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We study two kinetically constrained models in a quenched random envi-
ronment. The first model is a mixed threshold Fredrickson—Andersen model
on Z2, where the update threshold is either 1 or 2. The second is a mixture
of the Fredrickson—Andersen 1-spin facilitated constraint and the North-East
constraint in Z2. We compare three time scales related to these models—the
bootstrap percolation time for emptying the origin, the relaxation time of the
kinetically constrained model, and the time for emptying the origin of the
kinetically constrained model—and understand the effect of the random en-
vironment on each of them.

1. Introduction. Kinetically constrained models (KCMs) are a family of interacting par-
ticle systems introduced by physicists in order to study glassy and granular materials [15, 27].
These are reversible Markov processes on the state space {0, 1}V, where V is the set of ver-
tices of some graph. The equilibrium measure of these processes is a product measure of i.i.d.
Bernoulli random variables, and their nontrivial behavior is due to kinetic constraints—the
state of each site is resampled at rate 1, but only when a certain local constraint is satisfied.
This condition expresses the fact that sites are blocked when there are not enough empty sites
in their vicinity. One example of such a constraint is that of the Fredrickson—Andersen j-spin
facilitated model on Z?, in which an update is only possible if at least j nearest neighbors are
empty [14]. We will refer to this constraint as the FA jf constraint. Another example is the
North-East constraint: the underlying graph is Z2, and an update is possible only if both the
site above and the site to the right are empty [23]. These constraints result in the lengthening
of the time scales describing the dynamics as the density of empty sites ¢ tends to 0. This
happens since sites belonging to large occupied regions could only change their state when
empty sites penetrate from the outside.

The main difficulty in the analysis of KCMs is that they are not attractive, which prevents
us from using tools such as monotone coupling and censoring often used in the study of
Glauber dynamics. For this reason spectral analysis and inequalities related to the spectral
gap are essential for the study of time scales in these models. See [25] for more details.

A closely related family of models are the bootstrap percolation models, which are, unlike
KCMs, monotone deterministic processes in discrete time. The state space of the bootstrap
percolation is the same as that of the KCM, and they share the same family of constraints;
but in the bootstrap percolation occupied sites become empty (deterministically) whenever
the constraint is satisfied, and empty sites can never be filled. The initial conditions of the
bootstrap percolation are random i.i.d. Bernoulli random variables with parameter 1 — g, that
is, they are chosen according to the equilibrium measure of the KCM. In this paper we will
refer to the bootstrap percolation that corresponds to a certain constraint by its KCM name,
so, for example, the j-neighbor bootstrap percolation will be referred to as the bootstrap
percolation with the FA jf constraint.
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In the examples given previously of the FA jf model and the North-East model the con-
straints are translation invariant. Universality results for general homogeneous models have
been studied recently for the bootstrap percolation in a series of works that provide a good
understanding of their behavior [5, 8, 10, 19]. Inspired by the tools developed for the boot-
strap percolation, universality results on the KCMs could also be obtained for systems with
general translation invariant constraints [25, 26]. Another type of models vastly studied for
the bootstrap percolation are models in a random environment, such as the bootstrap percola-
tion on the polluted lattice [16, 17], Galton—Watson trees [9], random regular graphs [7, 21]
and the Erd6s—Rényi graph [22]. KCMs in random environments have also been studied in
the physics literature, see [28, 30].

KCMs in random environments may correspond to inhomogeneous physical systems, for
example, granular materials in which grains are of different size. There are many possible
choices of random environments—making the graph random, adding a random chemical po-
tential, or taking the constraints to be random. In this paper we will consider two models on
the two-dimensional lattice with random constraints. We will focus on the divergence of time
scales when the equilibrium density of empty sites ¢ is small.

The time scale that is commonly considered in KCMs is the relaxation time, that is, the
inverse of the spectral gap. This time scale determines the slowest possible relaxation of
correlation between observables, and for homogeneous system it often coincides with typical
time scales of the system (see, e.g., [24]). However, when the system is not homogeneous
the relaxation time will in general not describe actual observed time scales. We will see in
this paper that very unlikely configurations of the disorder that appear far away determine the
relaxation time, even though the observed local behavior is not likely to be affected by these
remote regions.

Another time scale that is natural to look at is the first time at which the origin (or any
arbitrary vertex) is empty. In the bootstrap percolation literature, this time is indeed the most
commonly studied. It could be observed physically, and we will see that it is not significantly
effected by the “bad” regions far away from the origin.

In this paper we compare the three time scales—the time it takes for the origin to be
emptied with the bootstrap percolation, the relaxation time for the KCM, and the first time the
origin is empty in the KCM. We will study them in two toy models that provide examples of
new behavior occurring in inhomogeneous systems; and demonstrate how the tools developed
in Section 4 could be applied to KCMs in random environments.

We will first analyze these time scales in a mixed threshold FA model on the two-
dimensional lattice. Unlike the classical model, in which all vertices have the same threshold
of empty neighbors needed for the constraint to be satisfied, in this model different vertices
have a different threshold. This threshold will be equal to 1 or 2 (such that the system re-
mains ergodic), chosen independently at random in the beginning and fixed throughout the
dynamics. For this model, the bootstrap percolation time scales as g ~!/2, the relaxation time
scales as ¢“/9, and the emptying time of the origin as a random power of ¢, which depends
on the realization of the quenched environment.

The second model we consider is a mixture of the FA1f and the North-East models. Sim-
ilarly to the first model, the constraint at each vertex is determined before starting the dy-
namics. It is chosen independently at random, and equals either the FA1f constraint or the
North-East constraint. We show that in the appropriate parameter regime the relaxation time
is infinite, but still the distribution of the origin’s emptying time decays exponentially, with a
rate which is polynomial in ¢.

