4 (Gaussian mixture). Consider a mixture of two Gaussians with means
+20 and variances o2 where o > 0. The corresponding potential is

Ukx) = —log(exp(—w) + exp(—w)).

202 202

In this case, 02U" (x) = 1 — 4sech(2x/0)?, L =sup |U"| =3/02, and U" (x) > 2/(3c?) for
all |x| > o, which allows us to choose K =2/ (30%) and R = 20. Hence, the condition on
LT? in Theorem 2.3 reduces to LT? < 1/3072, and the rate in (32) reduces to

1 177
c=15 min(l, P (1 + 4%)6_20/T>e_8“/T,

If we choose T proportional to o, then this rate is constant.

REMARK 2.5 (Scope of coupling approach). There are various possible extensions of
the basic coupling approach presented here. These include componentwise coupling on prod-
uct spaces, two-scale couplings on high dimensional spaces, and geometry-adapted cou-
plings. See [18, 38, 40] for corresponding approaches for reflection coupling of diffusion
processes—we expect that similar extensions exist for our couplings of HMC. For example,
it might be sufficient to apply asynchronous coupling to a few components and couple the
other components synchronously [40], and for models with a nontrivial geometry such as the
banana shaped distribution in Figure 2, the coupling should be designed with straight lines
replaced by geodesics in an appropriate geometry [9].

In Assumption 2.1, at least the global Lipschitz condition on VU (x) is crucial for our
proofs. Nevertheless, convergence may still hold under a relaxed condition if the step size is
adjusted appropriately, possibly depending on x. The asymptotic strong convexity assump-
tion can be replaced by a Lyapunov condition; see below. Finally, Example 2.3 shows that
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condition (27) on T cannot be avoided in general. For appropriate classes of models, it could
possibly be improved by considering an adequate non-Euclidean geometry. More generally,
we point out that even if some of the assumptions are not satisfied, the coupling is still well
defined, and one can check empirically if two copies with distant starting points approach
each other. Of course, this does not guarantee convergence but it may serve as a diagnostic
tool for HMC.

2.5.3. Contractivity under Foster—Lyapunov condition. It is possible to replace the
asymptotic strong convexity condition in Assumption 2.1 by the Lyapunov drift condition
in Assumption 2.2. In this case we consider a semimetric of the form

(33) pe(x, ) =/ f(min(lx — y[,2R)) - (1 + €W (x) + €W (y)).

where € > 0 is a positive constant, R is defined by (13), and f is again given by (26). The
idea of using corresponding semimetrics for deriving contraction properties under Lyapunov
conditions goes back to [23] and [7]; see also [19].

Similarly as above, we fix an upper bound /| > 0 for the discretization step size & such
that

1
34 L(T 4+ h)* < (——)
(34) (+1)_m1n416A
where A := 16LR?. We choose the parameters y, a and R as in (28), (29) and (30) respec-
tively, and we set

1
(35) =——e R/,
40A
Then under a global Lyapunov condition, we can prove global contractivity on average w.r.t.
the semimetric p, for exact and for unadjusted numerical HMC.

THEOREM 2.6 (Contractivity for exact and unadjusted HMC under Lyapunov condition).
Consider exact HMC or unadjusted numerical HMC with step size h € (0, h1] such that
T/h € Z. Suppose that Assumption 2.2 is satisfied with R, = oo, and (34) holds. Let y, a,
R1 and € be given by (28), (29), (30) and (35), respectively. Then for all x,y € R4,

(36) E[pe(X'(x, ), Y'(x, )] < (I =) pelx, y),

1
(37) where ¢ = <0 min (104, e_zn/T).

For adjusted numerical HMC, we again obtain contractivity on a given ball for sufficiently
small step sizes.

THEOREM 2.7 (Contractivity for numerical HMC under Lyapunov condition). Consider
adjusted numerical HMC with step size h € (0, h1] such that T / h € Z. Suppose that Assump-
tion 2.2 is satisfied for some Ry € (0, 00), and (34) holds. Let y, a, Ry and € be given by
(28), (29), (30) and (35), respectively. Then there exists h, > 0 depending only on L, M,
N, R, Ry and d s.t. for any h € (0, min(h,, h1)] with T/h € Z and for any x,y € R? with
max(|x[, |y]) < Rz, (31) holds with the contraction rate ¢ given by (32). Moreover, for fixed
L, M and N, h, can be chosen such that h:] is of order O((1+ ’Rl/z)(Rg +d)) for adjusted
numerical HMC.

The proofs of Theorems 2.6 and 2.7 are given in Section 5.
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2.5.4. Dimension dependence of contraction rates. Dependence on the dimension of the
bounds for the contraction rates derived above arises by two different effects:

(a) Dimension dependence due to model properties. The rate ¢ in Theorems 2.3 and 2.4
does not depend explicitly on the dimension d. However, a dimension dependence arises if
the underlying parameters in Assumptions 2.1 and 2.2 are dimension dependent. For exam-
ple, the parameter R in (A3) may depend on d which would then cause an implicit (and
possibly exponential) dimension dependence of the bound ¢ for the contraction rate in The-
orems 2.3 and 2.4. Similarly, the constant « in (AS5) will usually depend on d and cause an
exponential degeneration of the rates in Theorems 2.6 and 2.7. This possible degeneration
in high dimensions cannot be avoided in the general setup considered here, and it occurs in
a very similar form for other Markov processes with invariant measure u; see, for example,
[18-20]. Indeed, note that our assumptions do not exclude models with a phase transition in
the limit d — oo.

For more specific model classes, modifications of our coupling approach can avoid a pos-
sible dimension dependence. We mention two such situations that will be analysed in detail
in forthcoming work; see also the related results for other classes of Markov processes in [17,
18, 40].

e For models with weak interactions (e.g., perturbations of product measures), a componen-
twise coupling similar to the one suggested for Langevin diffusions in [18] can be applied
to obtain dimension free contraction rates for exact or unadjusted numerical Hamiltonian
Monte Carlo.

e For probability measures w that have a sufficiently nice density w.r.t. a Gaussian mea-
sure on R? or on an infinite dimensional Hilbert space, a two scale coupling approach has
been applied in [40] to derive dimension free contraction rates in the case of overdamped
Langevin diffusions with invariant measure . Such measures arise for example in transi-
tion path sampling and Bayesian inverse problems [10, 24]. In forthcoming work, we show
that in combination with the results in this paper, the approach in [40] can be carried over
to HMC.

(b) Dimension dependence due to numerical discretization. For numerical HMC, the di-
mension also affects the upper bound %, for the discretization step size. This is relevant
for resulting upper bounds of the computational complexity which are typically of order
1/(hc).

In the results above, this dimension dependence of the maximal step size does not occur
for unadjusted HMC. Although in this case, the contraction properties of the Markov chain
are completely dimension free, a dimension dependence arises because the step size has to be
chosen sufficiently small to ensure that the invariant measure of the unadjusted Markov chain
is close to u. The analysis of this dimension dependence requires different techniques that are
not the content of this work. Under rather strong assumptions (including strong convexity),
quite sharp bounds for the resulting total dimension dependence for several integrators have
been derived by Mangoubi and Smith [34]. In a more general context, sharp bounds for the
distance between the invariant measures are derived in the forthcoming work [14].

On the other hand, for adjusted HMC, our bounds require 2! of order d, thus causing a
dimension dependence of at least the same order for the computational complexity. It is an
open question if these bounds can be improved. Scaling limits and the results in [34] suggest
that at least under more restrictive assumptions, a better dimension dependence (possibly up
to d'/*) might hold for the computational complexity. On the other hand, we are not aware
of a result proving a contraction under a bound on A~! of order d* with < 1.
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2.6. Quantitative bounds for distance to the invariant measure. For exact HMC, The-
orem 2.3 establishes global contractivity of the transition kernel m(x, dy) w.r.t. the Kan-
torovich (L' Wasserstein) distance

W, m = inf f p(x, )y (dx dy)
yeC(v,n)

on probability measures v, n on R¢. Here the infimum is over all couplings y of v and 7.
Since the metric p is comparable to the Euclidean Distance on R?, contractivity w.r.t. Wo
immediately implies a quantitative bound on the standard L'-Wasserstein distance

WHva", n)= inf / lx — yly (dxdy)
yeClvr™,u)

between the law of the HMC chain after n steps and the invariant probability measure .

COROLLARY 2.8. Suppose that Assumption 2.1 is satisfied, and let T € (0, 0o) such that

(38) LT? 5min<£, L ¥>

L’ 4" 256LR?
Then for any n € N and for any probability measures v, on R¢,
(39) W, (v, na") <e " W,(v,n) and
(40) Wl(vrt", nr') < Me™ "W (v, n),

where c is given by (32), and M = exp(%(l + R/T)). In particular, for a given constant

€ € (0, 00), the standard L' Wasserstein distance A(n) = W' (va™, u) w.rt. u after n steps
of the chain with initial distribution v satisfies A(n) < € provided

1/5 5R A0
41) nZ—( +logﬁ)-

c

PR
The corollary is a rather direct consequence of Theorem 2.3. The proof is given in Sec-
tion 6.

REMARK 2.9 (Kinetic bounds). One remarkable feature of the result in Corollary 2.8
is that for a given initial error A(0), the number of steps required to stay below a certain
error bound € can be chosen universally provided T is chosen proportional to R. Notice,
however, that by Condition (38), it is only possible to choose T proportional to R with a
fixed proportionality constant if LR? is bounded by a fixed constant!

