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1. Introduction

The assessment of the quality of various normal approximations has attracted
the interest of statisticians for many years. In general this is not an easy task
and as Kiefer (1968) points out, to give explicitly useful bounds on the departure
from the asymptotic normal distribution as a function of the sample size seems
to be a terrifically difficult problem. Since then, Berry-Esseen type bounds have
been derived for general (mainly linear) statistics; see for example Koroljuk &
Borovskich (1994) for the case of U -statistics.

Due to the fact that the Maximum Likelihood Estimator (MLE) is not in gen-
eral a linear function of the random variables, it was only recently that the
assessment of its asymptotic normality has started getting significant attention
in statistical research. Obtaining a quantitative statement related to the normal
approximation of the MLE can be helpful to assess whether using the limiting
distribution is an acceptable approximation or not. In addition, such results
can save both money and time by giving a good indication on whether a larger
sample size is indeed necessary.

The case of a scalar MLE for observations from single-parameter distributions
is the first that has been covered in a series of papers. The existing approaches
are mainly split into two categories based on whether a technique called Stein’s
method (as first introduced in Stein (1972)) was employed in order to get dis-
tributional bounds, or not. In the former category, where Stein’s method was
used, one can measure the MLE-related normal approximation error in a wide
range of metrics, such as Zolotarev-type distances (for example the Wasserstein
distance) and the Kolmogorov metric. Anastasiou & Reinert (2017) provide the
most general approach, where bounds on the distributional distance between
the distribution of the MLE and the normal distribution are given and no re-
strictions are imposed on the form of the MLE. Anastasiou & Ley (2017) give
a different approach to the problem based on a combination of Stein’s method
with the Delta method for situations where the MLE can be expressed as a func-
tion of the sum of independent terms. Their strategy consists in benefiting from
this special form of the MLE, which allows the direct usage of Stein’s method
on a sum of random elements. The bounds given in Anastasiou & Ley (2017)
are simpler than those obtained in Anastasiou & Reinert (2017). We note how-
ever, that an obvious advantage of the methodology developed in Anastasiou &
Reinert (2017) is its wider applicability as it works for all MLE settings (not
requiring the MLE to be of a special form) and even for cases where an analytic
expression of the MLE is not known. In the recent contribution of Anastasiou
(2017) the independence assumption is relaxed and the normal approximation of
the MLE is assessed under the presence of a local dependence structure between
the random variables. The resulting Zolotarev-type bounds are of the optimal
O
(
n−1/2

)
order, while the obtained bounds on the Kolmogorov distance are

O
(
n−1/4

)
.

In the second category, where Stein’s method is not used, bounds are given in
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the Kolmogorov distance. Using the Delta method and under the requirement
that the MLE can be expressed as a function of the sum of independent random
elements, Pinelis & Molzon (2016) provide uniform and non-uniform Berry-
Esseen bounds on the rate of convergence to normality for various statistics,
among which is the MLE. The conditions used are partly different than those
in Anastasiou & Ley (2017), where the Delta method was also employed. The
bounds achieve the optimalO

(
n−1/2

)
order. Pinelis (2017) extends the results of

Pinelis & Molzon (2016) in cases where the MLE is not necessarily a function of
the sum of independent random terms. Under conditions, he shows that the MLE
can be tightly enough bracketed between two smooth enough functions, which
makes the Delta method applicable. With regards to the Kolmogorov distance,
the obtained bounds are again of the optimal order, which is an advantage over
the Stein’s method related approaches of the previous paragraph, where the
order of the bound on the Kolmogorov distance is only O(n−1/4). However, the
results given in Anastasiou & Reinert (2017) and in the current paper are more
general in the sense that firstly, depending on the choice of the test function
h, they can give results for metrics different than the Kolmogorov distance
and secondly, under assumptions, are applicable when the MLE is not known
analytically.

In this paper, we give upper bounds on the distributional distance between the
distribution of a vector MLE and the multivariate normal, which under specific
regularity conditions (given at a later stage) is the MLE’s limiting distribu-
tion. We partly employ multivariate Stein’s method for Gaussian approxima-
tion (for multivariate Stein’s method for other target distributions, see Gorham
et al. (2016)) and our focus is on independent but not necessarily identically
distributed random vectors. The bounds obtained are explicit in terms of the
sample size and the parameter. We are the first to give results for situations
where the vector MLE can not be expressed in a closed form. The wide appli-
cability of the maximum likelihood estimation method adds to the importance
of our results. Among others, an MLE is used in ordinary and generalised linear
models, time series analysis and a large number of other situations related to
hypothesis testing and confidence intervals; see Section 2.2 for bounds related
to linear regression models.

The notation which is used throughout the paper is as follows. The parameter
space is Θ ⊂ R

d equipped with the Euclidean norm. Let θ = (θ1, θ2, . . . , θd)
ᵀ

denote a parameter from the parameter space, while θ0 = (θ0,1, θ0,2, . . . , θ0,d)
ᵀ

denotes the true, but unknown, value of the parameter. The probability density
(or probability mass) function is denoted by f(x|θ), where x = (x1,x2, . . . ,xn).
The likelihood function is L(θ;x) = f(x|θ). Its natural logarithm, called the
log-likelihood function is denoted by �(θ;x). A maximum likelihood estimate
(not seen as a random vector) is a value of the parameter which maximises the
likelihood function. For many models the MLE as a random vector exists and is
also unique, in which case it is denoted by θ̂n(X); see Mäkeläinen et al. (1981)
for a set of assumptions that ensure existence and uniqueness. This is known as
the ‘regular’ case. However, existence and uniqueness of the MLE can not be
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taken for granted, see e.g. Billingsley (1961) for an example of non-uniqueness.