2. Mixed threshold Fredrickson—Andersen model.

2.1. Model and notation. In this section we will treat two models—the mixed threshold
bootstrap percolation on Z? and the mixed threshold FA model on Z2. Both models live on
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the same random environment, that will determine the threshold at each vertex of Z2. It is
denoted w, and the threshold at a vertex x equals w, € {1, 2}. This environment is chosen
according to a measure v, which depends on a parameter & € (0, 1). v will be a product
measure—for each vertex x € Z%, w, equals 1 with probability 7z and 2 with probability
1 — m, independently from the other vertices. Sites with threshold 1 will be called easy, and
sites with threshold 2 difficult.

Both the bootstrap percolation and the FA dynamics are defined on the state space 2 =

{0, I}Zz. For a configuration n € 2, we say that a site x is empty if ny = 0 and occupied if
nx = 1. For n € Q and x € Z? define the constraint

1Y (d=ny) = o,
@1 cm=1 =
0 otherwise.

We can now define the bootstrap percolation with these constraints—it is a determinis-
tic dynamics in discrete time, where at each time step ¢ empty vertices stay empty, and an
occupied vertex x becomes empty if the constraint is satisfied, namely ¢, (n(t — 1)) = 1.
The initial conditions for the bootstrap percolation are random, depending on a parameter
q € (0, 1). They are chosen according to the measure u, defined as a product of independent
Bernoulli measures:

w= ® Mx,

xe7?
wx ~ Ber(1 —g).

The Fredrickson—Andersen model is a continuous time Markov process on 2. It is re-
versible with respect to the equilibrium measure p defined above, and its generator L is
defined by

(2.2) Lf=) celuxf —f)

for any local function f. We will denote by D the Dirichlet form associated with L. Proba-
bilities and expected values with respect to this process starting at n will be denoted by P,
and [E,,. When starting from equilibrium we will use P, and E,,.

Finally, for any event A C €2, we define the hitting time

T4 =inf{r : n(r) € A}.

The hitting time is defined for both the KCM and the bootstrap percolation. For the time it
takes to empty the origin we will use the notation

70 = T{no=0}-

2.2. Results. The first result concerns the bootstrap percolation. It will say that for small
values of g, 1 scales as ﬁ. To avoid confusion we stress that  and [P, depend on ¢, even

though this dependence is not expressed explicitly in the notation.

THEOREM 2.1. Consider the bootstrap percolation with the mixed FA constraint. Then
v-almost surely

a a— 00
2.3 lim |:r 2—:|—>0,
(2.3) Jim w0 i
(2.4) lim [r <X ]ﬂo
' q—)OM O_ﬂ '



990 A. SHAPIRA

For the KCM we have an exponential divergence of the relaxation time, but a power law
behavior of .

THEOREM 2.2. Consider the KCM with the mixed FA constraint.

1. There exists a constant ¢ > 0 (that does not depend on w, q) such that v-almost surely
the relaxation time of the dynamics is at least /4.
2. v-almost surely there exist o and & (which may depend on w) such that

(2.5) P[> ¢~ =% o,
(2.6) P[0 < g% <=2 0.

Moreover, B, [t0] > g% for q small enough.

REMARK 2.3. We will see that the two exponents o and @ cannot be deterministic—
there is ag € R such that v(a < ag) > 0 but v(x < ag) < 1.

REMARK 2.4. In these two theorems we see that while 7g for the bootstrap percolation
behaves like ¢ ~!/2, its scaling for the KCM is random. In the proof we will see in details
the reason for this difference, but we could already try to describe it heuristically. The boot-
strap percolation is dominated by the sites far away from the origin, and once these sites
are emptied the origin will be emptied as well. The influence of the environment far away
becomes deterministic by a law of large numbers, so we do not see the randomness of @ in
the exponent. To the contrary, in the FA dynamics even when sites far away are empty, one
must empty many sites in a close neighborhood of the origin simultaneously before the origin
could be emptied. Therefore, in order to empty the origin we must overcome a large energy
barrier, which makes 7 bigger. This effect depends on the structure close to the origin, so it
feels the randomness of the environment.

For simplicity, we have chosen to focus on the two-dimensional case. However, a more
general result can also be obtained. In the next two theorems we will consider the bootstrap
percolation and KCM on Z?. The thresholds {w,};<z2 are i.i.d., according to a law that we
denote by v. We will also assume that the probability that the threshold is 1 is nonzero, and
that the probability that the threshold is more than d is zero.

THEOREM 2.5. For the bootstrap percolation model described above, v-almost surely

2.7) 1in%u[ro >aq~ 1 L2200,
q—)
2.8) lim u[ro < ag™ "] <=2 0.
q—0

THEOREM 2.6. For the KCM described above, v-almost surely there exist « and @
(which may depend on w) such that

2.9) P[> q %] =2 0,
(2.10) Pyl <q7%] 5 0.

3. Mixed North-East and FA1 f KCM.

3.1. Model and notation. In this section we will consider again a kinetically constrained
dynamics in an environment with mixed constraints. This time, however, the two constraints
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we will have are FA1f and north-east. That is, using the same w and v as before, for x such
that v, =1,

1Y d—=n)=1,
cx(n) = y~x
0 otherwise,

and when w, =2,

1 Nx4e; = 0 and Nx+ep = O,
cx(n) = .
0 otherwise.
For the same w, we can define £ as in (2.2). Note that ¢, (and therefore £) are not the same
as those of the previous section, even though we use the same letters to describe them. Again,
the hitting time of a set A will be denoted by 74, and 19 = 7(;),=0}.
We restrict ourselves to the case where m is greater than the critical probability for the
Bernoulli site percolation on Z?2, denoted by pSP. The critical probability for the oriented
percolation on Z? will be denoted by p©F.

