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1. Introduction

The aim of this paper is to refine and extend to the more general case of a
class of tree graphs the approach used by Dalalyan, Hebiri and Lederer (2017)
to prove an oracle inequality for the Fused Lasso estimator, also known as total
variation regularized estimator. As a side result, we will obtain some insight
into the irrepresentable condition for signal pattern recovery over tree graphs in
that class.

The main reference of this article is Dalalyan, Hebiri and Lederer (2017),
who consider the path graph. We refine and generalize their approach (i.e. their
Theorem 3, Proposition 2 and Proposition 3) to the case of more general tree
graphs. The main refinements we prove are an oracle theory for the total varia-
tion regularized estimators over trees when the first coefficient is not penalized,
a proof of an (in principle tight) lower bound for the compatibility constant
and, as a consequence of this bound, the substitution in the oracle bound of the
minimum of the distances between jumps by their harmonic mean. We elabo-
rate the theory from the particular case of the path graph to the more general
case of tree graphs which can be cut into path graphs. The tree graph with one
branch is in this context the simplest instance of such more complex tree graphs,
which allows us to develop insights into more general cases, while keeping the
overview.
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The paper is organized as follows: in Section 1 we expose the framework to-
gether with a review of the literature on the topic; in Section 2 we refine the
proof of Theorem 3 of Dalalyan, Hebiri and Lederer (2017) and adapt it to the
case where one coefficient of the Lasso is left unpenalized: this proof will be
a working tool for establishing oracle inequalities for total variation penalized
estimators; in Section 3 we introduce the notation needed for the rest of the
article; in Section 4 we expose how to easily compute objects related to pro-
jections which are needed for finding explicit bounds on weighted compatibility
constants and when the irrepresentable condition is satisfied; in Section 5 we
present a tight lower bound for the (weighted) compatibility constant for the
Fused Lasso and use it with the approach exposed in Section 2 to prove an or-
acle inequality; in Section 6 we generalize Section 5 to the case of the branched
path graph; Section 7 presents further extensions to more general tree graphs;
Section 8 handles the asymptotic signal pattern recovery properties of the total
variation regularized estimator on the (branched) path graph and exposes an
extension to more general tree graphs; Section 9 concludes the paper.

1.1. General framework

We study total variation regularized estimators on graphs, their oracle properties
and their asymptotic signal pattern recovery properties.

For a vector v ∈ R
n we write ‖v‖1 =

∑n
i=1|vi| and ‖v‖2n = 1

n

∑n
i=1 v

2
i .

Let G = (V,E) be a graph, where V is the set of vertices and E is the set of
edges. Let n := |V | be its number of vertices and m := |E| its number of edges.
Let the elements of E be denoted by e(i, j), where i, j ∈ V are the vertices
connected by an edge.

Let DG ∈ R
m×n denote the incidence matrix of a graph G, defined as

(De)k =

⎧⎪⎨⎪⎩
−1, if k = min(i, j)

+1, if k = max(i, j)

0, else,

where De ∈ R
n is the row of DG corresponding to the edge e(i, j).

Let f ∈ R
n be a function defined at each vertex of the graph. The total

variation of f over the graph G is defined as

TVG(f) := ‖DGf‖1 =
∑

e(i,j)∈E

|fj − fi|.

Assume we observe the values of a signal f0 ∈ R
n contaminated with some

Gaussian noise ε ∼ Nn(0, σ
2In), i.e. Y = f0 + ε. The total variation regular-

ized estimator f̂ of f0 over the graph G is defined as

f̂ := arg min
f∈Rn

{
‖Y − f‖2n + 2λ‖DGf‖1

}
,
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where λ > 0 is a tuning parameter. This is a special case of the generalized
Lasso with design matrix In and penalty matrix DG . Hereafter we suppress the
subscript G in the notation of the incidence matrix of the graph G.

In this article, we restrict our attention to tree graphs, i.e. connected graphs
with m = n − 1. For a tree graph we have that D ∈ R

(n−1)×n and rank(D) =
n−1. In order to manipulate the above problem to obtain an (almost) ordinary

Lasso problem, we define D̃, the incidence matrix rooted at vertex i, as

D̃ :=

[
A
D

]
∈ R

n×n,

where

A = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0) ∈ R
n.

In the following, we are going to root the incidence matrix at the vertex i = 1,
obtaining in this way a lower triangular matrix with ones on the diagonal, and
minus ones as nonzero off-diagonal elements. The square matrix D̃ is invertible
and we denote its inverse by X := D̃−1.

We now perform a change of variables. Let β := D̃f , then f = Xβ. The
above problem can be rewritten as

β̂ = arg min
β∈Rn

{
‖Y −Xβ‖2n + 2λ

n∑
i=2

|βi|
}
,

i.e. an ordinary Lasso problem with p = n, where the first coefficient β1 is not
penalized. Note that, in order to perform this transformation, it is necessary
that we restrict ourselves to tree graphs, since we want D̃ to be invertible.

Let X = (X1, X−1), where X1 ∈ R
n denotes the first column of X and

X−1 ∈ R
n×(n−1) the remaining n − 1 columns of X. Let β−1 ∈ R

n−1 be the
vector β with the first entry removed. Thanks to some easy calculations and
denoting by Ỹ and X̃−1 the column centered versions of Y and X−1, it is
possible to write

β̂−1 = arg min
β−1∈Rn−1

{
‖Ỹ − X̃−1β−1‖2n + 2λ‖β−1‖1

}
and

β̂1 =
1

n

n∑
i=1

Yi − (X−1)iβ̂−1,

and both β̂−1 and β̂1 depend on λ.

Note that prediction properties of β̂, i.e. the properties of Xβ̂, will translate
into properties of the estimator f̂ , often also called Edge Lasso estimator.

Remark. In the construction of an invertible matrix starting from D, it would
be possible to choose A = (1, . . . , 1) =: 1n ∈ R

n as well. Indeed, when we
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perform the change of variables from f to β, β̂−1 estimates the differences of
the signal across the edges of G and thus gives information about the relative
location of the signal. However to be able to estimate the absolute location of
the signal we either need an estimate of the absolute location of the signal at one
point (choice A = (0, . . . , 0, 1, 0, . . . , 0), β̂1 = f̂i, in particular we consider the
case i = 1), or of the “mean” location of the signal (choice A = (1, . . . , 1) = 1n,

β̂1 =
∑n

i=1 f̂i).

1.2. The path graph and the path graph with one branch

In this article we are interested, besides the more general case of tree graphs,
in the particular cases of D being the incidence matrix of either the path graph
or the path graph with one branch. The choice of A makes it easy to calculate
the matrix X and gives a nice interpretation of it.

Let P1 be the path matrix of the graph G with reference root the vertex 1.
The matrix P1 is constructed as follows:

(P1)ij :=

{
1, if the vertex j is on the path from vertex 1 to vertex i,

0, else.

Theorem 1.1 (Inversion of the rooted incidence matrix). For a tree graph, the

rooted incidence matrix D̃ is invertible and

X = D̃−1 = P1.

Proof of Theorem 1.1. For a formal proof we refer to Jacobs et al. (2008) and
to Bapat (2014). The intuition behind this theorem is to proceed as follows. We

have to check that rank(D̃) = n. One can perform Gaussian elimination on the
rooted incidence matrix. Keep the first row as it is and for row i add up the rows
indexed by the vertices belonging to the path going from vertex 1 to vertex i.
In this way one can obtain an identity matrix and thus rank(D̃) = n. Similarly
one can find the inverse, which obviously corresponds to P1.

Example 1.2 (Incidence matrix and path matrix with reference vertex 1 for
the path graph). Let G be the path graph with n = 6 vertices. The incidence
matrix is

D =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 1

−1 1

−1 1

−1 1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
5×6
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and the path matrix with reference vertex 1 is

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

6×6.

Example 1.3 (Incidence matrix and path matrix with reference vertex 1 for
the path graph with one branch). Let G be the path graph with one branch.
The graph has in total n = n1 + n2 vertices. The main branch consists in n1

vertices, the side branch in n2 vertices and is attached to the vertex number
b < n1 of the main branch. Take n1 = 4, n2 = 2 and b = 2. The incidence
matrix is

D =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 1

−1 1

−1 1

−1 1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
5×6

and the path matrix with reference vertex 1 is

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

6×6.

1.3. Review of the literature

While to our knowledge there is no attempt in the literature to analyze the
specific properties of the total variation regularized least squares estimator over
general branched tree graphs, there is a lot of work in the field of the so called
Fused Lasso estimator. An early analysis of the Fused Lasso estimator can be
found in Mammen and van de Geer (1997). Some other early work is exposed in
Tibshirani et al. (2005); Friedman et al. (2007); Tibshirani and Taylor (2011),
where also computational aspects are considered.

In the literature we can find two main currents of research, the one focusing
on the pattern recovery properties (which is going to be briefly exposed in
Section 8) and the other on the analysis of the mean squared error to prove
oracle inequalities.
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1.3.1. Minimax rates

In this subsection we expose some results on minimax rates, making use of the
notation found in Sadhanala, Wang and Tibshirani (2016). In particular, let

T (C) = {f ∈ R
n : ‖Df‖1 ≤ C}

be the class of (discrete) functions of bounded total variation on the path graph,
where D is its incidence matrix. Assume the linear model with f0 ∈ T (C) for
some C > 0 and with iid Gaussian noise with variance σ ∈ (0,∞) . It has been
shown in Donoho and Johnstone (1998) that the minimax risk over the class of
functions with bounded total variation R(T (C)) satisfies

R(T (C)) := inf
f̂

sup
f0∈T (C)

E[‖f̂ − f0‖2n] � (C/n)2/3.

Mammen and van de Geer (1997) prove that, if λ � n−2/3C1/3, then the
Fused Lasso estimator achieves the minimax rate within the class T (C). Sad-
hanala, Wang and Tibshirani (2016) also point out, that estimators which are
linear in the observations can not achieve the minimax rate within the class of
functions of bounded total variation, since they are not able to adapt to the
spatially inhomogeneous smoothness of some elements of this class.

1.3.2. Oracle inequalities

We expose some recent results, appeared in the papers by Hütter and Rigollet
(2016); Dalalyan, Hebiri and Lederer (2017); Lin et al. (2017); Guntuboyina
et al. (2017). In particular we give the rates of the remainder term in the (sharp)
oracle inequalities holding with high probability exposed in these papers.

• Hütter and Rigollet (2016) obtain a quite general result, in the sense
that it applies to any graph G with incidence matrix D ∈ R

m×n. In par-
ticular for the choice of the tuning parameter λ = σρ

√
2 log (em/δ)/n, δ ∈

(0, 1
2 ), they obtain that the remainder term in their oracle inequality has

the rate

O
(

|S|ρ2
nκ2

D(S)
log (em/δ)

)
,

with probability at least 1− 2δ, where, for a set S ⊆ [m],

κD(S) := inf
f∈Rn

√
|S|‖f‖2

‖(Df)S‖1
, S 
= ∅

is called compatibility factor and ρ is the largest 	2-norm of a column
of the Moore-Penrose pseudoinverse D+ = (δ+1 , . . . , δ

+
m) ∈ R

n×m of the
incidence matrix D, i.e. ρ = maxj∈[m]‖δ+j ‖2, and is called inverse scaling
factor.
For the path graph, we have m = n−1, ρ � √

n and, according to Lemma
3 in Hütter and Rigollet (2016), κD(S) = Ω (1), if |S| ≥ 2.
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• Dalalyan, Hebiri and Lederer (2017) obtain that, ∀S 
= ∅, for δ ∈
(0, 1

2 ) and the choice of the tuning parameter λ := 2σ
√

2 log (n/δ) /n, the
remainder term has rate

O
(
s log(n/δ)

n

(
logn+

n

Wmin,S

))
,

with probability 1 − 2δ, where S = {i1, . . . , is}, s = |S|, Wmin,S :=
min1≤j≤s+1|ij − ij−1|, with the convention i0 = 1 and is+1 = n+ 1.

• Lin et al. (2017) prove a result similar to the one of Dalalyan, Hebiri and
Lederer (2017) using a technique that they call lower interpolant. Their
result states that the mean squared error of the Fused Lasso estimator

with the choice of the tuning patameter λ = n− 3
4W

1
4

min,S0
, for n large

enough, has error rate

O
(
γ2 s0

n

(
(log s0 + log logn) log n+

√
n

Wmin,S0

))
,

with probability at least 1 − e−Cγ , where C > 0 is a constant only de-
pending on σ and where γ > 1.

• Guntuboyina et al. (2017) consider the sequence of estimators {f̂λ, λ ≥
0}, where

f̂λ = arg min
f∈Rn

{
‖Y − f‖22 + 2σλ‖Df‖1

}
,

and prove that, when the minimum length condition Wmin,S0 ≥ c1n
s0+1 , 0 <

c1 ≤ 1, is satisfied, then

inf
λ≥0

E

[
‖f̂λ − f0‖2n

]
= O

(
s0 + 1

n
log

(
ne

s0 + 1

))
,

where the value λ0 at which the infimum is reached depends on f0, (see
Corollary 2.8 in Guntuboyina et al. (2017)).
Moreover Guntuboyina et al. (2017) prove, in a newer version of their
article, that under the minimum length condition and the maximum length
condition, i.e. max1≤j≤s0+1|ij − ij−1| ≤ c2n

s0+1 , c2 ≥ 1 with the convention

i0 = 1 and is+1 = n+ 1, if λ � C(c1, c2)
√

log n
n , then

E

[
‖f̂λ − f0‖2n

]
= O

(
(s0 + 1)2

n
logn

)
,

where C(c1, c2) is a constant depending on c1 and c2. Since c1 and c2
depend on f0, so does implicitely the choice of the tuning parameter.
It is worth noticing that the results by Guntuboyina et al. (2017) hold also
with a weaker version of the minimum length condition which involves only
piecewise constant regions between jumps of opposite signs. However for
the ease and simplicity of exposition we exposed the results using the
stronger condition involving all the piecewise constant regions. Moreover,
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thanks to concentration results for penalized least squares estimators, high
probability bounds for the mean squared error are derived by the bounds
on its expectation.

2. Approach for general tree graphs

The approach we follow is very similar to the one presented in the proof of The-
orem 3 of Dalalyan, Hebiri and Lederer (2017). However, we refine their proof
by not penalizing the first coefficient of β and by adjusting the definition of
compatibility constant accordingly. Note that by not penalizing the first coeffi-
cient we allow it to be always active. This is a more natural approach to utilize,
considering our problem definition.

Let β ∈ R
n be a vector of coefficients, S ⊆ {2, . . . , n} a subset of the indices

of β, called active set with s := |S| being its cardinality.
Let v ∈ R

n and T ⊆ [n] be a subset of indices of v. By vT we denote the
vector satisfying {

(vT )i = vi , ∀i ∈ T,

(vT )i = 0 , ∀i 
∈ T,

and by v−T we denote the vector satisfying{
(v−T )i = 0 , ∀i ∈ T,

(v−T )i = vi , ∀i 
∈ T,

giving place to the equation v = vT + v−T .