For X1,X2, . . . ,Xn being independent but not necessarily identically distrib-
uted (i.n.i.d.) random vectors, we denote by fi(x,θ) the probability density (or
mass) function of Xi. The likelihood function is L(θ;x) =

∏n
i=1 fi(xi|θ). With

the parameter space Θ being an open subset of Rd, the asymptotic normality of
the MLE holds under the following regularity conditions as expressed in Hoadley
(1971):

(N1) θ̂n(X)
p−→ θ0, as n → ∞, where θ0 is the true parameter value;

(N2) the Hessian matrix Jk(Xk,θ) =
{

∂2

∂θi∂θj
log(fk(Xk|θ))

}
i,j=1,2,...,d

∈ R
d×d

and the gradient vector ∇(log(fk(Xk|θ))) ∈ R
d×1 exist almost surely

∀k ∈ {1, 2, . . . , n} with respect to the probability measure P ;

(N3) Jk(Xk,θ) is a continuous function of θ, ∀k = 1, 2, . . . , n, almost surely
with respect to P and is a measurable function of Xk;

(N4) Eθ [∇(log(fk(Xk|θ)))] = 0, k = 1, 2, . . . , n;

(N5) with yᵀ denoting the transpose of a vector y,

Eθ [[∇(log(fk(Xk|θ)))] [∇(log(fk(Xk|θ)))]ᵀ] = −E [Jk(Xk,θ)] =: Ik(θ);

(N6) for

Īn(θ) =
1

n

n∑
j=1

Ij(θ), (1.1)

there exists a matrix Ī(θ) ∈ Rd×d such that Īn(θ) −−−−→
n→∞

Ī(θ). In addition,

Īn(θ), Ī(θ) are symmetric matrices for all θ and Ī(θ) is positive definite;

(N7) for some δ > 0,
∑

k Eθ0 |λ
ᵀ∇(log(fk(Xk)))|2+δ

n
2+δ
2

−−−−→
n→∞

0 for all λ ∈ R
d;

(N8) with ‖.‖ the ordinary Euclidean norm on Rd, then for k, i, j ∈ {1, 2, . . . , d}
there exist ε > 0, K > 0, δ > 0 and random variables Bk,ij(Xk) such that

(i) sup
{∣∣∣ ∂2

∂θi∂θj
log(fk(Xk|t))

∣∣∣ : ‖t− θ0‖ ≤ ε
}
≤ Bk,ij(Xk);

(ii) E |Bk,ij(Xk)|1+δ ≤ K.

Assuming that θ̂n(X) exists and is unique, the following theorem gives the
result for the asymptotic normality of the MLE in the case of i.n.i.d. random
vectors in a slightly different way than Hoadley (1971).

Theorem 1.1. Let X1,X2, . . . ,Xn be independent random vectors with prob-
ability density (or mass) functions fi(xi|θ), where θ ∈ Θ ⊂ R

d. Assume that
the MLE exists and is unique and that the regularity conditions (N1)-(N8) hold.
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Also let Z ∼ Nd (0, Id×d), where 0 is the d× 1 zero vector and Id×d is the d× d
identity matrix. Then, for Īn(θ) as in (1.1)

√
n
[
Īn(θ0)

] 1
2

(
θ̂n(X)− θ0

)
d−−−−→

n→∞
Z. (1.2)

Proof. Hoadley (1971) proves in Theorem 2, p.1983 that under the regularity
conditions (N1)-(N8),

√
n
(
θ̂n(X)− θ0

)
d−−−−→

n→∞

[
Ī(θ0)

]− 1
2 Z.

Using this result and (N6) we obtain that

[
Īn(θ0)

] 1
2
√
n
(
θ̂n(X)− θ0

)
d−−−−→

n→∞

[
Ī(θ0)

] 1
2
[
Ī(θ0)

]− 1
2 Z = Z,

which is the result of the theorem.

The interest is on assessing the quality of the asymptotic normality of the
MLE in (1.2). For any three times differentiable function h : Rd → R, we ab-

breviate ‖h‖ := sup |h|, ‖h‖1 := sup
i

∣∣∣ ∂
∂xi

h
∣∣∣ , ‖h‖2 := sup

i,j

∣∣∣ ∂2

∂xi∂xj
h
∣∣∣, and ‖h‖3 :=

sup
i,j,k

∣∣∣ ∂3

∂xi∂xj∂xk
h
∣∣∣. For j ∈ {1, 2, 3}, let

H=
{
h:Rd → R:h is three times differentiable with bounded ‖h‖, ‖h‖j

}
(1.3)

be the class of test functions used in the paper. We will give upper bounds on∣∣∣E [h(√n
[
Īn(θ0)

] 1
2

(
θ̂n(X)− θ0

))]
− E[h(Z)]

∣∣∣ , (1.4)

where Z ∼ Nd (0, Id×d). The bounds are explicit in terms of the sample size
and θ0. The main result of the paper is given in Theorem 2.1, where we obtain
a general upper bound on (1.4) which holds under slightly weaker assumptions
than the usual, sufficient regularity conditions (N1)-(N8) used for the asymptotic
normality of the MLE. The generality of the bound adds to its importance as it
can be applied in various different occasions. Furthermore, Theorem 3.1 is also
substantial since we give an upper bound related to the asymptotic normality
of the MLE, even when the MLE is not known analytically, but it is assumed
to be within an ε-neighbourhood of θ0, for ε > 0.