REMARK 3.1. Our choice of regime, where easy sites percolate, guarantees that all sites
are emptiable for the bootstrap percolation. The infinite cluster C of easy sites is emptiable
since it must contain an empty site somewhere. The connected components of Z> \ C are
finite, and have an emptiable boundary, so each of them will also be emptied eventually.

This choice, however, is not the only one for which all sites are emptiable. For any fixed
environment @ there is a critical value ¢, such that above g, all sites are emptiable and
below g. some sites remain occupied forever. For 7 > pSF we already know that v-almost
surely g. = 0. In fact, the same argument gives a slightly better result by allowing sites to

be difficult if they are also empty. This implies that g. <1 — 1=p SP. On the other hand, if

1—
there is an infinite up-right path of difficult sites that are all occupfed, this path could never
OP
be emptied. This will imply that g. > 1 — £—.

3.2. Results. We will see for this model that it is possible to have an infinite relaxation
time, and still the tail of the distribution of 79 decays exponentially, with a rate that scales
polynomially with g.

THEOREM 3.2. Consider the kinetically constrained model described above, with w >
pSP and q < C]OP.

1. v-almost surely the spectral gap is 0, that is, the relaxation time is infinite.
2. There exist two positive constants c, C depending on w and a v-random variable T such
that:

(a) Pu(to>1) <e /T forallt >0,
(b) v(r >t) < Ct™e fort large enough.

4. Some tools. In this section we will present some tools that will help us analyze the
kinetically constrained models that we have introduced. We will start by considering a gen-
eral state space €2, and any Markov process on 2 that is reversible with respect to a certain
measure p. We denote its generator by £ and the associated Dirichlet form by D. We will
consider, for some event A, its hitting time 74. With some abuse of notation, we use t4 also
for the p-random variable giving for every state n € €2 the expected hitting time at A starting
from that state:

TA(n) =Ey(za).
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74 (n) satisfies the following Poisson problem (see, e.g., [11], equation (7.2.45)):
Ltps=—1 onAS,
4.1)
74=0 onA.
By multiplying both sides of the equation by t4 and integrating with respect to u, we
obtain

COROLLARY 4.1. u(ta) =Dra.

2
Rewriting this corollary as p(t4) = Mgfj , it resembles a variational principle introduced
in [4] that will be useful in the following. In order to formulate it we will need to introduce
some notation.

DEFINITION 4.2. For an event A C 2, V, is the set of all functions in the domain of £
that vanish on the event A. Note that, in particular, T4 € V4.

DEFINITION 4.3. For an event A C Q,

fi= sup u(f?)
0£fevy Df

The following proposition is given in the first equation of the proof of Theorem 2 in [4]:

PROPOSITION 4.4. P[4 > 1] <e™!/7A.

REMARK 4.5. In particular, Proposition 4.4 implies that p(t4) < tT4. This, however,
could be derived much more simply from Corollary 4.1:

1(ta)* < u(t3) STADTA =Tap(a).

Note that whenever 74 is not constant on A€ this inequality is strict. Thus on one hand Propo-
sition 4.4 gives an exponential decay of P, [t4 > ¢], which is stronger than the information
on the expected value we can obtain from the Poisson problem in equation (4.1). On the other
hand, T4 could be longer than the actual expectation of t4.

In order to bound the hitting time from below we will formulate a variational principle that
will characterize 74.

DEFINITION 4.6. For f € Vy, let
Tf=2u(f)—Df.
PROPOSITION 4.7. 14 maximizes T in V4. Moreover, i(t4) = SUp rey, Tf.

PROOF. Consider f € Vg4, and let § = f — t4. Using the self-adjointness of £, equation
(4.1), and the fact that § € V4 we obtain

Tf=T(ta+9)
=2u(ta) +2u(8) — Dty — DS +2u(8LT)
ZT‘EA —Dé§.
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By the positivity of the Dirichlet form, 7 is indeed maximized by t4. Finally, by Corol-
lary 4.1,

sup T f = Tta = 2u(ta) — Dta = u(ta).
fEVa O

As an immediate consequence we can deduce the monotonicity of the expected hitting
time:

COROLLARY 4.8. Let D and D' be the Dirichlet forms of two reversible Markov pro-
cesses defined on the same space, such that both share the same equilibrium measure . We
denote the expectations with respect to these processes starting at equilibrium by E,, and IE;L
Assume that the domain of D is contained in the domain of D', and that for every f € DomD

Df<Df.
Then, for an event A C 2,
E uTA = E;l TA-
We will now restrict ourselves to kinetically constrained models. Fix a graph G and take
Q = {0, 1}. For every vertex x € G and a state n € 2 we define a constraint ¢, (1) € {0, 1}.
The constraint does not depend on the value at x, and is nonincreasing in 5. The equilibrium

measure [ is a product measure. The generator of this process, operating on a local function
f,1s given by

Lf=Y cxlpxf —f)

and its Dirichlet form by

Df:;L(Xx:charx f).

Fix a subgraph H of G, and denote the complement of H in G by H€.
We will compare the dynamics of this KCM to the dynamics restricted to H, with boundary
conditions that are the most constrained ones.

DEFINITION 4.9. The restricted dynamics on H is the KCM defined by the constraints

el () =cx(n™),
where, for n € {0, 1}, n* is the configuration given by

ny xeH,

H —
)= 1 xeH".

We will denote the corresponding generator by Ly and its Dirichlet form by Dy .

CLAIM 4.10. For any f in the domain of L,
Df > Dy f.

PROOF. ¢ <, and Var, f is positive, therefore

= Df=u(2x:charx f) z,u(Z cH Var, f).

xeH 0

The next claim will allow us to relate the spectral gap of the restricted dynamics to the
variational principles discussed earlier.



