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Abstract: Model-based clustering is a popular approach for clustering
multivariate data which has seen applications in numerous fields. Nowa-
days, high-dimensional data are more and more common and the model-
based clustering approach has adapted to deal with the increasing dimen-
sionality. In particular, the development of variable selection techniques
has received a lot of attention and research effort in recent years. Even for
small size problems, variable selection has been advocated to facilitate the
interpretation of the clustering results. This review provides a summary
of the methods developed for variable selection in model-based clustering.
Existing R packages implementing the different methods are indicated and
illustrated in application to two data analysis examples.
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1. Introduction

Model-based clustering is a well established and popular tool for clustering mul-
tivariate data. In this approach, clustering is formulated in a modeling frame-
work and the data generating process is represented through a finite mixture
of probability distributions. Often, all the variables at a user’s disposal are
employed in the modeling. Nonetheless, in many situations considering all the
variables unnecessarily increases the model complexity. Moreover, some vari-
ables may not possess any clustering information and are of no use in the detec-
tion of the group structure. Rather, they could be detrimental to the clustering.
Likewise, the case were all of the variables contain clustering information can
also be problematic. Along with the increasing number of dimensions comes
the curse of dimensionality (Bellman, 1957) and including superfluous vari-
ables in the model leads to identifiability problems and over-parameterization
(Bouveyron and Brunet-Saumard, 2014a; Bartholomew, Knott and Moustaki,
2011). Therefore, resorting to variable selection techniques can facilitate model
fitting, ease the interpretation of the results and lead to data classification of
better quality. Even in situations of moderate or low dimensionality, reducing
the set of variables employed in the clustering process can be beneficial (Fowlkes,
Gnanadesikan and Kettenring, 1988).

This article gives a review of the available methods for variable selection in
model-based clustering. Starting from early works on the topic, we will give a
summary of the various approaches up to the most recent developments. The
focus will be on variable selection when clustering multivariate continuous and
categorical data, the two most common data types in practice. References to
the existing R packages that implement the different methods are provided.
As illustrative examples, we will apply the variable selection methods to two
illustrative datasets.

The exposition is structured as follows. Section 2 introduces the main fea-
tures of the variable selection methods for mixture model clustering. Section 3
recalls the model-based clustering framework, with a brief description of the
two principal models for multivariate continuous and categorical data: Gaus-
sian mixture models and latent class analysis. In Section 4, classical and recent
variable selection methods for Gaussian mixture models are reviewed. The sec-
tion terminates with the list of available R packages and a data analysis ex-
ample concerning historical mortality rates. Section 5 is dedicated to variable
selection methods for latent class analysis. R packages and an application to
voting data are presented in conclusion. The paper ends with a discussion in
Section 6.
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2. Methods of variable selection

When performing variable selection for clustering, the goal is to retain only the
relevant variables. With this aim, it is crucial to define what it means for a
variable to be, or not to be, “relevant”. In supervised learning the matter has
been the object of rigorous discussion for a long time; we mention the works of
Yu and Liu (2004); Blum and Langley (1997); Kohavi and John (1997); Koller
and Sahami (1996) and John, Kohavi and Pfleger (1994). Within the model-
based clustering approach, the question has been addressed recently in Ritter
(2014). Model-based clustering places the clustering task into a formal model-
ing framework and the group structure is embedded in the group membership
variable (McLachlan and Basford, 1988). In this case, the definition of rele-
vance can be expressed in terms of probabilistic dependence (or independence)
statements with respect to this variable (Ritter, 2014). Relevant variables con-
tain the essential clustering information. In a model-based clustering context,
their distribution directly depends on the group membership variable. On the
other hand, irrelevant variables do not convey any beneficial information. These
can be further divided into redundant and uninformative variables. Redundant
variables provide information of similar quality to that already available in the
relevant ones, therefore are not needed for a parsimonious modeling. In many
situations, they contain similar information because they are correlated with
the relevant ones. In terms of distributional representation, we may think of
redundant variables as conditionally independent of the grouping variable given
the relevant variables; they could be useful for clustering, but only if the rel-
evant ones are not present. On the contrary, uninformative variables possess
no discriminative information whatsoever. They correspond to noise and their
distribution is completely independent of the group structure.

Different model-based clustering and variable selection strategies can be de-
lineated by distributional assumptions on relevant and irrelevant variables. Two
main assumptions are peculiar to the task of variable selection and mixture
model clustering; these are:

• Local independence assumption. The relevant variables are conditionally
independent within the groups.

• Global independence assumption. The irrelevant variables are independent
of relevant clustering variables.

Figure 1 gives a simple sketch of the two independence statements. In speci-
fying a general strategy for model-based clustering and selection of variables,
these assumptions can be combined together or employed separately. They have
different implications on the clustering model and the model for the relations
among the variables. In particular, the local independence assumption helps to
simplify the modeling of the joint distribution of relevant variables and is espe-
cially useful in high-dimensional data settings. It is a standard assumption of
the latent class analysis model (Clogg, 1988). For Gaussian mixture models, the
statement corresponds to assuming components with diagonal covariance ma-
trices. The global independence assumption implies that the joint distribution
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Fig 1. Local and global independence assumptions. In the example, z is the group membership
variable, X1, X2 and X3 are relevant clustering variables, while X4 and X5 are irrelevant
and not related to z. Under the local independence assumption there are no edges among the
relevant variables. Under the global independence assumption there is no edge between the set
of relevant variables and the set of irrelevant ones.

of the variables factors into the product of the mixture distribution of the rele-
vant variables and the distribution of the irrelevant variables. The term “global”
is used because the independence statement affects the distribution of all the
variables, not only the clustering ones. This assumption simplifies the model-
ing of the relation between relevant and irrelevant variables. However, it limits
the capability of taking into account the presence of redundant variables (Law,
Figueiredo and Jain, 2004; Raftery and Dean, 2006). Many of the methods that
are presented in this review make use of one of the two assumptions above,
either implicitly or explicitly.

Likewise, how the variable selection algorithm interacts with the model fit-
ting process defines the overall approach to the problem. For a general learning
task, the principal distinction is in whether the selection is carried out sepa-
rately or jointly to the learning procedure (John, Kohavi and Pfleger, 1994;
Dash and Liu, 1997; Dy and Brodley, 2004; Saeys, Inza and Larrañaga, 2007;
Liu and Motoda, 2007). The first case corresponds to filter methods, where the
selection is performed as a pre (or sometimes post) processing step. The second
corresponds to wrapper methods, that combine learning and variable selection
at the same time. In this case the selection procedure is “wrapped” around the
learning algorithm. Filter approaches are easy to implement and computation-
ally efficient. However, wrapper methods often provide superior results, despite
being more involved (Blum and Langley, 1997; Kohavi and John, 1997; Guyon
and Elisseeff, 2003).

In model-based clustering, filter methods perform the variable selection before
(or after) the model has been estimated. The inferred classification is then used
to evaluate the quality of the variables. In contrast, with a wrapper method
model estimation and selection are conducted simultaneously. Variables selected
via filter methods can miss important information as the selection is external to
the model estimation. Indeed, wrapper methods have recently attracted most
of the attention and are the most widespread. Their advantages lie in the fact
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that they can be naturally included in the model fitting, can lead to a better
classification and can provide a better representation of the data generating
process (Dy and Brodley, 2004; Law, Figueiredo and Jain, 2004).

Within the class of wrappers, the various methods for variable selection in
mixture model clustering can be further distinguished according to the type of
statistical approach used. Three major approaches can be found in the literature:

• Bayesian approaches. In this class of methods, the problem of variable
selection is addressed assuming the existence of a latent variable indicating
if an observed variable characterizes a mixture distribution or not. Variable
selection is conducted by making inference about the posterior distribution
of such a latent variable.

• Penalization approaches. Within this category, variable selection is per-
formed by using a penalized log-likelihood approach. The penalization
term is a function of the mixture parameters and acts to shrink the esti-
mates towards an overall common value. Variables whose estimates take
this common value across the different mixture components are considered
irrelevant and are discarded.

• Model selection approaches. Here the task of variable selection is re-formu-
lated as a model selection problem. Different models are specified accord-
ing to the role of the variables towards the clustering structure. Con-
sequently, relevant variables are selected by comparing different models
using some predefined criterion.

The above categorization is not exhaustive nor the definitions are intended to
be mutually exclusive. Indeed, many of the methods that will be presented in
the rest of the paper have some degree of overlap and a method belonging
to one type of approach could be easily rephrased in terms of the other ones.
These three general approaches are the predominant in the literature and the
classification will be used for ease of exposition and a systematic presentation.

In summary, the existing variable selection methods for model-based cluster-
ing are differentiated in relation to the distributional assumptions for relevant
and irrelevant variables, the interaction between variable selection and model
fitting, and the general statistical approach. We will give an overview of these
methods after a short description of the model-based clustering framework.

3. Model-based clustering

Let X be the N ×J data matrix, where each row xi = (xi1, . . . , xij , . . . , xiJ) is
the realization of a J-dimensional vector of random variables X = (X1, . . . , Xj ,
. . . , XJ). Model-based clustering assumes that each observation arises from a
finite mixture of G probability distributions, each representing a different cluster
or group (Fraley and Raftery, 2002; Melnykov and Maitra, 2010; McNicholas,
2016). The general form of a finite mixture distribution is specified as follows:

p(xi;Θ) =

G∑
g=1

τg p(xi;Θg), (1)
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where the τg are the mixing probabilities and Θg is the parameter set corre-
sponding to component g; Θ denotes the set of all parameters of the mixture.
The component densities fully characterize the group structure of the data and
each observation belongs to the corresponding cluster according to a latent clus-
ter membership indicator variable zi = (zi1, . . . , zig, . . . , ziG), such that zig = 1
if xi arises from the gth subpopulation (McLachlan and Peel, 2000; McLachlan
and Basford, 1988).

For a fixed number of components, parameters are usually estimated using
the EM algorithm (Dempster, Laird and Rubin, 1977; McLachlan and Krishnan,
2008; Bartholomew, Knott and Moustaki, 2011; O’Hagan, Murphy and Gorm-
ley, 2012). Moreover, generally model selection corresponds to the selection of
the number of components G and to accomplish the task a plethora of meth-
ods have been suggested in the literature, the Bayesian Information Criterion
(BIC, Schwarz, 1978) being the most popular one. Another popular approach
for mixture model selection is the Integrated Complete-data Likelihood criterion
(ICL, Biernacki, Celeux and Govaert, 2000), which gives more importance to
models with well separated clusters. See McLachlan and Rathnayake (2014) for
a detailed review of the various methods.