Definition 2.1 (Compatibility constant). The compatibility constant κ(S)
is defined as

κ2(S) := min
{
(s+ 1)‖Xβ‖2n : ‖βS‖1 − ‖β−({1}∪S)‖1 = 1

}
.

Let V{1}∪S denote the linear subspace of Rn spanned by the columns of X
with index in {1} ∪ S. Let Π{1}∪S be the orthogonal projection matrix onto
V{1}∪S . We have that Π{1}∪S = X{1}∪S(X

′
{1}∪SX{1}∪S)

−1X ′
{1}∪S and that

A{1}∪S = In −Π{1}∪S , where In denotes the n× n identity matrix.

Definition 2.2. The vector ω ∈ R
n is defined as

ωj = ‖A{1}∪SXj‖n, ∀j ∈ [n].

Remark. Note that ω{1}∪S = 0 and 0 ≤ ω ≤ 1, since for tree graphs the
maximum ‖·‖n-norm of a column of X is 1.

Definition 2.3. Take γ > 1. The vector of weights w ∈ R
n is defined as

wj = 1− ωj

γ
, ∀j ∈ [n].

Remark. Note that 0 ≤ w ≤ 1 and that w{1}∪S = 1.
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For two vectors a, b ∈ R
k, a� b := (a1b1, a2b2, . . . , akbk)

′.

Definition 2.4 (Weighted compatibility constant). The weighted compat-
ibility constant κw(S) is defined as

κ2
w(S) := min

{
(s+ 1)‖Xβ‖2n : ‖βS‖1 − ‖(w � β)−({1}∪S)‖1 = 1

}
.

Remark. Note that the (weighted) compatibility constant depends on the
graph through X, which is the path matrix of the graph rooted at the vertex 1.

Remark. Note that a key point in our approach is the computation of a lower
bound for the compatibility constant over the path graph, which is shown to be
tight in some special cases. The concept of compatibility constant for total vari-
ation estimators over graphs is already presented in Hütter and Rigollet (2016).
However, we refer to the (different) definition given in Dalalyan, Hebiri and
Lederer (2017), which we slightly modify to adapt it to our problem definition.

Theorem 2.5 (Oracle inequality for total variation regularized estimators over
tree graphs). Fix δ ∈ (0, 1) and γ > 1. Choose λ = γσ

√
2 log (4(n−s−1)/δ) /n.

Then, with probability at least 1− δ, it holds that

‖f̂ − f0‖2n ≤ inf
f∈Rn

{
‖f − f0‖2n + 4λ‖(Df)−S‖1

}
+

4σ2

n

(
(s+ 1) + 2 log (2/δ) +

γ2(s+ 1)

κ2
w(S)

log (4(n− s− 1)/δ)

)
.

Proof of Theorem 2.5. See Appendix A.

3. Notation

Here we expose the notational conventions used for handling the (branched)
path graph and later branching points with arbitrarily many (K) branches.

3.1. Path graph

In the case of the path graph we write the candidate set of active edges S, which
has cardinality s, as

S = {d1 + 1, d1 + d2 + 1, . . . , d1 + d2 + . . .+ ds + 1}

and we define ds+1 = n−
∑s

i=1 di. In the next subsection on the branched path
graph we are going to introduce some dual notation, because we will have to use
different notations depending on the context. It is worth mentioning that in the
case of the path graph this is not necessary and we always can utilize the same
notation. Indeed, the need of the dual notation is due to the different possible
ways to decompose the branched path graph into three smaller path graphs. In
the case of the path graph it is evident that this problem is not present.
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3.2. (Branched) path graph

We decide to enumerate the vertices of the (branched) path graph starting from
the root 1, continuing up to the end of the main branch n1 and then continuing
from the vertex n1 + 1 of the side branch attached to vertex b up to the last
vertex of the side branch n = n1 + n2.

We are going to use two different notations: the one is going to be used for
finding explicit expressions for quantities related to the projection of a column
of X onto some subsets of the columns of X. The other is going to be used when
calculating the compatibility constant and is based on the decomposition of the
(branched) path graph into smaller path graphs. In both notations we let the
set S ⊆ {2, . . . , n} be a candidate set of active edges.

First notation (for calculating projection coefficients and lengths of antipro-
jections).

We partition S into three mutually disjoint sets S1, S2, S3, where S1 =
{2, . . . , b} ∩ S, S2 = {b+ 1, . . . , n1} ∩ S, S3 = {n1 + 1, . . . , n} ∩ S. We write the
sets S1, S2, S3 as:

S1 =: {i1, . . . , is1} , S2 =: {j1, . . . , js2} , S3 =: {k1, . . . , ks3} .

We write si := |Si|, i ∈ {1, 2, 3}. Note that s := |S| = s1 + s2 + s3.
Let us write S = {ξ1, . . . , ξs1+s2+s3}. Define

B := {ξ1 − 1, ξ2 − ξ1, . . . , ξs1 − ξs1−1, b− ξs1 + 1,

ξs1+1 − b− 1, ξs1+2 − ξs1+1, . . . , ξs1+s2 − ξs1+s2−1, n1 − ξs1+s2 + 1,

ξs1+s2+1 − n1 − 1, ξs1+s2+2 − ξs1+s2+1, . . . , n− ξs1+s2+s3 + 1}
=: {d11, d12, . . . , d1s1 , d̃

1
s1+1, d̃

2
1, d

2
2, . . . , d

2
s2 , d

2
s2+1,

d̃31, d
3
2, . . . , d

3
s3+1}.

Define d∗ := d̃1s1+1 + d̃21 + d̃31.
This notation implicitely means that we cut the branched path graph into

three subgraphs, all of them being paths. These three subgraphs are obtained
by cutting the edges (b, b + 1) and (b, n1 + 1). The set B is the set containing
the information about how many vertices are between consecutive jumps, i.e.
the length of the piecewise constant regions that a signal would have if its true
active set were S. Since the ξi, i ∈ [s1 + s2 + s3] tell us which edges are in the
active set, at the beginning and at the end of each of the subgraphs obtained
as explained here above we need to subtract, respectively add, a vertex. Indeed,
say that the first element of S is ξ1 = 5. This means that we have a candidate
jump on the edge (4, 5) and thus the first candidate piecewise constant region is
constituted by the vertices {1, 2, 3, 4} and d11 = ξ1−1 = 4. Analogously suppose
that ξs1 = 15 and b = 18. This means that the last candidate active edge of S1 is
(14, 15) and thus the last candidate piecewise constant region is {15, 16, 17, 18}.
It follows that d̃1s1+1 = b− ξs1 + 1 = 18− 15 + 1.
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It is thus clear that the three sets {d̃11, . . . , d1s1 , d1s1+1}, {d̃21, d22, . . . , d2s2+1}
and {d̃31, d32, . . . , d3s2+1} contain the information on the length of the candidate
piecewise constant regoins inside the three subgraphs obtained by cutting the
edges (b, b + 1) and (b, n1 + 1), when we suppose that S = S1 ∪ S2 ∪ S3 is the
candidate active set of edges.

Second notation (for bounding the compatibility constant).
What is meant with the second notation is that we decompose the branched

path graph into three smaller path graphs. However, the end of the first one
does not necessarily coincide with the point b and the beginning of the other
two does not necessarily coincide with the points b+1 and n1+1 respectively, i.e.
the three path graphs resulting from this operation are not necessarily obtained
by cutting the edges (b, b+ 1) and (b, n1 + 1).

Let us write

S1 = {d11 + 1, d11 + d12 + 1, . . . , d11 + d12 + . . .+ d1s1 + 1} = S ∩ {1, . . . , b},

and

Si = {pi+1, pi+di2+1, pi+di2+di3+1, . . . , pi+di2+di3+ . . .+disi +1}, i = 2, 3,

where, using the first notation introduced, p2 = j1 − 1, p3 = k1 − 1, d2s2+1 =

n1− ξs1+s2 +1 and d3s3+1 = n− ξs1+s2+s3 +1. Note that d∗ = d1s1+1+ d21+ d31 =

d̃1s1+1 + d̃21 + d̃31.

The second notation differs from the first one only in regard to which edges
in the proximity of the branching point are cut to obtain a decomposition into
three path graphs. The second notation reflects a more flexible choice, where
the end of the first path graph does not have to coincide with the branching
point b. It is clear that the only difference with the first notation is in the length
of the piecewise constant pieces of the three subgraphs: d1s1+1, d

2
1, d

3
1 are not

necessarily equal to d̃1s1+1, d̃
2
1, d̃

3
1. We decide to keep the notation without tilde

for the situation where we have to bound the compatibility constant to remain
coherent with the notation in van de Geer (2018).

The quantities d1s1+1, d
2
1, d

3
1 can be seen as

• d1s1+1: the length of the last piecewise constant region of the first path
graph obtained by decomposing the branched path graph into three path
graphs by cutting two edges which are not necessarily (b, b+1) and (b, n1+
1), when S is the candidate active set.

• d21, d
3
1: the length of the first piecewise constant region of the second, resp.

third, path graph obtained by the decomposition procedure explained
above for d1s1+1.

3.3. Branching point with arbitrarily many branches

In Sections 4 and 7 we are going to consider branching points participating in
K+1 edges. In these cases we are ging go denote by d1s1+1 the number of vertices
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between the branching point and the last vertex in S in the main branch, with
these two extreme vertices included, and by d21, . . . , d

K+1
1 the number of vertices

after the branching point and before the first vertex in S (or the end of the
relative branch). In these more complex cases for the sake of simplicity we only
consider situations where the first and second notation coincide.

4. Calculation of projection coefficients and lengths of
antiprojections, a local approach

In this section we are going to present an easy and intuitive way of calculating
(anti-)projections and the related projection coefficients of some columns of a
path matrix rooted at vertex 1 of a tree onto a subset of the columns of the
same matrix. Let this matrix be called X. These calculations are motivated by
the necessity of finding explicit expressions for the length of the antiprojections
(for the weighted compatibility constant) and for the projection coefficients (to
check for which signal patterns the irrepresentable condition is satisfied).

In particular consider the task of projecting a column Xj , j 
∈ {1} ∪ S onto
X{1}∪S . This can be seen as finding the following argmin:

θ̂j := arg min
θj∈Rs+1

‖Xj −X{1}∪Sθ
j‖22.

We see that:

• θ̂j
′
corresponds to the jth row of X ′X{1}∪S(X

′
{1}∪SX{1}∪S)

−1;

• ‖Xj −X{1}∪S θ̂
j‖22 = nω2

j .

The direct computation of these quantities can be quite laborious. Here, we
show an easier way to compute these projections and we prove that they can
be computed “locally”, i.e. taking into account only some smaller part of the
graph.

We start by considering the path graph. Then we treat the more general
situation of a branching point with arbitrarily many branches.

4.1. Path graph

Let j 
∈ {1} ∪ S be the index of a column of X that we want to project onto
X{1}∪S . Define

j− := max {i < j, i ∈ {1} ∪ S} , (1)

j+ := min {i > j, i ∈ {1} ∪ S ∪ {n+ 1}} , (2)

and denote their indices inside {1} ∪ S ∪ {n+ 1} = {i1, . . . , is+2} by l− and l+,
i.e. j− = il− and j+ = il+ . We use the convention Xn+1 = 0 ∈ R

n. We are going
to show that the projection of Xj onto X{1}∪S is the same as its projection onto
X{j−}∪{j+}. This means that the part of the set {1} ∪ S not bordering with j
can be neglected.
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The intuition behind this insight can be clarified as follows. Projecting Xj

onto X{1}∪S amounts to finding the projection coefficients θ̂j minimizing the

length of the antiprojection. The projection is then X{1}∪S θ̂
j . Since the columns

of X{1}∪S can be seen as indicator functions on [n], this projection problem can
be interpreted as the problem of finding the least squares approximation to
1{i≥j} by using functions in the class

{
1{i≥j∗}, j

∗ ∈ {1} ∪ S
}
.

We now apply a linear transformation in order to obtain orthogonal design.
Note that Is+1 = D̃(s+1)X(s+1), where D̃(s+1) is the incidence matrix of a path
graph with s + 1 vertices rooted at vertex 1 and X(s+1) is its inverse, i.e. the
corresponding rooted path matrix. We get that

min
θj∈Rs+1

‖Xj −X{1}∪Sθ
j‖22 = min

τj∈Rs+1
‖Xj −X{1}∪SD̃

(s+1)τ j‖22,

where τ j = X(s+1)θj , i.e. the progressively cumulative sum of the components
of θj and X{1}∪SD̃

(s+1) ∈ R
n×(s+1) is a matrix containing as columns the indi-

cator functions
{
1{il≤i<il+1}, l ∈ {1, . . . , s+ 1}

}
, which are pairwise orthogonal.

Because of the orthogonality of the design matrix, we can now solve s+ 1 sep-
arate optimization problems to find the components of τ̂ j . It is clear that, to
minimize the sum of squared residuals (i.e. the length of the antiprojection), τ̂ j

must be s.t.
{τ̂ ji }i<l− = 0 and {τ̂ ji }i≥l+ = 1.

It now remains to find τ̂ jl− by solving

τ̂ jl− = argmin
x∈R

{
(j − j−)x2 + (j+ − j)(1− x)2

}
=

j+ − j

j+ − j−
= 1− j − j−

j+ − j−
.

We see that, to get this projection coefficient, we either need to know j+ and
j− or the information on the length of the constant segment in which j lies with
its position within this segment. Thus, we obtain that

τ̂ j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0

j+−j
j+−j−

1

...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and θ̂j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0

j+−j
j+−j−

j−j−

j+−j−

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and have proved the following Lemma.

Lemma 4.1 (Localizing the projections). Let X be the path matrix rooted at
vertex 1 of a path graph with n vertices and S ⊆ {2, . . . , n}. For j 
∈ {1} ∪ S
define j− and j+ as in Equations (1) and (2). Then
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min
θj∈Rs+1

‖Xj −X{1}∪Sθ
j‖22 = min

θ̃j∈R2
‖Xj −X{j−}∪{j+}θ̃

j‖22,

i.e. the (length of the) (anti-)projections can be computed in a “local” way.
Moreover, by writing A{1}∪S = In −Π{1}∪S we have that

‖A{1}∪SXj‖22 =
(j+ − j)(j − j−)

(j+ − j−)
.

Furthermore, for j < is, j 
∈ {1} ∪ S, the sum of the entries of θ̂j is 1.

4.2. General branching point

Using arguments similar to the ones above we can now focus on a branching
point of a general tree graph.

4.2.1. General branching point and S = ∅

Let us consider K path graphs of length d̃21, d̃
3
1, . . . , d̃

K+1
1 attached at the end of

a path graph (which we assume to contain the root) of length d̃1s1+1. We define

d∗ = d̃1s1+1 +
∑K+1

l=2 d̃l1. The path matrix rooted at the first vertex is

X =

⎛⎜⎜⎜⎜⎝
X(d̃1

s1+1)

1 X(d̃2
1)

...
. . .