REMARK 2.10 (Quantitative bounds for ergodic averages). MCMC methods are often
applied to approximate expectation values w.r.t. the target distribution by ergodic averages
of the Markov chain. Our results (e.g., (39)) directly imply completely explicit bounds for
biasses and variances, as well as explicit concentration inequalities for these ergodic averages
in the case of HMC. Indeed, the general results by Joulin and Ollivier [27] show that such
bounds follow directly from an L' Wasserstein contraction w.r.t. an arbitrary metric p, which
is precisely the statement shown above.

We now return to numerical HMC. Here, our main results in Theorems 2.4 and 2.7 only
establish contractivity w.r.t. YW, on a ball of given radius R;. In order to derive bounds for
the distance to the invariant measure of the law after n steps, we additionally have to control
exit probabilities from the ball. This is achieved by another Lyapunov bound that we first
state in a general form. Suppose that 7w (x, dy) is the transition kernel of a Markov chain on
a complete separable metric space (S, p), and let YW, denote the corresponding Kantorovich
distance on probability measures on S.
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ASSUMPTION 2.3. The following conditions are satisfied for a constant C € (0, co) and
measurable functions ¥, ¢ : S — (0, 00):

(C1) Main Lyapunov condition: There is a constant A € [1, 0co) such that
(TY)(x) < p(x) forany x € Ss.t. ¥(x) <C.
(C2) Additional global Lyapunov condition: There is a constant 8 € [1, 00) s.t.

(re)(x) < Bp(x) and p(x,y) <@(x)+e(y) foranyx,yesS.

(C3) Local contractivity: There are a measurable map (X', Y): S x S x Q —> § x §
defined on a probability space (€2, A, P) and a constant ¢ € (0, o) such that for any x, y € S,
(X'(x,y,+),Y'(x,y,-)) is a realization of a coupling of 7 (x, -) and 7 (y, -) satisfying

E[p(X'(x,y,), Y (x,y,))] <e “p(x,y) ify(x)<Candy(y) <C.

The proof of the following theorem is given in Section 6.

THEOREM 2.11. Suppose that Assumption 2.3 is satisfied. Then for any n € N and for
any probability measures v, n on (S, B(S)),

@) W, (", ") < W, 0, n)+ﬂ”k”_l( [wav+ | wdn)8<C>,

where

(43) 5(C) = Sup{ p(x) + o)

v+ v ()

Theorem 2.11 can be applied to bound the distance to the invariant measure u after n
steps of adjusted numerical HMC. Suppose that 7 is the corresponding transition kernel for
a given discretization step size # > 0, and let p denote the metric on S = R? defined by (25),
(26), (29) and (30). We will then apply Theorem 2.11 with Lyapunov functions of the form
@(x) =2Td"? + |x| and ¥ (x) = exp(U (x)*/?). The right side of (42) can then be bounded
by a given constant € > 0 by first choosing n such that the first term is bounded by €/2, and
then choosing C such that the second term is bounded by €/2 as well. As a consequence of
Theorem 2.4 and Theorem 2.11, we can prove that a similar number of steps as for exact
HMC is also sufficient for an approximation of the invariant measure by numerical HMC,
provided /4 is chosen sufficiently small.

:x,yeSs.t.w(x)>Cor1ﬂ(y)>C}.

THEOREM 2.12. Suppose that Assumption 2.1 is satisfied. Let T, h1 € (0, 00) such that
(27) holds, let v be a probability measure on R%, and let A(n) = W' (v, 1) denote the
standard L' Wasserstein distance to the invariant probability measure after n steps of ad-
Jjusted numerical HMC with initial distribution v. Let € € (0, c0) and n € N such that

1/5 5R +(2A(0)
44) nzz(i—i-ﬁ—i-log (T)),

where c is given by (32). Then there exists h,, > 0 depending onlyon K, L, M, N, R, T, d,
v and n, such that for any h € (0, min(h, 1)) with T/ h € Z,

45) A(n) <e.
Furthermore, h,, can be chosen such that for fixed values of K, L, M, N, h:*l is of order
3 3 3 3
O((1+T72+R2)(dIn? + (1+R/T)2(d + A) + loge™")2 +R?)),
where A(v) =log [ exp(U%/?)dv.
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We finally remark that for unadjusted HMC, the above result does not apply in the same
form. In this case, there is an additional error due to the fact that the invariant measure does
not coincide with p. The careful control of this error requires different techniques that are
out of scope of this work; see [14, 34].

3. A priori estimates. In this section we state several bounds for the Hamiltonian flow,
for the coupling, and for acceptance-rejection probabilities that will be crucial in the proof of
our main result. The proofs of all the results stated in this section are included in Section 4.

3.1. Bounds for the Hamiltonian flow and for velocity Verlet. 1In the following, we con-
sider ¢ € [0, 00) and & € [0, 1] such that t/h € Z if h > 0. We assume throughout that As-
sumption 2.1 is satisfied, and

(46) L(t* +hr) < 1.

Recall that ¢; = (¢;, p;) denotes the Hamiltonian flow for 2 = 0, and the flow of the velocity
Verlet integrator for & > 0. The proofs of the following statements are provided in Section 4.

LEMMA 3.1. Forany x,v e R4,

47) mgtx]qs(x, v) — (x 4+ sv)| < L(t* 4+ th) max(|x|, |x 4+ rv]) and
s<
max| ps (x, v) — v| < Lt max|g; (x, v))|
(43)
< Lt(1 4 L(¢* + th)) max (x|, |x + tv]).

In particular,
49) mgtx}qs(x, v)| <2max(|x|, |x +rv|) and

§S=
(50) mgtx|ps(x,v)| < |v| + 2Lt max(|x|, |x + rv]).

§=

LEMMA 3.2. Forany x,y,u,v € R,

ryg;&lqs(x, u) —qs(y,v) — (x —y) —s(u — v)|
(51) - )
< L(t* 4 th) max(|x — y|,

(x—y)+tw—v)|) and

max|q (x, u) = s (v, v) = (¥ = y) = s(u —v)|
(52) -
< Lt(1 4 L(¢* + th)) max(|x — y|,

(x —y)+1(u—0)|).

REMARK 3.3. The lemma shows that on sufficiently short time intervals, the first vari-
ation of velocity Verlet can be controlled by that of the corresponding motion with constant
velocity. In particular, contractivity for small times holds if # — v = —y (x — y) for some
y > 0.

We will show next that in the region of strong convexity, the bounds in Lemma 3.2 can be
improved if the initial velocities coincide. For such initial conditions, (51) and (53) imply
(53) |4 (¥, v) = g1 (v, v) = (¢ = )| < L(e% + ht)|x =yl
(54) |pe(x,v) — pr(y,v)| < Lt(1 + L(t* + ht))|x — y|.

For |x — y| > 2R, the bound in (53) can be improved considerably:
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LEMMA 3.4. There exists a finite constant C € (0, 00), depending only on L and M,
such that the bound

(55) |91, v) — g (v, )| < (1 = K2/2)1x — yI?
holds for any t, h as above such that
(56) L(t*+1th) < K/L,

and for any x, y, v € R? such that
(57) Ix —y|>2R and (1+|x|+|v])h<K/C.

REMARK 3.5. The lemma does not provide a bound if |v| is very large. However, in this
case we still have the upper bound
(58) |9 (¥, v) = g (v, V)] < (1+ L(e + 1h)) [x — y|

that follows from (53). Hence if |v]| is large with small probability, then we still get a contrac-
tion on average. For the exact Hamiltonian dynamics, there is no corresponding restriction
on |x| and |v|. Here, the lemma immediately yields a contraction result for synchronous cou-

pling.
In the case of the exact Hamiltonian flow, that is, for 2 = 0, we have
(59) H (¢ (x,v)) = H(x, v) for any € R and x, v € R.

We are now going to quantify the error in (59) in the case where the exact flow is replaced by
the flow of the velocity Verlet integrator. This is crucial to quantify the acceptance-rejection
probabilities.

LEMMA 3.6. There exist finite constants C1, C, € (0, 00) that depend only on L, M and
N such that the bounds
(60) |(H 0 ¢ — H)(x,v)| < Cith® max(lx|, v])’,

(61) |0y (H 0 ¢ — H)(x, v)| < Cath? max(|x], |v]) max(|z], [w]),
hold for any x, v, z, w € R? and t, h as above satisfying (46).

3.2. Bounds for acceptance-rejection probabilities. We now provide some crucial
bounds for probabilities and expectations that involve acceptance-rejection events and the
coupling. Recall that the coupling that we consider for |[x — y| < 2R ensures that§ —n = —yz
with the maximal possible probability, where z = x — y. The following lemma enables us to
control probabilities and expectations when £ — n # —yz.

LEMMA 3.7. For any p > 1 there exist finite constants C, and C p such that for any
choice of y,

(62) Pl —n#—yzl < |yzl/v27,
(63) Elle-§1P;& —n# —yz] < Cplyzimax(lyzl, 1)?,
(64) E[|E1?7; £ —n# —yz] < Cplyzl((d — 1)? + max(lyzl, 1)*).