After parameters have been estimated, each observation is assigned to the
corresponding cluster using the maximum a posteriori (MAP) rule (McLachlan
and Peel, 2000; McNicholas, 2016). The posterior probabilities uig = Pr(zig =
1 |xi) of observing cluster g given the data point i are estimated as follows:

ûig =
τ̂g p(xi; Θ̂g)∑G

h=1 τ̂h p(xi; Θ̂h)
,

Then observation xi is assigned to cluster g if

g = MAP(ûi) = argmax
h

{ûi1, . . . , ûih, . . . , ûiG}.

According to the nature of the data, different specifications for the compo-
nent densities in (1) have been proposed. In the following sections we focus on
the cases of continuous and categorical data, taking in consideration the two
most popular distributions: Gaussian and Multinomial. However, various and
more flexible distributional assumptions can be specified, enabling to take into
account for skewness, heavy tails and different data types; for example, see Mc-
Nicholas (2016) for a review on non-Gaussian components, McLachlan and Peel
(1998) for mixtures of multivariate t-Student distributions, Lee and McLachlan
(2013) and Lee and McLachlan (2016) for mixtures of skew-t and skew nor-
mal distributions, Karlis and Meligkotsidou (2007) and Rau et al. (2015) for
clustering multivariate count data, McParland and Gormley (2016) for mixed
data model-based clustering, Kosmidis and Karlis (2016) for the use of copu-
las in model-based clustering, DeSantis et al. (2008) for latent class analysis of
ordinal data.
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3.1. Gaussian mixture model

When clustering multivariate continuous data, a common approach is to model
each component density by a multivariate Gaussian distribution. For a Gaussian
mixture model (GMM) the mixture density in (1) becomes:

p(xi;Θ) =

G∑
g=1

τg φ(xi;μg,Σg), (2)

where φ is the multivariate Gaussian density and μg and Σg are the mean and
covariance parameters respectively; see Fraley and Raftery (2002), Melnykov
and Maitra (2010) and McNicholas (2016) for reviews. To attain parsimony, sev-
eral approaches involving re-parameterizations of the covariance matrix Σg have
been presented; for example Banfield and Raftery (1993); Celeux and Govaert
(1995); Bouveyron, Girard and Schmid (2007); McNicholas and Murphy (2008);
Biernacki and Lourme (2014). We refer to Bouveyron and Brunet-Saumard
(2014a) for a review.

Model based-clustering via GMMs can be performed in R (R Core Team,
2017) using the packages mclust (Scrucca et al., 2016), Rmixmod (Lebret et al.,
2015), EMCluster (Chen and Maitra, 2015), mixtools (Benaglia et al., 2009)
and flexmix (Leisch, 2004); also the EMMIX software (McLachlan et al., 1999)
can be used for fitting mixtures of Gaussian distributions. Lastly, we note that in
Python (Python Software Foundation, 2017), GMMs estimation can be executed
via the packages scikit-learn1 and PyMixmod 2.

3.2. Latent class analysis model

For clustering multivariate categorical data, the common approach is to use the
latent class analysis model (LCA, Bartholomew, Knott and Moustaki, 2011).
Under this model, the mixture density in (1) is a mixture of Multinomial dis-
tributions as follows:

p(xi;Θ) =

G∑
g=1

τg C(xi;πg), (3)

where

C(xi;πg) =

J∏
j=1

Cj∏
c=1

π
1{xij=c}
gjc ,

with πgjc representing the probability of occurrence of category c for variable
Xj in class g, and Cj the number of categories of variable j. The factorization in
C(xi;πg) is due to the local independence assumption, stating that the variables
are independent within each latent class (Clogg, 1988). More details about the
model can be found in Vermunt and Magdison (2002); Agresti (2002); Collins

1http://scikit-learn.org/stable/
2http://www.mixmod.org/spip.php?article62

http://scikit-learn.org/stable/
http://www.mixmod.org/spip.php?article62
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and Lanza (2010). For different values of G, not all the models can be fitted and
constraints on the parameters need to be placed in order to ensure identifiability
(Goodman, 1974); for examples see Formann (1985).

R packages implementing the LCA model for clustering categorical data are
BayesLCA (White and Murphy, 2014), poLCA (Linzer and Lewis, 2011) and
flexmix (Leisch, 2004); package e1071 (Meyer et al., 2017) contains function
lca for fitting the LCA model on binary data.

4. Variable selection methods for Gaussian mixture models

In this section we provide an overview of the available methods for cluster-
ing and variable selection using Gaussian mixture models. Steinley and Brusco
(2008) and Celeux et al. (2014) compare and evaluate the performances of some
of the methods described in the subsequent sections. In particular, Steinley and
Brusco (2008) perform an empirical comparison of different procedures for clus-
tering and variable selection, also those not based on mixture models. While
Celeux et al. (2014) compare the model selection approach of Maugis, Celeux
and Martin-Magniette (2009a) (see Section 4.3) and the regularization approach
of Witten and Tibshirani (2010) (see Section 4.2); the authors found that, in
the case of correlated variables, the model selection approach was substantially
more accurate in terms of both classification and variable selection than the
regularization approach, and that both gave more accurate classifications than
K-means without variable selection.

4.1. Bayesian approaches

Various methods have been developed within the Bayesian paradigm for simul-
taneous model-based clustering and variable selection. A common feature among
them is the introduction of a variable ϕ, usually following a distribution p(ϕ).
The variable splits X into two sets: XC , the set of variables defining a Gaussian
mixture distribution, and XNC , the set of variables indicating a single multi-
variate Gaussian distribution. In its most general form, the distribution of the
data, conditional on z, can be expressed as:

p(X | z, G,ϕ,Ω) = p(XC | z, G,ϕ,Θ) p(XNC |ϕ,Γ),
where p(XC | z, G,ϕ,Θ) is a mixture distribution whose parameters are denoted
by Θ, p(XNC |ϕ,Γ) is a single multivariate Gaussian distribution with param-
eters Γ, and Ω denotes the collection {Θ,Γ} of all parameters. Then, with the
aim of variable selection and clustering, the focus is in drawing inference from
the posterior distribution:

p(z, G,ϕ,Ω |X) ∝ p(X | z, G,ϕ,Ω) p(z |Ω) p(G) p(ϕ) p(Ω).

In this context, Liu et al. (2003) propose the anchor mode model, where vari-
able selection is performed by selecting the most informative principal compo-
nents (or factors) of the data. In this approach, a preliminary dimension reduc-
tion through principal component analysis is performed and the first k0 factors
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are retained. Then it is assumed that only a subset of these factors is informative
for clustering and distributed according to a mixture of Gaussians, while the re-
maining components follow a simple Gaussian distribution. The subset consists
of the first ϕ principal components, where ϕ is a random variable distributed
according to the prior distribution p(ϕ). Inference on this number of relevant
factors is conducted employing a Markov Chain Monte-Carlo (MCMC) scheme
where the prior p(ϕ) is taken to be the Uniform distribution. The method is
shown to perform well on high-dimensional gene expression data, however, se-
lection is performed on a set of features derived from the original variables and in
general the principal components with the larger eigenvalues will not necessarily
contain the most useful information about the clustering (see Chang, 1983).

As an alternative to the “hard selection” approach (a variable is either se-
lected or not), Law, Figueiredo and Jain (2004) suggest a Bayesian framework
where the concept of feature saliency is introduced. Letϕ=(ϕ1, . . . , ϕj , . . . , ϕJ)
be a binary variable such that ϕj = 1 if Xj is relevant and ϕj = 0 otherwise.
Then the saliency of variable Xj is the quantity ρj = Pr(ϕj = 1) and can be
interpreted as the importance of the variable in characterizing the cluster struc-
ture of the data. Assuming conditional independence of the variables, it follows
that the likelihood of a data-point can be expressed as:

p(xi |Ω) =

G∑
g=1

τg

J∏
j=1

[
ρj φ(xij |μg, σ

2
g) + (1− ρj)φ(xij |Γ)

]
,

with clear use of the notation. Rather than ϕ, the interest here is in recovering
the probabilities ρj and a Dirichlet prior is placed on the corresponding vector.
To encourage the saliences of some variables to converge to zero, the authors
adopt a minimum message length criterion (Wallace and Freeman, 1987) and
utilize an EM algorithm for maximum a posteriori estimation. Within the same
framework, Constantinopoulos, Titsias and Likas (2006) consider a variational
learning method for estimation of the saliences.

The same idea of a binary clustering-relevance indicator variable ϕ is em-
ployed in Tadesse, Sha and Vannucci (2005). The authors assume a prior on ϕ
of the form:

p(ϕ | η) =
J∏

j=1

ηϕj (1− η)1−ϕj ,

with η the hyper-parameter interpreted as the proportion of variables expected
to discriminate the groups. A MCMC scheme is used for inference, and the vec-
tor ϕ is updated using a Metropolis search where a new candidate is generated
from the previous state by adding, removing and swapping at random its entries.
Posterior inference on ϕ is drawn after integrating out the parameters and con-
sidering the marginal posterior p(ϕj = 1 |X). Then the best clustering variables
can be identified as those with largest marginal posterior, p(ϕj = 1 |X) > t,
with a specified t. Alternatively, the selection can be performed by taking into
account the complete vector ϕ with largest posterior probability among all vis-
ited vectors throughout the chain, thus considering the joint density of ϕ. The
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method is shown to perform well in clustering high-dimensional microarray data.
Furthermore, in subsequent work, Kim, Tadesse and Vannucci (2006) extend the
approach by formulating the clustering in terms of an infinite mixture of Gaus-
sian distributions via Dirichlet process mixtures, while Swartz et al. (2008)
expand it to the modeling of data with a known structure imposed from an
experimental design.

4.2. Penalization approaches

In this context, a penalization term is introduced on the model parameters and
variable selection is performed by inducing sparsity in the estimates. The aim is
to maximize a penalized version of the log-likelihood under a Gaussian mixture
model and discard those variables whose parameter estimates are shrunken to
zero or to a common value across the mixture components. In its general form,
this penalized log-likelihood is as follows:

	Q =

N∑
i=1

log

{
G∑

g=1

τg φ(xi;Θg)

}
−Qλ(Θ), (4)

where the penalization term Qλ(Θ) is a function of the Gaussian densities
parameters Θ and λ, a generic penalty parameter (here in the notation we
denoted with Θ the collection of all Gaussian density parameters and with Θg

the subset corresponding to component g). Generally, the various methods are
differentiated by the form of the function Qλ(·), having different implications
on the selection of variables.

Seminal work in this class of approaches is the method introduced by Pan
and Shen (2007). The authors use a L1 penalty function of the form:

λ

G∑
g=1

J∑
j=1

|μgj | .