The paper is organised as follows. Section 2 first treats the case of independent
but not necessarily identically distributed (i.n.i.d.) random vectors. The up-
per bound on the distributional distance between the distribution of the vector
MLE and the multivariate normal distribution is presented. Special attention
is given to linear regression models with an application to the simplest case of
the straight-line model, where apart from the upper bound, we also give results
from a simulation study. Furthermore, under weaker regularity conditions, we
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explain how the bound can be simplified for the case of i.i.d. random vectors.
Specific theoretical and empirical results for independent random variables from
the normal distribution under canonical parametrisation are given. In Section 3
we explain how the results can be expanded when no analytic expression of the
vector MLE is available. We briefly illustrate the results for the Beta distribu-
tion with both shape parameters unknown. In order to make the paper easily
readable, we only provide an outline of the proof of our main Theorem 2.1, with
the complete proof being given in Section 4. In addition, some technical results
and proofs of corollaries that are not essential for the smooth understanding of
the paper are confined in the Appendix.

2. Bounds for multi-parameter distributions

In this section we examine the case of i.n.i.d. t-dimensional random vectors,
for t ∈ Z

+. We give an upper bound on the distributional distance between
the distribution of the MLE and the multivariate normal. An example from
linear models then follows. The last subsection covers, under weaker regularity
conditions, the case of i.i.d. random vectors and an example from the normal
distribution under canonical parametrisation serves as illustration of our results.
It is worth mentioning that the MLE in this example is not a sum of random
variables and classical Stein method approaches cannot be applied directly.

2.1. A general bound

The normal approximation in (1.2) is an asymptotic result and our motivation
is to assess the quality of this normal approximation through explicit, for finite
sample size, upper bounds on the distributional distance of interest. From now
on, Īn(θ) is as in (1.1). Let the subscript (m) denote an index for which the

quantity
∣∣∣θ̂n(x)(m) − θ0,(m)

∣∣∣ is the largest among the d components;

(m)∈{1, . . . , d} is such that
∣∣∣θ̂n(x)(m)−θ0,(m)

∣∣∣≥ ∣∣∣θ̂n(x)j−θ0,j

∣∣∣ , ∀j∈{1, . . . , d} .

For ease of presentation, let us introduce the following notation:

Q(m) = Q(m)(X,θ0) := θ̂n(X)(m) − θ0,(m)

Qj = Qj(X,θ0) := θ̂n(X)j − θ0,j , ∀j ∈ {1, 2, . . . , d}

Tlj = Tlj (θ0,X) =
∂2

∂θl∂θj
�(θ0;X) + n[Īn(θ0)]lj , j, l ∈ {1, 2, . . . , d}

Ṽ = Ṽ (n,θ0) :=
[
Īn(θ0)

]− 1
2

ξij =
1√
n

d∑
k=1

Ṽjk
∂

∂θk
log(fi(Xi|θ0)), i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , d} .

(2.5)
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Notice that, using conditions (N5) and (N6), E [Tlj ] = 0 and in general, we
expect Tlj to be small. The main result of the paper is as follows.

Theorem 2.1. Let X1,X2, . . . ,Xn be i.n.i.d. Rt-valued, t ∈ Z+, random vec-
tors with probability density (or mass) function fi(xi|θ), for which the parameter
space Θ is an open subset of Rd. Assume that the MLE exists and is unique and
that (N1)-(N6) are satisfied. In addition, assume that for any θ0 ∈ Θ there
exists 0 < ε = ε(θ0) and functions Mkjl(x), ∀k, j, l ∈ {1, 2, . . . , d} such that∣∣∣ ∂3

∂θk∂θj∂θl
�(θ,x)

∣∣∣ ≤ Mkjl(x) for all θ ∈ Θ with |θj − θ0,j | < ε ∀j ∈ {1, 2, . . . , d}.

Also, for Q(m) as in (2.5), assume that E
[
(Mkjv(X))

2
∣∣∣∣∣Q(m)

∣∣ < ε
]
< ∞. Let{

X′
i, i = 1, 2, . . . , n

}
be an independent copy of {Xi, i = 1, 2, . . . , n}. For

Z ∼ Nd (0, Id×d), h ∈ H, where H is as in (1.3), and with Qj, Tlj , and ξik
as in (2.5), it holds that∣∣∣E [h(√n

[
Īn(θ0)

] 1
2

(
θ̂n(X)− θ0

))]
− E[h(Z)]

∣∣∣
≤ 1√

n
(‖h‖1K1(θ0) + ‖h‖2K2(θ0) + ‖h‖3K3(θ0)) +

2‖h‖
ε2

E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦ , (2.6)

where,

K1(θ0)=

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

√
E
[
Q2

j

]
E

[
T 2
kj

]

+
1

2

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

d∑
v=1

√
E
[
Q2

jQ
2
v

]√
E

[
(Mkjv(X))

2
∣∣∣∣∣Q(m)

∣∣ < ε
]

(2.7)

K2(θ0)=
1

4
√
n

⎧⎨
⎩

d∑
j=1

√√√√ n∑
i=1

Var
[
nξ2ij
]
+ 2

d−1∑
k=1

d∑
j=k+1

√√√√ n∑
i=1

Var [nξijξik]

⎫⎬
⎭ (2.8)

K3(θ0)=
1

12n

n∑
i=1

E

[
d∑

m=1

∣∣∣∣∣
d∑

l=1

Ṽml

(
∂

∂θl

{
log(fi(X

′
i|θ0))− log(fi(Xi|θ0))

})∣∣∣∣∣
]3

.

(2.9)

Remark 2.1. (1) At first glance, the bound seems complicated. However, the
examples that follow show that the terms are easily calculated giving an expres-
sion for the bound, which is of the optimal n−1/2 order.