The a priori bounds (60) and (61) for velocity Verlet can be used to obtain a rather precise
control for the rejection probabilities in HMC, and for the probability that in a coupling for
HMC, the proposal is accepted for one component and rejected for the other. The resulting
bounds are crucial to prove contractivity on average for the coupling.
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THEOREM 3.8. There exist finite constants C1, Ca, C3 € (0,00) that depend only on
L, M and N such that the following bounds hold for any x,y € R® and T € [0, 00), h € [0, 1]
such that L(T* + hT) < 1:

(65) P[A)C|E] < C1T (1 + T) max(|x|, |€])* K2,

(66) PIAX) ] < CiT(1+T) (x> +2d%?)h?,

(67) P[A( y>C|n]<clr<1+T>max(|x| Inl)>h?,

(68) PIAMC ] < CiT(1+T) (x| +24°%)h?,

(69) P[A(x)AA(y>|§]<CzT(1+T)max(|x| 11, 16D 1x — ylA?,
(70) P[A)AAM] = CT (1 + T)(max(|x], |y1)° +2d°)|x — yIA?,
o P[A()AA(y)IE. n]

< CoT (1 + T)ymax(|x — yl, [€ — nl)h? - max(|x[, [y|, |£], In])’.

Furthermore, if y|x — y| <1, then

(72) E[max(|x], [yl, 1], In]); AG)AA(Y)]
< Cymax(1, y)T (1 + T)(max(|x], |yl)* +d?)|x — y|h?.

4. Proofs of a priori bounds. If 2 > 0 then we define |¢| = 7], and [t] = [t];, by (8).
For h =0 we set |¢| = [t] =t. In both cases, (g;, pr) solves (7).

PROOF OF LEMMA 3.1.  We fix x, v € R?. Let x; = g, (x, v) and vs = p,(x, v). By (7),
we have for any s € [0, ¢] that

N h N
xs:x—i—/o ULrJdr—E/O VU (x\,))dr

1 ps rlrl h s
=x+sv— 5/ / (VU (x\u)) + VU (x[u1)) dudr — 5/ VU (x|,))dr.
0 Jo 0

By (12) and since t € hZ,
L S r hL N
—x—svl< 2 dud —f d
Iy — x sv|_2/0/0(|xtuj|+|xru1|) udr+ 5 [ ldr
<Leim d th
_E(I +t )Iilgtxlxﬁ and thus

< L 2 h
r§1§1[x|xs —x —sv| < E(t +1 )(I?gtxlxs — x — sv| + max(|x]|, |x + vtl)).
By (46), we obtain:

max|x; — x — sv| < L(¢* + th) max(|x|, |x + vz]),
§=

max|x,| < (1 + L(¢* + th)) max(|x], |x + vz])
=

(73)
<2max(|x|, |x 4 vz]).

We now derive bounds for vs. By (7) and (12),

1 Ky
vs=v—5f0 (VU)(xpr)) + (VU (k) dr
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L N
o =0l =5 [ (o] =+l
Since t € hZ, we obtain by (73) and (46),

miltx|vs —v| < Ltmiltx|xs| < Lt(1 + L(¢* + th)) max(|x|, |x + vt]),
s< §=

rglgtxh)ﬂ < |v| 4 2Lt max(|x/|, |x 4 vz|). 0

PROOF OF LEMMA 3.2. The proof can be carried out in a similar way to the proof
of Lemma 3.1, where instead of (12), we directly apply the Lipschitz bound |VU (x) —
VU(y)| <L|x —y|forx,yeR¢. O

PROOF OF LEMMA 3.4. Notice that we are in the case where the initial velocities co-
incide. We fix x, y,v € R4 such that (57) holds true and set x; = qs(x,v), vs = ps(x,v),

Vs =qs(y, V), 2y = g5 (x,v) — g5 (y, v) and wy = ps(x, v) — ps(y, v). In particular, zo = x — y
and wg = 0. Let

z; =max|zg] and w} =max |wyl.
s<t s<t

By Lemma 3.2, we have

(74) |ze — z0| < L(t* + ht)|zo| and

(75) wf < Ltzf <2Lt foranytehZy st L(t> +ht) <1.

The following computations are valid for € R such that |z5| > R for s € [0, ¢]. Recall that
by (7),

h
(76) 2t =Wy —E(VU(XUJ)_VU()’UJ)),

1
(77) Wy = —E(VU(XUJ) —VU()) + VU ) — VU p))-

Let a(t) := |z,|2 and b(t) := 2z; - wy. Our goal is to derive an upper bound for a(¢). To this
end we note that a and b satisfy the following differential equations:

a(r) =b(r) +4(1),
b(t) ==z - (VU (x1)) = VU (1)) + VU (x117) — VU (y117))
+ 2wy - wy —hw, - (VU (x) — VU (yye)))
= =2z - (VU (x;) — VU))) + 2|w; > + €(2),
where
8§(t) =2z - (wiy) —wy) —hz - (VU (x)) — VU(ym))
=61(t) + 82(¢) +3(t) with
S1() =2(t — L] = h/2)z1r) - (VU (xe)) = VU (1)),
8o(t) =2(t — L] = h/2)(z: — z1)) - (VU (x11)) = VU (ype)))s
83(t)=(t — 1)z - (VU (xps) — VU (i) — VU (x 1) + VU (y i)
et)=€1() +ex(t) +e3(t) with
e1(t) =2z - (VU (x0) = VU ()
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+z: - (=VU ) + VU () — VU x) + VU (),
€(t) =2w; - (Wi — wy),
e3(t) = —hw; - (VU (x|;)) — VU (yi)))-

We see that

b(t) = —2Ka(t) + B(1)
with a function g satisfying
(78) B() < 2fwi|* +e(0).
The initial value problem

a=b+s, a0 =zl
b=—2Ka+p, b(0) =0,

has a unique solution that is given by

a(t) = cos(v2K1)|z0|% + /t cos(V2K (t —r))8(r)dr
(79) 0

rol
+ /(; Nt s1n(«/ﬁ(t —r))B(r)dr.

We now bound the terms §, € and . Note first that the assumptions imply that K> < Lt>
1< 712/2. Hence t < 7/+/2K, and thus sin(+~/2K (t — r)) > 0 for any r € [0, ¢]. Let  :
(L] +[t1)/2=|t] +h/2. Then for f € C!,

[ _
’/ (r—1t)f(r)ydr
L]

[1] _ _
_ ]/H r =D () — f@®)dr

1 2 / h3 /
5/ (r —0)“drsup|f'| = — sup| f'].
t] 12
Therefore, we obtain
[ h3 )
/ COS(VzK(I—I’))Sl(I”)drf gszLkU” .
1]

In particular, for t € hZ,

(80) /Ot cos(V2K (t —r))81(r)dr < th*~ 26“7,;*2,

where z,*’z = (z;)z. Moreover, 65(t) is given by
- h
20t —1)(t — L1])(wys) — E(VU(XUJ) —VU@u)) - (VUK E) = VU ))),
and hence by (54), for t € hZ .,

t 1 h 5
1) /0 cos(V2K (t = 1))8(r) dr < §h2t<Lwt*Z;‘ + ELZZ:’Z) < 3PHL
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In order to control §3 in an efficient way note that

|VU (xr;7) — VU (x11) — VU (yr7) + VU ()|

(7]
| [ (v2UGs = VAU ar
t

(82)
Mmoo e
sM/ |zr||xr|dr+L/ 2] dr
[7] [2]

net hL i hL
< Mhzj, Ivm|+7|xm| +L Iwm|+7|Zm| -

Therefore, we obtain for t € hZ,, by (54),

/t cos(V2K (t —r))83(r) dr
(83) °

hL hL?
<185(r) <th? (Mz?’z(v; + 7)@*) +2L%7 Tz?’z).

Next, we derive bounds for B(¢). We first observe that by (78) and (54),

B(t) <2L2%25% + €* (1),

and hence
ror
/0 \/ﬁsm(«/ZK(t —r))B(r)dr
(84) <2L? /t(t —r)r? drz,*’2 + /t(t —r)dre* (1)
0 0

1 2 1 *
- 8th“z,*’ + Etze ().

The terms €1, €2 and €3 can be controlled similarly to &1, §> and §3. Analogously to (82), we
obtain

ler(n)] < zf VU (x)) = VU (y1) — VU (x1)) + VU (y1))|
+ 2| VU (x) — VU (ye7) — VU (x0) + VU (1)

hL hL
s2 * * *
<2Mhz};; (vfﬂ + xm> +2Lhzf, (wm + zfﬂ),

and thus by (54), forr € hZ,
€r(t) < hz*(2Muvf +4L% +hLMx} + hL?),
& (t) <2Lhw'zr <4L%hiz}?,
€5(t) < Lhw'z" <2L%hiz}>.

Thus in total, we obtain by (84),

| _
/0 ﬁsm(\/ﬁ(t—r))ﬁ(r)dr

1 1
< (8L2t4 + Etzh(sz; +10L%t +hLMx) + hL2)>z,*’2.
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By (79), (80), (81) and (84), we obtain

1
1z:|> = a(t) < cos(v2K1)|zo|> + (6L2t4 + A,)z?’z where

(85)
Ar = (Ph + th?)(Mv} 4+ 5L%t + hLMx} + hL?) + L3*th* + 2L*h**.

By Lemma 3.1, there is a finite constant C that depends only on K, L and M such that for
any t € hZ satisfying (56), we have

(86) A < CEPR(1 4 x| + [v]).