994 A. SHAPIRA

CLAIM 4.11.  Let yy be the spectral gap of Ly, and fix an event A that depends only on
the occupation of the vertices of H. Then, for all f € V4:

1. Df > w(A)yu(uf)
2. Df = g vnn(f?.

PROOF. First, note that ug(A) < upg(f =0) <ug(f—wngfl>wngf). Therefore, by
Chebyshev inequality and the fact that £(A) = ug (A),
Vary f

4.2 A .
4.2) A = o

Then, Claim 4.10 implies
Df = upeDuf = yuune Varg f = w(A)yupne(in £)* = 1Ay (uf)?

by Jensen’s inequality. For the second part, we use inequality (4.2),
Var f = w(A)(un (f?) — Vary f),
which implies

p(A) i
1+ u(A)
The result then follows by applying Claim 4.10. [

Vary f > (f?).

5. Proof of the results.
5.1. Mixed threshold bootstrap percolation on 7.

5.1.1. Proof of equation (2.3). For the upper bound we will find a specific mechanism in
which a cluster of empty sites could grow until it reaches the origin.

DEFINITION 5.1. A square (i.e., a subset of 72 of the form x + [L]Z) is good if it contains
at least one easy site in each line and in each column.

CLAIM 5.2.  Fix L. The probability that a square of side L is good is at least 1 —2Le™ "L

PROOF.

P[easy site in each line] = [1 — (1 — n)L]L >1—Le "L,
The same bound holds for P[easy site in each column], and then we conclude by the union
bound. [I

DEFINITION 5.3. The square [L)? is excellent if for every 2 <i < L at least one of the
sites in {i} x [i — 1] is easy, and at least one of the sites in [i — 1] x {i} is easy. For other
squares of side L being excellent is defined by translation.

We will use py to denote the probability that a square of side L is excellent. Note that py
depends only on 7 and not on q.
The next two claims will show how a cluster of empty sites could propagate. See Figure 1.

CLAIM 5.4. Assume that [L)?* is excellent, and that (1, 1) is initially empty. Then [L]?
will be entirely emptied by time L>.
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e e e e e e e e
e e e e e e e e
e e e e e e e e
e e e e e e e e
e e e e e e e e
e e e e -
e e e e
e e e e e e 0 e
e e 0| |e 0/0]e 0/0/0
Ole e 00| e 0/0 e 0/0 e
e e e e e e e e
e e e e e e e e
e e e e e e e e
e e e e e e e e
e e e e e e 0 e N
¢ e 0/0/0]0]0 0/0/0/0/0
e 0/0/0/0 0/0/0]0]0 0/0/0/0/0
0/0[0] |e 0/0/0/0]e 0/0/0]0]0 0/0/0/0/0
0/0/0 0/0/0/0 0/0/0]0]0 0/0/0/0/0
0/0f0e 0/0/0/0 0/0/0jo]0 0/0/0]j0/0
e e e e 0/0/0]0]0 e 0/0/0/0/0/0]/0]0/0]0
e e e e 0/0/0]0]0 e 0/0/0/0/0/0]0]0/0]0
e e e e 0/0/0/0]0]e 0/0/0/0[/0/0]0]0/0]0
e e 0/0/0/0/0 e 0/0/0/0]0 e 0/0/0/0/0/0]/0]0/0]0
0/0[0/0[0] |e 0/0/0/0/0 e 0/0(0/0]0] |e 0/0{0/0[0/0]0|0/0]0O
0/0/0/0/0 0/0/0/0/0 0/0/0]0]0 0/0/0/0/0
0/0/0/0/0 0/0/0/0/0 0/0/0]0]0 0/0/0/0/0
0/0/0/0/0 0/0/0/0/0 0/0/0]0]0 0/0/0/0/0
0/0/0/0/0 0/0/0/0/0 0/0/0]0]0 0/0/0/0/0
0/0foj0/0 0/0/0/0/0 0/0fojojo 0/0/ojoj0

FI1G. 1. First steps of propagating the empty cluster. O represents an empty site, otherwise the state is the initial
one. e stands for an easy site.

PROOF. This could be done by induction on the size of the empty square—assume that
[[1? is entirely emptied for some / < L. By the definition of an excellent square, there is an
easy site x € {{ + 1} x [/]. Its neighbor to the left is empty (since it is in [11%), so at the next
time step this site will also be empty. Once x is empty, the two sites x & e, could be emptied,
and then the sites x &+ 2e; and so on, as long as they stay in {{/ + 1} x [/]. Thus, at time / all
sites in {/ + 1} x [/] will be empty, and by the same reasoning the sites of [/] x {/ 4+ 1} will
also be empty. Since ([ + 1,/ 4 1) has two empty neighbors it will be emptied at step [ + 1,
and thus [/ + 1] will be emptied. [

CLAIM 5.5. Assume that [L]* is good, and that it has a neighboring square that is
entirely empty by time T. Then [L1* will be entirely empty by time T + L?.

PROOF. We can empty [L]? line by line (or column by column, depending on whether
its empty neighbor is in the horizontal direction or the vertical one). For each line, we start
by emptying the easy site that it contains, and then continue to propagate. [

DEFINITION 5.6. Until the end of the proof of the upper bound, L will be the minimal
length for which the probability to be good exceeds pSF + 0.01.

DEFINITION 5.7. C will denote the infinite cluster of good boxes of the form Li + [L]?
for i € Z2. Cy will denote the cluster of the origin surrounded by a path in C, or just the origin
if it is in C. Note that Cy could also be seen as the connected component of the origin in
7?2 \ C, but not in the standard Z2 but rather in the matching graph (see [18], Figure 3.2). 9Cy
will be the outer boundary of Cy (namely the boxes of C that have a neighbor in Cp). Note
that Cy is finite and that 9Cy is connected.