(2) Assuming that Īn(θ0) = O(1) in (1.1) yields, for fixed d, E
[∑d

j=1 Q
2
j

]
=

O
(
n−1
)
. To see this, first use that from the asymptotic normality of the MLE

as expressed in Theorem 1.1,
√
nE
[
θ̂n(X)− θ0

]
−−−−→
n→∞

0 and thus

E [Qj ] = o

(
1√
n

)
, ∀j ∈ {1, 2, . . . , d} .
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Secondly, from Theorem 1.1 we also get that

n
[
Īn(θ0)

] 1
2 Cov

[
θ̂n(X)

] [
Īn(θ0)

] 1
2 −−−−→

n→∞
Id×d. (2.10)

Assuming that the matrix Īn(θ0) is O(1), it follows from (2.10) that

Var
[
θ̂n(X)j

]
=O

(
n−1
)
, ∀j ∈ {1, 2, . . . , d} and therefore,

E
[
Q2

j

]
= Var

[
θ̂n(X)j

]
+ [E [Qj ]]

2
= O

(
n−1
)
. (2.11)

(3) With Tlj as in (2.5), using (N5), (N6), and the fact that X1,X2, . . . ,Xn

are independent yields

E
[
T 2
lj

]
=

n∑
i=1

Var

[
∂2

∂θl∂θj
log (fi(Xi|θ0))

]
, (2.12)

meaning that E
[
T 2
lj

]
is O(n).

(4) Using (2.11) and (2.12), then if Īn(θ0) = O(1) it can be deduced that

K1(θ0) = O(1), K2(θ0) = O(1), K3(θ0) = O(1),

where K1(θ0),K2(θ0),K3(θ0) are as in (2.7), (2.8), (2.9), respectively. Hence,
the upper bound in Theorem 2.1 is O

(
n−1/2

)
.

(5) In terms of the dimensionality d of the parameter, having that ξij = O(d),
then K1(θ0) = O

(
d4
)
,K2(θ0) = O

(
d4
)
and K3(θ0) = O

(
d6
)
as can be de-

duced from (2.7), (2.8) and (2.9), respectively. The last term of the bound in
(2.6) is of order d in terms of the dimensionality of the parameter. Thus, for
d 
 n the bound does not behave well, but d could grow moderately with n.
For example d = o (nα) , 0 < α < 1

12 would still yield a bound which goes to
zero as n goes to infinity.

Outline of the proof. From the definition of the MLE, ∂
∂θk

�
(
θ̂n(x);x

)
= 0 ∀k ∈

{1, 2, . . . , d} . A second-order Taylor expansion of ∂
∂θk

�
(
θ̂n(x);x

)
about θ0

yields for Qj as in (2.5)

d∑
j=1

Qj

(
∂2

∂θk∂θj
�(θ0;x)

)
= − ∂

∂θk
�(θ0;x)

− 1

2

d∑
j=1

d∑
q=1

QjQq

(
∂3

∂θk∂θj∂θq
�(θ;x)

∣∣∣
θ=θ∗

0

)
,

with θ∗
0 between θ̂n(x) and θ0. Adding

∑d
j=1 n[Īn(θ0)]kjQj on both sides of

the above equation gives, for Tkj as in (2.5), that
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d∑
j=1

n[Īn(θ0)]kjQj =
∂

∂θk
�(θ0;x) +

d∑
j=1

QjTkj

+
1

2

d∑
j=1

d∑
q=1

QjQq

(
∂3

∂θk∂θj∂θq
�(θ;x)

∣∣∣
θ=θ∗

0

)
. (2.13)

Using (2.13), which holds ∀k ∈ {1, 2, . . . , d}, and with Ṽ as in (2.5),

√
n[Īn(θ0)]

1
2 (θ̂n(x)− θ0)

=
Ṽ√
n

⎧⎨
⎩∇(�(θ0;x)) +

d∑
j=1

Qj

(
∇
(

∂

∂θj
�(θ0;x)

)
+ n[Īn(θ0)][j]

)

+
1

2

d∑
j=1

d∑
q=1

QjQq

(
∇
(

∂2

∂θj∂θq
�(θ;x)

∣∣∣
θ=θ∗

0

))⎫⎬
⎭ ,

where [Īn(θ0)][j] is the j
th column of the matrix Īn(θ0). The triangle inequality

gives that∣∣∣E [h(√n
[
Īn(θ0)

] 1
2

(
θ̂n(X)− θ0

))]
− E[h(Z)]

∣∣∣
≤
∣∣∣∣∣E
[
h

(
Ṽ√
n
∇(�(θ0;X))

)]
− E[h(Z)]

∣∣∣∣∣ (2.14)

+

∣∣∣∣∣E
[
h
(√

n
[
Īn(θ0)

] 1
2

(
θ̂n(X)− θ0

))
− h

(
Ṽ√
n
∇(�(θ0;X))

)]∣∣∣∣∣ . (2.15)

Now, (2.14) is based on ∇(�(θ0;x)) =
∑n

i=1 ∇ (log(fi(xi|θ0))) which is a sum of
independent random vectors. For this expression, a bound using Stein’s method
for multivariate normal approximation will be derived. In contrast, (2.15) will
be bounded using multivariate Taylor expansions. Technical difficulties arise as
the third-order partial derivatives of the log-likelihood function may not be uni-
formly bounded in θ. Therefore, for 0 < ε = ε(θ0) we will condition on whether∣∣Q(m)

∣∣ as defined in (2.5) is greater or less than the positive constant ε and each
case will be treated separately by bounding conditional expectations. Known
probability inequalities, such as the Cauchy-Schwarz and Markov’s inequality,
will be employed in order to derive the upper bounds in each case.