Noting that cos(v/2K1) < 1 — Kt* 4+ K?t*/6, and K?t* < L?t* < Kt? by (56), we obtain by
(85) and (57),

1 *
(87) |z:* < (1 — Kt?)|z0)* + (51«2 + Cht*(1 + |x| + |v|))z,’2

1 N
(88) <(1—=K1?)|zo* + Emzz,’z

for any ¢t € h - Z4 s.t. (56) holds. This inequality then implies

1
(89) zl? < (1 - EKtZ)IZOIZ

for ¢ as before. Indeed, suppose first that 2 > 0. Then (89) follows directly from (88) if
|z:| < |zo| holds for any ¢ > O satisfying (56). Now suppose for a contradiction that there
exists ¢ > 0 s.t. (56) holds and |z¢| > |zo|. Since z; is linear on each partition interval, we
may assume that t € hZ . Let fg denote the smallest s € hZ, for which |zs| > |zo|. Then
z}'o = |z4,|, and hence by (88), |z4,| < |zo| in contradiction to the definition of #y. Thus (89)
holds for all # as above. For & = 0, we can argue similarly by the intermediate value theorem.

Summarizing, we have shown that (89) holds for t € hZ satistying (56) provided |z;| >R
for all s € [0, t] and & satisfies (57). To conclude the proof suppose that |zg| > 2R. We claim
that then |z;| > R holds for all ¢ satisfying (56). Indeed let #; := inf{¢ : |z¢| < R}. Then
|zs| > R on [0, t1]. Suppose for a contradiction that L(t12 4+ t1h) < K/L < 1. Then by (89),
|zs| < |zo| for s € [0, £1]. Hence by (76) and (75),

f h
|Zl‘1 _Z0| = "/(‘) (stJ — E(VU(XLSJ) - VU(yLSJ))> ds

Lt} Lht, 1, 1
< — —_— =-L(t ht —|zol,
= |lzo| + 5 |zol 5 (t{ + ht1)|zol < 2|Z0|

and thus |z; | > %|Z0| > R in contradiction to the definition of #;. [

PROOF OF LEMMA 3.6. Fix x,v,z, w € RY. We set x; = q:(x,v), vy = ps(x,v) and
H; = H(x;,v) = 5|v;|* + U(x,). Then

dH d + VU (x;) d
—H,=v;-—v X)) —X
at T ar ! Yar!

1
= —Evt . (VU()CL,J) + VU()Cm)) + vy - VU (x¢)

h
—EVU@m%VU@&

= I[ + IIt + III[ + IV[, where
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1
(90) I,:—Evm -(VU(XUJ)—i-VU(xm)—ZVU(X,)),
1
(C2))] I, = —E(v; R (VU(XL;J) + VU (x[) — 2VU(X¢)),
h
(92) M, = (i) = v) - VU () = 5 [VU )
h
(93) IV = 2 (VU G0) = VU (x11)) - VU (x0).
Furthermore,
t— |1}

Vi — V= (VU(XL,J)—i-VU(xM))

t—t]

=(t=1)VU) + (VU (xep) + VU (xp1) = 2VU (x1)),

VU (x) — VU (x}1))

d h
= VU(x)- (vm —~ —VU(xm)) ds
11 2

t

= (t — t]))V?U (x1)) - vy —/ (VU (x;) — VU (1)) - vy ds

]
— 5/ V7U(xs) - VU(x|;))ds and hence,
(2]
2VU (x) = VU (x1) — VU (x117)

t
=(t—t]+1— 1)V U(xp)) v + fm (VU (x;) — VU (1)) - vy ds
(94) —/M(VZU( ) — V2U (x(1))) d —ﬁ/t V2U (xy) - VU (x|;))d
) Xg X(t])) -Vt as 5 ] Xg Xt] N

hofi_,
+§/ VU (x5) - VU (x1)) ds
t

=2(t —)V2U (x1)) - vye) + Vi

where 1 = (7] + [t])/2 and

1] 1 212
|Vz|§M|vm|/m %y = 210l ds + S L2

(95)
1 2
==-Mh"|v|

h 1
5 vy — EVU(xm) + §L2h2|xm|.

Consequently, I; =1I¢ 4 If, where

a __ 2 b—l
14 = (t — vy - VU)o, 7= 3vu- Vi

In particular, for any ¢ € hZ., [{19ds =0, and

hLM
— (vt*)Zx,* + szt*vt*> .

* h2 *\3
1 =supltt] = G (w7 + 7

s<t
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Similarly, we obtain

L
;| < §|Ut — 11Xy = xel + |xp — %)

L , h
= Zh |(VU(X|_,J)+VU()C[;]))|- V|| — EVU(XUJ) fort >0,

L? Lh
Iy < 7}12 <xt*vt* + 7()6;)2) forr € hZ,,

I, = ¢ + 12 + 1II°  where

h
(96) e = —(r — 1] — 5)yVU(xm)F,
h
(97) e = (v, — vy — EVU(x,)> (VU ) = VU (xe)),
h
(98) I = 2 (VU () = VU ) - VU () = 1V,

In particular, for any ¢ € hZy, 3 11¢ds =0, and
. 3 hL
- < 5hQL2<v,*x; + 7(x,*)z),
1 hL
" =1Vy < EhQL2<v;x; + 7(x,*)2>.
By combining the bounds, we obtain for ¢t € hZ, :

t
|H, — Ho| = ‘/ (19 + 12 + T, + 09 + T2 + TS + 1V,) ds
0

M hL 3
< o025 + S ) 4302007+ ShE )2,

This implies the first claim (60), since for t € hZ satisfying (46), both x; and v} are bounded
by a constant multiple of max(|x|, |v]).
Next, we consider the derivative flow

x; = Oz, u)q1) (x, ), vy = (3w Pr) (x, V),

where the derivatives are taken w.r.t. the initial condition. We have

d / . I h 2 /
(99) Ext = 0z, w)Xr = V)~ EV U(xm)xm,
d 1 . 1 2 / 2 /
(100) Evt =a(z’w)vt=_5(v U('XUJ)'XUJ +V U(Xr;])x’—t-l)
with initial condition (x;), vy) = (z, w). In particular, for s,z € Ry s.t. s € [|7], [1]],

hL
< (v + ).

1 *
v — vyl =5l — sI|V2U (epepx)y ) + V2U (x| < hLxfhy.

We now first derive a priori bounds for x;* and v;*. By (99) and (100),

h
!xz/ —x;} =1t —s]|- v/m — EVZU(XLIJ)X/UJ

|x; — 2 — wi]
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1 pt rlsd 5 ) ) /
= 5\/(\) /0 (v U(XLVJ)erJ+V U(xfﬂ)x[r])d’”ds
h [t _, )
_5/(; \Y% U(XLSJ)stJdS

Lt [ls) hL [t
55/0/0 (|x/L,J<+|x;ﬂ|)drds+7fo|x/m|ds.

For ¢t € hZ 4, we obtain

max|x, —z — ws| < E(ﬂ + ht)(max|z + ws| + max|x, —z — ws})
s<t S ) s<t s<t S )

Hence if L(t2 + ht) < 1 then

(101) max|x] — z — ws| < L(t* + ht) max(|z|, |z + wt]).

s<t

Similarly, by (100) and (101),
(102) max|v; — w| < Lrmax|x;| < 2Lt max(|z], |z + wr]).
s<t sS<t

Now we can derive bounds for H,’ . We have

d / d ' ! !/ / /
(103) = (2 H ) =TT I+ TV

Similarly as above, we bound the terms I}, II;, III; and IV} individually. By (90), I; = VI, —
%UL, VII;, where

1
VIt = _EU/UJ (VU(.XUJ) + VU()C[[]) - 2VU(X[)),

VI = V2U (x 1 )x(,) + VU (51X [ — 2V2U (1),
Similarly to the decomposition of I; above, we have VI, = VI{ + VI’Ij where VI{ = (t —

D, - VAU (x| and VI? = Sv/, -V, In particular, for 1 € hZ4,

Il Mh? hL
VIds=0 and VI'* < (v,’*v; + —v;*x;>.
2. 4 2
Furthermore, VII; = VII¢ + VII? + VII¢ with
VI = V2U () (x], + X7, — 2x;)

_ h
=2(l — I)VZU(XUJ)<U/L” — EVZU(XUJ)X/L”)’

VII? = (V2U (x()) + VU (1) — 2V2U ()], .
2 2
VI = (VU (x7) — V U(xt))(x/m — x/m).
Fort e hZ,, ]é VII{ ds = 0. Moreover, similarly to (94) and (95), we have
2V2U (x;) — VU (x|1)) — VU (x117) = 2(t — DHV3U (x()) - vy + VIIL,,

where |VII;| < %Nh2|vm||vm — %VU(XL,M + %LMhzle,J |. Therefore, we can decompose
VII? = VII? + VII¢ where [ VII? ds =0 for t € hZ., and

hLN *2 % * %\ /x
v X + LMvupx; )x,”.

h2
e, *,3
VIIl < Z (N'Ul +
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Furthermore, by (99), we have
hL hM
VIE* < Mh2<v; + 7x;) . (v;* + Tx;*).
For the second term we have I} = IX; + X; + XI; where

1
IX[ = —E(U; — U,UJ)(VU(XUJ) + VU(X";]) — ZVU(XI)),
_ _l _ 2 2 _ 2 /
X[ = 2(U[ UL[J)(V U(xm) + \% U(xm) 2V U(xt))xt,

XI, = —%(v, — o) (VEU () (x]) — x7) + VAU o) (6 — 7).
For t € hZ ., we obtain by (99) and (100),
IXF < LMh?x* (v} +hLx}/2)/2,
XF < LMh?x} (vf +hLx/2)x)* /2,
XI} < L*h?x} (v + hLx)*/2)/2.
Furthermore, I, = (I11%)’ 4 (I11?)’ 4 (III¥)'. By (96) and the chain rule, [ (I11¢)" ds = 0 for
t € hZ4 . Moreover, by (97) and the chain rule,

hL
') <= (o = |+ St ) L =0
hL
- <|”t — V| + T’CUJ>(L|X; = Xy |+ Mlxe = xieyl]xt])

hL
Vi) + 5

/ hL /
Vle) + 5]

Xlz]

3 272
< 120,

3
+ 5Lzhzw

hL
Vi) + —5 X1

3 2
+ ZLMR3|x,| >

2

3 hL hL
(m?)™* < > 2h2( (v, - 7xt> - x;<v;* - 7;4*))

3 hL
+ 5LMh2X;<U; + TX;)X;*.