After centering the data, the method realizes variable selection by automatically
shrinking several small estimates of μgj towards zero. Indeed, if μgj = 0 for all
g, the component means for variable j are equal to the overall data mean and
variable j does not contribute to the clustering. The authors show an application
to the Golub et al. (1999) leukemia gene expression dataset, demonstrating the
usefulness of the approach in “high dimensions – small sample size” settings.

A closely related approach is the one suggested by Bhattacharya and McNi-
cholas (2014), where the penalizing function accounts for the size of the clusters
and is given by:

λ
G∑

g=1

Nτg

J∑
j=1

|μgj | .

The parameter λ depends on the sample size and the authors derive a BIC-type
model selection criterion for high-dimensional settings.
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The L1 penalty function treats each μgj individually, not using the informa-
tion that, across the mixture components, the parameters (μ1j , . . . , μgj , . . . ,
μGj) corresponding to the same variable Xj are grouped. This results in the
fact that, if for a fixed variable j and some component g, we have μgj �= 0
while μkj = 0 for all the remaining components, then the variable would not be
excluded. Wang and Zhu (2008) suggest a solution to the problem by replacing
the L1 norm with the L∞ norm. Thus the penalty function is given by:

λ

J∑
j=1

max
g

{ |μ1j | , . . . , |μgj | , . . . , |μGj | }.

After re-parameterizing μgj = αjβgj (αj ≥ 0), the authors consider also a
hierarchical penalization function of the form:

λ1

J∑
j=1

αj + λ2

G∑
g=1

J∑
j=1

|βgj | ,

with λ1 controlling the amount of shrinkage on the μgj as a group for g =
1, . . . , G, and λ2 controlling the shrinkage effect within variable j. This function
has the advantage of being more flexible and inducing a less “hard” penalization
than the L∞ norm. Both penalty functions take into account the fact that
component means corresponding to the same variable can be treated as grouped
and tend to conduct a more effective variable selection.

The idea of grouped parameters is also accounted in Xie, Pan and Shen
(2008a). Here the authors suggest the use of two planes of grouping: vertical
and horizontal mean grouping. For the first, mean parameters afferent to the
same variable are treated as a whole and the penalty function is:

λ
√
G

J∑
j=1

||μj ||2

where μj = (μ1j , . . . , μgj , . . . , μGj) and ||·||2 denotes the L2 norm. The same
idea is exploited in the horizontal grouping, where prior knowledge that some
variables work in groups is introduced in the penalization. Here the variables
can be grouped in M groups indexed by m and each one of size Hm. Then the
function is given by:

λ

G∑
g=1

M∑
m=1

√
Hm ||μgm ||2,

with μgm the vector of means of component g for variables in group m. The two
planes of penalization can be combined together and Xie, Pan and Shen (2008a)
show their superior performance in comparison to the standard L1 penalty.

An approach allowing to identify which variables are discriminative for which
specific pairs of clusters is the one proposed by Guo et al. (2010). They introduce
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a pairwise fusion penalty of the form:

λ

J∑
j=1

⎛⎝ G∑
g=1

∑
h<g

|μgj − μgh |

⎞⎠ .

The penalty function shrinks the mean parameters toward each other and if
μgj = μgh, variable Xj is not useful in discriminating components g and h, but
may be useful in discriminating the other components. A variable will be con-
sidered as non-informative and discarded only in the case where all the cluster
means are shrunken to the same value.

A shared characteristic of the penalization methods presented to this point
is the assumption that the data are generated by a Gaussian mixture distri-
bution with a common diagonal covariance matrix. Consequently, the mixture
components are differentiated only by their mean parameters and variables with
cluster-specific means all equal can be discarded since non-informative to clus-
tering. Nonetheless, in some situations, the assumption of a common isotropic
covariance matrix might be too restrictive, as it implies that all the clusters are of
spherical shape and have the same volume. For example, the Golub et al. (1999)
data contain a sample of 38 patients known to have three types of leukemia, with
different variability in the gene expressions. In this case, assuming a common
isotropic covariance matrix would likely lead to the selection of a number of clus-
ters larger than the actual number of types of leukemia in order to accommodate
for the extra within-cluster variability.

Xie, Pan and Shen (2008b) move away from this assumption and present
an approach for Gaussian mixture distributions with cluster-specific diagonal
covariance matrices. They introduce two penalization terms of the form:

λ1

G∑
g=1

J∑
j=1

|μgj | + λ2

G∑
g=1

J∑
j=1

|σ2
gj − 1 | .

λ1

G∑
g=1

J∑
j=1

|μgj | + λ2

G∑
g=1

J∑
j=1

| log σ2
gj | .

After the data have been standardized to have mean 0 and variance 1 for all
the variables, variable selection is performed by removing those variables having
common mean 0 and common variance 1 across the clusters. The authors also
expand the penalization to account for grouped variables in a similar fashion as
in Xie, Pan and Shen (2008a). The method is applied to the Golub et al. (1999)
dataset and it is shown to perform a more parsimonious selection than the
approach of Pan and Shen (2007) and to detect clusters where gene expressions
have different variances.

Zhou, Pan and Shen (2009) further extend the previous method to the case
of unconstrained covariance matrices. The authors suggest the following penal-
ization:

λ1

G∑
g=1

J∑
j=1

|μgj | +λ2

G∑
g=1

||Wg ||1,
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where Wg is the precision matrix, Wg = Σ−1
g , and ||W||1=

∑J
j=1

∑J
h=1 |wjh | .

The term involving the mean parameters is used for variable selection, while
that for the precision is a regularization for dealing with high-dimensional data
without imposing a diagonal covariance matrix. In this framework, covariances
between the variables are taken into account and clusters are also allowed to be
elliptical and of different shapes. The authors apply their method on the Golub
et al. (1999) data, improving the classification performance with respect to the
previous approaches.

By introducing a penalization term in the mixture of factor analyzers model
(see Bouveyron and Brunet-Saumard, 2014a, for example) dimension reduction
and variable selection can be performed simultaneously. Xie, Pan and Shen
(2010) introduce a penalization approach in the mixture of factor analyzers
model where the penalty function is given by:

λ1

G∑
g=1

J∑
j=1

|μgj | +λ2

G∑
g=1

J∑
j=1

√√√√ R∑
r=1

γ2
gjr,

with γgjr the cluster-specific loading corresponding to variable j and latent
dimension r. The penalization on the loadings serves as a grouped variable
penalty similarly to Xie, Pan and Shen (2008a). The author apply the method
for clustering gene expression data of lung cancer patients, uncovering clusters
of subjects with distinct risks of mortality.

Galimberti, Montanari and Viroli (2009) introduce a mixture of factor ana-
lyzers model with common factor loading matrix that projects the cluster means
in a low dimensional space. They consider a penalized log-likelihood of the form:

	Q =

N∑
i=1

log

{
G∑

g=1

τg φ(xi;Vμg,VΣgV
′ + B)

}
− λN

J∑
j=1

R∑
r=1

| γjr | ,

where V is the (orthogonal) J ×R matrix of loadings (R < J) with entries γjr
and B is a diagonal covariance matrix. Therefore, variables whose estimated
loadings are γjr = 0 ∀ r will be non influential to the clustering and discarded.

A related method is suggested by Bouveyron and Brunet-Saumard (2014b),
who propose to perform selection of the relevant variables by inducing sparsity
in the loading matrix of the Fisher-EM algorithm (see Bouveyron and Brunet,
2012; Bouveyron and Brunet-Saumard, 2014a, for details). The method assumes
that the observed data lie in a discriminative latent space defined by latent
features which are linear combinations of the original variables. As before, the
density of each data point is expressed by:

p(xi;Θ) =

G∑
g=1

τg φ(xi;Vμg,VΣgV
′ + B).

The main idea is to obtain a sparse estimate of V such that variables whose
loadings are shrunk to zero will not be relevant in defining the discriminative
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latent subspace and hence not useful for clustering. The authors propose three
different approaches. The simplest, although easy to implement and competitive
with the others, aims at obtaining a sparse approximation Ṽ of the estimate V̂
computed during an iteration of the Fisher-EM. To this purpose, the following
minimization problem is posed:

Ṽ = argmin
V

∣∣∣∣∣∣X′V̂ −X′V
∣∣∣∣∣∣
F

+ λ

R∑
r=1

||vr||1

where vr is a column of V and ||·||F denotes the Frobenius norm. The other two
are more involved and estimate a matrix V that is directly sparse and defines
a discriminative subspace; we point to the referenced work for details.

For all the methods described above, maximization of the penalized likelihood
for different specifications of Qλ(·) is usually carried out resorting to a form of
penalized EM algorithm (Green, 1990). Moreover, model selection consists in
the selection of the number of mixture components and of the optimal shrinkage
parameter λ, and to accomplish the task a modified BIC is employed; see the
referenced works for details.

A method that differs in some way from the general form of (4) is the sparse
k-means proposed by Witten and Tibshirani (2010). Let C = {C1, . . . , Cg, . . . ,
CG} be a partition of the observations into disjoint subsets, and let w =
(w1, . . . , wj , . . . , wJ ) be a vector of weights for each variable. Clustering and
variable selection is performed by solving the optimization problem:

argmax
C,w,μ

⎧⎨⎩
J∑

j=1

wj

⎡⎣ N∑
i=1

(xij − x̄j)
2 −

G∑
g=1

∑
i∈Cg

(xij − μgj)
2

⎤⎦⎫⎬⎭
subject to ||w ||2≤ 1, ||w ||1≤ s,

with wj ≥ 0 ∀j,
where x̄j is the sample mean of variable j and s is a tuning parameter. The L2

penalty will force the weights in the interval [0, 1], while the L1 norm is used
to shrink the values to 0. The weight wj is interpreted as the contribution of
Xj to the resulting clustering: a large value of wj indicates a variable useful
for clustering, while wj = 0 means that variable j does not contribute to the
clustering. Note that the above objective function is related to the log-likelihood
of a Gaussian mixture model with a common isotropic covariance matrix of the
form Σg = σ2I, an implicit assumption of the method. Indeed, in this exposition
we only considered the case associated to Gaussian mixture modeling and we
adapted equation (10) of Witten and Tibshirani (2010) to the purpose, using
the connection of k-means to the fitting of mixture of Gaussians with common
spherical covariance matrix (see the cited work for additional details). Further-
more, the method needs the number of clusters G to be known in advance.
However, the approach is particularly suitable for high-dimensional data and
the authors describe a more general framework for sparse clustering. Related
work on sparse k-means is in Sun, Wang and Fang (2012), where consistency
properties are investigated.
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Fig 2. The two competing models proposed in Raftery and Dean (2006).