2.2. Linear regression

This subsection calculates the bound in (2.6) for linear regression models. The
asymptotic normality of the MLE in linear regression models has been proven in
Fahrmeir & Kaufmann (1985). We give the example of a straight-line regression
and the bound turns out to be, as expected, of order O

(
n−1/2

)
, where n is
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the sample size. The following notation is used throughout this subsection. The
vector Y = (Y1, Y2, . . . , Yn)

ᵀ ∈ R
n×1 denotes the response variable for the linear

regression, while β = (β1, β2, . . . , βd)
ᵀ ∈ Rd×1 is the vector of the d parameters

and ε = (ε1, ε2, . . . , εn)
ᵀ ∈ R

n×1 is the vector of the error terms, which are i.i.d.
random variables with εi ∼ N(0, σ2), ∀i ∈ {1, 2, . . . n}. The true value of the
unknown parameter β is denoted by β0 = (β0,1, β0,2, . . . , β0,d)

ᵀ ∈ R
d×1. The

design matrix is

X =

⎛
⎜⎜⎜⎝
1 x1,2 . . . x1,d

1 x2,2 . . . x2,d

...
...

. . .
...

1 xn,2 . . . xn,d

⎞
⎟⎟⎟⎠ .

For the model
Y = Xβ + ε

the aim is to find upper bounds on the distributional distance between the
distribution of the MLE, β̂, and the normal distribution. The probability density
function for Yi is

fi(yi|β) =
1√
2πσ2

exp

{
− 1

2σ2

(
yi −X[i]β

)2}
, (2.16)

whereX[i] denotes the i
th row of the design matrix. The parameter space Θ = R

d

is open and if XᵀX is of full rank, the matrix XᵀX is invertible and

β̂ = (XᵀX)
−1

XᵀY . (2.17)

We now bound the corresponding distributional distance.

Corollary 2.1. Let Yi, i ∈ {1, 2, . . . , n} be independent normal random vari-
ables with

Yi ∼ N
(
X[i]β0, σ

2
)
,

where σ2 is known. Assume that the d × d matrix XᵀX is of full rank. Let
{Y ′

i , i = 1, 2, . . . , n} be an independent copy of {Yi, i = 1, 2, . . . , n} and
Z ∼ Nd(0, Id×d) and Īn(β) is as in (1.1). Then for h ∈ H as in (1.3),∣∣∣E [h(√n

[
Īn(β0)

] 1
2

(
β̂ − β0

))]
− E[h(Z)]

∣∣∣
≤ ‖h‖2

4

d∑
j=1

⎡
⎣ n∑

i=1

Var

⎡
⎣( d∑

k=1

Xik

σ

[
[XᵀX]

− 1
2

]
jk

(
Yi −

d∑
m=1

Ximβ0,m

))2
⎤
⎦
⎤
⎦

1
2

+
‖h‖2
2

d−1∑
k=1

d∑
j=k+1

⎡
⎢⎣ n∑

i=1

Var

[
d∑

q=1

d∑
v=1

XiqXiv

σ2

[
[XᵀX]

− 1
2

]
jq

[
[XᵀX]

− 1
2

]
kv

×
(
Yi −

d∑
m=1

Ximβ0,m

)2
⎤
⎦
⎤
⎥⎦

1
2
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+
‖h‖3
12

n∑
i=1

E

[
d∑

m=1

∣∣∣∣∣
d∑

l=1

Xil

σ

[
[XᵀX]

− 1
2

]
ml

(Yi − Y ′
i )

∣∣∣∣∣
]3

. (2.18)

Proof. Using (2.16), we can see that the Hessian matrix for the log-likelihood
function does not depend on y and Īn(β0) = 1

nσ2X
ᵀX. The result in (2.17)

yields

√
n
[
Īn(β0)

] 1
2

(
β̂ − β0

)
=

1

σ

{
[XᵀX]

− 1
2 XᵀY − [XᵀX]

1
2 β0

}
=

1√
n

[
σ
√
n [XᵀX]

− 1
2

] 1

σ2
(XᵀY −XᵀXβ0)

=
1√
n
[In(β0)]

− 1
2

d

dβ
�(β;y)

∣∣∣
β=β0

. (2.19)

Having a closer look at the expression in (2.19), we notice that actually the quan-

tity of interest
∣∣∣E [h(√n[Īn(β)]

1
2

(
β̂ − β0

))]
− E[h(Z)]

∣∣∣ is equal to (2.14),

with (2.15) being equal to zero for this specific case of the linear regression
model. Thus, using (4.50) and

∂

∂βk
log(fi(Yi|β0)) =

Xik

σ2

(
Yi −

d∑
m=1

Ximβ0,m

)

in Theorem 2.1 yields the result of the corollary.

Example: The simple linear model (d=2)

Here, we apply the results of (2.18) to the case of a straight-line regression
with two unknown parameters. The model is

Yi = β1 + β2(xi − x̄) + εi, ∀i ∈ {1, 2, . . . , n} .

The unknown parameters β1 and β2 are the intercept and slope of the re-
gression, respectively. As before, the i.i.d. random variables εi ∼ N(0, σ2),

∀i ∈ {1, 2, . . . , n}. The MLE exists, it is unique and β̂ =
(
Ȳ ,

∑n
i=1(xi−x̄)Yi∑n
i=1(xi−x̄)2

)ᵀ
.

Corollary 2.2. Let Y1, Y2, . . . , Yn be independent random variables with
Yi ∼ N(β1 + β2(xi − x̄), σ2). The case of xi = xj , ∀i, j ∈ {1, 2, . . . , n} with
i �= j is excluded and for Z ∼ N2(0, I2×2) and h ∈ H as in (1.3),∣∣∣E [h(√n

[
Īn(β0)

] 1
2

(
β̂ − β0

))]
− E[h(Z)]

∣∣∣
≤ ‖h‖2

4

(
3
√
2√
n

+

√
2
∑n

i=1(xi − x̄)4∑n
i=1(xi − x̄)2

)
+

8‖h‖3
3
√
π

(
1√
n
+

∑n
i=1 |xi − x̄|3

[
∑n

i=1(xi − x̄)2]
3
2

)
.