Finally, a similar computation as for (IIIb )’ shows that

hL hL
()" =1V} < 2L2h2< (v, + 7xt) +x; (v;* + 7@*))
1 hL
+ ELMhZX: (U; + TX;)X;*.
Collecting all the bounds derived above, we eventually obtain
L3

L
] = 5| = (20 S ()

QI X )f x 0a (07 1))
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for t € hZ, where Q1 and Q are explicit quadratic forms. We can conclude that

|H/ — H{| < Cat (1 + 1)k max(|xol, |vo|)® max( o). O

PROOF OF LEMMA 3.7. Let p=0or p > 1. Then by definition of 7,
Elle-&|7:& —n# —yz]
<E[le-£1”,0 > go1(e- & +ylzl) /o1 (e )]

o0
2/ 117 (00,1 () — @o.1(r + lyzl)) " dr
—00
o +
:/ 1717 (90,1 (t) — @o,1(t + lyzl))" dt
—lyzl/2
o0
= [ e - / It = 1yl "g0.1 (1) dt
—lyzl/2 ylzl/2

lyzl/2
—/ g0 dr + T = = 2o () d.
lyzl/2 lyzl/2

For p =0, we directly obtain (62), and for p > 1,
E[|e-$|ﬁ~ E—n#-yz]

ird Plyz|Pt 4 Plllp_ll)/zlwo,l(l)dt
v lyzl/2

S Cp|)/Z| maX(WZL 1)p7

where C,, = max(2™”/+/2m,2pm,_1) with m, denoting the pth moment of the standard
normal distribution. Finally, since & ~ A (0, I;) and the event {§ — n # —yz} is measurable
w.r.t. o (e - §), we obtain

E[|EP7; & —n#—y7]
<27 E[le- &1 & —n# —yz] + 2P E[& — (e &)e|P|PIE —n # —y2]
<2P71Cyplyzlmax(1, [yzl)*” +2P71d — 1)Pmaplyzl /2. O
PROOF OF THEOREM 3.8. Recall that
(104) A(x) = [U <exp(—H(¢r(x,&)) + H(x,&))} and
(105) A(x) ={U <exp(=H(¢r(y, m) + H(y, m)}.
Therefore, and since U is independent of £, we obtain by Lemma 3.6,
P[A)CIE] = |1 —exp(—(H (¢ (x, ) — H(x,£)) ")
< (H(pr(x, &) — H(x,£)"
< C\T(1+ T)h?* max(|x|, |¢])°,  and hence
P[AX)C] < 1T (1 4+ T)R2E[max(1x*, |€]%)]

< C\T(1+ THR*(|x P +d*? /8/x).

Since A(y) is defined similarly to A(x) with x, § replaced by y,n and n ~ &, we obtain
corresponding bounds for P[A(y)€ 5] and P[A(y)c]
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Next, we derive the corresponding bounds for the probabilities that the proposed move is
accepted for one of the two components and rejected for the other. By independence of U
from & and n and by Lemma 3.6, we have

P[A(X)AAW)IE, 1]
= }eXp(—(H(qu(x, E)) - H(X, %-))4_) - CXP(_(H(¢T(ys 77)) - H(y’ 77))+)i
< |[H(pr(x,8) — H(x,&)] — [H(¢r (v, m) — Hy, m]|

1
< /O 10—y (H 067 (s E0) — Dx—y.6—ny H (v &) da

1
<CT(1+ T)h2/0 max(jxy, 1£41)° du max(lx — yl, |£ — nl)

< CT(1+ T)h* max(|x — y|. |& — nl) max(|x|, [y]. &1 In])*,

where x, =ux+ (1 —u)y, &, =ué+ (1 —u)n,z=x —y and W =& — . This proves (71),
and (69) can be shown similarly with 7 replaced by &.

Next, we bound the unconditioned probabilities of acceptance rejection events. At first we
observe that by (69) and since & ~ N (0, 1),

P[AX)AA(Y)] < CoT (1 + T)h?|x — y|E[max(|x], |y, |£])°]
< CoT(1 + T)h%|x — y|(max(|x|, [y])® + d*/%/8/x),

which implies (70). The proof of a corresponding bound for the expectation in (72) is slightly
more complicated. We first note that by (71),

E[max (x|, [y], €], n]); (AG)AA(y) N{W = —yz}]
(106) < CT (1 + T)h? max(1, y)|z| E[max(|x[, [y, €], |& + yzI)*]

< CoT(1 + THh* max(1, y)|z|(max(|x|, [y])* + E[(|€] + yz])*]).

Secondly, on {W # —yz}, we have n =& — 2(e - £)e where e = z/|z|. In particular, n = &.
Therefore, by (71),

E[max(|x], |y], €], Inl); (AG)AA()) N{W # —yz}]
(107) < CoT (14 T)h* E[max(|z], 2|e - &]) max(|x], |y], |§|)4; W # —yz]

< T (1 + THR?E[(|2] + 2le - &) (max(|x. |yl)* + &[*): W # —yz].

By (106), (107), and by the bounds in Lemma 3.7, we can conclude that there is a finite
constant C3 depending only on L, M and N such that for |yz| <1,

E[max(|x]. [yl, 151, Inl): AG)AAW)]
< C3T(1 + THh* max(1, y)|z|(max(|x|, [y])* +d?).
This proves the last assertion of the theorem. [J

5. Proofs of main results.

PROOF OF THEOREM 2.1.  We fix x, y € R? such that |x — y| > 2R and max(|x|, |y|) <
R». Since synchronous coupling is applied for |[x — y| > 2R, we have n = §. Hence by (51)
and Lemma 3.4 with 2 = 0, we obtain

R'(x.y) =lar(x.§) —qr(v.§)| < (1 = KT?/2)r(x. y)
provided LT?> < K/L. O
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PROOF OF THEOREM 2.2. We directly give the more involved proof for the case of
adjusted numerical HMC. For unadjusted numerical HMC, the proof simplifies considerably,
see the comments at the end of the proof.

Without loss of generality, we may assume that R, is chosen sufficiently large such that

K
(108) Pl > Ro] < =

We fix x,y € R? such that |x — y| > 2R and max(|x|, |y|) < R». Since synchronous coupling
is applied for |[x — y| > 2R, we have n = &, and hence

R'(x,y)=l|qr(x,&) —qr(y,&)| on Ax) NA(y),
R'(x,y)=r(x,y) on A®) NAMC.
Moreover, on A(x) N A(y)¢ we have Y’ =y, and thus

R/(x’)’) _r(x’y) = |qT(xv$) _)’} - |x _yl =< |%(va) _x|'
Similarly, on A(x)¢ N A(y),

R —r<lgr(y,&) —y|

Therefore, we obtain
E[R(x,y) —r(x,»)] < E[|lgr(x,&) —qr(y,&)| — Ix — yl; Ax) N AY)]
+ E[|gr(x, &) —x|; Ax) N A(C]

+ E[|lgr(v,&) —y
—: I+ 11+ 1L

(109)
P AN A®G)]

In order to control the first term, we choose a constant C € (0, 00) as in Lemma 3.4, and
we assume i < min(hy, hy) where hy := ﬁ. Then by Lemma 3.4,

1 .
976 —ar(.6)| = (1- 3KT)lv =1 it el < Ro
Therefore, by (58), and since K < L,
1 2
I< _ZKT r(x, y)P[A(x) N A(y) N {I€] < Ry}]

+ (LT? + LTh)r(x, y) P[|£] > R:]

N

< —%KTZr(x, YP[AX) NAM] + (§LT2 + LTh)r(x, NP[I§]1> Ro]

1 9
< —ZKTZr(x, YWP[AX) NAW)] + ZLTZ;»(x, Y)P[IE] > R1]

for T € h - N. For h < h| we have

(110) L(T*+Th)<K/L<1.

Therefore, by Theorem 3.8, for |x|, |y| < Ra,

(111) P[A)C]+ P[A()C] <201 T(1 4 T)(R3 4 2d%%)h>.

We choose i3 > 0 such that for & < h3, the expression on the r.h.s. is smaller than 1/5.
Because of (23), this can be achieved with /5 2 of order O(R% +d3/%). For h < h3, we obtain
4

PlA NA > 1 1—
[A)NA(Y)] = ~57 5
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Therefore, and by (108),
I< —éKTzr + ZLTZrPUSl > Ry] < —éKTZr.
In order to control II, we note that by Lemma 3.1,
lgr (x,§) — x| < T|&| + max(|x|, |x + TE|) < |x| +2T|§|
provided L(T?+ Th) < 1. Hence in this case we obtain
I < E[|x| +2T|&]; Ax) N A(C].