CLAIM 5.8. Assume that at time T one of the boxes on dCy is entirely empty. Then by
time T + Ty the origin will be empty, where Ty = (|0Co| + |Co|) L>.
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PROOF. By Claim 5.5, the boundary 9Co will be emptied by time To + L2|3Co|. Then,
at each time step at least one site of Cp must be emptied, since no finite region could stay
occupied forever. [

CLAIM 5.9.  Assume that a box Li + [L)? in C is empty at time T . Also, assume that the
graph distance in C between this box and 9Cy is I. Then by time T + [L? + Ty the origin will
be empty.

PROOF. This is again a direct application of Claims 5.5 and 5.8. [
Finally, we will use the following result from percolation theory.

CLAIM 5.10. Forl large enough, the number of boxes in C that are at graph distance in
C at most | from 3Cy is greater than 01, where 0 depends only on the probability that a box
is good.

PROOF. By ergodicity the cluster C has an almost sure positive density, so in particular

- len (=L
liminf —————
I—o0 |[=1, 117
By [3], there exists a positive constant p such that boxes of graph distance / from the origin

must be in the box [— %l , %l 1% for I large enough. Combining these two facts proves the claim.
O

This claim together with a large deviation estimate yields the following.

COROLLARY 5.11.  For [ large enough, the number of excellent boxes in C that are at
graph distance in C at most | from 3Cy is greater than 0'1>, where 6’ = 0.990p; .

We can now put all the ingredients together and obtain the upper bound.
Fix ¢c>0,and [ = Lq By Corollary 5.11, for g small, there are at least 9;—02 excellent

boxes at distance smaller than / from dCy. If one of them contains an empty site at the bottom
left corner, the origin will be emptied by time (I + 1)L? + Tp. For ¢ small enough, this time
2cL?
ﬁ 2

0'c
such an empty site, has probability (1 —¢g) ¢ . This probability tends to O uniformly in g as
¢ — 00, which concludes the proof.

is bounded by

. The complement of this event, that is, that none of these boxes contain

5.1.2. Proof of equation (2.4). The lower bound results from the simple observation, that
the origin could only be emptied by time ¢ if there is an empty site at distance smaller than .

The probability of that eventis 1 — (1 — q)‘”z, and taking ¢t = ﬁ and ¢ small enough this

probability is bounded by 1 — e~2¢. This tends to 0 with @ uniformly in ¢, which finishes the
proof.

5.2. Mixed threshold KCM on 7%

5.2.1. Spectral gap. The spectral gap of this model is dominated by that of the FA2f
model. Fix any y strictly greater than the gap of FA2f. Then there is a local nonconstant
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function f such that
FA2f
i =V,
Var f

where DFA?! is the Dirichlet form of the FA2f model.

Since f is local, it is supported in some square of size L x L, for L big enough. v-almost
surely it is possible to find a far away square in Z> of size L x L that contains only difficult
sites. By translation invariance of the FA2f model we can assume that this is the square in
which f is supported. In this case, D f = DFA £, and this shows that indeed the gap of

the model with random threshold is smaller than that of FA2f, which by [12] is bounded by
e~cl4,

5.2.2. Proof of equation (2.5). In this part we will use Corollary 4.1 in order to bound 7¢
by a path argument. As in the proof of the upper bound for the bootstrap percolation, we will
consider the good squares (see Definition 5.1) and their infinite cluster. In fact, by Claim 5.2,
by choosing L big enough we may assume that the box [L]? is in this cluster. Let us fix this
L until the end of this part. We will also choose an infinite self avoiding path of good boxes
starting at the origin and denote it by ig, i1, i2, ... . Note that this path depends on @ but not
on 7.

On this cluster empty sites will be able to propagate, and the next definition will describe
the seed needed in order to start this propagation.

DEFINITION 5.12. A box in Z? is essentially empty if it is good and contains an entire
line or an entire column of empty sites. This will depend on both @ and 7.

—L—-1

In order to guarantee the presence of an essentially empty box we will fix [ = ¢ , and

define the bad event

DEFINITION 5.13. Fix a disorder w, and let ig,...,i; as described above. B C Q is
defined as the event, that none of the boxes i, ..., i; is essentially empty. Note that B depends
on w even though for brevity this dependence does not appear explicitly in the notation.

A simple bound shows that
5.1) w(B) < (1—g~) <e7'a,

We can use this bound in order to bound the hitting time at B:
CLAIM 5.14.  There exists C > 0 such that P,,(tp <t) < Ce 14g.

PROOF. We use the graphical construction of the Markov process. In order to hit B,
we must hit it at a certain clock ring taking place in one of the sites of Ui,:] (Li +[L1).
Therefore,

P(tp < 1) < P[more than 2(2L + 1)t rings by time 1] 4 2(2L + 1)*t;.(B)
<LV T oo 4 1)2g L1 < com 14y, O

In order to bound tg we will study the hitting time of A = B U {n(0) = 0}.

LEMMA 5.15. Fix n € Q. Then there exists a path no, ..., NN of configurations and a
sequence of sites xo, ..., XN—1 such that:
L. no=n,

2. 1’]NEA,
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0 0 00 000 0 0 0 0 0 0
0 0 00 000 000 0 0 0 0
0 el — |0 e/— 0/0je] —> 0/0/0] —> |0/0]0] —> |0 0, — |0 0
0 e 00 00 0/0/0 000 000 0/el0
0 0 00 000 000 0 0 0 0

FI1G. 2. Creating an empty column and propagating it using the easy sites. O represents an empty site, otherwise
the state is the initial one. e stands for an easy site.

Xi

Ni+1=1n; >

Cy; mi) =1,

N <417,

For all i < N, n; differs from n at at most 3L points, contained in at most two neigh-
boring boxes.