4.3. Model selection approaches

Within this class of approaches, the problem of selecting the relevant clustering
variables is recast as a model selection problem. Different models are specified
by the role attributed to the variables in connection to their relation with the
clustering variable z. Then these models are compared by means of a model
selection criterion and relevant clustering variables are chosen accordingly to
the best model.

The framework was pioneered by the work of Raftery and Dean (2006), where
three main roles are specified for the variables. The authors propose a procedure
where X is partitioned into the following subsets of variables:

• XC , the set of current clustering variables;
• XP , the variable(s) proposed to be added or removed from the set of

clustering variables;
• XNC , the set of other variables not relevant for clustering.

Then the decision for inclusion or exclusion of XP is taken by comparing the
models (Fig 2):

MA : p(X | z) = p(XC ,XP | z) p(XNC |XC ,XP ),

MB : p(X | z) = p(XC | z) p(XP |XC) p(XNC |XC ,XP ).

In modelMA,X
P is useful for clustering and the joint distribution p(XC ,XP | z)

corresponds to a Gaussian mixture distribution; on the other hand, MB states
that XP does not depend on the clustering z and the conditional distribu-
tion p(XP |XC) corresponds to a linear regression. An important feature of the
framework formulation is that in MB the irrelevant variables are not required
to be independent of the clustering variables. This allows to discard redundant
variables related to the clustering ones but not to the clustering itself. Another
important characteristic of the model construction lies in the avoidance of the
unrealistic assumption of the independence between clustering and irrelevant
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Fig 3. The two models compared in Maugis, Celeux and Martin-Magniette (2009a).

variables. The competing models are compared using the BIC approximation to
their marginal likelihoods:

BICA = BICclust(X
C ,XP ),

BICB = BICno clust(X
C) + BICreg(X

P |XC),

where BICclust(X
C ,XP ) is the BIC of a GMM in which XP adds useful infor-

mation to the clustering, BICno clust(X
C) is the BIC of the GMM on the current

set of clustering variables and BICreg(X
P |XC) is the BIC of the regression of

XP on XC . Then if the difference BICA − BICB is greater than zero, XP is
added to the set of clustering variables. To perform the selection, variables are
added/removed and different models are compared using a stepwise algorithm.

The method has been further extended by Maugis, Celeux and Martin-
Magniette (2009a) and Maugis, Celeux and Martin-Magniette (2009b). Maugis,
Celeux and Martin-Magniette (2009a) build on the modeling framework of
Raftery and Dean (2006), however, in the conditional distribution p(XP |XC),
XP can be related only to a subset XR ⊆ XC of the clustering variables. There-
fore, in the regression only a subset XR of predictors are used to describe the
dependency between XP and XC . In this way, the authors avoid the inclusion of
unneeded parameters that would over-penalize the log-likelihood with the con-
sequence of favoring models that declare some irrelevant variables as relevant
when model comparison is performed using the BIC. The models compared in
Maugis, Celeux and Martin-Magniette (2009a) are depicted in Fig. 3, with MA

the same as previously stated and MC defined as follows:

MC : p(X | z) = p(XC | z) p(XP |XR ⊆ XC) p(XNC |XC ,XP ),

with p(XP |XR ⊆ XC) the regression term of XP on the relevant predictors
XR. For this model the BIC is given by:

BICC = BICno clust(X
C) + BICreg(X

P |XR ⊆ XC),

with BICreg(X
P |XR ⊆ XC) the BIC of the regression of XP on XC after

selection of the optimal set of predictors XR. Again, to decide if XP is relevant
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Fig 4. The three different models presented in Maugis, Celeux and Martin-Magniette (2009b).

for clustering, the difference BICA − BICC is computed and XP is added to
the set of clustering ones if this quantity is greater than zero. Model search is
performed using a backward search and for selecting the relevant predictors in
the regression the authors propose a standard stepwise procedure.

The framework is subsequently expanded in Maugis, Celeux and Martin-
Magniette (2009b), where the authors consider an additional role for the vari-
ables proposed to be added or removed. They explicitly account for the case
where XP can be independent of the clustering variables XC . The assumption
leads to further circumvent the over-penalization problem of the log-likelihood
when parsimonious Gaussian mixture models are involved in the comparison
and penalized likelihood criteria are used for model selection. The authors sug-
gest a more flexible framework where three different models are compared, all
represented in Fig. 4. Models MA and MC are as before, while model MD is
specified as follows:

MD : p(X | z) = p(XC | z) p(XP ) p(XNC |XC ,XP ),

with p(XP ) the density of a multivariate Gaussian distribution. Then, the cor-
responding BIC is given by:

BICD = BICno clust(X
C) + BICindep(X

P ),
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where BICindep(X
P ) is the BIC of a multivariate Gaussian model. For an efficient

model search, the authors suggest to rewrite BICD as:

BIC∗
D = BICno clust(X

C) + BICreg(X
P | X̃R ⊆ XC),

where X̃R is allowed to be the empty set ∅ and thus BICreg(X
P | X̃R ⊆ XC) =

BICindep(X
P ) when X̃R = ∅. As in Maugis, Celeux and Martin-Magniette

(2009a), the difference BICA −BIC∗
D is computed at each step of the algorithm

andXP is added toXC if this quantity is positive. In the algorithm the variables
are added and removed using a stepwise searching method and relevant predic-
tors are selected by a backward stepwise algorithm. Maugis-Rabusseau, Martin-
Magniette and Pelletier (2012) extend the variable selection framework to handle
data with missing values without resorting to any imputation procedure.

Note that the mentioned methods not only perform the selection of the rele-
vant clustering variables, but at the same time they select the optimal number
of clusters and the best parsimonious Gaussian clustering model from the family
of models of Celeux and Govaert (1995); we refer to the cited works for details.
Lastly, it is worth mentioning two further extensions of the above modeling
frameworks: Scrucca (2016) proposes the use of genetic algorithms for search-
ing over the whole model space to overcome the sub-optimality of a stepwise
search, while Galimberti, Manisi and Soffritti (2017) suggest a framework where
the relevant variables can provide information about more than one clustering
structure of interest.

In the above approaches, at each step of the variable selection algorithm,
the likelihood of a GMM has to be optimized several times. To deal with this
computational issue, Marbac and Sedki (2017a) propose a procedure that relies
on the ICL criterion and does not require multiple calls of the EM algorithm.
In the framework, a variable is declared as irrelevant to the clustering if its one-
dimensional marginal distributions are equal between the mixture components.
The authors introduce a binary indicator variable ω = (ω1, . . . , ωj , . . . , ωJ)
such that ωj = 1 if variable Xj is relevant, 0 otherwise. In this context we
would denote XC = {Xj ∈ X : ωj = 1, ∀ j} and XNC = {Xj ∈ X : ωj = 0, ∀ j},
and different models are specified by different configurations of the binary vector
ω. These models are compared by means of a criterion based on the following
integrated complete-data likelihood:

p(X, z |ω) =

∫
p(X, z |Ω,ω) p(Ω |ω) dΩ,

where Ω denotes the collection composed of the parameters related to the mix-
ture distribution forXC and the parameters related to the distribution forXNC .
After assuming local and global independence among the variables and placing
conjugate priors on the parameters, the above integral reduces to:

p(X, z |ω) = p(z)

J∏
j=1

p(Xj |ωj , z),
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where all the quantities have closed analytical expressions (see authors’ paper
for more details). For a non relevant variable, p(Xj |ωj , z) = p(Xj |ωj) since
this quantity does not depend on the data classification, while for a relevant one
this quantity will assume different values over the mixture components. Conse-
quently, variable selection is performed by finding the vector ω that maximizes
the Maximum Integrated Complete-data Likelihood (MICL) criterion, given by:

MICL(ω) = log p(X, z∗ω |ω),

with z∗ω = argmaxz log p(X, z |ω). Maximization of MICL(ω) is carried out it-
eratively using an algorithm that alternates between two optimizations steps of
the ICL: optimization on the classification z given the data and ω, and maxi-
mization on ω given the data and the classification z. As in Raftery and Dean
(2006), Maugis, Celeux and Martin-Magniette (2009a) and Maugis, Celeux and
Martin-Magniette (2009b), the algorithm also returns the optimal number of
clusters and we refer to the paper for details. The approach is fast and scales
well for problems with a large number of variables. However, the optimization on
z can be computationally demanding for large sample sizes; the authors suggest
that for sample sizes smaller than 104 this optimization is still doable. Further-
more, in a situation where variables are correlated and many redundant ones are
present, the local and global independence assumptions could be too restrictive.

4.4. Other approaches

Other variable selection methods that do not univocally fit in the previous
sections have been developed in the literature. Within a wrapper approach, Dy
and Brodley (2004) propose to embed in the EM a forward selection algorithm
for the maximization of two simple alternative criteria for variable selection.
The first is based on a measure of separability and unimodality of the clusters,
and consists in the quantity tr(S−1

W SB), where SW is the within-cluster scatter
matrix and SB is the between class scatter matrix. The second is based on the
quantification of how well the model fits the data and the natural choice is the
likelihood of a GMM itself.

A related method is the one of Andrews and McNicholas (2014). The authors
suggest an hybrid filter-wrapper approach based on a variable within-group
variance, given by:

Wj =

∑G
g=1

∑N
i=1 zig(xij − μj)

2

N
.

First, an initial estimate of Wj is found by running a preliminary clustering step
and the variables are listed in ascending order according to their values. The
top variable in the list is automatically selected (as the one with the minimum
Wj) and placed in the set of selected variables S. Subsequently, a variable j is
selected if

| ρrj | < (1−Wj)
c ∀ Xr ∈ S,

with ρrj the correlation between Xj and Xr, and c a coefficient used to weight
the within group variation. The authors suggest to use the integer values from



Variable selection methods 37

1 to 5 and the procedure will tend to include more variables in the model as
c increases. Lastly, clustering is performed by fitting a GMM on the final set
S. Note that before running the procedure the data need to be standardized to
have mean 0 and variance 1.

Another method using the concept of separability and unimodality of the
clusters as in Dy and Brodley (2004) is the one found in Lee and Li (2012). Here
GMMs are used to estimate the density of the data and the variable selection is
based on a cluster separability measure defined using ridgelines, one-dimensional
parametric curves linking the modes of two clusters as function of their densities.
Let ygk(at), be the set of points individuating the ridgeline between cluster g
and k (a0 = 0 < a1 < · · · < aT = 1, t = 0, . . . , T ); the pairwise separability
between these clusters is measured by:

1−
minTt=1

{∑G
h=1 φ(ygk(at);μh,Σh)

}
min

{∑G
h=1 φ(ygk(0);μh,Σh),

∑G
h=1 φ(ygk(1);μh,Σh)

} .
The aim is to find the set of variables that achieves the maximum aggregated
separability across all the pairs of clusters and the authors suggest two alter-
native forward selection algorithms for the task. The method tends to select
variables indicating well-separated clusters.