(2.20)
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Remark 2.2. (1) The calculation of the bound is easy and relies only on simple
sums. As expected, the order of the bound is O

(
n−1/2

)
, which is optimal.

(2) We exclude the case of xi = xj , ∀i, j ∈ {1, 2, . . . , n} with i �= j, only to
ensure that XᵀX is invertible.

Proof. We have that

X =

⎛
⎜⎜⎜⎝
1 x1 − x̄
1 x2 − x̄
...

...
1 xn − x̄

⎞
⎟⎟⎟⎠ , XᵀX =

(
n 0
0
∑n

i=1(xi − x̄)2

)
. (2.21)

The result in (2.21) shows that XᵀX is invertible if and only if
∑n

i=1(xi− x̄)2 �=
0, which holds if xi’s are not all identical. The quantities of the bound in (2.18)

are calculated for this specific case. We use that Yi − β1 − (xi − x̄)β2
d
== σZi,

where Zi ∼ N(0, 1). For the first term in (2.18) we obtain that

2∑
j=1

⎡
⎣ n∑

i=1

Var

⎡
⎣( 2∑

k=1

Xik

σ

[
[XᵀX]

− 1
2

]
jk

(
Yi −

2∑
m=1

Ximβm

))2
⎤
⎦
⎤
⎦

1
2

=

2∑
j=1

[
n∑

i=1

Var

[((
Xi1

σ

[
[XᵀX]

− 1
2

]
j1

+
Xi2

σ

[
[XᵀX]

− 1
2

]
j2

)
σZi

)2
]] 1

2

=
1

n

[
n∑

i=1

Var
[
Z2
i

]] 1
2

+
1∑n

i=1(xi − x̄)2

[
n∑

i=1

(xi − x̄)4Var
[
Z2
i

]] 1
2

=

√
2

n
+

√
2
∑n

i=1(xi − x̄)4∑n
i=1(xi − x̄)2

. (2.22)

For the second term of (2.18), since d = 2 then k = 1, j = 2 leading to

⎡
⎣ n∑

i=1

Var

⎡
⎣ 2∑
q=1

2∑
v=1

XiqXiv

σ2

[
[XᵀX]

− 1
2

]
2q

[
[XᵀX]

− 1
2

]
1v

(
Yi −

2∑
m=1

Ximβm

)2
⎤
⎦
⎤
⎦

1
2

=

[
n∑

i=1

Var

[
Xi2Xi1

σ2

[
[XᵀX]

− 1
2

]
22

[
[XᵀX]

− 1
2

]
11

(σZi)
2

]] 1
2

=
1√

n
∑n

i=1(xi − x̄)2

[
n∑

i=1

(xi − x̄)2Var
[
Z2
i

]] 1
2

=

√
2

n
. (2.23)

For the final term of (2.18), because Y ′
i is an independent copy of Yi, then

Y ′
i − Yi ∼ N(0, 2σ2), with E |Y ′

i − Yi|3 = 8 σ3
√
π
. Using that

(|a|+ |b|)3 ≤ 4
(
|a|3 + |b|3

)
, a, b ∈ R (2.24)
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yields

n∑
i=1

E

[
2∑

m=1

∣∣∣∣∣
2∑

l=1

Xil

σ

[
[XᵀX]

− 1
2

]
ml

(Yi − Y ′
i )

∣∣∣∣∣
]3

=

n∑
i=1

E

[∣∣∣∣
(
Xi1

σ

[
[XᵀX]

− 1
2

]
11

+
Xi2

σ

[
[XᵀX]

− 1
2

]
22

)
(Yi − Y ′

i )

∣∣∣∣
]3

≤
n∑

i=1

E

[(
1

σ
√
n
+

|xi − x̄|
σ
√∑n

i=1(xi − x̄)2

)
|Y ′

i − Yi|
]3

≤ 4
n∑

i=1

(
8

n
3
2
√
π
+

8|xi − x̄|3

[
∑n

i=1(xi − x̄)2]
3
2
√
π

)
=

32√
π

(
1√
n
+

∑n
i=1 |xi − x̄|3

[
∑n

i=1(xi − x̄)2]
3
2

)
.

(2.25)

Summarizing, in the case of Y1, Y2, . . . , Yn being independent random variables
with Yi ∼ N

(
β1 + β2(xi − x̄), σ2

)
, we apply to (2.18) the results of (2.22), (2.23)

and (2.25) to obtain the assertion of the corollary.

Empirical results

Here, we study the accuracy of our bounds by simulations. For n = 10j , j =
4, 5, 6, 7, we start by generating 103 trials of n random independent observations,
y, which follow N(β1+β2(xi− x̄), σ2), where β1 = 1, β2 = 2, σ2 = 1 and each xi

is sampled from the discrete uniform distribution in the set {1, 2, . . . , 100}. Then
√
n
[
Īn(β0)

] 1
2

(
β̂ − β0

)
is evaluated in each trial, which in turn gives a vector of

103 values. We apply to these values the function h(x, y) =
(
x2 + y2 + 1

)−1
and

we calculate their sample mean, denoted by Ê

[
h
(√

n
[
Īn(β0)

] 1
2

(
β̂ − β0

))]
.