1 X(d̃K+1
1 )

⎞⎟⎟⎟⎟⎠ ∈ R
d∗×d∗

and we want to find the projections of X−1 onto X1 = (1, . . . , 1)′. The entries
X(q), q ∈ {d̃1s1+1, d̃

2
1, . . . , d̃

K+1
1 } of the matrix X are q × q lower triangular ma-

trices of ones. Let us write j = 1+ i, i ∈ {1, . . . , d̃1S1+1−1} in the case j ≤ d̃1s1+1

and j = d̃1s1+1 +
∑i∗

l=d d̃
l
1 − i, i ∈ {1, . . . , d̃i∗1 } for some i∗ ∈ {2, . . . ,K + 1}

in the case j ≥ d̃1s1+1. Without loss of generality we can consider only one
i∗ ∈ {2, . . . ,K +1}. Note that the index i∗ tells us in which sub-path graph the
column we want to project onto X1 lies. We now consider two cases.

• First case: j ∈ {2, . . . , d̃1s1+1} .

We write j = i + 1, i ∈ {1, . . . , d̃1s1+1 − 1}. We want to compute the

projection coefficient onto X1 ∈ R
d∗
, i.e. we want to find

θ̂j = arg min
θj∈R

‖Xj −X1θ
j‖22.

From the first order optimality condition we get that

θ̂j =
X ′

1Xj

X ′
1X1

=
d∗ − j + 1

d∗
=

d∗ − i

d∗
= 1− i

d∗
.
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It follows that

‖A{1}∪SXj‖22 =
i(d∗ − i)

d∗
, 1 ≤ i ≤ d̃1s1+1 − 1.

• Second case: j ∈ {d̃1s1+1 +
∑i∗−1

l=2 d̃l1 + 1, d̃1s1+1 +
∑i∗

l=2 d̃
l
1}, for some i∗ ∈

{2, . . . ,K + 1}.

We write j = d̃1s1+1 +
∑i∗−1

l=2 d̃l1 + i, i ∈ {1, . . . , di∗1 } and we see that

θ̂j = argmin
θj

‖Xj −X1θ
j‖22 =

X ′
1Xj

X ′
1X1

=
d̃1s1+1 +

∑i∗

l=2 d̃
l
1 − j + 1

d∗
=

i

d∗
.

This is the case because the value of X ′
1Xj is the number of nonzero

elements in Xj . This number can be calculated by seeing that the index
i describes the position of Xj inside X(i∗) starting from the left, which is
exactly the number of nonzero elements in Xj . Alternatively we can see

that X ′
1Xj can be interpreted as the difference between d̃1s1+1 +

∑i∗

l=2 d̃
l
1

and j.
From the above calculation it follows that the length of the antiprojections
is

‖A{1}∪SXj‖22 =
i(d∗ − i)

d∗
, 1 ≤ i ≤ d̃i

∗

1 .

Note that in the last region before the end of one branch, the approximation
of the indicator function we implicitely calculate does not have to jump up to
one and thus only one coefficient of the respective θ̂j will be nonzero and this
coefficient will be smaller than one.

4.2.2. General branching point and S has elements in all the branches

Now we focus on the case where each of the branches (path graphs) involved in a
branching presents at least one jump (i.e. one element of the set S). The length
of the antiprojections is calculated in the same way as above. According to the
arguments exposed in precedence, we can consider only the jumps surrounding
the branching point. Indeed we observed in Subsection 4.1 that what happens in
a path graph between two elements of S does not influence and is not influenced
by what happens outside that region.

Let us call the jumps surrounding the branching point j1, j2, . . . , jk+1. We
have to find

θ̂j = arg min
θj∈Rs+1

‖Xj −X{1}∪Sθ
j‖22

= arg min
θ̃j∈RK+1

‖Xj −X{j1}∪...∪{jK+1}θ̃
j‖22

= arg min
θ̃j∈RK+1

‖Xj −X{j1}∪...∪{jK+1}D
�X�θ̃j‖22,
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where

D� =

⎛⎜⎜⎜⎝
1
−1 1
...

. . .

−1 1

⎞⎟⎟⎟⎠∈ R
(K+1)×(K+1) and X� =

⎛⎜⎜⎜⎝
1
1 1
...

. . .

1 1

⎞⎟⎟⎟⎠∈ R
(K+1)

are respectively the rooted incidence matrix of a star graph with (K+1) vertices
and its inverse.

Let us write j = j1+i, i ∈ {1, . . . , d̃1s1+1−1} and j = jl−i, i ∈ {1, . . . , d̃l1}, l ∈
{2, . . . ,K + 1}. We define d∗ = d̃1s1+1 +

∑K+1
l=2 d̃l1. Now let

τ̂ j = arg min
τj∈RK+1

‖Xj −X{j1}∪...∪{jK+1}D
�τ j‖22.

Note that in this case our task consists in calculating K + 1 projection coeffi-
cients, whereas we had to calculate only one of them in the preceeding subsec-
tion.

The first order optimality conditions translate into

D�′X ′
{j1}∪...∪{jK+1}X{j1}∪...∪{jK+1}D

�τ̂ j = D�′X ′
{j1}∪...∪{jK+1}Xj .

Note that X{j1}∪...∪{jK+1}D
� differs from X{j1}∪...∪{jK+1} only in the first col-

umn which is Xj−1 −
∑K+1

l=2 Xjl . Thus the columns of X{j1}∪...∪{jK+1}D
� are

orthogonal to each other and D�′X ′
{j1}∪...∪{jK+1}X{j1}∪...∪{jK+1}D

� is a diago-

nal matrix with first entry d∗. The other diagonal entries are respectively the
numbers of nonzero elements of Xj2 , . . . , XjK+1

.
We can now distinguish two cases:

• First case: j ∈ {j1 + 1, . . . , j1 + d̃1s1+1 − 1}.

We write j = j1 + i, i ∈ {1, . . . , d̃1s1+1 − 1}. Then it follows that the
product (D�′X ′

{j1}∪...∪{jK+1})1,·Xj has value d∗ + j1 − j = d∗ − i and the

product with the other rows of D�′X ′
{j1}∪...∪{jK+1} is equal to the 2nd to

the (K + 1)th diagonal values of D�′X ′
{j1}∪...∪{jK+1}X{j1}∪...∪{jK+1}D

�.

Thus, we get that:

τ̂ j1 = 1− i

d∗
,

τ̂ jl = 1, l = {2, . . . ,K + 1},

which translates into

θ̂j1 = 1− i

d∗
,

θ̂jl =
i

d∗
, l = {2, . . . ,K + 1}.
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We thus get that

‖A{1}∪SXj‖22 =

(
1− i

d∗

)2

i+

(
1−

(
1− i

d∗

))2

(d∗ − i)

=
(d∗ − i)i

d∗
, i ∈ {1, . . . , d̃1s1+1 − 1}.

• Second case: j ∈ {jl′ − d̃l
′

1 , . . . , jl′ − 1}, for some l′ ∈ {2, . . . ,K + 1}.
We write j = jl′ − i, i ∈ {1, . . . , d̃l′1 }. Then it follows that the product
(D�′X ′

{j1}∪...∪{jK+1})1,·Xj has value i, i.e. the number of nonzero elements

that Xj has in addition to Xjl′ . Moreover (D�′X ′
{j1}∪...∪{jK+1})i,·Xj = 0,

i ∈ {2, . . . ,K + 1} \ {l′} and the product (D�′X ′
{j1}∪...∪{jK+1})l′,·Xj is

equal to the l′th diagonal entry of D�′X ′
{j1}∪...∪{jK+1}X{j1}∪...∪{jK+1}D

�.

By the diagonality of the above matrix it follows that:

τ̂ j1 =
i

d∗
,

τ̂ jl = 0, l ∈ {2, . . . ,K + 1} \ {l′},

τ̂ jl = 1, l = l′,

which translates into

θ̂j1 =
i

d∗
,

θ̂jl = − i

d∗
, l ∈ {2, . . . ,K + 1} \ {l′},

θ̂jl = 1− i

d∗
, l = l′.

We thus get that

‖A{1}∪SXj‖22 =

(
i

d∗

)2

(d∗ − i) +

(
1− i

d∗

)2

i

=
(d∗ − i)i

d∗
, i ∈ {1, . . . , d̃l′1 }.

5. Path graph

5.1. Compatibility constant

In this section we assume G to be the path graph with n vertices. We give two
lower bounds for the compatibility constant for the path graph without and
with weights. The proofs are postponed to the Appendix B, where we present
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some elements that allow extension to the branched path graph and to more
general tree graphs as well. These bounds are presented in a paper by van de
Geer (2018) as well. We use the second notation exposed in Section 3.

Let S ⊆ [2, . . . , n] be a subset of the edges of a path graph with n vertices.

Assumption 5.1. Assume that S can be written as in the second notation in
Section 3, where we additionally require that d1 ≥ 2, di ≥ 4, ∀i ∈ {2, . . . , s},
ds+1 ≥ 2.

Assumption 5.2. Assume that S can be written as in the second notation in
Section 3, where we additionally require that di ≥ 4, ∀i ∈ [s+ 1].

Remark. Assumption 5.1 is required by Lemma B.3, see Appendix B, where
the proofs of this section are, while the slightly stronger Assumption 5.2 allows
us to obtain a simpler form for the upper bound on the weighted compatibility
constant.

Lemma 5.3 (Lower bound on the compatibility constant for the path graph,
part of Theorem 6.1 in van de Geer (2018)). Under Assumption 5.1 on S, let
{uj}sj=2 be a sequence of integers, s.t. 2 ≤ uj ≤ dj − 2, ∀j ∈ {2, . . . , s}.

Then for the path graph it holds that

κ2(S) ≥ s+ 1

n

1

K
,

where

K =
1

d1
+

s∑
j=2

(
1

uj
+

1

dj − uj

)
+

1

ds+1
.

Proof of Lemma 5.3. See Appendix B.

Corollary 5.4 (The bound can be tight, part of Theorem 6.1 in van de Geer
(2018)). Suppose that Assumption 5.1 on S holds and that moreover dj is even
∀j ∈ {2, . . . , s}, so that we can take uj = dj/2. Let us now define f∗ ∈ R

n by

f∗
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− n
d1

i = 1, . . . , d1
2n
d2

i = d1 + 1, . . . , d1 + d2
...

(−1)s 2n
ds

i =
∑s−1

j=1 dj + 1, . . . ,
∑s

j=1 dj

(−1)s+1 n
ds+1

i =
∑s

j=1 dj + 1, . . . , n

.

Let β∗ be defined by f∗ = Xβ∗. Then

κ2(S) =
s+ 1

n

1

K
,

where

K =
1

d1
+

s∑
j=2

4

dj
+

1

ds+1
.
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Proof of Corollary 5.4. See Appendix B.

Remark. For the compatibility constant we want to find the largest possible
lower bound. Thus we have to choose the uj ’s s.t. K is minimized. We look at
the first order optimality conditions and notice that they reduce to finding the
extremes of (s−1) functions of the type g(x) = 1

d−x +
1
x , x ∈ (0, d), where d ∈ N

is fixed. The global minimum of g on (0, d) is achieved at x = d
2 . Because of the

restriction x ∈ N, as soon as at least one dj , 2 ≤ j ≤ s is odd, we can not obtain
a value of K giving a tight bound for our definition f∗.

Lemma 5.5 (Lower bound on the weighted compatibility constant for the path
graph, Lemma 9.1 in van de Geer (2018)). Under Assumption 5.1 on S, let
{uj}sj=2 be a sequence of integers, s.t. 2 ≤ uj ≤ dj − 2, ∀j ∈ {2, . . . , s}.

Then for the path graph it holds that

κ2
w(S) ≥

s+ 1

n

1

(‖w‖∞
√
K + ‖Dw‖2)2

≥ s+ 1

n

1

2(‖w‖2∞K + ‖Dw‖22)
,

where D is the incidence matrix of the path graph.

Proof of Lemma 5.5. See Appendix B.

5.2. Oracle inequality

Define the vector

Δ := (d1, �d2/2�, �d2/2�, . . . , �ds/2�, �ds/2�, ds+1) ∈ R
s+1

and let Δh be its harmonic mean.
We now want to translate the result of Theorem 2.5 to the path graph. To

do so we need a lower bound for the weighted compatibility constant, i.e. an
explicit upper bound for

∑n
i=2(wi − wi−1)

2. In this way we can obtain the
following corollary.

Corollary 5.6 (Sharp oracle inequality for the path graph). Suppose that S is
s.t. Assumption 5.2 holds. Then we have that, with probability at least 1− δ,

‖f̂ − f0‖2n ≤ inf
f∈Rn

{
‖f − f0‖2n + 4λ‖(Df)−S‖1

}
+

8 log(2/δ)σ2

n
+ 4σ2 s+ 1

n

+ 8σ2 log(4(n− s− 1)/δ)

(
2γ2s

Δ̄h
+ 5

s+ 1

n
log

(
n

s+ 1

))
.

Suppose Assumption 5.2 holds for S0. If we choose f = f0 and S = S0 we obtain
that, with probability at least 1− δ,

‖f̂ − f0‖2n = O(log(n/δ)s0/Δ̄h) +O(log(n/δ) log(n/(s0 + 1))(s0 + 1)/n).
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Proof of Corollary 5.6. See Appendix B.

Remark. Since the harmonic mean of Δ is upper bounded by its arithmetic
mean, and this upper bound is attained when all the entries of Δ are the same,
we get a lower bound for the order of the mean squared error of

(s+ 1) log(n)

n

(
(s+ 1) + log

(
n

s+ 1

))
.

Remark. Our result differs from the one obtained by Dalalyan, Hebiri and
Lederer (2017) in two points:

• We have Δ̄h, the harmonic mean of the distances between jumps, instead
of minj Δj , the minimum distance between jumps;

• We slightly improve the rate from by reducing a log(n) to log(n/(s+ 1)).
This is achieved with a more careful bound on the square of the consecutive
differences of the weights.

6. Path graph with one branch

In this section we consider G to be the path graph with one branch and n
vertices.

We present two assumptions, which are analogous to Assumptions 5.1 and
5.2 presented in Section 5

Let S be a subset of the edges of the branched path graph.

Assumption 6.1. Suppose S can be written as in the second notation in Sec-
tion 3, with

• di1 ≥ 2, ∀i ∈ [3];
• disi+1 ≥ 2, ∀i ∈ [3];
• dij ≥ 4, ∀j ∈ {2, . . . , si}, ∀i ∈ [3].

Assumption 6.2. We require that Assumption 6.1 holds and, in addition, that
d11 ≥ 4, disi+1 ≥ 4, ∀i ∈ {2, 3}.