A simple filter approach used to pre-select the variables and reduce the di-
mensionality of the data is the one suggested by McLachlan, Bean and Peel
(2002), within the context of clustering microarray expression data. In this ap-
proach, first a univariate mixture model is fitted to each variable in turn. Then
the likelihood ratio statistic for the test of a single normal distribution versus a
mixture of Gaussians is computed and those variables for which this statistic is
significant are retained. The selected variables are subsequently clustered using
a k-means procedure in order to find those centroids that represent subsets of
variables. Model-based clustering is consequently performed on these represen-
tative centroids, which represent the data in a lower dimensional subspace.

The stepwise algorithm presented in Maugis, Celeux and Martin-Magniette
(2009b) could be very slow in high-dimensional settings. To overcome the com-
putational burden, Celeux et al. (2018) suggest an hybrid approach where a
LASSO-like procedure and the model selection algorithm are employed together.
The approach consists of two subsequent steps. First, the method of Zhou, Pan
and Shen (2009) is applied to the data (see Section 4.2) and a ranking of the
variables is obtained. For fixed G and a set of different combinations Lλ1 ×Lλ2

of values (λ1, λ2), the clustering score of each variable Xj is defined as:

OG(j) =
∑

Lλ1
×Lλ1

BG,λ1,λ2(j),

where

BG,λ1,λ2(j) =

{
0 if μ̂1j(λ1, λ2) = . . . = μ̂gj(λ1, λ2) = . . . = μ̂Gj(λ1, λ2)= 0,

1 if μ̂gj(λ1, λ2) �= 0, g ∈ {1, . . . , G}.
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The larger the value of OG(j), the more a variable is likely to be relevant for
the clustering. Then the variables are ranked in decreasing order according to
this quantity; denote this rank as IG. Ideally, in the rank relevant variables are
in the top positions, then redundant variables and non-informative ones at the
end. In the second step, Maugis, Celeux and Martin-Magniette (2009b) method
is applied using this rank. The variable set is scanned according to the IG order
and variables are declared as relevant until for c consecutive variables there is no
evidence of being clustering variables. Then irrelevant variables are determined
scanning the set in the reverse order of IG. The process stops as soon as c con-
secutive variables are not declared as non-informative. The redundant variables
are thus determined by the remaining variables. The tuning parameter c is a
buffer to reduce the effect of mistakenly ranked variables in the LASSO-like step.

Another hybrid contribution is the work of Malsiner-Walli, Frühwirth-Schnat-
ter and Grün (2016). The authors define a full Bayesian framework for estima-
tion of sparse Gaussian mixtures where the assumption of a local shrinkage prior
on the component means allows the identification of cluster-relevant variables.
They suggest a Normal-Gamma prior of the form:

μgj |λj , b0j ∼ N (b0j , λjs0),

where
λj ∼ G(ν1, ν2), b0j ∼ N (m0,M0),

with ν1, ν2,m0,M0 and s0 some hyperparameters. For values of ν1 < 1, the prior
shrinks all the component means of variable j towards the common value b0j ,
with the effect that variables uninformative for the clustering are effectively fit
by a single mixture component. Note that this approach could be interpreted
as an hybrid form of Bayesian and penalized variable selection procedures.

Although not directly related to the Gaussian mixture modeling framework,
it is worth to mention two other approaches that can be thought of a cross-
over between Bayesian and penalization methods. The first is the work from
Hoff (2006), where it is proposed a Bayesian framework for finding subsets of
variables that distinguish the clusters from each other. Thus, every cluster is
characterized by its own set of discriminating variables that differentiates it
from the rest of the clusters. In the method, each data point is modeled as:

xij = μ̄j + ϕgj μgj σgj + σ
ϕgj

gj εij ,

where μ̄j is the overall data mean of variable j, ϕgj is a binary variable indi-
cating if Xj is “active” on cluster g and εij is an error component such that
εij ∼ N (0, σ̄2

j ), with σ̄2
j the overall data variance of Xj . The model results in a

multivariate Dirichlet process mixture model and the use of conjugate priors al-
lows the implementation of a Gibbs sampling scheme for inference. Rather than
performing a genuine variable selection, the method identifies the cluster-specific
relevant variables by detecting the shifts in means and variances from the corre-
sponding overall data quantities. The approach belongs to the class of subspace
clustering methods and is related to the work of Friedman and Meulman (2004).



Variable selection methods 39

The second is the one proposed by Nia and Davison (2015) and is closely
related. In this case, the authors consider the following linear model for the
data points:

xgij = μ̄j + γj ϕgj μgj + εgij ,

where xgij is the data of clustering observation i measured on variable j in clus-
ter g; γj and ϕgj are binary variables such that γj ∼ Bernoulli(ν) and ϕgj ∼
Bernoulli(η) respectively. Probability ν may be interpreted as the prior propor-
tion of relevant variables, while η as the prior proportion of non-overlapping
component means for a clustering variable. Two families of prior distributions
are suggested for μgj : Gaussian and asymmetric Laplace. In both cases, the
marginal distribution of the observations is given in closed form and results
in a spike and slab density in which the data is modeled by a mixture of two
densities. When (γj = 1, ϕgj = 1), the variable is active and the data is mod-
eled by the slab density which drives the clustering procedure when a variable
is relevant for clustering. When γj = 0 or ϕgj = 0, the density of the data
corresponds to the spike density, which reduces the effect of non-informative
variables. Variables not important for any of the clusters can be discarded. The
setting allows the use of Bayes factors for computing the importance of each
variable and perform the selection, and clustering of the data is achieved via an
agglomerative hierarchical procedure.

4.5. R packages and data example

The available R packages for variable selection for Gaussian mixture models
are: sparcl (Witten and Tibshirani, 2013), clustvarsel (Scrucca and Raftery,
2018), VarSelLCM (Marbac and Sedki, 2017b), vscc (Andrews and McNicholas,
2013), SelvarMix (Sedki, Celeux and Maugis-Rabusseau, 2017), and bclust

(Nia and Davison, 2012). Table 1 lists them, with information about the method
and the type of approach. It is also worth to mention the package ClustOfVar

(Chavent et al., 2012). Rather than performing variable selection and obtain a
classification of the data points, this package aims to find clusters of variables
linked to a central synthetic variable obtained from a principal components
decomposition of the data; for this reason, it will not be considered in the
subsequent analysis. Lastly, we also point to the C++ softwares SelvarClust3

and SelvarClustIndep4, which implement the modeling framework of Raftery
and Dean (2006) and Maugis, Celeux and Martin-Magniette (2009a,b). We will
not consider these software in the following analysis, since the aim of this paper
is in reviewing R packages.

The adjusted Rand index (ARI, Hubert and Arabie, 1985) will be employed to
assess and compare the clustering performance of the packages. Let us consider
two different partitions of the N data points, one into G clusters and the other
into K clusters; this index is defined as:

3http://www.math.univ-toulouse.fr/~maugis/SelvarClustHomepage.html
4http://www.math.univ-toulouse.fr/~maugis/SelvarClustIndepHomepage.html

http://www.math.univ-toulouse.fr/~maugis/SelvarClustHomepage.html
http://www.math.univ-toulouse.fr/~maugis/SelvarClustIndepHomepage.html
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Table 1

R packages for GMMs variable selection.

Package Type Method

sparcl penalized Witten and Tibshirani (2010)

clustvarsel model selection
Maugis, Celeux and Martin-Magniette (2009a)
Maugis, Celeux and Martin-Magniette (2009b)
Scrucca and Raftery (2018)

VarSelLCM model selection Marbac and Sedki (2017a)

vscc filter/wrapper Andrews and McNicholas (2014)

SelvarMix model selection/penalized
Celeux et al. (2018)
Sedki, Celeux and Maugis (2014)

bclust other/Bayesian Nia and Davison (2015, 2012)
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where Ngk is the number of observations falling in cluster g and cluster k, while
Ng. =

∑
k Ngk and N.k =

∑
g Ngk. The ARI corrects the comparison for the

fact that two partitions could match merely by chance (Hubert and Arabie,
1985). The index has a maximum value of 1 and attains this value when there is
perfect matching between the two partitions; on the other hand, it has expected
value of 0 when the two partitions are completely independent. Therefore, the
index is used to measure the agreement between two different classifications of
the data.

We apply the different variable selection methods to data from the Human
Mortality Database (Human Mortality Database, 2017). The database contains
life tables from several countries, spanning a period of time from the middle of
the 18th century to 2015. We consider central mortality rates for both genders
over 10-year time intervals and 5-year age intervals. The central mortality rate

nmx is interpreted as the average 10-year interval rate at which people die
during the period between age x and x+ n, normalized by the number of those
living. The data contain 389 age patterns of mortality, each over a 10-year
period time for 24 age intervals from 0 to 110+ (Figure 5). The aim is to
cluster the mortality schedules and individuate those age groups relevant for the
clustering structure. There are 27 non overlapping 10-year periods, some present
multiple times (especially recent ones), and the patterns of mortality tend to
cluster according to the historical period (Clark and Sharrow, 2011). To assess
the quality of the clustering, we will compare the estimated partition with the
information regarding the 10-year period each schedule belongs to using the ARI.

First we fit a Gaussian mixture model using the mclust package. The model
selected is a 3-component mixture, with an ARI of 0.13 between the estimated
classification and the historical period. Then we apply the variable selection
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Fig 5. Central mortality rates (values on logarithmic scale).

Fig 6. Variables selected via the R packages for GMMs variable selection listed in Table 1. A
dark square indicates the variable has been selected. For each method, also the selected number
of clusters and the ARI between the estimated classification and the 10-year historical period
are reported.

methods listed in Table 1. Figure 6 displays the selected age groups for each
method, alongside the chosen number of clusters and the ARI between the esti-
mated classification and the historical period. Note that for sparcl the number
of components needs to be set in advance and we fixed it to the number selected
by mclust. Package bclust did not discard any variables, most likely due to
the fact that adjacent age groups are highly correlated and the independence
assumption of this method is unrealistic in this case. Also package vscc did not
remove any of the variables. Package VarSelLCM retained the smallest subset of
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Table 2

Cross-tabulation between the historical period classification and the clustvarsel partition
on the selected age groups.