NN kW

PROOF. If n € A, we take the path n with N = 0. Otherwise n € B¢, so there is an
essentially empty box in ig, ..., i;, which contain an empty column (or row). We can then
create an empty column (row) next to it and propagate that column (row) as in Figure 2.
When the path rotates we can rotate this propagating column (row) as show in Figure 3. [J

We can use this path together with Corollary 4.1 in order to bound 74.

LEMMA 5.16. There exists Cp > 0 (that may depends on L but not on q) such that
p(ra) < Crg>t 2,

PROOF. Since 7 vanishes on A, taking the path defined in Lemma 5.15,
N—1

A =Y (ta(ni) — ta(is1)).

i=0
In the following we use the notation
Vata(n) =ta(m) — ta(n*).
Then, by Cauchy—Schwarz inequality,

u(ra)? < p(ty) Zu(n)(Z Ve, ta(;) )

i=0

< Z“(”)N Zcx, ) (Vi Ta ()

= ZM(’?)NZZZQ (Veza(n' ))211:)61‘117/:'71"

[=J=jiw) ]l
[y
oo occ
[=if=j=j =)l
o o Cc o
[=li=li=ji=ll=)
[=li=li=ji=ll)
o o Cc o
o oo o
oo occo
[

o o Cc o

[
[y
[y

J

oo oo

oo |o oo
Y
[=i=li=ji=)l=)
Y

0/0/0/0 e e

FI1G. 3. Rotating an empty column in a good box. O represents an empty site, otherwise the state is the initial
one. e stands for an easy site.
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—3L

By property number 6 of the path, we know that () < g ~>"u(n’), so we obtain

w(ta)* <q N u(n) Zcz YVota(n)) Y Lem, Y Ly,
n i n
Still using property 6, n differs from n’ at at most 3L points, all of them in the box containing

z or in one of the two neighboring boxes. This gives the bound 3, 1,/_, ) < (3L%)3L . Finally,
bounding 1,—,, by 1,

u(a)? <qEBLY N u( Zcz )(Vota ()
n/
<16(3L*)*  L*q 12 D1y.

This concludes the proof of the lemma by Corollary 4.1. [J

Using this lemma and the bound on tp in Claim 5.14, we can finish the estimation of the
upper bound. By the Markov inequality

wu(ta > CLq_SL_S)

On the other hand, by Claim 5.14,

=q.

—5L—5) —5L—3)

<u(to < Crqg ) + pu(tp < Crq
<u(r < CLq_sL_3) + C’Le_l/q.

u(ta <Crq

Therefore
ulwo=Crg™t ) sq+Cpe™'/4,

and taking o = 5L + 3 will suffice.

Concerning Remark 2.3, fix L¢ such that the probability that [L(]? is good exceeds pSP
Then, for g =5Lg + 3, v(& < ap) > 0. We will see later that the other inequality holds as
well for the same «.

5.2.3. Proof of equation (2.6). A trivial bound could be obtained by taking any o < 1,
since the rate at which the origin becomes empty is always at most g. We will, however, look
for a bound that will better describe the effect of the disorder, and will allow us to prove
Remark 2.3. The basic observation for the estimation of this lower bound is that if [—L, L]?
is initially occupied, and if it contains only difficult sites, then at some point we will need to
empty at least % sites before the origin could be emptied. This energy barrier forces t4 to be
greater than ¢ 1/,

In the following we will fix L such that [—L, L1? contains only difficult sites (so it is not

the same L we have used for the upper bound).
DEFINITION 5.17. For a rectangle R, the span of R are the sites that could be emptied
with the bootstrap percolation using only the Os of R. If the span of R equals R we say that

R is internally spanned.

The next fact is a consequence of the fact that a set which is stable under the bootstrap
percolation must be a rectangle [2].

FACT 5.18. The span of a rectangle R is a union of internally spanned rectangles.
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DEFINITION 5.19. For x € Z2, let G, be the event that the origin is in the span of
[—L, L]? for n, but not for n*. G is defined as the intersection of G, with the event {c, = 1}.

First, note that legal flips of sites in the interior of a rectangle or outside the rectangle
cannot change its span. Therefore, G, = & for x which is not on the inner boundary of
[-L,L1%

CLAIM 5.20. Fix x on the inner boundary of [—L, L?, and let n € G,.. Then x and the
origin belong to the same internally spanned rectangle.

PROOF. Recalling Fact 5.18, we consider the internally spanned rectangle containing
the origin. If it didn’t contain x, the origin would be in the span of [—L, L]2 also for n*,
contradicting the definition of G,. [J

COROLLARY 5.21.  Fix x on the inner boundary of [—L, L1*>. Then u(G) < (LL/22)qL/2.

PROOF. Assume without loss of generality that x is on the right boundary. Then there
must be an internally spanned rectangle in [—L, L]1> whose width is at least L. Since all
sites of [—L, L]? are difficult, it cannot contain two consequent columns that are entirely
occupied, therefore it must contain at least % empty sites. [

We can use the same argument as in the proof of Claim 5.14. Defining G = | J, G, this
argument will tell us that the hitting time 7 is bigger than Cq~L/?>*! with probability that
tends to 1 as ¢ — 0, for some constant C that depends on L. If we start with a configuration
for which the origin is not in the span of [—L, L1?, it could only be emptied after rg—at the
first instant in which the span of [—L, L1? includes the origin, G, must occur for the site that
has just been flipped. Since the probability to start with an entirely occupied [—L, L]* tends
to 1 as ¢ — 0, equation (2.6) is satisfied for o = % — 1.

In order to bound also the expected value of tg we will use Proposition 4.7. Let us consider
the function

f = ]]-0 is not in the span of [~ L,L]?"
We can bound its Dirichlet form using Corollary 5.21:

Df = M(? cx Vary f) < M(? quﬂcx>

L? L2 _ L/2+1
§q16L<L/2>q =CLq .