A corresponding bound with x and y interchanged holds for III. Hence by the bound (69) for
the conditional AR probability given &,

11+ 10 < E[max(|x], |y]) + 2T1§]; A(X)AA(Y)]
< CaT(1+ T)h?|x — y|(1 +2T) E[max(jx[, |y, [£1)*]
<2CT(1+T)*h*(R3 + 3d°)r.

We choose a strictly positive constant /4 such that for # < h4, the right hand side is smaller
than 5 K T?r. By (23), this can be achieved with /i ' of order O((R3 +d)K ~'/2T~1/2). Let
ho = min(hy, h3, hg). Then for A < min(hg, 1), we obtain

[+0+1< 1KT2 + 1KT2 < lKT2
-z r+ r<—- r.
-5 24 - 8

This completes the proof for adjusted numerical HMC.

For unadjusted numerical HMC, the argument simplifies since the rejection events A (x)¢
and A(y)€ are empty. Thus it suffices to bound I, which can be done similarly as above for
h <min(hg, hy) where hg :=h,. [

Next, we directly prove our main result for numerical HMC. Afterwards, we will give the
corresponding proof of Theorem 2.3 for exact HMC, which essentially is an easy special case
of the more difficult proof for numerical HMC.

PROOF OF THEOREM 2.4. As above, we directly prove the result for adjusted numerical
HMC, and we comment on the simplifications in the unadjusted case in the end. The param-
eters ¥, a and R have been chosen in (28), (29) and (30) such that the following conditions
are satisfied:

(112) yT <1,

(113) L(T +h) <y/4,

(114) VR < 1/4,

(115) aT > 1,

(116) Ri > %(1 Ly TR,
(117) exp(a(R; — 2R)) = 20.

Indeed, (112) and (114) hold by (28), (113) holds by (28) and (27), (115) holds by (29), (116)
holds by (30) and (28), and (117) holds by (30) and (29). The bounds (112)-(117) will be
essential in the following arguments. We have chosen y and a as large resp. small as possible
such that (112), (114) and (115) hold. Then (113) implies the additional constraints on 7" in
(27), and R; is chosen such that (116) and (117) are satisfied.
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To prove contractivity, we fix x, y € R4 such that max(|x|, | y]) < Ry. Since x and y are
fixed, we briefly write » and R’ instead of r(x, y) and R’(x, y). We consider separately the
cases where |x — y| > 2R and |x — y| < 2R.

(i) Contractivity for |x — y| = 2R. For |x — y| > 2R, we can apply the result of Theo-
rem 2.2. Indeed, choose /¢ as in Theorem 2.2. Then for & < hg, by concavity of f and by
(24),

1
(118) E[f(R) = f(O] < f/(NE[R —r] < —ZKTZI’f/(F) <—cf@),

where the lower bound c; for the contraction rate is given by

/
(119) k2O
4 r>0 f(r)
Recall that f is concave with f(0) =0, and f is linear for » > R;. Hence the function r
rf'(r)/f (r) attains its minimum at Ry, where f’(R;) =e %%l and f(R)) = fOR‘ e ¥ds <
min(R;, a~1). Therefore, by (29) and (30),

1 1 5 R
c1 = ~KT?*max(1,aR;)e % > —KTZ—(l + _) -5/2,~
4 477 2 T
(120)

20

(ii) Contractivity for |x — y| < 2R. For |x — y| < 2R, we apply the coupling defined by
(19) and (20). Let z =x — y and W =& — 7. Since R’ =r on A(x) N A(y)€, we have

E[f(R)— f(r)] =14+ +1I+1V where
I=E[f(R) = f(r); Ax) N A(y) N {W = —yz}],
I=E[f(R'AR)— f(r); Ax) NA() N{W # —yz}],
= E[f(R) — f(R'ARy); A(x) NA(y) N {W £ —yz}],
IV=E[f(R) = f(r); ACYAA)].

Only the first term is responsible for contractivity. The other terms are perturbations that have
to be controlled. We will now derive upper bounds for each of the four terms. We remark at
first that on A(x) N A(y),

(121) R =|gr(x,&) —qr(y,n)| < |z + WT| +max(|z|, |z + WT|)LT(T + h)

by Lemma 3.2.
I.On A(x) NA(y) N{W = —yz}, we obtain by (121), (112) and (113),

R <|(1 - ( yT)z|)LT(T +h)

1 3
< (1 —yT + Z)/T)Izl = (1 — ZyT)r.

Therefore, by concavity of f,
1< f/(NE[R —r; A)NAGY) N{W = —yz}]

1 R
- —KT2<1+—)e—%

3 -
< —JvTrf' (1 = PIW # —yzl = P[AX] = PIAMC).
By Lemma 3.7 and by (114),

P[W # —yz]

m
ﬁ
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Furthermore, by Theorem 3.8, there is a finite constant C depending only on L, M and N
such that

P[AX)C]+ P[A)C] < C1T (A + T)(1x + |y + 4d°/*)h%.
Since max(|x|, |y]) < R, and (27) holds, we can conclude that there is a constant 5 > 0
depending only on L, M, N, d and R; such that for i < ks,
(122) I< —zyTrf/(r).
40

Furthermore, for fixed L, M and N, the constant /s can be chosen by (27) such that A5 2 is
of order O(R3 +d*/?).
II. By definition of f, we have for s < Rj,

— Vw1
f(s)—f(r)=fr edr < e =~ /().

Therefore, by (115) and by Lemma 3.7, the second term can be bounded by
yT
V2r
III. If W £ —yz then by definition of the coupling,

W=§&—-—n=2(-§)e wheree=7z/|z|,
and hence [z 4+ WT| = |r + 2e - £T|. Therefore on A(x) N A(y) N{W #£ —yz},

(123) II < éf/(r)P[W #—yzl < rf'(r) < %VTrf/(r)-

R <(14+LT(T+h)|r+2e-£T| < §|r+2e-§T|
by (121), (113) and (112). Thus
E[(R' = Ri)": A(x) N A(y) N{W # —yz)]

5 +
5E|:<Z|r+2e-“§T|—R1> ;W;é_),z:|
® /5 + N
:L (Z|r+2uT|—R1> (po.1(u) —@o1(u~+yr))" du

[e%) 5 +
-/ (—|r+2uT|—R1) (60.1(0) — o1 (4 + 1)) du
—yr/2 4

o] 5 + 5 +
= {<—|r +2uT| — Rl) — <—]r +2(u—yr)T|— Rl) }gooyl(u) du
yr/2 4 4
5 00 5
<-yrT wo,1(u)du < —yrT.
2 }/7‘/2 4

Here we have used that by (21),
PIW # —yzlE] = (po1(e- &) —po,1(e- & +yr) " /po1(e-£).

Moreover, we have used that by (116), R; > %(l + yT)r. By concavity of f and by (117),
we obtain

I < f'(RDE[(R' — Ri)": A(x) N A(y) N {W % —yz)]
(124)

5 5 1
= JvTrf'(R) < Ze’“(Rl’m)yTrf’(r) < RyTrf/(r).
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IV. By a similar argument as in the proof of Theorem 2.2, we obtain
E[R —r; A(x)AA(>y)]
<E[lgr(x. &) —x|; A@ NAMC]+ E[lgr(v. m) — y|; AG) NAG)]
< E[Ix| +2T&; AC) N AW+ E[lyl +2TInl; A)C N AG)]
< (1 +2T)E[max(|x|, |yl. [€], [n]); AGx)AA(y)]
<2Cymax(1, )T (1 + T)*(R3 + d*)h*r.

Here we have used (72) in the last step. By concavity of f we obtain
IV < f'(NE[R —r; A(x)AA(Y)]
(125) <2C3max(1, )T (1 + T)*(R5 + d*)h*rf'(r)

1
< %J/Trf/(r)

for h < hg where hg is a positive constant depending only on L, M, N, R, R, and d that by
(27) can be chosen such that hgz is of order O((1 +R) (R;1 +d?)).
Combining the bounds for the terms I, II, III and IV in (122), (123), (124) and (125), we
obtain for 4 < min(hs, hg),
E[f(R)— f(n] = (_g TR i) Trf'(r)
126 =720 "5 16 " 80"

1
=~y Trf () = —ea ),

where the contraction rate c; satisfies

1 / |
L i O S L nax(1, 2aR)e 2R
5 r<2R f(r) 5

1 T 2R 1
= —min(l, —> max(I’ _)e—ZR/T > o 2R/T
4R T

C) =

(127)
5 10
(iii) Global contraction. Let h, := min(hg, hs, he). Then by combining the bounds in (119)
and (127), we see that for 4 <min(h, h,) and for any x, y € R4 with max(|x|, |y]) < Ry,

E[f(R)] =1 —=0of®),
where ¢ := min(cy, ¢2). Moreover, by (120) and (128),

1 1
c> Ee—ZR/T min(l, EKTZ(I + R/T)e—R/<2T>).
This completes the proof for adjusted numerical HMC.
For unadjusted numerical HMC, the proof simplifies because the rejection events A(x)€
and A(y)€ are empty. Thus it suffices to control I, IT and III, and this can be done similarly

as above whenever 4 < min(h1, h,), where now we can choose h, :=hg. [

PROOF OF THEOREM 2.3. The contraction bound for exact HMC can be derived simi-
larly to the proof of Theorem 2.4. In this case, instead of Theorem 2.2, we apply Theorem 2.1
in Step (i). Furthermore, the rejection events A(x)¢ and A(y)c, x,y € R?, are empty for ex-
act HMC. Therefore, the corresponding terms do not have to be taken into account in Step (ii).
Consequently, the resulting bound (31) is valid for all x, y € R with the same rate c as above.