Group
1 2 3 4 5

1
0
-y
ea

r
ti
m
e
p
er
io
d

1750-1759 1
1760–1769 1
1770–1779 1
1780–1789 1
1790–1799 1
1800–1809 1
1810–1819 2
1820–1829 2
1830–1839 4
1840–1849 6
1850–1859 7
1860–1869 7
1870–1879 10
1880–1889 10
1890–1899 8 2
1900–1909 7 4
1910–1919 5 6
1920–1929 3 11
1930–1939 15
1940–1949 4 15 1
1950–1959 5 21 1
1960–1969 3 25 6
1970–1979 26 2 7
1980–1989 1 8 19 10
1990–1999 2 26 12
2000–2009 34 7
2010–2015 30 9

variables. However, the package obtained an ARI of zero and surprisingly se-
lected only the oldest age intervals, those expected to have the least information,
thus it seems to have detected a spurious solution. We ran the package multiple
times and the other best solutions found were a model with 3 clusters and the
same subset of variables, and a model with only one cluster and no variables
discarded. The package seems to be sensitive to the initialization and, also in
this case, this is an indication that the strong independence assumptions at the
basis of the method implemented could be too restrictive. The other packages,
sparcl, SelvarMix, and clustvarsel discarded age groups representing the
old population. Among these, clustvarsel performed the most parsimonious
selection, retaining only 11 age groups in the range from 0 to 49 years old,
and with the highest ARI. The clusters are discriminated along the young and
middle ages, as it would be expected since for elder ages the differences among
death rates level off. Table 2 reports the cross-tabulation between the historical
periods and the clustvarsel partition on the selected age intervals. The clus-
ters have a meaningful interpretation in terms of the time dimension. Figure 7
shows the estimated cluster means on the age groups selected by clustvarsel.
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Fig 7. Average cluster mortality rate estimated by clustvarsel on the selected age groups.
The full lines denote the mclust estimated cluster means on the whole data. Values are on
logarithmic scale.

The mclust estimated cluster means are added for comparison. In particular,
the mortality patterns of clusters 1, 3 and 4 estimated on the selected variables
are close to the average patterns estimated on all the data. The extra cluster
2 seems to capture the mortality pattern related to the period corresponding
to the two World wars. Moreover, cluster 5 has a mean rate similar to cluster
3, but higher death rate for age intervals above 20 years old and captures the
extra-heterogeneity present in the more recent years.

Table 3 reports the computing time of the packages considered in Table 1 on
a Dell machine with Intel Core i7-3770 CPU @3.40GHz×8. The packages are
listed from the fastest to the slowest. vscc is the fastest among the packages
considered, but it did not discard any of the age intervals. Package sparcl

is the second fastest. In the case of highly correlated variables, clustvarsel
performs the most parsimonious selection and obtains the best classification,
with an acceptable computing time. Note, however, that in using clustvarsel

we considered only 4 out of the 14 covariance models available, as some of them
may require a long computational time to be fitted and to consider a set of
models consistent with SelvarMix. Therefore, aside from vscc, sparcl is the
fastest and as such it is particularly suitable to perform variable selection in
high-dimensional settings where it is reasonable to assume local independence
among the variables. Nevertheless, the package requires the number of clusters to
be specified in advance, while clustvarsel and SelvarMix automatically select
such number. bclust and VarSelLCM are the slowest in this example, and care
may need to be taken when using these packages on highly correlated data, since
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Table 3

Computing time (in seconds) and relative computing time of the R packages for variable
selection for GMMs.

Package Time (sec.) Relative

vscc 10 1.00
sparcl 42 4.09
clustvarsel 51 5.01
SelvarMix 61 5.90
VarSelLCM 438 42.58
bclust 916 89.14

they make use of independence assumptions that could be too restrictive. Lastly,
we point that clustvarsel, SelvarMix and VarSelLCM allow for parallelization
of the computations.

5. Variable selection methods for latent class analysis

After the description of the main variable selection methods for GMMs, in this
section we present the different approaches for variable selection in latent class
analysis.

5.1. Bayesian approaches

Only recently, attention has been posed on the use of the Bayesian framework for
variable selection in latent class analysis. The overall setting is similar to the one
provided in Section 4.1 and we refer there for its description. Moreover, generally
the methods borrow ideas from Bayesian variable selection for Gaussian mixture
models.

Indeed, Silvestre, Cardoso and Figueiredo (2015) propose an adaptation of
Law, Figueiredo and Jain (2004) method to categorical data clustering and
variable selection. The mixture of Gaussian densities is replaced by the mixture
in (3) and the authors use the same concept of feature saliency. Analogously,
a Dirichlet distribution is assumed on the saliences and an EM algorithm for
MAP estimation is employed.

White, Wyse and Murphy (2016) present an approach inspired by the work
of Tadesse, Sha and Vannucci (2005). The authors propose the of use a collapsed
Gibbs sampler algorithm in which all the mixture parameters are integrated out.
A prior of the form p(ϕ | η) =

∏
j η

ϕj (1 − η)1−ϕj is assumed for the indicator
variable ϕ. Then, assuming conjugate priors on all the parameters, it is possible
to marginalize them out analytically, obtaining the posterior:

p(G, z,ϕ |X) ∝ p(G)

∫
p(z,ϕ,Ω |X, G) dΩ,

with Ω denoting the collection of parameters of the latent class analysis model
and the parameters of the distribution for the irrelevant variables. The above



Variable selection methods 45

quantity has a closed form expression and allows to implement a simple MCMC
scheme. Subsequently, inference is performed using a post-hoc procedure. Vari-
able selection and selection of G is carried out jointly, by calculating the pro-
portion of time the sampler spent in a certain number of groups and including
a certain variable. The authors employ the method on different datasets and it
is shown to outperform a more involved reversible jump MCMC algorithm for
variable selection.

5.2. Penalization approaches

Despite of the large amount of work developed for penalized model-based cluster-
ing with GMMs (confront Section 4.2), little work has been done in the context
of LCA. Additionally, more attention has been given to the aim of model identi-
fiability and regularization, rather than to the purpose of variable selection per
se.

Within this framework enters the work of Houseman, Coull and Betensky
(2006). The authors propose a penalization approach for latent class regression
analysis of high-dimensional genomic data where a set of categorical response
variables is related to a set of numerical covariates. Here the class-conditional
probabilities πg in (3) are expressed as function of a vector of covariates and a
set of regression coefficients. Then a ridge or LASSO penalty is used in order to
obtain sparse estimates for the vectors of regression coefficients. Consequently,
by discarding those predictors with coefficients shrunken to zero, the clusters
would be characterized by different sets of selected covariates used to model
the categorical responses. However, variable selection is not performed on the
variables directly involved in the clustering.

Wu (2013) presents a related approach, but this time focusing on the selection
of variables involved in the clustering. In the method, the class conditional
probabilities πgjc of observing category c for variable j within class g are re-
parameterized in terms of the logit transform as:

πgjc =
exp(αjc + βgjc)∑Cj

l=1 exp(αjl + βgjl)
, with αj1 = βgj1 = 1.

Then, similarly to (4) in Section 4.2, the following penalized log-likelihood is
considered:

	Q =

N∑
i=1

log

{
G∑

g=1

τg C(xi;α,βg)

}
− λ

G∑
g=1

J∑
j=1

Cj∑
c=1

|βgjc | ,

where α and βg are the collections of parameters αjc and βgjc respectively, and
we made explicit the dependence on them of the Multinomial probability mass
function. For a variable Xj , the quantities βgjc measure the difference from

the overall probabilities exp(αjc)/
[∑Cj

l=1 exp(αjl)
]
and its contribution to the

clustering. Consequently, if
∑G

g=1

∑Cj
c=1 |βgjc |= 0, variable Xj is considered
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Fig 8. The two models presented in Dean and Raftery (2010).

not influent to the classification and discarded. As for GMMs, the estimation
in this setting is carried out by means of a penalized EM algorithm and the
optimal λ and the number of clusters G are selected by BIC.

5.3. Model selection approaches

Model selection approaches for variable selection in LCA draw from the work
developed for GMMs. In Dean and Raftery (2010) the authors suggest a frame-
work similar to the one presented in Raftery and Dean (2006). As in section 4.3,
the following partition of X is considered:

• XC , the set of current clustering variables;
• XP , the variable proposed to be added or removed from the set of clus-

tering variables;
• XNC , the set of variables not relevant for clustering.

Then the authors propose to compare the two models represented in Fig. 8.
Model MA states that XP is a clustering variable and there is no edge between
XC and XP due to the local independence assumption of LCA that implies
p(XC , XP | z) = p(XC | z)p(XP | z). In model MB , X

P is not useful for clus-
tering (the missing edge between z and XP ) and is assumed to be independent
from the set XC . Under these models, the joint distribution of X is expressed as:

MA : p(X | z) = p(XC , XP | z) p(XNC |XC , XP ),

MB : p(X | z) = p(XC | z) p(XP ) p(XNC |XC , XP ),

with p(XC , XP | z) the LCA model on on the clustering variables and XP ,
p(XP ) the Multinomial distribution and p(XNC |XC , XP ) the distribution for
the non-informative variables. The two models are compared via the BIC ap-
proximations:

BICA = BICclust(X
C , XP ),
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Fig 9. The models proposed in Fop, Smart and Murphy (2017).

BICB = BICno clust(X
C) + BIC(XP ),

where BICclust(X
C , XP ) is the BIC of a LCA model in which XP is a relevant

clustering variable, BICno clust(X
C) is the BIC of the LCA model on the current

clustering variables and BIC(XP ) is the BIC for a Multinomial distribution fit.
Then XP is considered useful for clustering if the difference BICA − BICB is
greater than zero. To search through the model space, the authors propose a
forward headlong search algorithm (Badsberg, 1992) consisting of inclusion and
removal steps. The algorithm has the advantage of being more computationally
efficient than a backward search, but the disadvantage of being sensitive to the
initialization of the set of clustering variables.

To deal with the problems of multimodality of the LCA log-likelihood and
the sensitivity to the initialization, Bartolucci, Montanari and Pandolfi (2016)
propose to add an extra step in the variable selection procedure of Dean and
Raftery (2010). They consider a random check step aimed at initializing the
estimation algorithm with a large number of random starting values, so as to
prevent the problem of incurring in local optima. In an application to nursing
home evaluation, the authors also perform a sensitivity analysis of the selected
variables with respect to the initialization of the set of the clustering variables.
The extra step is shown to be beneficial in increasing the chances of finding the
global optimum.