6.1. Compatibility constant

Lemma 6.3 (Lower bound for the compatibility constant for the branched path
graph). Under Assumption 6.1 on S, let ui

j ∈ N satisfy 2 ≤ ui
j ≤ dij − 2 for

j ∈ {2, . . . , si} and i ∈ {1, 2, 3}.
Then, for the branched path graph it holds that

κ2(S) ≥ s+ 1

n

1

Kb
,

where

Kb =

3∑
i=1

⎛⎝ 1

di1
+

si∑
j=2

(
1

ui
j

+
1

dij − ui
j

)
+

1

disi+1

⎞⎠
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Proof of Lemma 6.3. See Appendix C.

Corollary 6.4 (The bound can be tight). Suppose that Assumption 6.1 holds
and that moreover dij is even ∀j ∈ {2, . . . , si}, i ∈ {1, 2, 3}. One can then choose

ui
j = dj/2, ∀j ∈ {2, . . . , si}, i ∈ {1, 2, 3}. Moreover, assume that d1s1+1 = d21 =

d31. Let f
i, i ∈ {1, 2, 3} be the restriction of f to the three path graphs of length

qi each implicitely obtained when using the second notation. Let us now define
f∗i ∈ R

qi by

f∗
j
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− n
d1
1

j = 1, . . . , d11
2n
d1
2

j = d11 + 1, . . . , d11 + d12
...

(−1)s1 2n
d1
s1

j =
∑s1−1

j=1 d1j + 1, . . . ,
∑s1

j=1 d
1
j

(−1)s1+1 n
d1
s1+1

j =
∑s1

j=1 d
1
j + 1, . . . , q1

and for i ∈ {2, 3}

f∗
j
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)s1+1 n
di
1

j = 1, . . . , di1

(−1)s1+2 2n
di
2

j = di1 + 1, . . . , di1 + di2
...

(−1)s1+si+1 2n
di
si

j =
∑si−1

j=1 dij + 1, . . . ,
∑si

j=1 d
i
j

(−1)s1+s1+1 n
di
si+1

j =
∑si

j=1 d
i
j + 1, . . . , qi.

Let β∗ be defined by f∗ = Xβ∗. Then

κ2(S) =
s+ 1

n

1

Kb
,

where

Kb =

3∑
i=1

⎛⎝ 1

di1
+

si∑
j=2

4

dij
+

1

disi+1

⎞⎠ .

Proof of Corollary 6.4. See Appendix C.

Consider the decomposition of the branched path graph into three path
graphs, implicitely done by using the second notation in Section 3. Let D∗

denote the incidence matrix of the branched path graph, where the entries in
the rows corresponding to the edges connecting the three above mentioned path
graphs have been substituted with zeroes.

Lemma 6.5 (Lower bound on the weighted compatibility constant for the
branched path graph). Under Assumption 6.1 on S, let ui

j ∈ N satisfy 2 ≤
ui
j ≤ dij − 2 for j ∈ {2, . . . , si} and i ∈ {1, 2, 3}.
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Then, for the branched path graph it holds that

κ2
w(S) ≥ s+ 1

n

1

(
√
Kb‖w‖∞ + ‖D∗w‖2)2

≥ s+ 1

n

1

2(Kb‖w‖2∞ + ‖D∗w‖22)

≥ s+ 1

n

1

2(Kb‖w‖2∞ + ‖Dw‖22)
.

Proof of Lemma 6.5. See Appendix C.

6.2. Oracle inequality

As in the case of the path graph, to prove an oracle inequality for the branched
path graph, we need to find an explicit expression to control the weighted com-
patibility constant to insert in Theorem 2.5. The resulting bound is similar to
the one obtained in the Proof of Corollary 5.6, up to a difference: we now have
to handle with care the region around the branching point b.

For the branched path graph we define the vectors

Δi := (di1, �di2/2�, �di2/2�, . . . , �disi/2�, �d
i
si/2�, d

i
si+1) ∈ R

2si , i ∈ [3],

and Δ := (Δ1,Δ2,Δ3) ∈ R
2s. Let Δ̄h be the harmonic mean of Δ.

6.2.1. Jumps far away from the branching point

We first prove a result where all the jumps surrounding the branching point are
far enough from it.

Corollary 6.6 (Sharp oracle inequality for the branched path graph). Suppose
that S is s.t. Assumption 6.2 holds. Moreover assume that d̃1s1+1, d̃

2
1, d̃

3
1 ≥ 2.

Choose d1s1+1 = d̃1s1+1, d
2
1 = d̃21, d

3
1 = d̃31. Then we have that, with probability at

least 1− δ,

‖f̂ − f0‖2n ≤ inf
f∈Rn

{
‖f − f0‖2n + 4λ‖(Df)−S‖1

}
+

8 log(2/δ)σ2

n
+ 4σ2 s+ 1

n

+ 8σ2 log(4(n− s− 1)/δ)

(
2γ2s

Δ̄h
+

5(2s+ 3)

2n
log

(
n+ 1

2s+ 3

))
,

Suppose that Assumption 6.2 holds for S0. If we choose f = f0 and S = S0

we get that, with probability at least 1− δ,

‖f̂ − f0‖2n = O(log(n/δ)s0/Δ̄h) +O(log(n/δ) log(n/(2s0 + 3))(2s0 + 3)/n).

Proof of Corollary 6.6. See Appendix C.

This case with slightly stronger assumptions will be used in Section 7 to
further extend the result to more complex tree structures.
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6.2.2. Some jump close to the branching point

Our approach allows us to handle cases where some jump occurs close to the
branching point too. As made clear in the second notation in Section 3, we
require that all d1s1+1, d

2
1, d

3
1 ≥ 2, i.e. d∗ = d̃1s1+1 + d̃21 + d̃31 ≥ 6. This means that

our approach can handle the case where at most one of the jumps surrounding
the bifurcation point occurs directly at the bifurcation point. Note that neither
d̃1s1+1 = 0 nor d̃21 + d̃31 = 0 are allowed.

We can distinguish the following three cases:

1) d̃21 = 0 or d̃31 = 0;
2) d̃1s1+1 = 1;

a) d̃21 ∧ d̃31 = 2;

b) d̃21 ∧ d̃31 ≥ 3;

3) d̃21 = 1 or d̃31 = 1;

Corollary 6.7 (Sharp oracle inequality for the branched path graph). Suppose
that S is s.t. Assumption 6.2 holds.

Then we have that, with probability at least 1− δ,

‖f̂ − f0‖2n ≤ inf
f∈Rn

{
‖f − f0‖2n + 4λ‖(Df)−S‖1

}
+

8 log(2/δ)σ2

n
+ 4σ2 s+ 1

n

+ 8σ2 log(4(n− s− 1)/δ)

(
2γ2s

Δ̄h
+

5(2s+ 3)

2n
log

(
n+ 1

2s+ 3

)
+

ζ

n

)
,

where

ζ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∗/2 , Case 1)

3 , Case 2)a)

d∗/4 , Case 2)b)

d∗/4 , Case 3)

.

Suppose that Assumption 6.2 holds for S0. If we choose f = f0 and S = S0

we get that, with probability at least 1− δ,

‖f̂ − f0‖2n = O(log(n/δ)s0/Δ̄h) +O(log(n/δ) log(n/(2s0 + 3))(2s0 + 3)/n)

+ O(log(n/δ)ζ/n).

Proof of Corollary 6.7. See Appendix C.

7. Extension to more general tree graphs

In this section we consider only situations corresponding to Corollary 6.6. This
means that we assume that, even when at the branching point more than one
branch is attached, the edge connecting the additional branch to the branching
point and the consecutive one do not present jumps (i.e. are not elements of the
set S).
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7.1. Oracle inequality for general tree graphs

With the insights gained in Section 4 we can, by availing ourselves of simple
means, prove an oracle inequality for a general tree graph, where the jumps in
S are far enough from the branching points, in analogy to Corollary 6.6.

Here as well, we utilize the general approach exposed in Theorem 2.5 and we
need to handle with care the weighted compatibility constant and find a lower
bound for it.

We know that, when we are in (the generalization of) the situation of Corol-
lary 6.6, to prove bounds for the compatibility constant, the tree graph can be
seen as a collection of path graphs glued together at (some of) their extremities.
As seen in Section 4, the length of the antiprojections for the vertices around
branching points depends on all the branches attached to the branching point
in question. Here, for the sake of simplicity, we only consider situations where
the first and the second notation exposed in Section 3 coincide.

Assumption 7.1. Assume that G is a tree graph composed of g path graphs
glued together at (some of) their extremities and assume S is s.t. dij ≥ 4, ∀j ∈
{1, . . . , si +1}, ∀i ∈ {1, . . . , g}, i.e. between consecutive jumps there are at least
four vertices as well as there are at least four vertices before the first and after
the last jump of each path graph resulting from the decomposition of the tree
graph.

Indeed, for dij ≥ 4, we have that log(dij) ≤ 2 log(dij/2) and this helps us find
a nice bound on the weighted compatibility constant.

Let G be a tree graph and S a candidate active set with the properties exposed
in Assumption 7.1 above. In particular it can be decomposed into g path graphs.
For each of these path graphs, by using the second notation in Subsection 3, we
define the vectors

Δi = (di1, �di2/2�, �di2/2�, . . . , �disi/2�, �d
i
si/2�, d

i
si+1) ∈ R

2si , i ∈ {1, . . . , g}

and

|Δ|i = (�di1/2�, �di1/2�, . . . , �disi+1/2�, �disi+1/2�) ∈ R
2si+2, i ∈ {1, . . . , g}.

Moreover we write

Δ = (Δ1, . . . ,Δg) ∈ R
2s and |Δ| = (|Δ|1, . . . , |Δ|g) ∈ R

2(s+g).

We have that for G,
κ2(S) ≥ s+ 1

n

1

K
,K ≤ 2s

Δ̄h
,

where Δ̄h is the harmonic mean of Δ. Moreover an upper bound for the inverse
of the weighted compatibility constant can be computed by upper bounding the
squared consecutive pairwise differences of the weigths for the g path graphs.

Assumption 7.1 allows us to use the standard machinery exposed in Section
5, and in particular in Corollary 5.6, for each of the g path graphs into which



4542 F. Ortelli and S. van de Geer

the more complex tree graph can be decomposed. In analogy to Corollary 6.6 we
can neglect the edges connecting these path graphs when we look for an explicit
lower bound on the weighted compatibility constant.

Let D∗ be the incidence matrix of a tree graph that can be decomposed into g
path graphs, where the rows corresponding to the g − 1 edges connecting these
g path graphs have been deleted. In analogy to the proof of Corollary 5.6 it
follows that

‖D∗w‖22 ≤ 5

2γ2n
log

⎛⎝ g∏
j=1

2(sj+1)∏
i=1

|Δ|ji

⎞⎠
=

5

γ2n
(s+ g) log( ¯|Δ|) ≤ 5

γ2n
(s+ g) log(n/(2s+ 2g))

≤ 5

γ2n
(s+ g) log(n/(s+ g)),

where Assumption 7.1 is used.

We thus get that, in analogy to Corollary 5.6,

1

κ2
w(S)

≤ 2n

s+ 1

(
2s

Δ̄h
+

5

γ2

s+ g

n
log

(
n

s+ g

))
.

We therefore get the following corollary.

Corollary 7.2 (Oracle inequality for a general tree graph). Suppose that the
tree graph G and the candidate active set S satisfy Assumption 7.1. Then, with
probability at least 1− δ,

‖f̂ − f0‖2n ≤ inf
f∈Rn

{
‖f − f0‖2n + 4λ‖(Df)−S‖1

}
+

8 log(2/δ)σ2

n
+ 4σ2 s+ 1

n

+ 8σ2 log(4(n− s− 1)/δ)

(
2γ2s

Δ̄h
+ 5

(s+ g)

n
log

(
n

s+ g

))
.

Remark. Notice that it is advantageous to choose a decomposition where the
path graphs are as large as possible, s.t. g is small and fewer requirements on the
dij ’s are posed, because we have less extremities. Indeed, in Assumption 7.1 we

require dij ≥ 4, ∀j ∈ {1, . . . , si + 1}, ∀i ∈ {1, . . . , g}. This requirement is weaker
if we choose a decomposition into longer path graphs.

Remark. This approach is of course not optimal, however it allows us to prove
in a simple way a theoretical guarantee for the Edge Lasso estimator if some
(not extremely restrictive) requirement on G and S is satisfied.
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8. Asymptotic signal pattern recovery: the irrepresentable condition

8.1. Review of the literature on pattern recovery

Let Y = Xβ0 + ε, ε ∼ Nn(0, σ
2In), where Y ∈ R

n, X ∈ R
n×p, β0 ∈ R

p, ε ∈ R
n.

Let S0 :=
{
j ∈ [p] : β0

j 
= 0
}
be the active set of β0 and −S0 its complement. We

are interested in the asymptotic sign recovery properties of the Lasso estimator

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λ‖β‖1

}
.

Definition 8.1 (Sign recovery, Definition 1 in Zhao and Yu (2006)). We say

that an estimator β̂ recovers the signs of the true coefficients β0 if

sgn(β̂) = sgn(β0).

We then write

β̂ =s β
0.

Definition 8.2 (Pattern recovery). We say that an estimator f̂ of a signal
f0 on a graph G with incidence matrix D recovers the signal pattern if

Df̂ =s Df0.

Definition 8.3 (Strong sign consistency, Definition 2 in Zhao and Yu

(2006)). We say that the Lasso estimator β̂ is strongly sign consistent if ∃λ =
λ(n) :

lim
n→∞

P

(
β̂(λ) =s β

0
)
= 1

Definition 8.4 (Strong irrepresentable condition, Zhao and Yu (2006)).
Without loss of generality we can write

β0 =

(
β0
S0

β0
−S0

)
=

(
β0
S0

0

)
=:

(
β0
1

β0
2

)
,

where 1 and 2 are shorthand notations for S0 and −S0, and

Σ̂ :=
X ′X

n
=

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
.

Assume that Σ̂11 is invertible. The strong irrepresentable condition is satisfied
if ∃η ∈ (0, 1] :

‖Σ̂21Σ̂
−1
11 sgn(β

0
1)‖∞ ≤ 1− η

Zhao and Yu (2006) prove (in their Theorem 4) that under Gaussian noise the
strong irrepresentable condition implies strong sign consistency of the Lasso es-

timator, if ∃0 ≤ c1 < c2 ≤ 1 and C1 > 0 : s0 = O(nc1) and n
1−c2

2 minj∈S0 |β0
j | ≥
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C1. For our setup this means that s0 has to grow more slowly thanO(n) and that
the magnitude of the smallest nonzero coefficient has to decay (much) slower
than O(n−1/2).

In the literature, considerable attention has been given to the question
whether or not it is possible to consistently recover the pattern of a piece-
wise constant signal contaminated with some noise, say Gaussian noise. In that
regard, Qian and Jia (2016) highlight the so called staircase problem: as soon
as there are two consecutive jumps in the same direction in the underlying sig-
nal separated by a constant segment, no consistent pattern recovery is possible,
since the irrepresentable condition (cfr. Zhao and Yu (2006)) is violated.