O
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Next, we prove the contraction result under Assumption 2.2. Again, we directly give the
proof for adjusted numerical HMC, and we comment on the simplifications in the other cases
afterwards.

PROOF OF THEOREM 2.7.  We fix x, y € R? such that max(|x|, |y|) < R, and we set
F(x,y) = f(min(|x — y|,2R)), F'(x,y)=F(X'(x,y),Y(x,y),
G(x,y)=14+eW(x)+e¥(y), G'(x,y)=G(X'(x,y),Y'(x,)).

Since x and y are fixed, we omit the dependences on x and y in the notation. Thus p. =
VFG and pc(X',Y') = /F'G’. We consider separately the cases where |[x — y| < 2R and
lx —y| >2R.

(i) Contractivity for |x — y| < 2R. In this case, the same arguments as in the proof of
Theorem 2.4 show that for 4 < min(hs, hg),

E[F<E[f(R)]<(—c)f(r)=(1—c)F

L

106_2R/ T Furthermore, (A4) implies

for a constant ¢, >
E[G=1+4€E[Y(X)+¥(Y)]=14+€e@mV)(x)+e@V)(y)
<1+4+eW(x)+e¥(y) +2€A<(1+2A)G.
Thus by the choice of € in (35),
E[pe(X'.Y)] = E[VF'G| < E[F'|*E[G']?
(128) <(1—c)?(14+2eA)>’VFG < (1 —c2/2+€A)pe
< (1 —=c2/4)pe.

(ii) Contractivity for |x — y| > 2R. If |x — y| > 2R then |x| > R or |y| > R. Hence by
(13), ¥(x) + W(y) > 4A/A, and thus by (A4),

E[G'|=14+e(@V)(x) + e(@¥)(y)
<1l4+e((1=1)(V(x)+W(y)+24)
ST4+e(d=2/H(W) + W) - A)
<max(l —A/4,1 —€A)G = (1 — 3)G,

where ¢3 := min(A/4, € A) = min(cp, A)/4. Since F’' < f(2R) < f(]x — y|) = F, we thus
obtain

E[pe(X/, Y/)] =E[ /F/G/] < ﬁE[Gl]l/Z < (1 —63)1/2\/ﬁ
<(I—=c3/2)pe.

(iii) Global contraction. Let h, := min(hs, hg). Then by combining the bounds in (128) and
(129), we see that for 4 < min(hy, h,) and for any x, y € R4 with max(|x|, |y]) < Ra,

E[(pe(X".Y)] = (1 =) pe(x, y),
where ¢ := min(cs/4, ¢3/2) = min(c2/8, A /4) > min(e~2®/T,201)/80. O

(129)

PROOF OF THEOREM 2.6. The proof is similar to Theorem 2.7. Since the rejection
events are empty, the bound holds for all 7 € [0, h]. O
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6. Proofs of results in Section 2.6. All bounds in Section 2.6 are based on the following
observation:

LEMMA 6.1 (Locally contractive couplings and supermartingales). Let w(x,dy) be a
Markov transition kernel on a complete separable metric space (S, p). Suppose that there
exist a constant ¢ € (0, 00), a measurable subset A C S, a probability space (2, A, P), and
a measurable map

(x,y, @) > (X'(x, y) (@), Y'(x, y)(@))
from S x S x Qto S x S such that for any x,y € S, (X'(x, y), Y'(x, y)) is a realization of a
coupling of m(x, -) and w(y, -), and
(130) E[p(X'(x,y),Y'(x,y)] <e“p(x,y) forx,yeA.

Then, for any probability measure y on S X S, there is a Markov chain (X, Yn)n>0 defined
on a probability space (Q .A P) such that (Xo, Yo) ~ v, both marginal processes (X;)n>0
and (Y,)n>0 are Markov chains on S with transition kernel 7, and such that the process

(131) My, = "D o (Xunts Yant), T =min{n >0:(X,,Y,) ¢ A x A},

is a nonnegative supermartingale w.r.t. the filtration generated by (X, Y,)n>0.

PROOF. Forx,ye S x Slet

k((x,y),):=Po (X (x,y),Y'(x, y))_1

denote the joint law of X’(x, y) and Y'(x, y). Then k is a transition kernel on S x S with
marginals 7 (x, -) and 7 (y, -), and by (130),

(132) (kp)(x,y) <e “p(x,y) foranyx,yeA.
Now let (X, Y;,)n>0 be a time-homogeneous Markov chain on a probability space (Q, A, P)

with initial distribution (Xg, Yo) ~ y and transition kernel &, and let 7, = o ((X;,Y;) : 0 <
i <n). Then for any n > 0,

E[p(Xpt1, Yoy DI Fn] = kp)(Xn, Yo) < e p(Xp, Yy)

holds P-almost surely on {(X,, ¥,) € A x A}. Therefore, the process (M,) defined by (131)
is a nonnegative (JF,)-supermartingale. [l

The error bound for exact HMC in Corollary 2.8 is a direct consequence of Theorem 2.3
and Lemma 6.1:

PROOF OF COROLLARY 2.8. For exact HMC, by Theorem 2.3, the local contractivity
condition (130) in Lemma 6.1 is satisfied for S = A = R, p and ¢ given by (25) and (32), and
the coupling (X'(x, y), Y'(x, y)) introduced above. Now let v and 1 be probability measures
on RY, and let y be an arbitrary coupling of v and n. Then by Lemma 6.1, there is a Markov
chain (X, Y,),>0 on a probability space (Q .A P) such that (Xo, Yo) ~ y, both (X},) and
(Y;,) are Markov chains with transition kernel v and initial laws v and 5, respectively, and
M, =e¢“"p(X,,Y,) is a nonnegative supermartingale. Hence for any n € N,

W, (v", um™) < E[p(Xn, Ya)] < e ™" E[p(Xo, Y0)] = e_c”/pd)/-

Taking the infimum over all couplings y € [1(v, 1), we see that (39) holds. Furthermore, by
(25) and (26),

(133) e Ry —y|<p(x,y)<|x—y| foranyx,yeR?
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Therefore, (39) implies
Wl(vn”, n'") < e Rig=empwl oy, p).
Choosing n = u, we have n” = u for all n. Hence
A(n) <exp(aR; — cn)A(0).
The second part of the assertion now follows, because by (29) and (30), aR; = %(1 +R/T).
O

Now suppose again that 7 (x, dy) is an arbitrary Markov transition kernel on a complete
separable metric space (S, p). For proving Theorem 2.11, we combine Lemma 6.1 with a
Lyapunov bound for exit probabilities:

PROOF OF THEOREM 2.11. Let v and n be probability measures on S, and let y be
a coupling of v and n. By (C3) in Assumption 2.3, the conditions in Lemma 6.1 are sat-
isfied with A = {{y > C}. Hence on some probability space (Q, A, P), there is a coupling
(Xn, Yn)n>0 of Markov chains with transition kernel # and joint initial law (Xg, Yo) ~ y
such that M,, = e p(X, A7, Yunr) is a nonnegative supermartingale stopped at

T =min{n >0:y(X,) > Cory(¥,) > C}.
In particular, we obtain

¢ E[p(Xn, Yn);n < T] < E[e“"D) p(XyaT, YurT)
(134)

< E[p(Xo, Yo)] =/pdy

for any n € N. In order to bound the corresponding expectation on the complement {n < T},
we observe that by Condition (C2) in Assumption 2.3 and by the definition of §(C) in (43),

E[,O(Xn, Y,);n> T] = E[(p(Xn) +o(Yy);n > T]
(135) <B"Elo(X1) +9(Y1);n>T]
<B"E[Y(X7) + ¥ (Y1);n>T]8(C).
Here we have used that by (C2), for any k < n;
E[p(Xy): T =k] = E[(n"*@)(X,): T =k] < " *E[p(Xp): T =K]
<B"Ele(X7); T =k],
and a corresponding inequality holds for E[p(Y,); T =k].
Furthermore, the Lyapunov condition (C1) in Assumption 2.3 implies that the stopped
process N, = ¥ (X,7)/A""T is a nonnegative supermartingale. Therefore,
E[Yy(Xr)in>T] <" E[y(X1)/a"] < A" E[y (Xo)] = 2" / Yrdv.
A corresponding bound holds for E[y (Y7);n > T], and thus
(136) B[ )+ wpin = 1) <30 [yav+ [wan)

By combining the bounds in (134), (135) and (136), we obtain

Elp(Xn ) =e [ pay ([ wav+ [wan)acc)
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for any n € N. The bound for the Kantorovich distance in (42) now follows by taking the
infimum over all couplings y € [1(v,n). O

From now on, we consider numerical HMC. Let = denote the transition kernel for a given
step size h > 0, and let p be the metric defined by (25), (26), (29) and (30). To be able to
apply Theorem 2.11, we first identify appropriate Lyapunov functions.