A major drawback of Dean and Raftery (2010) framework is the independence
assumption between the proposed variable and the set of clustering ones in
model MB . In fact, because of this assumption, the model does not take into
account that the proposed variable could be redundant for clustering given the
set of already selected relevant variables. This results in the method not being
capable of discarding variables related to the clustering ones, but not directly
related to the group structure itself. To overcome the problem, Fop, Smart and
Murphy (2017) propose the modeling framework depicted in Fig. 9. Following
Maugis, Celeux and Martin-Magniette (2009a,b) (consult Section 4.3), in model
MC the proposed variable is not relevant for clustering and it is assumed to be
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dependent on the clustering variables XC . Model MA is as before, while under
model MC the density of X is given by:

MC : p(X | z) = p(XC | z) p(XP |XR ⊆ XC) p(XNC |XC ,XP ),

where the conditional distribution p(XP |XR ⊆ XC) is modeled using a multi-
nomial logistic regression. Only a subset XR ⊆ XC of relevant predictors enter
in the regression, avoiding the inclusion of extra parameters without necessarily
increasing the likelihood. Moreover the subset XR is allowed to be the empty
set, and in the case of XR = ∅ the Dean and Raftery (2010) method is auto-
matically recovered. For MC the BIC is given by:

BICC = BICno clust(X
C) + BICreg(X

P |XR ⊆ XC),

with BICreg(X
P |XR ⊆ XC) the BIC of the multinomial logistic regression af-

ter the selection of the set XR, accomplished using a simple backward stepwise
search, similarly to Maugis, Celeux and Martin-Magniette (2009a,b). Models
are compared by means of the difference BICA−BICC and XP is added to XC

if this quantity is greater than zero. To perform the model search, the authors
suggest a backward swap-stepwise selection algorithm where standard removal
and inclusion steps are alternated to a swap step. In this step two different
configurations of model MC are compared and they differ in the fact that one
clustering variable is swapped with one of the non-clustering variables. The ex-
tra step allows the algorithm to not incur in local optima in the case of highly
correlated variables. An application to the clustering of patients suffering low
back pain shows that the method is capable of performing a parsimonious vari-
able selection with a good classification performance and interpretable results.
As in the case of GMMs, both Dean and Raftery (2010) and Fop, Smart and
Murphy (2017) methods return the best clustering variables and the optimal
number of latent classes; see the cited works for details.

Toussile and Gassiat (2009) present an approach where the modeling prob-
lem of simultaneously selecting the number of latent classes and the relevant
variables is considered in a density estimation framework. Let S be the set of
clustering variables and let M(G,S) denote a model of probability distributions
such that:

M(G,S) : p(X) = p(XC) p(XNC),

with p(XC) denoting a LCA model on the relevant variables and p(XNC) the
Multinomial distribution model for the non-clustering variables. The aim is to
select the couple (G,S), which defines the model that generated the data. The
selection procedure is implemented using an algorithm that first finds the opti-
mal subset S for a range of possible values ofG and then selects the optimalG for
a fixed set of clustering variables. The authors employ penalized log-likelihood
criteria for model selection and consistency results for BIC type criteria are
derived. A further generalization and discussion is found in Bontemps and Tou-
ssile (2013), where they derive a criterion that minimizes a risk function based
on the Kullback-Leibler divergence of the estimated density with respect to the
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true density. The general form of this penalized log-likelihood model selection
criterion is given by:

	∗(G,S) − κ
D(G,S)

N
,

with 	∗(G,S) the maximized log-likelihood under model M(G,S), D(G,S) indicat-
ing the dimension of the model and κ is a parameter depending on the sample
size and the collection of the models. The authors suggest the use of slope
heuristics (see Baudry, Maugis and Michel, 2012, for an overview) to calibrate
the value of κ.

Marbac and Sedki (2017c) extend the approach of Marbac and Sedki (2017a)
(see Section 4.3) to clustering and variable selection of data of mixed type, with
data on only categorical variables as a particular case. The method is based
again on the MICL criterion and does not require multiple calls of the EM
algorithm. In addition, the approach can manage situations where data have
missing values. However, global and local independence need to be assumed to
compute the MICL, and optimization is carried out over the variable indicator
ω and the cluster membership indicator z.

5.4. Other approaches

As for GMMs, other methods have been suggested for variable selection in LCA.
Zhang and Ip (2014) present a filter method where the absolute and relative im-
portance of a variable towards the clustering structure is assessed by means of
two measures. One is the expected posterior gradient, which is a measure of the
relative change between the entropy of the prior distribution of the latent classes
and the entropy of the posterior distribution of the latent classes after observing
the data. This quantity is bounded between 0 and 2 and higher values indicate
higher discriminative power of a variable. The other measure is the Kolmogorov
variation of posterior distribution, which is based on the Kolmogorov distance
between the class-conditional distributions. The measure is linked to the clas-
sification accuracy and the total variation of the posterior distribution, and,
if there is a substantial reduction in this quantity without variable Xj in the
model, then Xj can be considered a relevant clustering variable. Both measures
are presented in the context of LCA for mixed type data, and the observation
of only categorical data is a particular case.

Another filter method where the selection is carried out by evaluating the im-
pact of a variable on the clustering solution is proposed in Bartolucci, Montanari
and Pandolfi (2017). Here, the initial set of variables is assumed to provide an
optimal clustering of the data and the objective is to select a minimum subset
of variables that is sufficient to reproduce the inferred classification. To achieve
this, the authors suggest a selection algorithm that removes the variables whose
presence does not significantly impact the clustering. Suppose a LCA model
has been fitted to the data and the estimated posterior probabilities ûig (con-
sult Section 3) have been obtained. In the procedure, for each variable j, the
proportion F−j of observations whose class assignment is modified when Xj is



50 M. Fop and T. B. Murphy

removed with respect to the initial clustering is computed. By (3), the updated

estimate û
(−j)
ig after removing Xj is simply given by:

û
(−j)
ig =

τ̂g
∏J

h=1
h �=j

∏Ch

c=1 π̂
1{xih=c}
ghc∑G

g=1 τ̂g
∏J

l=1
l �=j

∏Cl

c=1 π̂
1{xil=c}
glc

.

Therefore:

F−j =
1

N

N∑
i=1

1{MAP(û
(−j)
i ) �= MAP(ûi)}

Then the variable with the minimum F−j is removed. If some variables have
the same value of F−j , the variable to be removed is the one with the minimum
Kullback-Leibler distance:

N∑
i=1

G∑
g=1

ûig log
ûig

û
(−j)
ig

.

The method is developed in connection to item selection for questionnaires and
is fast and simple to implement. However, it requires the somewhat strong as-
sumption that the inferred classification and the number of latent classes does
not change when removing the variables.

It is worth to mention an approach that lies outside the modeling framework
of LCA and is closely related to the work of Hoff (2006). Hoff (2005) presents
a method for subset clustering of binary sequences where each latent class is
characterized by its own set of discriminating variables that differentiates it from
the rest of the classes. Let ϕgj be a binary variable indicating the relevance of
variable j to cluster g. The author suggests to parameterize the class conditional
probability of occurrence of Xj as:

πgj = ϕgj π̃gj + (1− ϕgj)πj ,

where π̃gj is the probability that Xj = 1 within class g and πj is the probability
of observing variable Xj in the data. Thus, if ϕgj is active, the corresponding
variable is relevant and the πgj differs from the overall data value. The frame-
work involves a Pólya urn scheme for the parameters and the indicator variables
and results in a Dirichlet process mixture model. Inference is performed using
MCMC and allows to recover the subset of informative variables of each latent
class.

5.5. R packages and data example

The R packages for variable selection for latent class analysis are ClustMMDD

(Toussile, 2016), LCAvarsel (Fop and Murphy, 2017) and VarSelLCM (Marbac
and Sedki, 2017b). In particular, we note that VarSelLCM implements a more
general framework for clustering and variable selection of data of mixed type
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Table 4

R packages for LCA variable selection.

Package Type Method

ClustMMDD model selection
Toussile and Gassiat (2009)
Bontemps and Toussile (2013)

LCAvarsel model selection
Dean and Raftery (2010)
Fop, Smart and Murphy (2017)

VarSelLCM model selection
Marbac and Sedki (2017a)
Marbac and Sedki (2017c)

Table 5

Variables in the uscongress dataset.

1. Handicapped infants 9. MX missile
2. Water project cost-sharing 10. Immigration
3. Adoption of the budget resolution 11. Synfuels corporation cutback
4. Physician fee freeze 12. Education spending
5. El Salvador aid 13. Superfund right to sue
6. Religious groups in schools 14. Crime
7. Anti-satellite test ban 15. Duty-free exports
8. Aid to Nicaraguan contras 16. Export administration act/South Africa

(Marbac and Sedki, 2017c). Table 4 lists the packages, with information regard-
ing the type and the method; all implement a model selection approach.

In this section we consider the uscongress data available in the UCI
repository at the web page https://archive.ics.uci.edu/ml/datasets/

congressional+voting+records. The data contain votes of N = 435 members
of the U.S. House of Representatives, 267 Democrats and 168 Republicans. Each
record expresses the position of a member on 16 key votes regarding major issues
selected by the Congressional Quarterly Almanac (1984); the votes are presented
in Table 5. A vote can take three possible outcomes: y (yea), if in favor of a
specific matter, n (nay), if against, or u (unknown), if the position is unknown.
A graphical representation of the data is in Figure 10. The observations are
classified into two groups corresponding to the main parties, but it is reasonable
to expect the presence of more than two classes in the data because of internal
subdivisions. Indeed, at the time the Democratic party was split into North-
ern and Southern Democrats, and a large portion of the second often voted in
agreement with the Republican party (Congressional Quarterly Almanac, 1984).

First, we fit a LCA model on all the variables, determining the number of
components using BIC. The selected model is a 4-class model and Table 6 con-
tains a cross-tabulation of the estimated classification and the party member-
ship. Class 1 and Class 2 are fairly polarized into Democrats and Republicans.
Class 3 is predominantly characterized by Democrats, while Class 4 contains an
equal amount of representatives from both sides.

Then we apply the variable selection procedures ClustMMDD-bic (Toussile
and Gassiat, 2009), ClustMMDD (Bontemps and Toussile, 2013), LCAvarsel-ind

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records
https://archive.ics.uci.edu/ml/datasets/congressional+voting+records
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Fig 10. Key votes in the uscongress data. For each vote, a paired stacked-barplot represents
the observed relative frequency of a response (n), (y) or (u) within the Democrats (D) and
the Republicans (R) parties.

Table 6

Cross-tabulation between the
classification estimated by the LCA
model on all the variables and the

political affiliation.

Class
1 2 3 4

Dem. 170 23 65 9
Rep. 1 132 25 10

Table 7

Cross-tabulation between the
classification inferred on the variables

selected by LCAvarsel procedure and the
political affiliation.