Some cures have been proposed to mitigate the staircase problem. Rojas and
Wahlberg (2015); Ottersten, Wahlberg and Rojas (2016) suggest to modify the
algorithm for computing the Fused Lasso estimator. Their strategy is based on
the connection made by Rojas and Wahlberg (2014) between the Fused Lasso
estimator and a sequence of discrete Brownian Bridges. Owrang et al. (2017)
propose instead to normalize the design matrix of the associated Lasso prob-
lem, to comply with the irrepresentable condition. Another proposal aimed at
complying with the irrepresentable condition is the one by Qian and Jia (2016),
based on the preconditioning of the design matrix with the puffer transforma-
tion defined in Jia and Rohe (2015), which results in estimating the jumps
of the true signal with the soft-thresholded differences of consecutive observa-
tions.

8.2. Approach to pattern recovery for total variation regularized
estimators over tree graphs

Let us now consider the case of the Edge Lasso on a tree graph rooted at vertex
1. We saw in Section 1 that the problem can be transformed into an ordinary
Lasso problem where the first coefficient is not penalized.

We start with the following remark.

Remark (The irrepresentable condition when some coefficients are not penal-
ized). Let us consider the Lasso problem where some coefficients are not penal-
ized, i.e. the estimator

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λ‖β−U‖1

}
,

where U,R, S are three subsets partitioning [p]. In particular U is the set of the
unpenalized coefficients, R is the set of truly zero coefficients and S is the set of
truly nonzero (active) coefficients. We assume the linear model Y = Xβ0+ε, ε ∼
Nn(0, σ

2In). The vector of true coefficients β0 can be written as

β0 =

⎛⎜⎝β0
U

β0
S

0

⎞⎟⎠ .
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Moreover we write

X ′X

n
=: Σ̂ =

⎛⎝Σ̂UU Σ̂US Σ̂UR

Σ̂SU Σ̂SS Σ̂SR

Σ̂RU Σ̂RS Σ̂RR

⎞⎠ .

Assume that |U | ≤ n and that Σ̂UU , Σ̂SS and are invertible. We can write the
irrepresentable condition as

‖X ′
RAUXS(X

′
SAUXS)

−1z0S‖∞ ≤ 1− η,

where z0S = sgn(β0
S), AU = In − ΠU is the antiprojection matrix onto VU , the

linear subspace spanned by XU , and ΠU := XU (X
′
UXU )

−1X ′
U is the orthogonal

projection matrix onto VU .
Indeed, write δ := β̂ − β0. The KKT conditions can be written as

Σ̂UUδU + Σ̂USδS + Σ̂URδR − X ′
U ε

n
= 0; (3)

Σ̂SUδU + Σ̂SSδS + Σ̂SRδR − X ′
Sε

n
+ λẑS = 0, ẑS ∈ δ‖β̂S‖1; (4)

Σ̂RUδU + Σ̂RSδS + Σ̂RRδR − X ′
Rε

n
+ λẑR = 0, ẑR ∈ δ‖β̂R‖1. (5)

By solving Equation 3 with respect to δU , then inserting into Equation 4 and
solving with respect to δS , then inserting the expression for δR in the expression
for δU to get δU (δR) and δS(δR) and by finally inserting them into Equation
5 by analogy with the proof proposed by Zhao and Yu (2006), we find the
irrepresentable condition when some coefficients are not penalized, which writes
as follows: ∃η > 0 :

‖
(
Σ̂RS − Σ̂RU Σ̂

−1
UU Σ̂US

)(
Σ̂SS − Σ̂SU Σ̂

−1
UU Σ̂US

)−1

z0S‖∞ ≤ 1− η,

where z0S = sgn(β0
S).

Note that ΠU = 1
nXU Σ̂

−1
UUX

′
U and we obtain the above expression.

Thus, by using the notation of the remark above we let U = {1}, S = S0 and
R = [n] \ (S0 ∪ {1}).
Lemma 8.5. We have that

‖X ′
RX{1}∪S0

(X ′
{1}∪S0

X{1}∪S0
)−1z0{1}∪S0

‖∞ = ‖X ′
RA1XS0(X

′
S0
A1XS0)

−1z0S0
‖∞.

Proof of Lemma 8.5. See Appendix D.

This means that for tree graphs the irrepresentable condition can be checked
for the “active set” {1} ∪ S0 instead of S0, but then the first column has to
be neglected. This fact is justified, however in a different way than the one we
propose, in Qian and Jia (2016) as well.
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Remark (The irrepresentable condition for asymptotic pattern recovery of a
signal on a graph does not depend on the orientation of the edges of the graph).
We assume the linear model Y = f0 + ε, ε ∼ Nn(0, σ

2In). Then the Edge Lasso
can be written as

f̂ = arg min
f∈Rn

{
‖Y − f‖2n + 2λ‖(ĨD̃f)−1‖1

}
,

where

Ĩ ∈ I =
{
Ĩ ∈ R

n, Ĩ diagonal, diag(Ĩ) ∈ {1,−1}n
}
.

Define β = ĨD̃f . Then f = XĨβ. The linear model assumed becomes Y =
XĨβ0 + ε and the estimator

β̂ = arg min
β∈Rn

{
‖Y −XĨβ‖2n + 2λ‖β−1‖1

}
, Ĩ ∈ I.

It is clear that now the design matrix is XĨ. Let us write, without loss of
generality,

Ĩ =

(
Ĩ{1}∪S0

0

0 Ĩ−({1}∪S0)

)
.

According to the Lemma 8.5 we can check if ∃η ∈ (0, 1]:

‖Ĩ−({1}∪S0)X
′
−({1}∪S0)

(X ′
{1}∪S0

X{1}∪S0
)−1Ĩ{1}∪S0

z̃0{1}∪S0
‖∞ ≤ 1− η,

where z̃0{1}∪S0
=

(
0
z̃0S0

)
and z̃0S0

= sgn(β0
S0
) = ĨS0sgn(D̃f0) = ĨS0sgn(β̄

0),

where β̄0 = D̃f0, i.e. the vector of truly nonzero jumps when the root has sign
+1 and the edges are oriented away from it.

Note that Ĩ−({1}∪S0) does not change the 	∞-norm and by inserting the ex-

pression for z̃0{1}∪S0
we get that, ∀Ĩ ∈ I,∥∥∥∥Ĩ−({1}∪S0)X

′
−({1}∪S0)

(X ′
{1}∪S0

X{1}∪S0
)−1Ĩ{1}∪S0

(
0

ĨS0

)(
0
z̄0S0

)∥∥∥∥
∞

≤ 1− η,

where z̄0S0
= sgn(β̄0). This means that it is enough to check that ∃η > 0:∥∥∥∥X ′

−({1}∪S0)
(X ′

{1}∪S0
X{1}∪S0

)−1

(
0
z̄0S0

)∥∥∥∥
∞

≤ 1− η, ∀Ĩ ∈ I

to know, for all the orientations of the graph, whether the irrepresentable con-
dition holds. The intuition behind this is that, by choosing the orientation of
the edges of the graph, we choose at the same time the sign that the true jumps
have across the edges.
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8.3. Irrepresentable condition for the path graph

Theorem 8.6 (Irrepresentable condition for the transformed Fused Lasso, The-
orem 2 in Qian and Jia (2016)). Consider the model for a piecewise constant
signal and let S0 denote the set of indices of the jumps in the true signal, i.e.

S0 =
{
j : f0

j 
= f0
j−1, j = 2, · · · , n

}
= {i1, · · · , is0} ,

with s0 = |S0| denoting its cardinality. The irrepresentable condition for the
Edge Lasso on the path graph holds if and only if one of the two following
conditions hold:

• The jump points are consecutive,
i.e. s0 = 1 or max2≤k≤s0(ik − ik−1) = 1.

• All the jumps between constant signal blocks have alternating signs, i.e.

(f0
ik
− f0

ik−1)(f
0
ik+1

− f0
ik+1−1) < 0, k = 2, · · · , s0 − 1.

Remark. This fact can as well be easily read out from the consideration made
in Section 4 and in particular in Lemma 4.1.

8.4. Irrepresentable condition for the path graph with one branch

Corollary 8.7 (Irrepresentable condition for the branched path graph). As-
sume S0 
= 0. The irrepresentable condition for the branched path graph is sat-
isfied if and only if one of the following cases holds,

• s0 = n− 1 or s0 = 1;
• sgn(β0

is1
) = −sgn(β0

j1
) = −sgn(β0

k1
) and in the subvectors β0

1:n1
and

β0
(b,n1+1:n) there are no two consecutive nonzero entries of β0 with the

same sign being separated by some zero entry.

Note that:

• If is1 = b, then the requirement above is relaxed to sgn(β0
j1
) = sgn(β0

k1
);

• If j1 = b + 1, then the requirement above is relaxed to sgn(β0
is1

) =

−sgn(β0
k1
);

• If k1 = n1 + 1, then the requirement above is relaxed to sgn(β0
is1

) =

−sgn(β0
j1
).

Proof of Lemma 8.7. This is a special case of Theorem 8.8 and follows directly
from it.

8.5. The irrepresentable condition for general branching points

When the graph G has a branching point where arbitrarily many branches are
attached, for the irrepresentable condition to be satisfied it is required, in addi-
tion to the absence of staircase patterns along the path graphs building G, that
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the last jump in the path graph containing the branching point has sign + (resp.
−) and all the first jumps in the other path graphs glued to this branching point
have sign − (resp. +), with respect to the orientation of the edges away from the
root. For the index of the K +1 jumps surrounding the branching point we use
the same notation as in Subesction 4.2, i.e we denote them by {j1, . . . , jK+1}.
Theorem 8.8. Consider the Edge Lasso estimator on a general “large enough”
tree graph. The irrepresentable condition for the corresponding (almost) ordi-
nary Lasso problem is satisfied if and only if for the signal on the path graphs
connected at the branching points the conditions of Theorem 8.6 hold and for
the true signal around any branching point involving K +1 edges, the jump just
before it and the jumps right after it have opposite signs. More formally, this
last condition writes:

1. sgn(j1)sgn(jl) < 0, ∀l ∈
{
l∗ ∈ {2, . . . ,K + 1}, d̃l∗1 
= 0

}
2. and sgn(jl)sgn(jl′) > 0, ∀l, l′ ∈

{
l∗ ∈ {2, . . . ,K + 1}, d̃l∗1 
= 0

}
.

3. and d̃1s1+1 − 1, d̃21, . . . , d̃
K+1
1 < 2

K+1d
∗.

Note that if d̃1s1+1 = 1, then the condition requiring that sgn(j1)sgn(jl) < 0, for

all l ∈
{
l∗ ∈ {2, . . . ,K + 1}, d̃l∗1 
= 0

}
is removed.

Proof of Theorem 8.8. See Appendix D.

9. Conclusion

We refined some details of the approach of Dalalyan, Hebiri and Lederer (2017)
for proving a sharp oracle inequality for the total variation regularized estimator
over the path graph. In particular we decided to follow an approach where a
coefficient is left unpenalized and we gave a proof of a lower bound on the
compatibility constant which does not use probabilistic arguments. The key
point of this article is that we proved that the approach applied on the path
graph can indeed be generalized to a branched graph and further to more general
tree graphs. In particular we found a lower bound on the compatibility constant
and we generalized the result concerning the irrepresentable condition obtained
for the path graph by Qian and Jia (2016).

Appendix A: Proofs of Section 2

Proof of Theorem 2.5. Deterministic part

Recall the definition of the estimator

β̂ = arg min
β∈Rn

{
‖Y −Xβ‖2n + 2λ‖β−1‖1

}
.

The KKT conditions are

1

n
X ′(Y −Xβ̂) = λẑ−1, ẑ−1 ∈ ∂‖β̂−1‖1,
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where ẑ−1 ∈ R
n is a vector with the first entry equal to zero and the remaining

ones equal to the subdifferential of the absolute value of the corresponding entry
of β̂. Inserting Y = Xβ0 + ε into the KKT conditions and multiplying them
once by β̂ and once by β we obtain

− 1

n
β̂′X ′(X(β̂ − β0)− ε) = λ‖β̂−1‖1

and

− 1

n
β′X ′(X(β̂ − β0)− ε) = λβ′

−1ẑ−1 ≤ λ‖β−1‖1,

where the last inequality follows by the dual norm inequality and the fact that
‖ẑ−1‖∞ ≤ 1. Subtracting the first inequality from the second we get

1

n
(β̂ − β)′X ′(X(β̂ − β0)− ε) ≤ λ(‖β−1‖1 − ‖β̂−1‖1).

Using polarization we obtain

‖X(β̂ − β)‖2n + ‖X(β̂ − β0)‖2n ≤ ‖X(β − β0)‖2n +
2

n
(β̂ − β)′X ′ε

+ 2λ
(
‖β−1‖1 − ‖β̂−1‖1

)
.

Let S ⊂ {2, . . . , n}. We have that

‖β−1‖1 − ‖β̂−1‖1 = ‖βS‖1 − ‖β̂S‖1 − ‖β−({1}∪S)‖1 − ‖β̂−({1}∪S)‖1
+ 2‖β−({1}∪S)‖1
≤ ‖βS − β̂S‖1 − ‖β−({1}∪S) − β̂−({1}∪S)‖1
+ 2‖β−({1}∪S)‖1.

Thus we get the “basic” inequality

‖X(β̂ − β)‖2n + ‖X(β̂ − β0)‖2n ≤ ‖X(β − β0)‖2n + 4λ‖β−({1}∪S)‖1

+
2

n
(β̂ − β)′X ′ε+ 2λ

(
‖(β − β̂)S‖1 − ‖(β − β̂)−({1}∪S)‖1

)
︸ ︷︷ ︸

I

.

We are going to utilize the approach described by Dalalyan, Hebiri and Lederer
(2017) to handle the remainder term I with care. Since In = Π{1}∪S + A{1}∪S ,
it follows that

(β̂ − β)′X ′ε = (β̂ − β)′X ′Π{1}∪Sε+ (β̂ − β)′−({1}∪S)X
′
−({1}∪S)Ai{1}∪Sε.

Indeed the antiprojection of elements of V{1}∪S is zero. Note that

(β̂ − β)′−({1}∪S)X
′
−({1}∪S)A{1}∪Sε ≤

∑
j∈−({1}∪S)

|β̂ − β|j |ε′A{1}∪SXj |.
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Restricting ourselves to the set

F =

{
|ε′A{1}∪SXj | ≤

λn

γ
‖A{1}∪SXj‖n, ∀j 
∈ ({1} ∪ S)

}
,

for γ ≥ 1 we obtain

I ≤ 2

n
(β̂ − β)′X ′Π{1}∪Sε

+ 2λ

(
‖(β̂ − β)S‖1 − ‖(β̂ − β)−({1}∪S)‖1 + ‖(ω

γ
� (β̂ − β))−({1}∪S)‖1

)
≤ 2

‖X(β̂ − β)‖2√
n

‖Π{1}∪Sε‖2√
n

+ 2λ
(
‖(β̂ − β)S‖1 − ‖(w � (β̂ − β))−({1}∪S)‖1

)
,

Using the definition of the weighted compatibility constant and the convex
conjugate inequality we obtain

I ≤ 2
‖X(β̂ − β)‖2√

n

(‖Π{1}∪Sε‖2√
n

+ λ

√
s+ 1

κw(S)

)
≤ ‖X(β̂ − β)‖2n +

(‖Π{1}∪Sε‖2√
n

+ λ

√
s+ 1

κw(S)

)2

.