The function h is a member of the class H as in (1.3) with

‖h‖ = 1, ‖h‖1 =
3
√
3

8
, ‖h‖2 = 2, ‖h‖3 < 4.7. (2.26)

We use these values to calculate the bound in (2.20). We define

Qh(β0) :=
∣∣∣Ê [h(√n

[
Īn(β0)

] 1
2

(
β̂ − β0

))]
− Ẽ[h(Z)]

∣∣∣ ,
where Ẽ[h(Z)] = 0.461 is the approximation of E[h(Z)] up to three decimal
places. We compare Qh(β0) with the bound in (2.20), using the difference be-
tween their values as a measure of the error. The results are presented in Table
1 and are based on this particular function h, while the theoretical bounds that
we have already given hold for any test function that belongs in the class H
defined in (1.3).
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Table 1

Simulation results for the simple linear model

n Qh(β0) Upper bound Error

104 5× 10−3 0.207 0.202
105 3× 10−3 0.065 0.062
106 1× 10−3 0.022 0.021
107 3× 10−4 0.007 0.0067

The table indicates that the bound and the error decrease as the sample size
gets larger. When at each step we increase the sample size by a factor of ten,
then the value of the upper bound drops by approximately a

√
10 factor, which

is expected as the expression in (2.20) is O
(
n−1/2

)
.

2.3. Special case: Identically distributed random vectors

In this subsection we use weaker regularity conditions than (N1)-(N6) which
were used in Theorem 2.1, in order to find an upper bound in the case of inde-
pendent and identically distributed random vectors. Following Davison (2008)
and for �xi(θ) := log(f(xi|θ)), we make the following assumptions:

(R.C.1) The densities defined by any two different values of θ are distinct;

(R.C.2) �(θ;x) is three times differentiable with respect to the unknown vector
parameter, θ, and the third partial derivatives are continuous in θ;

(R.C.3) for any θ0 ∈ Θ and for X denoting the support of the data, there exists
ε0 > 0 and functions Mrst(x) (they can depend on θ0), such that for
θ = (θ1, θ2, . . . , θd) and r, s, t, j = 1, 2, . . . , d,∣∣∣∣ ∂3

∂θr∂θs∂θt
�(θ;x)

∣∣∣∣ ≤ Mrst(x), ∀x ∈ X, |θj − θ0,j | < ε0,

with E[Mrst(X)] < ∞;

(R.C.4) for all θ ∈ Θ, Eθ[�Xi(θ)] = 0;

(R.C.5) the expected Fisher information matrix for one random vector I(θ) is
finite, symmetric and positive definite. For r, s = 1, 2, . . . , d, its ele-
ments satisfy

n[I(θ)]rs = E

{
∂

∂θr
�(θ;X)

∂

∂θs
�(θ;X)

}
= E

{
− ∂2

∂θr∂θs
�(θ;X)

}
.

This condition implies that nI(θ) is the covariance matrix of∇(�(θ;x)).

These regularity conditions in the multi-parameter case resemble those in Anas-
tasiou & Reinert (2017) where the parameter is scalar. Under (R.C.1)-(R.C.5),

Davison (2008) shows that
√
n[I(θ0)]

1
2

(
θ̂n(X)− θ0

)
d−−−−→

n→∞
Z. The upper
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bound on the distributional distance between the distribution of a vector MLE
and the multivariate normal in the case of i.i.d. random vectors is the same as the
bound in Theorem 2.1 and thus it is not given again. The bound can be simplified
because in the i.i.d. case Īn(θ0) = I(θ0) and fi(xi) = f(xi), ∀i ∈ {1, 2, . . . , n}.
In the next example of independent random variables from the normal distribu-
tion under canonical parametrisation with both natural parameters unknown,
the bound can be easily calculated and it is, as expected, of the order O

(
n−1/2

)
.

Example: The normal distribution under canonical parametrisation

Many popular distributions which have the same underlying structure based
on simple properties are exponential families, such as the normal, Gamma and
Beta distributions; generalisations of exponential families can be found in Lau-
ritzen (1988) and Berk (1972). Most of the times, the interest is on working
under the canonical parametrisation; the distribution of a random variable, X,
is said to be a canonical multi-parameter exponential family distribution if, for
η ∈ R

d, the probability density (or mass) function is of the form

f(x|η) = exp

⎧⎨
⎩

d∑
j=1

ηjTj(x)−A(η) + S(x)

⎫⎬
⎭ 1{x∈B},

where the set B = {x : f(x|θ) > 0} is the support of X and does not depend on
η; A(η) is a function of the parameter; Tj(x) and S(x) are functions only of the
data. The vectors η = (η1, η2, . . . , ηd) and T (x) = (T1(x), T2(x), . . . , Td(x)) are
called the natural parameter vector and natural sufficient statistic, respectively.
There is a number of reasons why the canonical parametrisation is more conve-
nient. To start with, written in its canonical form, the probability density (or
mass) function of an exponential family distribution has some convexity prop-
erties, which are then useful in dealing with moments and other functions of
the natural sufficient statistic T (x). Furthermore, for each j ∈ {1, 2, . . . , d}, if
X follows a canonical exponential family distribution, then Tj(X) also follows
an exponential family distribution and also

E [Tj(X)] =
∂

∂ηj
A(η), Cov [Tk(X), Tj(X)] =

∂2

∂ηk∂ηj
A(η), 1 ≤ k, j ≤ d.

Apart from simplifying the theory and computational complexity in generalised
linear models, there are other application areas, where natural exponential fam-
ily distributions play a significant role. An example is the area of Gaussian
graphical models (see Lauritzen (1996) for more information) and the precision
matrix estimation (Massam et al., 2018).