The expected value is bounded by the probability that all sites are occupied:
uf = (1= )@k,
Now consider for some A € R the rescaled function f = Af.
Tf=2uf-Df
> 2a(1 — q)(2L+1)2 _ AchqL/2+1.

The optimal choice of A is

_@L+1)2 . .
%Q—UZ—‘, which yields

(1 _ q)(ZL—H)z

—L/2-1
c, 1 ‘

Tf=
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Proposition 4.7 and the fact that f vanishes on {no = 0} imply that u(zg) > C /Lq_L/ 2=1 and
therefore £, (t9) > ¢~ for g small enough.

Concerning Remark 2.3, note that for every o
vieg>a)>v(l >20+4)=(1 — j.[)(4a+9)2'

In particular, for g defined in the proof of the upper bound v(« > ag) > 0.

5.3. Mixed threshold models on 7Z¢. The argument above, for the case of 72, works also
in more general settings, as long as the probability to be easy (i.e., threshold 1) is strictly
positive.

The lower bound of the bootstrap percolation is immediate, since only at scale g it is
possible to find an easy site. The lower bound for the kinetically constrained model could be
analyzed similarly to the two dimensional case using the methods of [6], but in order to keep
things simple we could take & < 1, which suffices since the rate at which the origin becomes
empty is always at most q.

For the upper bound of both the bootstrap percolation and the kinetically constrained
model we need to construct a path that will empty the origin. First, note that we may as-
sume that sites have either threshold 1 (easy) or threshold d (difficult) with probabilities
and 1 — 7, for some 7 > 0. In this case the path is described explicitly in [26]. It is con-
structed for the FAdf model, but we will only need to adapt the definitions there in order to
take into account the easy sites.

Fix L that will be equal to n defined in the beginning of Section 5.1 of [26], replacing ¢
by 7 and taking € such that good boxes (see Definition 5.23 that follows) percolate, and the
origin belongs to the infinite cluster. We then consider, just as before, an infinite path of good
boxes starting at the origin.

—1/d

DEFINITION 5.22. The easy bootstrap percolation will be the threshold d bootstrap per-
colation defined on Z¢, with initial conditions in which easy sites are empty and difficult sites
are filled. A set V € Z¢ is easy internally spanned if it is internally spanned for this process.

DEFINITION 5.23. A goodbox V =x + [L]¢ is a box for which the event G in Defini-
tion 5.4 of [26] occurs, replacing “internally spanned” by “easy internally spanned.”

DEFINITION 5.24. As excellent box is a box that, by adding a single easy site at its cor-
ner, will be easy internally spanned. p; will be the probability that the box [L]? is excellent.
Note that (as for the two-dimensional case) py is nonzero, and that it does not depend on ¢.

DEFINITION 5.25.  An essentially empty box V = x + [L]? will correspond to the event
G in Definition 5.4 of [26]—it is a good box in which the first slice in any direction is empty.

Being good and being excellent are events measurable with respect to the disorder w,
whereas being essentially empty depends also on the configuration of the empty and filled
sites. The definition of the bad event B remains the same as in the previous section, and
taking [ = q‘de*l_l its probability has the same decay.

With these definitions, replacing “supergood” by “essentially empty,” the proof in Sec-
tion 5 of [26] shows how to propagate an essentially empty box along the path of good boxes,
corresponding to Figures 2 and 3 in the two-dimensional case. We may then consider a path
as the one of Lemma 5.15. That is, for any configuration 7 there is a path 7, ..., ny with
flips xo, ..., xny—1 such that:

L. no=mn,
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NN €A,
nit1 €7,
Cx; m) =1,
N < cL9l for some ¢ > 0,
6. For all i < N, n; differs from n at at most cLd! points, contained in at most two
neighboring boxes.

Sk wN

Applying the exact same argument as for the two dimensional case yields the upper bounds.
5.4. Mixed North-East and FA1f.

5.4.1. Spectral gap. This is the same argument as for the previous model—one can al-
ways find arbitrarily large regions of difficult sites, so the gap is bounded by that of the
North-East model. Since for the parameters that we have chosen the North-East model is not
ergodic, it has 0 gap [12].

5.4.2. Hitting time. Let A be the event {ny = 0}. Recall Definition 4.3 and let
T=TA}4.
The exponential tail of 7y is a consequence of Proposition 4.4, so we are left with proving

that v(t > 1) < t%e7 for some constant ¢. We will do that by choosing a subgraph on which
we can estimate the gap, and then apply Claim 4.11.

Since 7 is greater than the critical probability for the Bernoulli site percolation, there will
be an infinite cluster of easy sites C. We denote by Cy the cluster of the origin surrounded by
a path in C. dCy will be the outer boundary of Cy, that is, the sites in C that have a neighbor
in Cp. Then, we fix a self avoiding infinite path of easy sites vg, vy, ... starting with the sites
of dCy. That is, vy, ..., Vjac, 1s a path that encircles Co, and then vjycy|+1, ... continues to
infinity. We will denote V = {v;};en. Let H =V U Cp, and consider the restricted dynamics
Ly introduced in Definition 4.9. We split the dynamics in two—for some local function f
on H

Luf=LOf+LYS,
LYf =3 ey o f = 1)
ieN
LOf =3 el (uef = 1.
x€Cp
Note that the boundary conditions of the Cy dynamics depend on the state of the vertices
in V and vice versa. We will denote by Ego the Cyp dynamics with empty boundary conditions
and by E‘f the V dynamics with occupied boundary conditions. All generators come with
their Dirichlet forms carrying the same superscript and subscript.
We will bound the gap of Ly using the gaps of E}/, Lgo and the following block dynamics:

Ebf = (MV(f) - f) + Lacy is empty(MCf - .