We see that ‖X(β̂ − β)‖2n cancels out and we are left with

‖X(β̂ − β0)‖2n ≤ inf
β∈Rn

{
‖X(β − β0)‖2n + 4λ‖β−({1}∪S)‖1

}
+

(‖Π{1}∪Sε‖2√
n

+ λ

√
s+ 1

κw(S)

)2

.

It now remains to find a lower bound for P(F ) and a high-probability upper
bound for ‖Π{1}∪Sε‖2n.

Random part

• First, we lower bound P(F ), thanks to the following lemma.

Lemma A.1 (The maximum of p random variables, Lemma 17.5 in van de
Geer (2016)). Let V1, . . . , Vp be real valued random variables. Assume that
∀j ∈ {1, . . . , p} and ∀r > 0

E

[
er|Vj |

]
≤ 2e

r2

2 .

Then, ∀t > 0

P

(
max
1≤j≤p

|Vj | ≥
√

2 log(2p) + 2t

)
≤ e−t.
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We now apply Lemma A.1 to F . Note that F can be written as

F =

{
max

j∈−({1}∪S)

∣∣∣∣ ε′A{1}∪SXj

σ‖A{1}∪SXj‖2

∣∣∣∣ ≤ λ
√
n

γσ

}
.

SinceX ′
jA{1}∪Sε ∼ N (0, σ2‖X ′

jA{1}∪S‖22), we obtain that for the standard
normal random variables V1, . . . , Vn−s−1 ∼ N (0, 1)

F =

{
max

1≤j≤n−s−1
|Vj | ≤

λ
√
n

γσ

}
.

The moment generating function of |Vj | is

E

[
er|V j|

]
= 2(1− Φ(−r))e

r2

2 ≤ 2e
r2

2 , ∀r > 0

Choosing, for some δ ∈ (0, 1), λ = γσ
√

2 log (4(n− s− 1)/δ) /n and ap-
plying Lemma A.1 with p = n− s− 1 and t = log

(
2
δ

)
, we obtain

P(F ) ≥ 1− δ/2.

• Second, we are going to find an high probability upper bound for

‖Π{1}∪Sε‖2n =
σ2

n

‖Π{1}∪Sε‖22
σ2︸ ︷︷ ︸

∼χ2
s+1

,

where rank(Π{1}∪S) = s + 1. We use Lemma 8.6 in van de Geer (2016),
which reproves part of Lemma 1 in Laurent and Massart (2000).

Lemma A.2 (The special case of χ2 random variables, Lemma 1 in Lau-
rent and Massart (2000), Lemma 8.6 in van de Geer (2016)). Let X ∼ χ2

d.
Then, ∀t > 0

P

(
X ≥ d+ 2

√
dt+ 2t

)
≤ e−t

Note that from Lemma A.2 it follows that

P

(√
X ≤

√
d+

√
2t
)
≥ P

(
X ≤ d+ 2

√
dt+ 2t

)
≥ 1− e−t

Define

G :=

{
‖Π{1}∪Sε‖2√

n
≤

√
σ2

n

(√
s+ 1 +

√
2 log (2/δ)

)}
.

By applying Lemma A.2 with t = log (2/δ), for some δ ∈ (0, 1), we get

P(G) ≥ 1− δ/2.
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If we choose λ = γσ
√
2 log (4(n− s− 1)/δ) /n and apply twice the inequality

(a+b)2 ≤ 2(a2+b2), we get that with probability P(F ∩G) ≥ 1−δ the following
oracle inequality holds

‖X(β̂ − β0)‖2n ≤ inf
β∈Rn

{
‖X(β − β0)‖2n + 4λ‖β−({1}∪S)‖1

}
+

8σ2

n
log (2/δ)

+
4σ2

n

(
(s+ 1) +

γ2(s+ 1)

κ2
w(S)

log (4(n− s− 1)/δ)

)
.

The statement of the theorem is obtained using the identity f = Xβ.

Appendix B: Proofs of Section 5

Let f ∈ R
n be a function defined at every vertex of a connected nondegenerate

graph G. Moreover let

f(n) ≥ . . . ≥ f(1)

be an ordering of f , with arbitrary order within tuples. Let D denote the inci-
dence matrix of the graph G.

Lemma B.1 (Lemma 11.9 in van de Geer (2018)). It holds that

‖Df‖1 ≥ f(n) − f(1).

Remark. For the special case of G being the path graph, we have equality in
Lemma B.1 when f is nonincreasing or nondecreasing on the graph.

Proof of Lemma B.1. Since G is connected there is a path between any two
vertices. Therefore there is a path connecting the vertices where f takes the
values f(n) and f(1). The total variation of a function defined on a graph is
nondecreasing in the number of edges of the graph. Let us now consider fP , the
restriction of f on a path P connecting f(1) to f(n). If f is nondecreasing on the
path P , then ‖DfP ‖1 = f(n)−f(1), otherwise ‖DfP ‖1 ≥ f(n)−f(1). Since G has
at least as many edges as P :

‖Df‖1 ≥ ‖DfP ‖1 ≥ f(n) − f(1).

Lemma B.2 (Lemma 11.10 in van de Geer (2018)). It holds for any j ∈
{1, . . . , n} that

fj − ‖Df‖1 ≤ f(1) ≤
1

n

n∑
i=1

|fi|,

and

−fj − ‖Df‖1 ≤ −f(n) ≤
1

n

n∑
i=1

|fi|.
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Proof of Lemma B.2. For completeness and readability, we report the proof
which can also be found in van de Geer (2018).

We have from Lemma B.2 that ‖Df‖1 ≥ f(n) − f(1). Moreover, fj ≤ f(n).
Thus

fj − ‖Df‖1 ≤ fj − (f(n) − f(1))

≤ f(n) − (f(n) − f(1))

= f(1).

Case 1: if f(1) < 0, obviously f(1) <
1
n

∑n
i=1 |fi|.

Case 2: if f(1) ≥ 0, then fi ≥ 0 for all i and then

f(1) ≤
n∑

i=1

fi/n =

n∑
i=1

|fi|/n.

In the same way

−fj − ‖Df‖1 ≤ −fj − (f(n) − f(1))

≤ −f(1) − (f(n) − f(1))

= −f(n).

Case 1: if f(n) > 0, then −f(n) <
1
n

∑n
i=1 |fi|.

Case 2: if f(n) ≤ 0, then fi ≤ 0 for all i and then

−f(n) ≤ −
n∑

i=1

fi/n =

n∑
i=1

|fi|/n.

Lemma B.3 (Lemma 11.11 in van de Geer (2018)). Let f ∈ R
n be defined

over a connected graph Gf whose incidence matrix is Df . The total variation
of f is ‖Dff‖1. Analogously, let g ∈ R

m be defined over a connected graph Gg

whose incidence matrix is Dg. The total variation of g is ‖Dgg‖1. Then for any
j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}

|fj − gk| − ‖Dff‖1 − ‖Dgg‖1 ≤ 1

n

n∑
i=1

|fi|+
1

m

m∑
i=1

|gi|.

Proof of Lemma B.3. Suppose without loss of generality that fj ≥ gk. Then by
Lemma B.2

|fj − gk| − ‖Dff‖1 − ‖Dgg‖1 = (fj − ‖Dff‖1)︸ ︷︷ ︸
≤
∑n

i=1 |fi|/n

+(−gk − ‖Dgg‖1)︸ ︷︷ ︸
≤
∑m

i=1 |gi|/m

≤ 1

n

n∑
i=1

|fi|+
1

m

m∑
i=1

|gi|.
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Proof of Lemma 5.3. For completeness and readability, we report the proof by
van de Geer (2018).

We may write for f = Xβ,

‖βS‖1 − ‖β−({1}∪S)‖1

≤ |fd1+1 − fd1 | −
d1∑
i=2

|fi − fi−1| −
d1+u2∑
i=d1+2

|fi − fi−1|

+ |fd1+d2+1 − fd1+d2 | −
d1+d2∑

i=d1+u2+2

|fi − fi−1| −
d1+d2+u3∑
i=d1+d2+2

|fi − fi−1|

· · ·
+ |fd1+···+ds−1+1 − fd1+···+ds−1 |

−
d1+···+ds−1∑

i=d1+···+ds−2+us−1+2

|fi − fi−1| −
d1+···+ds−1+us∑
i=d1+···+ds−1+2

|fi − fi−1|

+ |fd1+···+ds+1 − fd1+···+ds |

−
d1+···+ds∑

i=d1+···+ds−1+us+2

|fi − fi−1| −
n∑

i=d1+···+ds+2

|fi − fi−1|

≤ 1

d1

d1∑
i=1

|fi|+
1

u2

d1+u2∑
i=d1+1

|fi|

+
1

d2 − u2

d1+d2∑
i=d1+u2+1

|fi|+
1

u3

d1+d2+u3∑
i=d1+d2+1

|fi|

· · ·

+
1

ds−1 − us−1

d1+···+ds−1∑
i=d1+···+ds−2+us−1+1

|fi|+
1

us

d1+···+ds−1+us∑
i=d1+···+ds−1+1

|fi|

+
1

ds − us

d1+···+ds∑
i=d1+···+ds−1+us+1

|fi|+
1

ds+1

n∑
i=d1+···+ds+1

|fi|

≤
√√√√√ 1

d1
+

1

u2
+

1

d2 − u2
+ · · ·+ 1

ds−1 − us−1
+

1

us
+

1

ds − us
+

1

ds+1︸ ︷︷ ︸
=:K

×

√√√√ n∑
i=1

|fi|2,
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where the last step follows from the Cauchy-Schwarz inequality. We thus infer
Lemma 5.3, since

s+ 1

nK
≤ (s+ 1)‖f‖22

n(‖βS‖1 − ‖β−({1}∪S)‖1)2
, ∀β ∈ R

n

implies that
s+ 1

nK
≤ κ2(S).

Note that Lemma B.3 is used in the proof. The idea behind the proof is to cut
the graph into smaller pieces of length uj and dj − uj respectively. The places
of these cuts are the edges indexed by S. Then Lemma B.3 is applied to obtain
terms to which one can apply the Cauchy-Schwarz inequality to finally obtain
the term ‖f‖2 multiplied by some factor. Notice also that in the first inequality
some edges indexed by −({1} ∪ S) are left out. Indeed we want each fi to be
part of the average of only one piece of graph when we apply Lemma B.3, to
get a more convenient expression after applying the Cauchy-Schwarz inequality.
Thus the path graph is cut into 2s smaller path graphs. Consecutive pairs of
path graphs are then used to apply Lemma B.3.

Proof of Corollary 5.4. We report, for completeness and readability, the proof
of Theorem 6.1 in van de Geer (2018).

Note that by the definition of f∗ = Xβ∗,

‖β∗
S‖1 =

s∑
j=1

|f∗
dj+1 − f∗

dj
| =

n

d1
+

2n

d2

+
2n

d2
+

2n

d3

...

+
2n

ds−1
+

2n

ds

+
2n

ds
+

n

ds+1

=
n

d1
+ 4

s∑
j=2

n

dj
+

n

ds+1
,

and also

1

n

n∑
i=1

f∗
i
2 =

d1
n
f∗
d1

2 + · · ·+ ds+1

n
f∗
ds+1

2

=
n

d1
+ 4

s∑
j=2

n

dj
+

n

ds+1
.
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Note also that

‖β∗
−({1}∪S)‖1

=

d1∑
i=2

|f∗
i − f∗

i−1|+
d2∑

i=d1+2

|f∗
i − f∗

i−1|+ · · ·+
n∑

i=d1+···+ds+2

|f∗
i − f∗

i−1|

= 0

It follows that

(s+ 1)‖Xβ∗‖22
n(‖β∗

S‖1 − ‖β∗
−({1}∪S)‖1)2

=
(s+ 1)

∑n
i=1 f

∗
i
2

n

(∑s
j=1 |f∗

dj+1 − f∗
dj
|
)2

=
s+ 1

n
d1

+
∑s

j=2
4n
dj

+ n
ds+1

.

Proof of Lemma 5.5. For completeness and readability, we report the proof of
Lemma 9.1 in van de Geer (2018). See Appendix B.1 for an intuition.

Let gi := wifi, i = 1, . . . , n.

We have that

‖(w � β)S‖1 − ‖(w � β)−({1}∪S)‖1
=

∑s
j=1 wd1+...+dj+1|fd1+...+dj+1 − fd1+...+dj |

−
∑d1

i=2 wi|fi − fi−1| −
∑s−1

j=2

∑d1+...+dj+1

i=d1+...+dj+1 wi|fi − fi−1|
−
∑n

i=d1+...+ds+1 wi|fi − fi−1|

≤ |gd1+1 − gd1 | −
d1∑
i=2

|gi − gi−1| −
d1+u2∑
i=d1+2

|gi − gi−1|

+ |gd1+d2+1 − gd1+d2 | −
d1+d2∑

i=d1+u2+2

|gi − gi−1| −
d1+d2+u3∑
i=d1+d2+2

|gi − gi−1|

· · ·
+ |gd1+···+ds−1+1 − gd1+···+ds−1 |

−
d1+···+ds−1∑

i=d1+···+ds−2+us−1+2

|gi − gi−1| −
d1+···+ds−1+us∑
i=d1+···+ds−1+2

|gi − gi−1|

+ |gd1+···+ds+1 − gd1+···+ds |

−
d1+···+ds∑

i=d1+···+ds−1+us+2

|gi − gi−1| −
n∑

i=d1+···+ds+2

|gi − gi−1|

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

I

+
∑
i∈I

|wi − wi−1||fi−1|︸ ︷︷ ︸
II

,
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where

J = [n] \ {1, d1 + u2 + 1, d1 + d2 + u3 + 1, . . . , d1 + . . .+ ds−1 + us}

Moreover, by Lemma B.3 and by the Cauchy-Schwarz inequality

I ≤ 1

d1

d1∑
i=1

|gi|+
1

u2

d1+u2∑
i=d1+1

|gi|+
1

d2 − u2

d1+d2∑
i=d1+u2+1

|gi|

+
1

u3

d1+d2+u3∑
i=d1+d2+1

|gi|+ · · ·+

+
1

ds−1 − us−1

d1+···+ds−1∑
i=d1+···+ds−2+us−1+1

|gi|+
1

us

d1+···+ds−1+us∑
i=d1+···+ds−1+1

|gi|

+
1

ds − us

d1+···+ds∑
i=d1+···+ds−1+us+1

|gi|+
1

ds+1

n∑
i=d1+···+ds+1

|gi|

≤
(

1

d21

d1∑
i=1

w2
i +

1

u2
2

d1+u2∑
i=d1+1

w2
i

+
1

(d2 − u2)2

d1+d2∑
i=d1+u2+1

w2
i +

1

u2
3

d1+d2+u3∑
i=d1+d2+1

w2
i + · · ·+

+
1

(ds−1 − us−1)2

d1+···+ds−1∑
i=d1+···+ds−2+us−1+1

w2
i +

1

u2
s

d1+···+ds−1+us∑
i=d1+···+ds−1+1

w2
i

+
1

(ds − us)2

d1+···+ds∑
i=d1+···+ds−1+us+1

w2
i

+
1

d2s+1

n∑
i=d1+···+ds+1

w2
i

)1/2

×
( n∑

i=1

f2
i

)1/2

≤
√

1

d1
+

1

u2
+

1

d2 − u2
+ · · ·+ 1

ds−1 − us−1
+

1

us
+

1

ds − us
+

1

ds+1

×‖w‖∞ ×

√√√√ n∑
i=1

|fi|2.

and by the Cauchy-Schwarz inequality

II ≤
√∑

i∈J

(wi − wi−1)2
√∑

i∈J

f2
i−1

≤

√√√√ n∑
i=2

(wi − wi−1)2

√√√√ n∑
i=1

f2
i .
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We thus infer Lemma 5.5.