Class
1 2 3 4

Dem. 159 29 74 5
Rep. 3 129 30 6

(Dean and Raftery, 2010), LCAvarsel (Fop, Smart and Murphy, 2017) and
VarSelLCM (Marbac and Sedki, 2017a,c). The variables selected by each method
are displayed in Figure 11. Also the chosen number of latent classes and the
ARI between the estimated classification and the party affiliation are reported.
VarSelLCM does not discard any variable in this example. The method underly-
ing the package makes use of both local and global independence assumptions,
and they are too restrictive for this type of data. ClustMMDD and LCAvarsel-ind

select the same model and discard 2 variables. ClustMMDD discards 3 variables
and selects a 3-component model. Note that the common discarded variables 2
and 10 are votes with close call results, and thus likely uninformative with re-
spect to the two parties or any clustering structure. LCAvarsel performs a more
parsimonious selection, choosing a model with 4 latent classes and retaining 10
variables, but attaining a lower ARI. Figure 12 displays the class-conditional
probabilities of the outcomes for the votes selected by ClustMMDD-bic,
ClustMMDD, LCAvarsel-ind and LCAvarsel; we did not include VarSelLCM,
as it discarded none of the variables. We focus the attention on the LCAvarsel
result, as it is the package performing the most parsimonious selection. Table 7
reports a tabulation of the estimated classification and the party affiliation, with
an interpretation similar to Table 6. Figure 12 (d) suggests that Class 1 and 2
are denoted by very polarized outcomes and opposite voting positions. Class 3
includes members who likely expressed a vote not loyal to their party line. Class
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Fig 11. Variables selected via the ClustMMDD-bic, ClustMMDD, LCAvarsel-ind, LCAvarsel and
VarSelLCM methods. A dark square indicates the variable has been selected. For each method,
also the selected number of latent classes and the ARI between the estimated classification
and the party affiliation are reported.

Table 8

Computing time (in seconds) and relative computing time of the R packages for variable
selection for LCA.

Package Time (sec.) Relative

LCAvarsel-ind 114.94 1.00
VarSelLCM 211.20 1.84
LCAvarsel 591.62 5.15
ClustMMDD 11585.65 100.80
ClustMMDD-bic 11585.65 100.80

4 is characterized by an higher probability of an unknown position regarding
the selected key votes.

Table 8 reports the computing time of the packages listed in Table 4 on
a Dell machine with Intel Core i7-3770 CPU @3.40GHz×8. The methods are
listed from the fastest to the slowest. LCAvarsel-ind is the fastest, followed by
VarSelLCM, although the last did not discard any of the variables. LCAvarsel is
slower, but still with an acceptable computing time compared to the two. Meth-
ods ClustMMDD and ClustMMDD-bic are the slowest in this example and have the
same computing time, since they implement the same selection procedure. The
algorithm at the basis of package ClustMMDD performs a more extensive search
than the greedy ones implemented in LCAvarsel and VarSelLCM, however at a
larger computational cost. Lastly, it is worth to notice that packages LCAvarsel
and VarSelLCM can implement parallel computations.

6. Discussion

Stimulated by the wide popularity of the approach and the diffusion of high-
dimensional data, the topic of variable selection for model-based clustering has
seen increasing attention and rapid development. In this paper we gave an



54 M. Fop and T. B. Murphy

Fig 12. Class-conditional probabilities of the outcomes for the votes selected by
ClustMMDD-bic, ClustMMDD, LCAvarsel-ind and LCAvarsel. Each quadrant contains the 2-
dimensional simplex representing, for every selected variable, the class-conditional probabili-
ties of outcome n, y and u by difference. All the quadrants have values ranging from 0 to 1.
Points close to the axis vertexes denote high probability of outcome n or y, while points close
to the center indicate high probability of outcome u.

overview of the available variable selection methods, starting from early works
to the most recent state of the art. We suggested a general and systematic
picture of the features characterizing the different methods. The exposition fo-
cused on variable selection methods for Gaussian mixture models and latent
class analysis, the most common model-based clustering approaches. Illustra-
tive data examples have been used to show some of the methods in action and
we provided references to the available R packages implementing them. The
datasets and the R code used for the analyses are available at the web page
https://michaelfop.github.io/. We conclude with some final comments.

https://michaelfop.github.io/
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Distributional assumptions

Assumptions concerning the dependence among relevant and irrelevant variables
play a crucial role in the variable selection procedure. The global independence
assumption simplifies the model for the joint distribution of irrelevant and rel-
evant variables. Directly or indirectly, Bayesian and penalization approaches
make use of this assumption, resulting in frameworks with a simpler association
structure and that allow to discard uninformative variables. However, in the
case where the variables are highly correlated, the global independence assump-
tion can prevent to accomplish a parsimonious selection, in which also redun-
dant variables are discarded (Law, Figueiredo and Jain, 2004; Tadesse, Sha and
Vannucci, 2005; Raftery and Dean, 2006). On the other hand, model selection
methods allow to depict a flexible and realistic structure for the relations among
relevant, redundant and uninformative variables, but at the cost of a more com-
plex model for the joint distribution of relevant and irrelevant variables. We
remark that, when using a variable selection method, the trade-off between
model complexity and selection performance needs to be taken into account.

The local independence assumption is commonly used in latent variable mod-
els, especially in the case of multivariate categorical data clustering. This as-
sumption notably simplifies the model for the joint distribution of the relevant
clustering variables (Bartholomew, Knott and Moustaki, 2011). However, it can
hardly hold in practice and several approaches in the literature have been pro-
posed to overcome it. For example, Gollini and Murphy (2014) propose a setting
with continuous latent variables that allow to model the dependences among
the observed categorical variables; Marbac, Biernacki and Vandewalle (2015)
develop a framework where the categorical variables are grouped into blocks,
each one following a specific distribution that takes into account the dependency
between variables. Extending these frameworks to allow for variable selection
would be interest of future research.

In this review, we mainly focused on Gaussian and Multinomial mixture
models for clustering of continuous and categorical data. Variable selection for
model-based clustering with other distributions and/or of data of different na-
ture is still an open research area. The topic has only recently started to attract
attention: Wallace et al. (2017) propose a framework for clustering and vari-
able selection with the multivariate skew-Normal distribution, while Marbac
and Sedki (2017c) define a method for data of mixed types. There is certainly
a wide scope for further investigations and developments in this direction.

Computational aspects

Solving a variable selection problem is a task that requires a noticeable compu-
tational cost. For fixed number of mixture components, in general there are 2J

possible combinations of variables that could be considered as relevant clustering
variables (Miller, 2002). The problem is worsened when the variable selection is
concomitant to the problem of mixture components selection and model estima-
tion. As already noted, filter approaches keep the two tasks separated, since the
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variable selection procedure is executed before or after estimation of the clus-
tering model. Wrapper approaches combine model estimation, variable selection
and number of components determination; hence, usually multiple models need
to be estimated for different combinations of clustering variables and number of
components. For these reasons, the firsts are usually faster, while the seconds are
computationally expensive, but often give superior results (Guyon and Elisseeff,
2003). To speed up the computations, a filter method could be employed as a
preliminary step to reduce the number of variables, then the wrapper method
could be used on the reduced set of variables.

Regarding the statistical approach used to perform the variable selection,
the various methods present different computational characteristics and issues.
Bayesian methods provide a solid ground for uncertainty evaluation of the vari-
able selection process. However, the MCMC schemes employed within this class
of methods often require runs with a large number of iterations to explore the
enormous space and ensure convergence (Tadesse, Sha and Vannucci, 2005, in-
deed, all the works examined in this review considered a number of iterations in
the order of 105 − 106). Unfortunately, the MCMC algorithms used do not al-
low parallelization of the computations in order to speed up the process. Model
selection approaches usually implement greedy stepwise algorithms that have
a general computational complexity of O(KJ2), hence they become rapidly
impractical as the number of variables and mixture components increases. If
the number of variable is large, and is expected that only a small number of
variables J0 � J are relevant, forward-type algorithms can be applied, thus
reducing the complexity to O(KJJ0). However, in this case the difficult is-
sue of how to initialize the algorithm and the set of clustering variables arises.
Backward-type procedures do not require initialization of the clustering set, but
can be very computationally demanding if the actual set of clustering variables
is small. Headlong strategies could be employed to mitigate the problem (Bads-
berg, 1992). Nonetheless, the advantage of these stepwise methods is that they
can be implemented in parallel, saving computational time. Penalization ap-
proaches are usually faster than Bayesian and model selection methods. In fact,
the computational complexity of these approaches mainly depends on the form
of the penalty function adopted and, in most cases, analytical solution to the
optimization problem or efficient numerical procedures are already available.
For this reason, they tend to scale particularly well to high-dimensional settings
and have been proven to perform well also in the case of data with thousands of
variables. Nevertheless, these methods do not allow for parallel computations.

Given the constant increase of the data dimensionality, the development of
efficient algorithms allowing for scalable model-based clustering and variable se-
lection is a relevant research topic that is likely to attract considerable attention
in the future.

Missing data

Missing observations are a common issue in many data analysis problems.
Among the works examined in this review, only few present methods for model-
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based clustering and variable selection in the presence of missing data. Maugis-
Rabusseau, Martin-Magniette and Pelletier (2012) extend the model selection
method of Maugis, Celeux and Martin-Magniette (2009b) with the aim of avoid-
ing a preliminary imputation procedure. The authors consider the case of miss-
ing values generated under themissing at random mechanism (Little and Rubin,
2002, MAR). Under this assumption, the missing responses are ignorable for
likelihood-based inference. Hence, the framework and the model selection crite-
rion can be stated in terms of only the observed data and the imputation process
is avoided. Bartolucci, Montanari and Pandolfi (2016) use similar arguments for
clustering categorical data via the latent class analysis model. The same MAR
assumption is also considered in Marbac and Sedki (2017c), where the MICL
criterion used for variable selection is computed considering only the observed
entries. In application to data related to the quality-of-life of elderly patients
hosted in nursing homes, Bartolucci, Montanari and Pandolfi (2017) move away
from the MAR assumption and suggest to add an extra category corresponding
to the missing responses, circumventing the assumption of ignorability of the
missing data.

In general, in the literature multiple works exist for mixture model estimation
with missing data, see for example: McLachlan and Peel (2000); Little and Rubin
(2002); Hunt and Jorgensen (2003); Formann (2007); Chen, Prentice and Wang
(2014). These approaches could be incorporated in a general framework for
model-based clustering and variable selection for data with missing entries and
may be interest of future developments.

Software

The last remark regards software availability. Despite the quantity of theory and
methods developed, not many R packages for variable selection in model-based
clustering are available. In particular, there is lack of packages implementing the
various penalization methods for GMMs, especially useful for clustering high-
dimensional data. This is somewhat surprising given the practical importance
of the topic.
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