Denote the spectral gaps of L, Ego, Ll Ly by ylv , yOC 0 )/b , VH -
By Proposition 4.4 of [12]:

CLAIM 5.26.

yb: 1—4/1 —q|3c()|’

that is, Var f < %Db f for any local function f.

_ /1_q|3Co
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Let us now use this gap in order to relate yz to ¥ and y <0

CLAIM 5.27.

yr = y"min{yY, y5°}.

PROOF. Fix a nonconstant local function f,

1 1
Var f < WD”f = F[M(Varv f) + n(Tacy is empty Vare f)]

171
<—|:VVM(D f) C() (]lac()lsemptyp f)i|
Y0

We are left with estimating ylv and )/OC 0,
CLAIM 5.28. There exists C > 0 such that ylv > Cq°.

PROOF. The Dirichlet form D}) is dominated by the Dirichlet form of FA1f on Z_, and
that dynamics has a spectral gap which is proportional to ¢> (see [12]). O

For yOC % we will use the bisection method, comparing the gap on a box to that of a smaller
box. For L € N, let EIEE be the generator of the North-East dynamics in the box [L]*> with
empty boundary (for the North-East model this is equivalent to putting empty boundary only
above and to the right). Denote its gap by y[T]EZ. By monotonicity we can restrict the discus-
sion to this dynamics, that is,

(5.2) 70" Z Vitmcy:

We will now bound )/NE (see also Theorem 6.16 of [12]).

CLAIM 5.29. y[lf]z > e3logqlL

PROOF. We will prove the result for L; = 2 by induction on k. Then monotonicity will
complete the argument for all L. Consider the box [Lx]?, and divide it in two rectangles—
= [Lg—1] X [Lg] and Ry = [Lg—1 + 1, L] x [Lg]. We will run the following block
dynamics:
EbNEf =(ur, f— )+ Lo Rr,is empty(MR,f -

where d_ R is the inner left boundary of R.. Again, by Proposition 4.4 of [12],

gap(‘CbNE \/1 — n(Ly_ Ry is empty)

= 1 — 1 —_ qu
Therefore, for every local function f,

1
1—,/1—qgl

Var f < DPNE ¢
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1
= ————=n(Varg, f +15_Rr, is empty Varg_ f)
1— m + + 1s empty
1 1 NE 1 NE
= M( NEDR f+ NEDR_f>v
1—J1—gke \Yg, " Vg
where yNE, DII\QIE are the spectral gap and Dirichlet form of the North-East dynamics in R

with empty boundary conditions for any fixed rectangle R. We see that

NE L.\. NE
Viege = 0=V 1= a") Y uqp-

If we repeat the same argument dividing [Lr_1] x [Lg] into the rectangles [Lz—1] x [Lg—1]
and [L;_1] x [Lr—1 + 1, L], we obtain

J/EElek z (1 -y 1 _qu_l)y[];If_l]Z'

Hence,
log y[ﬁf‘]z > log ygf_l]z + 2k logg — log4,
yielding
k
log y[lzli]z > logqg Z 2" — klog4
n=1

which finishes the proof. [J

We can now put everything together. Let L be the diameter of Cy. By the second part of
Claim 4.11,

- 1+qg 1 - 1+g¢g 1
T —
< < ' -
(5.3) a7 4 1—1-qmin{y), 5"}
g,

Finally, we will use the sharpness of the phase transition for the site percolation on the
dual graph (see [1, 13]):

CLAIM 5.30. There exists a positive constant ¢, that depends on w such that v(L >
D) < e~ 2P forany D e N.

Using this claim and equation (5.3),

logt 1
v(tzt)fv(q_4L_12t)=v<Lz % : ——)
4log 4

< th/logq.

6. Conclusions and further questions. We have seen here two simple examples of
KCMs in random environments. These examples show that when the environment has some
rare remote “bad” regions the relaxation time fails to describe the true observed time scales
of the system. Since the dynamics are not attractive, techniques such as monotone coupling
and censoring cannot be applied to these models. In order to overcome this difficulty we con-
sidered the hitting time 7y, which on one hand describes a physically measurable observable,
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and on the other hand could be studied using variational principles. We formulated some tools
based on these variational principles and used them in order to understand the behavior of g
in both models.

For future research, one may try to apply these tools on kinetically constrained models
in more types of random environment, such as the polluted lattice, more general mixture of
constraints, and models on random graphs.

There are also some questions left open considering the models studied here. For the first
model, it is natural to conjecture that 7y scales as ¢~ for some random «. We can also
look at the w dependence of «—we know that when there are not many easy sites this time
should become larger, until it reaches the FA2f time when = = 0. Looking at the proof of
Theorem 2.2, we can see that o scales like %, and « scales like 77 —1/2. It seems more

likely, however, that the actual exponent « behaves like %—the log% of the lower bound
comes up also in the proof bounding the gap of the FA2f model [26], and also there it is
conjectured that it does not appear in the true scaling. In fact, if we use the path that we have
chosen in order to bound 7y also for the bootstrap percolation, we will have the same log é
factor, and in this case it is known that it does not appear in the correct scaling. The lower
bound of 7~!/? could be improved, with the price of complicating the proof. The refined
argument appears in [29], obtaining a bound that scales as % It is worth noting here that for
the bootstrap percolation, by repeating the arguments of [2, 20] with some minor adaptations,
we can show that the scaling of the prefactor a with 7 is between e“/™ and ¢€/™ forc,C > 0
(see [29]).

CONJECTURE 6.1. For the mixed threshold FA model, v-almost surely the limit
log 1
log1/q
the law of ma converges (in some sense) to a nontrivial law as 1 tends to 0.

limg ¢ exists. Its value « is a random variable whose law depends on . Moreover,

The mixed North-East and FA1f model also raises many questions, among them finding
the critical probability ¢., and characterizing the behavior of both the bootstrap percolation
and the KCM in the different parameter regimes.
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