Proof of Corollary 5.6. Let A{1}∪S = In − Π{1}∪S denote the antiprojection
matrix on the coulmns of X indexed by {1} ∪ S. By using the definition of wi

and ωi, we have that

‖Dw‖22 =

n∑
i=2

(wi − wi−1)
2 =

1

γ2

n∑
i=2

(ωi − ωi−1)
2

=
1

γ2n

n∑
i=2

(‖A{1}∪SXi‖2 − ‖A{1}∪SXi−1‖2)2.

Let us define the function f(x) = −2x2 + 2(c+ 1)x− (c+ 1), where c > 0 is
a positive constant.

For the path graph we have, thanks to Section 4,

n∑
i=2

(wi − wi−1)
2 =

1

nγ2

s+1∑
j=1

dj∑
i=1

(
√

i(dj − i)−
√

(i− 1)(dj − (i− 1)))2

dj

=
1

nγ2

s+1∑
j=1

dj∑
i=1

(i(dj − i)− (i− 1)(dj − (i− 1)))2

dj(
√
i(dj − i) +

√
(i− 1)(dj − (i− 1)))2

≤ 1

nγ2

s+1∑
j=1

dj∑
i=1

(−2i+ dj + 1)2

dj(−2i2 + 2(dj + 1)i− (dj + 1))

≤ 1

nγ2

s+1∑
j=1

dj

dj∑
i=1

1

f(i)
.

Now note that the function f(x) is strictly concave, has two zeroes at x =
c+1
2 ±

√
c2−1
2 and a global maximum at x = c+1

2 . We also note that ∀c ≥ 1

the left zero point c+1
2 −

√
c2−1
2 ≤ 1. Moreover, ∀x ∈ [1, c/2], f(x) ≥ cx. Using

the symmetry of quadratic functions around the global maximum we obtain, in
partial analogy to Dalalyan, Hebiri and Lederer (2017),

‖Dw‖22 =

n∑
i=2

(wi − wi−1)
2 ≤ 1

γ2n

s+1∑
j=1

dj

⎛⎝�dj/2
∑
i=1

1

dji
+

�dj/2�∑
i=1

1

dji

⎞⎠
≤ 5

2γ2n

s+1∑
j=1

log(�dj/2��dj/2�) =
5

2γ2n
log

⎛⎝2(s+1)∏
i=1

|Δ|i

⎞⎠
=

5

γ2n
(s+ 1) log( ¯|Δ|) ≤ 5

γ2n
(s+ 1) log(n/(2s+ 2))

≤ 5

γ2n
(s+ 1) log(n/(s+ 1)),



Total variation regularization over graphs 4559

where ¯|Δ| is the geometric mean of |Δ|, which is upper bounded by the arith-
metic mean of |Δ|, which is n/(2s + 2). Moreover the constant 5/2 and the
assumption dj ≥ 4, ∀j ∈ [s+ 1] come from the fact that∑k

i=1 i
−1

log i

is finite only if i ≥ 2, is decreasing in i and has value approximately 2.16 when
i = 2. Moreover the vector |Δ| ∈ R

2s+2 is defined as

|Δ| ∈ R
2s+2 = (�d1/2�, �d1/2�, . . . , �ds+1/2�, �ds+1/2�) .

We now have to find an upper bound forK. Since the choice of uj is arbitrary,
we choose uj = �dj/2�, j ∈ {2, . . . , s}, which minimize the upper bound among
the integers. We thus have that K ≤ 2s

Δ̄h
, where Δ̄h is the harmonic mean of Δ.

Finaly, for the path graph we have

1

κ2
w(S)

≤ 2n

s+ 1
(K + ‖Dw‖22)

≤ 2n

γ2(s+ 1)

(
2γ2s

Δ̄h
+ 5

s+ 1

n
log(n/(s+ 1))

)
,

and we obtain the Corollary 5.6.

B.1. Outline of proofs by means of a minimal toy example

For giving an intuition to the reader we present a minimal toy example. Consider
the path graph with n = 8 and let S = {3, 7}. In this example d1 = 2, d2 =
4, u2 = 2, d3 = 2. We write

‖βS‖1 − ‖β−({1}∪S)‖1 = |f3 − f2| − |f2 − f1| − |f4 − f3|
+|f7 − f6| − |f6 − f5| − |f8 − f7|
−|f5 − f4|

The idea now is to apply Lemma B.3 twice. The first time we apply it to the
path graphs ({1, 2}, (1, 2)) and ({3, 4}, (3, 4)). The second time we apply it to
the path graphs ({5, 6}, (5, 6)) and ({7, 8}, (7, 8)). Note that the term |f5 − f4|
is not needed to apply Lemma B.3 and thus can be left out. We get

‖βS‖1 − ‖β−({1}∪S)‖1 ≤ 1

2

8∑
i=1

|fi| ≤
√
2‖f‖2,

where the last step follows by the Cauchy-Schwarz inequality. We thus see that
we can handle graphs built by modules consisting of small path graphs contain-
ing an edge in S and at least one vertex not involved in this edge on each side.
The edges connecting these modules can then be neglected when upperbounding
‖βS‖1 − ‖β−({1}∪S)‖1.



4560 F. Ortelli and S. van de Geer

In the weighted case we define gi = wifi, i = 1, . . . , 8 and write

‖(w � β)S‖1 − ‖(w � β)−({1}∪S)‖1
≤ w3|f3 − f2| − w2|f2 − f1| − w4|f4 − f3|
+w7|f7 − f6| − w6|f6 − f5| − w8|f8 − f7|
≤ |g3 − g2| − |g2 − g1| − |g4 − g3|
+|g7 − g6| − |g6 − g5| − |g8 − g7|

+

4∑
i=2

|wi − wi−1||fi−1|+
8∑

i=6

|wi − wi−1||fi−1|

≤
√
1/4‖w‖22‖f‖2

+

√√√√ 4∑
i=2

(wi − wi−1)2 +

8∑
i=6

(wi − wi−1)2

√√√√ 3∑
i=1

f2
i +

7∑
i=5

f2
i

≤

⎛⎝√
2‖w‖∞ +

√√√√ 4∑
i=2

(wi − wi−1)2 +

8∑
i=6

(wi − wi−1)2

⎞⎠ ‖f‖2.

Here as well, note that the squared difference of the weights across the edge
connecting the two modules (smaller but large enough path graphs containing
an element of S) can be neglected. The procedure exemplified here can be used
to handle larger tree graphs, as long as one is able to decompose them in such
smaller modules. The fact that squared weights differences can be neglected at
the junction of modules will be of use in the proof of Corollary 6.6.

Remark. The limits of this approach are given by Lemma B.3, since its use
requires the presence of at least a distinct edge not in S on the left and on
the right for each edge in S not sharing vertices with edges used to handle
other elements of S. Thus s ≤ n/4. However, this limitation is very likely to
be of scarce relevance if some kind of minimal length condition holds, see for
instance Dalalyan, Hebiri and Lederer (2017); Guntuboyina et al. (2017); Lin
et al. (2017).

Appendix C: Proofs of Section 6

Proof of Lemma 6.3. The result follows directly by the proof of Lemma 5.3 (i.e.
Theorem 6.1 in van de Geer (2018)), by the decomposition of the branched path
graph into three path graphs. See Appendix B.1 for an intuition.

We consider here the case where the first and the second notation introduced
in Section 3 coincide. The case where the two notations do not coincide differs
from the case exposed here only in the choice of the edges around the branching
points which are chosen to bound the last jump in S1 and the first jumps in
S2 and S3 by the mean of the signal values at some vertices surrounding these
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candidate active edges. The case we expose here can be seen as an analogous to
Corollary 6.6.

Let us define b1 = 0, e1 = b2 = b, e2 = b3 = n1, e
3 = n. In analogy with the

proof of Lemma 5.3,

‖βS‖1 − ‖β−({1}∪S)‖

≤
3∑

i=1

⎧⎨⎩|fbi+di
1+1 − fbi+di

1
| −

bi+di
1∑

k=2

|fk − fk−1| −
bi+di

1+u2∑
k=bi+di

1+2

|fk − fk−1|

+ |fbi+di
1+di

2+1 − fbi+di
1+di

2
| −

bi+di
1+di

2∑
k=bi+di

1+u2+2

|fk − fk−1|

−
bi+di

1+di
2+u3∑

k=bi+di
1+di

2+2

|fk − fk−1|

· · ·
+ |fbi+di

1+···+di
s−1+1 − fbi+di

1+···+di
s−1

|

−
bi+di

1+···+di
s−1∑

k=bi+di
1+···+di

s−2+us−1+2

|fk − fk−1| −
bi+di

1+···+di
s−1+us∑

k=bi+di
1+···+di

s−1+2

|fk − fk−1|

+ |fbi+di
1+···+di

s+1 − fbi+di
1+···+di

s
|

−
bi+di

1+···+di
s∑

k=bi+di
1+···+di

s−1+us+2

|fk − fk−1| −
ei∑

k=bi+di
1+···+di

s+2

|fk − fk−1|

⎫⎬⎭
We can thus infer Lemma 6.3 by applying exactly the same passages applied
in the proof of Lemma 5.3. It is crucial to notice here that the term −|fb+1 −
fb| − |fn1+1 − fb| is upper bounded by zero, i.e. simply discarded, since is is not
used when we apply Lemma B.3. Indeed, in the case considered here, the edges
(b, b+ 1) and (b, n1 + 1) are cut to obtain three path graphs and thanks to our
tools do not have to participate in the bound of the compatibility constant and
can be discarded. The same reasoning can be applied in the case when other
edges are cut to obtain a decomposition into three path graphs. The proof of
these cases is essentially the same. It only requires the introduction of additional
heavy notation.

Proof of Corollary 6.4. The proof follows by direct calculations in analogy to
the one of Corollary 5.4 (i.e. Theorem 6.1 in van de Geer (2018)).

Proof of Lemma 6.5. In the proof of Lemma 5.3 and Lemma 5.5 (i.e. Theorem
6.1 and Lemma 9.1 in van de Geer (2018)) and in Appendix B.1 it is made clear,
that the use of Lemma B.3 requires that the edges connecting the smaller pieces
into which the path graph is partitioned are taken out of consideration when
upper bounding ‖βS‖1 − ‖β−({1}∪S)‖1 resp. ‖(β �w)S‖1 − ‖(β �w)−({1}∪S)‖1.
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This results in an upper bound containing only the square of some of the consec-
utive pairwise differences between the entries of w, the vector of weights. This
“incomplete” sum can then of course be upper bounded by ‖Dw‖2, where D is
the incidence matrix of the path graph.

In the case of the branched path graph the same reasoning applies in par-
ticular to the two edges connecting together the three path graphs defined by
the second notation. Indeed, these can be left out. Thus, in full analogy to the
procedure exposed in the proofs of Lemma 5.3 and 5.5 (i.e. Theorem 6.1 and
Lemma 9.1 in van de Geer (2018)) for the path graph, the statement of Lemma
6.5 follows. See Appendix B.1 for an intuition.

We expose here the idea for the case where the first and the second notation
introduced in Section 3 coincide, as we did in the proof of Lemma 6.3.

Let us define b1 = 0, e1 = b2 = b, e2 = b3 = n1, e
3 = n. Let gi = fiwi.

In analogy to Lemma 5.5, we can apply the calculations performed for the
nonweighted case to g = w � f , i.e.

‖bS � wS‖1 − ‖b−({1}∪S) � w−({1}∪S)‖1

≤
3∑

i=1

⎧⎨⎩|gbi+di
1+1 − gbi+di

1
| −

bi+di
1∑

k=2

|gk − gk−1| −
bi+di

1+u2∑
k=bi+di

1+2

|gk − gk−1|

+ |gbi+di
1+di

2+1 − gbi+di
1+di

2
| −

bi+di
1+di

2∑
k=bi+di

1+u2+2

|gk − gk−1|

−
bi+di

1+di
2+u3∑

k=bi+di
1+di

2+2

|gk − gk−1|

· · ·
+ |gbi+di

1+···+di
s−1+1 − gbi+di

1+···+di
s−1

|

−
bi+di

1+···+di
s−1∑

k=bi+di
1+···+di

s−2+us−1+2

|gk − gk−1| −
bi+di

1+···+di
s−1+us∑

k=bi+di
1+···+di

s−1+2

|gk − gk−1|

+ |gbi+di
1+···+di

s+1 − gbi+di
1+···+di

s
|

−
bi+di

1+···+di
s∑

k=bi+di
1+···+di

s−1+us+2

|gk − gk−1| −
ei∑

k=bi+di
1+···+di

s+2

|gk − gk−1|

⎫⎬⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

I

+
b∑

i=2

|wi − wi−1||fi−1|+
n1∑

i=b+2

|wi − wi−1||fi−1|

+

n∑
i=n1+2

|wi − wi−1||fi−1|.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
II

For the first term we have, in analogy with Lemma 5.5 and the procedure illus-
trated in Lemma 6.3

I ≤
√
Kb‖w‖∞‖f‖2.
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Let D∗ denote the incidence matrix of the branched path graph, where the
entries in the rows corresponding to the edges cut to obtain the three path graphs
according to the second notation exposed in Section 3 have been substituted with
zeroes. For the second term we have, by the Cauchy-Schwarz inequality

II ≤
(

b−1∑
i=1

f2
i +

n1−1∑
i=b+1

f2
i +

n−1∑
i=n1+1

f2
i

)1/2

‖D∗w‖2

≤ ‖f‖2‖D∗w‖2 ≤ ‖f‖2‖Dw‖2.

Combining the inequalities for I and for II we can infer Lemma 6.5.