LEMMA 6.2. Let T,hy € (0,00) such that (27) holds. Then there exists Cy € (0, c0)
depending only on L, M and N such that for C € (1, 00) and h € (0, hy) with

(137) C1Th* <min((R +,/2/K (log C)*/*) 72, (1/3)*/?).
Conditions (C1) and (C2) in Assumption 2.3 are satisfied with

(138) o(x) = x| +2Td"%, Y (x)=exp(Ux)*?),

(139) =2 A= E[exp<|$|4/3 + %|s|2 + 1)} with & ~ N(0, ).

PROOF OF THEOREM 2.12. Let C € [e, 00), that is, logC > 1. Then by Lemma 6.2,
Conditions (C1) and (C2) in Assumption 2.3 are satisfied for ¢, ¥, 8 and A given by (138)
and (139), provided (137) holds. This is the case for & < hg where hg > 0 can be chosen
such that A, Uis of order O(R3? + (logC )?/8) for fixed values of K and L. Furthermore, by
(152), ¥ (x) < C implies |x| < Ry, where we set

(140) Ry =R+ ,/2/K(logC)*/*.

Therefore, by Theorem 2.4, the local contractivity condition (C3) is satisfied with ¢ given
by (32) provided 4 < min(h,, h1) where h, can be chosen such that h:l is of order O ((1 +
T2 4+ RY2)(d + R? + (log C)3/?)). Hence for h < h,, = min(h,, ho, h1), all parts of
Assumption 2.3 are satisfied, and thus we can apply Theorem 2.11. By (42), and since un" =
L, we obtain

Wyo" 0) = e Wy 0+ 82 [wav+ [y an)sco
where §(C) is given by (43). By (133), (29) and (30), this implies
(141) A(n) =W (va", ) <T+11I, where

I=exp(aR; — cn)A(0) = exp(%(l +R/T)— cn)A(O) and

5
Hzexp<§(1 +R/T)>ﬂ”k”1(fwdv +/wdu>8(C).
Choosing n as in (44), we obtain I < €/2. Furthermore, we can ensure II < €/2 and thus

A(n) < € by choosing C sufficiently large. Indeed, by (43),

max(g(x), ¢(y))
max (Y (x), ¥ (y)

Moreover, by (152) and (138), for any x € S,

(142) 5(C) < 2sup{ X,y € Ss.t max(x//(x), w(y)) > C}.

o(x) = |x| +2Td"? <R +2Td"* + J2/K (log ¥ (x))**.
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Let x,y € § such that max(y¥(x), ¥ (y)) > C. Without loss of generality, we assume
max(¥ (x), ¥ (y)) = ¥ (x). Then logy(x) > log C > 1, and hence

max(p(x), p(y)) _ R+ 27Vd + /2/K log ¥ (x)
max(y (x), ¥ (y)) ~ v (x)

_R+ 2T+/d + /2/K log C
[— C .

Here we have used that r — ! log is decreasing for logz > 1. By (142), we see that

(143) 5(C) <2(R+2T+d +,/2/K 1og C)/C.
Consequently, we have Il <¢€/2 if

(144) C/(u+vlogC) > w(Br)",

where u := R + 2T +/d, v:= /2/K, and

w::4e_lexp(§(1+R/T)) . (/de—i-/l/ld,u).

Condition (144) holds if and only if
(145) log C > log(u 4+ vlog C) + logw + nlog(BA).
In particular, since
log(u + vlog C) <logt (2u) +logt (2vlog C) < log* u 4+ log® v+ 2 4 loglog C,

there is a universal finite constant C such that (144) is satisfied if C > Cy and
(146) log C > logt u +log™ v+ logw + nlog(BA).
We have logu = log(R + 2T+/d), logv = 1 log(2/K), and
vdu+ [¢d V>

€

logw = g(l +R/T)1og<4f

Furthermore, by (139), log(8A) is of order O (d), and n satisfies (44). Combining these obser-
vations, we see that we can ensure II < €/2 and thus A(n) < € by choosing log C proportional

todn+(1+R/T) log+(w). The assertion follows since log™ [ ¥ du = O(d) and

ol =01+ 772+ RY2)(d 4+ R? + (log C)*/?). O

APPENDIX: EXPLICIT LYAPUNOV FUNCTIONS

In this appendix, we prove the results on Lyapunov functions for HMC stated in Examples
2.1 and 2.2 and Lemma 6.2.

PROOF FOR EXAMPLE 2.1. Let x; = ¢;(x, &) and v; = p,(x, £) where x € R? and & ~
N (O, 1;). A simple computation shows that if (14) holds then fort < T,

d 2 *,2
E|xt| < 2x; -V + 2hLXT’ y and

d 3 1 .
T < lue)? — k|x:)? + C + Eth}v} + thszT’z.
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Therefore,

T ,t T pt
|xT|2§|x|2+2Tx.s+2/ /lvslzdsdt—ZK/ /|xs|2dsdt
(147) 0 0 0 0
2 *,2 3 1 2 2 %2
+CT+2hLTxy +§hL xTvT—|-4h 2T Xy,

Now for s < T, we can apply the a priori bounds

(148) lvg| < |&| + 2Ls max(|x], |x + s&]),
(149) |xs — (x + 5&)| < max(|x|, |x + s&[)/10,
which follow from Lemma 3.1. With a short computation these imply

Tt o 2 16 5 6N ez 8,254 2
2/ /lvsl dsdt§<2T —|—ELT>|$| +§LT|x|,

2f/| [>dsdt > 9T2||+27T3 $+27T4|§|2
X S — X - — .
s =~ 200 100 400

By bounding the corresponding terms in (147) and noting that x7 < (|x| + T, vy <
3 81|+ 2LT|x| and L(T% + hT) < «/(10L), we conclude that

76 27
150 21— = T2> 2 (ZT—— T3) - C + 219 T2
(150)  |xr] 5( e+ ST )£+ (C 4206 P)

provided that T/h > ng for an appropriate constant ng € N depending on « and L. Tak-
ing expectations in (150), we conclude that (15) holds for exact and unadjusted HMC with
W(x) = |x|?. For adjusted numerical HMC, we obtain

(TW)(x) = E[|xr]* A@)] + x*P[A(x)C]
< (1 - %ﬂz + P[A(x)c]>llf(x) +(C +2d)T?

Hence by the a priori bound on the rejection probability in Theorem 3.8, we see that (15)
holds for [x| < Ry if R3A? is sufficiently small. [

PROOF FOR EXAMPLE 2.2. We only sketch the proof for exact HMC. Let 6 > 0 and
choose V¥ (x) = g(|x|2) where g : Ry — Ry is a smooth increasing convex function such
that g(0) =0, g(s) = exp(84/s) for s > 82, and g”(s) < 28* for s < 82, and let x; and v,
be defined as in the proof above. Assumption (16) implies that for all ¢,

(151) v —&] <Ot and |x, — (x +&1)| < Q1%/2.

Noting that W(x) = exp(§|x|) if |x| > 87! an explicit computation shows that if |x;| > §1
then by (16) and (151),
2

dz

Xt Uy 2

X
|Xt|2 !
<[~k +8C +28(|&* + Q%) ]sW (x,)

< [_Ke—51‘|$\—5Qt2/2+ (C+2|§|2+ Q2t2)8651|$|+8Q1‘2/2]8\p(x)

_x,-VU(x,)> 2(|f |;) ]\I’(Xz)

e = sl ([ur -

Similarly, one verifies that if |x,| < 8~! then

d? d?
T3V = —se(lnl?) < (1616 + 1607 + ¢C)5?
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We now choose 8 := «/(4A + 8d + Q>T?). Since by (16), k < Q and & ~ N(0, I), this
choice implies in particular that E[exp(8T || +8QT?/2)] < +/2. Noting that

T td2
\If(xr>=\v<x>+Tg/(|x|2)x-s+/0 /Oﬁwxs)dsdz,

and combining the bounds above, we then obtain

T et T d? 5 1
(n\IJ)(x):\If(x)—l—/O /()E[E\D(xs)}dsdISSKT (5—mkp(x)>. 0

PROOF OF LEMMA 6.2. We first remark that by Assumption 2.1, x - VU (x) > K |x |2 for
|x| > R. Therefore, for any x € R4,

(152) U(x)> gmin(pcl —R, 0)2 and |x| <R+ ,2Ux)/K.
Furthermore, by (25) and (26),
P, y) <lx =yl < [x[+1y] < @) +¢(y) foranyx,y R
To verify the Lyapunov conditions recall that
(@) (x) = Elp(gr (x.£)); AW] + o) P[AX)]  with § ~ N(0, I).
By Lemma 3.1, |g7(x, &§)| <2(|x| + T'|&|), and thus for any x € RY,
(@) (x) <2E[|x| + T|&| +2Td"?] < 2)x| +4Td"/* = 29 (x).

Hence (C2) is satisfied.
Furthermore, by Lemma 3.6, there is a finite constant C; such that

15 Ulgr(x.€)) < H(pr(x.£)) < H(x, &) + C, Th* max(|x|, |£])*

1
<U@x)+ §|s|2 +C1Th|EP + C1Th x|,

Suppose that ¢ (x) < C. Then U(x) < (log C)3/2, and hence by (152), |x| <R + /2/K X
(logC )3/4 Therefore, if (137) holds then by (153), we obtain

(TY)(x) < E[exp(U)*? + 161" + |£12/3 4+ 1)] = 2y (x)

for any x € § such that ¢ (x) < C. Hence (C1) is satisfied as well. [
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