Proof of Corollary 6.6. We use the calculations done in Section 4. By writing

(aij)k =

√
(dij − k)k

dij
, i ∈ {0, 1, . . . , dij},

where j ∈ [s1] for i = 1 and j ∈ [si + 1] \ {1} for i ∈ {2, 3}, and

a∗k =

√
(d∗ − i)i

d∗
, i ∈ {0, 1, . . . , d∗} where d∗ = d̃1s1+1 + d̃21 + d̃31

we obtain that

‖Dw‖22 =
1

γ2n

⎧⎨⎩
s1∑
j=1

d1
j∑

k=1

((aij)k − (aij)k−1)
2 +

s2+1∑
j=2

d2
j∑

k=1

((aij)k − (aij)k−1)
2

+

s3+1∑
j=2

d3
j∑

k=1

((aij)k − (aij)k−1)
2

+

d̃1
s1+1−1∑
k=1

(a∗k − a∗k−1)
2 +

d̃2
1∑

k=1

(a∗k − a∗k−1)
2 +

d̃3
1∑

k=1

(a∗k − a∗k−1)
2

+ (a∗
d̃1
s1+1−1

− a∗
d̃2
1
)2 + (a∗

d̃1
s1+1−1

− a∗
d̃3
1
)2
}
.

Indeed we can bound all the terms except the last two ones by applying the
reasoning developed for the path graph.

We have that

‖Dw‖22 =
1

γ2n

⎧⎨⎩
s1∑
j=1

d1
j∑

k=1

((aij)k − (aij)k−1)
2 +

s2+1∑
j=2

d2
j∑

k=1

((aij)k − (aij)k−1)
2

+

s3+1∑
j=2

d3
j∑

k=1

((aij)k − (aij)k−1)
2 + z

⎫⎬⎭ ,
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where

z =

d̃1
s1+1−1∑
k=1

(a∗k − a∗k−1)
2 +

d̃2
1∑

k=1

(a∗k − a∗k−1)
2 +

d̃3
1∑

k=1

(a∗k − a∗k−1)
2

+ (a∗
d̃1
s1+1−1

− a∗
d̃2
1
)2 + (a∗

d̃1
s1+1−1

− a∗
d̃3
1
)2

We are now interested in upper bounding ‖D∗w‖22 rather than ‖Dw‖22. The
form of D∗ depends of course on which edges are cut out to obtain three path
graphs satisfying Assumption 6.2.

In the case we consider in this corollary we have that

‖D∗w‖22 =
1

γ2n

⎧⎨⎩
s1∑
j=1

d1
j∑

k=1

((aij)k − (aij)k−1)
2 +

s2+1∑
j=2

d2
j∑

k=1

((aij)k − (aij)k−1)
2

+

s3+1∑
j=2

d3
j∑

k=1

((aij)k − (aij)k−1)
2 + z

⎫⎬⎭ ,

where

z =

d̃1
s1+1−1∑
k=1

(a∗k − a∗k−1)
2 +

d̃2
1∑

k=1

(a∗k − a∗k−1)
2 +

d̃3
1∑

k=1

(a∗k − a∗k−1)
2

≤ 5/2 log(�d∗/3��d∗/3�(d∗ − �d∗/3� − �d∗/3�)).

Now define the vectors

|Δ|i :=
{(

�di1/2�, �di1/2�, . . . , �disi/2�, �disi/2�, δi
)
, i = 1(

δi, �di2/2�, �di2/2�, . . . , �disi+1/2�, �disi+1/2�
)
, i = 2, 3

,∈ R
2si+1,

where (δ1, δ2, δ3) = (�d∗/3�, �d∗/3�, d∗ − �d∗/3� − �d∗/3�) in any order.
Let |Δ| := (|Δ|1, |Δ|2, |Δ|3) ∈ R

2s+3.
In analogy to the case of the path graph, see Proof of Corollary 5.6 in Ap-

pendix B, we can find the bound

‖D∗w‖22 ≤ (5/2) log

(
2s+3∏
i=1

|Δ|i

)
+

≤ (5/2)(2s+ 3) log

(
n+ 1

2s+ 3

)
For the compatibility constant we have that Kb ≤ 2s

Δ̄h
and we obtain an

upper bound for the reciprocal of the weighted compatibility constant

1

κ2
w(S)

≤ 2n

γ2(s+ 1)

(
2γ2s

Δ̄h
+

5(2s+ 3) log(n+ 1)

2n

)
.

We therefore get Corollary 6.6.
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Proof of Corollary 6.7. We recycle the initial considerations of the proof of
Corollary 6.6. The proof of the three cases we consider deviates from the one
of Corollary 6.6 by the way z is bounded, i.e. which differences of consecutive
weights can be left out.

We can distinguish three cases:

1) Assume without loss of generality that d̃31 = 0.

z =

d̃1
s1+1−1∑
k=1

(a∗k − a∗k−1)
2 +

d̃2
1∑

k=1

(a∗k − a∗k−1)
2 + (a∗

d̃1
s1+1−1

)2

≤
d∗∑
k=1

(a∗k − a∗k−1)
2 + max

k∈[d∗]
(a∗k)

2

≤ 5/2 log(�d∗/2��d∗/2�) + d∗/2

2) a) Assume without loss of generality that d̃31 = 2.

z ≤
d̃2
1∑

k=1

(a∗k − a∗k−1)
2 +

d̃3
1∑

k=1

(a∗k − a∗k−1)
2 + (a∗d∗−3)

2

≤ 5/2 log(�d∗/2��d∗/2�) + 3

b) We have the choice, which edge we can leave out of our consideration:
either the edge (b, b+ 1) or the edge (b, n1 + 1). In both cases

z ≤
d̃2
1∑

k=1

(a∗k − a∗k−1)
2 +

d̃3
1∑

k=1

(a∗k − a∗k−1)
2 + [(a∗

d̃2
1
)2 ∧ (a∗

d̃3
1
)2].

Denote y := d̃21. Then d̃31 = d∗ − 1− y. We get that

(a∗y)
2 ∧ (a∗b−y−1)

2 =

{
(a∗y)

2 , 3 ≤ y ≤ (d∗ − 1)/2

(a∗b−y−1)
2 , (d∗ − 1)/2 ≤ w ≤ d∗ − 3,

≤ d∗/4.

Thus
z ≤ 5/2 log(�d∗/2��d∗/2�) + d∗/4

3) Assume without loss of generality d̃31 = 1, then

z ≤
d̃1
s1+1−1∑
k=1

(a∗k − a∗k−1)
2 +

d̃2
1∑

k=1

(a∗k − a∗k−1)
2 +

1∑
k=1

(a∗k − a∗k−1)
2

+ (a∗1 − a∗
d̃1
s1+1−1

)2.

Let x := d̃1s1+1. We have that

max
3≤x≤d∗−3

(√
d∗ − 1

d∗
−

√
(d∗ − x+ 1)(x− 1)

d∗

)2
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=
1

d∗
(d∗/2−

√
d∗ − 1)2 ≤ d∗/4,

where the maximum is attained at x = d∗+2
2 and the last inequality holds

since d∗/2 ≥
√
d∗ − 1, ∀d∗ ≥ 1. Therefore

z ≤ 5/2 log(�d∗/3��d∗/3�(d∗ − �d∗/3� − �d∗/3�)) + d∗/4

Now define the vectors

|Δ|i :=
{(

�di1/2�, �di1/2�, . . . , �disi/2�, �disi/2�, δi
)
, i = 1(

δi, �di2/2�, �di2/2�, . . . , �disi+1/2�, �disi+1/2�
)
, i = 2, 3

,∈ R
2si+1.

We can distinguish the following four cases:

1) δ2 = 1 or δ3 = 1 and the nonzero δ’s take values �d∗/2� and �d∗/2�;
2) See Case 1), however with δ1 = 1;
3) (δ1, δ2, δ3) = (�d∗/3�, �d∗/3�, d∗ − �d∗/3� − �d∗/3�) in any order.

In these four cases we replace by ones potential zeroes, since this still allows
us to obtain an upper bound.

Let |Δ| := (|Δ|1, |Δ|2, |Δ|3) ∈ R
2s+3.

In analogy to the case of the path graph, see Proof of Corollary 5.6 in Ap-
pendix B, we can find the bound

‖D∗w‖22 ≤ (5/2) log

(
2s+3∏
i=1

|Δ|i

)
+ ζ

≤ (5/2)(2s+ 3) log

(
n+ 1

2s+ 3

)
+ ζ,

where

ζ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∗/2 , Case 1)

3 , Case 2)a)

d∗/4 , Case 2)b)

d∗/4 , Case 3)

.

For the compatibility constant we have that Kb ≤ 2s
Δ̄h

and we obtain an
upper bound for the reciprocal of the weighted compatibility constant

1

κ2
w(S)

≤ 2n

γ2(s+ 1)

(
2γ2s

Δ̄h
+

5(2s+ 3) log(n+ 1)

2n
+

ζ

n

)
,

where ζ is as above. We therefore get Corollary 6.7.

Appendix D: Proofs of Section 8

D.1. Preliminaries

We will need the following results.
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Lemma D.1 (The inverse of a partitioned matrix). Let

A =

(
A11 A12

A21 A22

)
where A11 and A22 are invertible matrices and A11 − A12A

−1
22 A21 and A22 −

A21A
−1
11 A12 are invertible as well. Then

A−1 =

(
(A11 −A12A

−1
22 A21)

−1 −(A11 −A12A
−1
22 A21)

−1A12A
−1
22

−(A22 −A21A
−1
11 A12)

−1A21A
−1
11 (A22 −A21A

−1
11 A12)

−1

)
Lemma D.2 (The inverse of the sum of two matrices, Miller (1981)). Let
G and G + E be invertible matrices, where E is a matrix of rank one. Let
g := trace(EG−1).

Then g 
= −1 and

(G+ E)−1 = G−1 − 1

1 + g
G−1EG−1.

Inverse of symmetric matrices It is known that the inverse of a symmetric
matrix is symmetric as well. This fact has relevance in Lemma D.1, where

(A11 −A12A
−1
22 A21)

−1A12A
−1
22 = (A22 −A21A

−1
11 A12)

−1A21A
−1
11 ,

if A is symmetric.

D.2. Proofs

Proof of Lemma 8.5. Then U = {1} and X is the path matrix with reference
vertex 1 of the graph. It follows that X1 = 1n, X

′
1X1 = n and Π1 = In

n , where
In ∈ R

n×n is a matrix only consisting of ones.
We want to show that the last s conlumns of

X ′
RX{1}∪S0

(X ′
{1}∪S0

X{1}∪S0
)−1

are the same as
X ′

RA1XS0(X
′
S0
A1XS0)

−1,

i.e. that the last s columns of

X{1}∪S0
(X ′

{1}∪S0
X{1}∪S0

)−1

are the same as
A1XS0(X

′
S0
A1XS0)

−1.

We start by writing

X ′
{1}∪S0

X{1}∪S0
= n

(
1 μ′

μ Σ̂S0S0

)
,
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where μ (resp. μ′) is the first column (resp. row) of Σ̂S0S0 . Note that

X ′
S0
A1XS0 = n(Σ̂S0S0 − μμ′).

By using the formula for the inverse of a partitioned matrix (see Lemma D.1)
we get that

(X ′
{1}∪S0

X{1}∪S0
)−1 =

(
1

n(1−μ1)
−1

n(1−μ1)
e′1

−1
n(1−μ1)

e1 (X ′
S0
A1XS0)

−1

)
,

where e1 = (1, 0, . . . , 0) ∈ R
s. As a consequence we can perform the following

multiplication:

X{1}∪S0
(X ′

{1}∪S0
X{1}∪S0

)−1 =(
1

n(1−μ1)
(X1 −XS0e1) XS0(X

′
S0
A1XS0)

−1 − 1
n(1−μ1)

X1e
′
1

)
.

We now develop A1XS0(X
′
S0
A1XS0)

−1 to see if it coincides with the second
entry of the matrix we have obtained. In particular

A1XS0(X
′
S0
A1XS0)

−1 = (In −Π1)XS0(X
′
S0
A1XS0)

−1

= XS0(X
′
S0
A1XS0)

−1 − X1μ
′

n
(Σ̂− μμ′)−1.

By using Lemma D.2 we can write the second term as

−X1μ
′

n
(Σ̂S0S0 − μμ′)−1 = −X1μ

′

n
(Σ̂−1

S0S0
+

1

1− μ1
)

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠
=

−X1e
′
1

n

(
1 +

μ1

1− μ1

)
=

−1

n(1− μ1)
X1e

′
1.

In the KKT conditions we note that z01 = 0 (indeed we have the usual nor-
mal equations for coefficients not penalized) and thus we establish the desired
equality.

Proof of Theorem 8.8. We refer to Section 4 for the calculation of the projection
coefficients.

Let us define

α(i) :=
i

d∗
, i = {1, . . . , d∗ − 1}.

We now select an i and write α = α(i). We get that the irrepresentable con-
dition is satisfied for a signal pattern z ∈ {−1, 1}K+1 if ∀i ≤ min{d̃1s1+1 −
1, d̃21, . . . , d̃

K+1
1 }



Total variation regularization over graphs 4569

1. |(1− α, α, . . . , α)z| < 1 and
2. |(α, 1 − α,−α, . . . ,−α)z| < 1 as well as this has to hold for any of the

K possible permutations of the last K elements of the vector (α, 1 −
α,−α, . . . ,−α)′ ∈ R

K+1.

We now want to find the signal patterns z for which the irrepresentable condition
is satisfied.

Consider the first condition: it excludes the signal pattern where all the jumps
have the same sign.

Thus, in the following assume w.l.o.g. that z1 = 1. Now we look at the second
condition. We are going to consider the cases where p of the K last elements
of the vector (α, 1 − α,−α, . . . ,−α) get the sign + and K − p get the sign −.
We look for the linear combination with the highest absolute value. This can
be seen as finding the linear combination L of (α,−α, . . . ,−α) determined by
p and then adding sgn(L) to it. We scan the cases p = 1, . . . ,K − 1, since the
case p = K is already discarded by looking at the first condition.

For p = 1, . . . , �(K +1)/2�, we have that K +1− 2p > 0, thus we assign a +
sign to (1−α) and get 1+ (K +1− 2p)α > 1 and the irrepresentable condition
is violated.

For p = �(K +1)/2�, . . . ,K − 1, we have that K +1− 2p < 0, thus we assign
a − sign to (1 − α) and get −1 + (K + 1 − 2p)α < −1 and the irrepresentable
condition is violated.

If K is odd, for p = (K + 1)/2, we have that K + 1 − 2p = 0 and the
irrepresentable condition is violated, since the linear combination gives ±1.

Thus, it only remains to consider p = 0. For p = 0 we get the condition
|1 − (K + 1)α| < 1 from the first as well as from the second condition above.
This condition is satisfied whenever α < 2/(K + 1), i.e.

i <
2

K + 1
d∗

This means that if any of d̃1s1+1 − 1, d̃21, . . . , d̃
K+1
1 exceeds 2d∗

K+1 , then the irrep-
resentable condition is not satisfied.
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