Here, we apply Theorem 2.1 in the case of X1, X2, . . . , Xn independent and
identically distributed random variables from N(μ, σ2), which is an exponential
family distribution. Due to the importance, as explained above, of the natural
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parametrisation in exponential families, we are interested in

η0 = (η1, η2) =

(
1

2σ2
,
μ

σ2

)
, (2.27)

which is the natural parameter vector. The MLE for η0 exists, it is unique and
equal to η̂(X) = (η̂1, η̂2)

ᵀ
= n∑n

i=1(Xi−X̄)
2

(
1
2 , X̄

)ᵀ
; to see this, use the invari-

ance property of the MLE and the result of Davison (2008), p.116, where the
MLEs for μ and σ2 are given. In contrast to Corollary 2.2, the MLE in the current
example of the Gaussian distribution under canonical parametrisation is not a
sum of random variables; therefore, classical Stein’s method approaches, which
require that the quantity of interest is a sum, cannot be employed. It appears
that our results are the first that can be applied for such cases where the vector
MLE has a general form in order to get upper bounds on the absolute value of
the difference of expectations on the class of functions H in (1.3). The results
of Pinelis & Molzon (2016) and Pinelis (2017) can also be applied through the
Delta method to give upper bounds only on the Kolmogorov distance though.
The conditions (R.C.1)-(R.C.5) are satisfied. Corollary 2.3 provides a bound on
the distributional distance of interest and the proof is in the Appendix.

Corollary 2.3. Let X1, X2, . . . , Xn be i.i.d. random variables that follow the
N(μ, σ2) distribution. Let η0 be as in (2.27) and for ease of presentation, we
denote α := α(η1, η2) = η1(1+

√
η1)

2+η22 and β := β(η1, η2) = η1(1+
√
η1)+η22.

For Z ∼ N2(0, I2×2) and h ∈ H as defined in (1.3), we have that for n > 9∣∣∣E[h(√n[I(η0)]
1
2 (η̂(X)−η0)

)]
−E[h(Z)]

∣∣∣≤ 8‖h‖
((
η21+η22

)
(2n+15)+2nη1

)
η21(n−3)(n−5)

+

√
2n

3
2 ‖h‖1√

α(n− 5)(n− 9)

⎧⎨
⎩2

√
130

η1
+

1473η22
η21

((η1 + |η2|)(η1 + 3|η2|+ 2
√
η1) + η1)

+

(
39η22
η31

+
10

η21

)(
4
∣∣η32∣∣+ η1(2|η2|+ η1) (3|η2|+ 2 + 2

√
η1) + η

5
2
1 + η31

)

+156 (
√
η1 + |η2|+ η1)

(
1 +

3
(
|η2|+ η1

2

)2
η1

)⎫⎬
⎭

+
‖h‖2

2
√
2nα

⎧⎨
⎩
√
7

(
η22
η1

+ 1

)
α+ η1η

2
2 +

β2

η1

+3
√
2η2

[(
α− η22

)(
5 +

η22
η1

)2

+ β2 +

(
2
√
η1η2 +

α

η2

)2(
5

3
+

η22
η1

)] 1
2

⎫⎬
⎭

+
64

√
2‖h‖3

3
√
nα

3
2

⎧⎨
⎩18

(
1 +

η32

2η
3
2
1

√
π

)(
η

3
2
1 (1 +

√
η1)

3
+ |η2|3

)
+

η31 |η2|3 + β3

√
πη

3
2
1

⎫⎬
⎭ .

(2.28)
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Remark 2.3. (1) The rate of convergence of the upper bound in (2.28) is 1√
n
.

Although the bound might seem complicated, the proof of the corollary shows
that what is required for the derivation of the bound is basic calculation of
expectations.
(2) As already mentioned, this example consists an indication of the advantages
of our method in comparison to classical multivariate Stein’s method results,
which require that the quantity of interest is a sum of random variables. This
is not the case in Corollary 2.3 because η̂1 = n

2
∑n

i=1(Xi−X̄)
2 .

Empirical results

We carry out a large-scale simulation study to investigate the accuracy of the
bound in (2.28). The procedure is similar to the one followed previously when
we obtained empirical results related to the example of the simple linear model
in Corollary 2.2. Therefore, we start by generating 103 trials of n = 10j , j =
5, 6, 7, 8, random independent observations, y, following N(μ, σ2), and the vector
parameter of interest is η0 = (η1, η2) as in (2.27). We take μ = 1, σ2 = 1 for our

simulations. Then
√
n [I(η0)]

1
2 (η̂(X)− η0) is evaluated in each trial, which in

turn gives a vector of 103 values. The function h(x, y) =
(
x2 + y2 + 1

)−1
, which

belongs to the class H as in (1.3), is then applied to these values in order to get

the sample mean, denoted by Ê

[
h
(√

n [I(η0)]
1
2 (η̂(X)− η0)

)]
. Using (2.26),

we calculate the bound in (2.28). We define

Qh(η0) :=
∣∣∣Ê [h(√n [I(η0)]

1
2 (η̂ − η0)

)]
− Ẽ[h(Z)]

∣∣∣ ,
where Ẽ[h(Z)] = 0.461 is the approximation of E[h(Z)] up to three decimal
places. We compare Qh(η0) with the bound in (2.28), using the difference be-
tween their values as a measure of the error. The results from the simulations
are shown in Table 2 below.

Table 2

Simulation results for the N(1, 1) distribution under a canonical parametrisation

n Qh(η0) Upper bound Error

105 0.009 28.616 28.607
106 0.005 9.048 9.042
107 0.004 2.861 2.857
108 0.001 0.905 0.904

As in the results of Table 1, we also see here that the bound and the error
decrease as the sample size gets larger. To be more precise, when at each step
we increase the sample size by a factor of ten, the value of the upper bound
drops by a factor close to

√
10, which is expected since the order of the bound

is O
(
n−1/2

)
, as can be seen from (2.28). In this example, the bounds are not

as small as in Table 1, with the reason being that the expression for the bound
in (2.28) is the result of a series of simplifications in order to obtain a relatively
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compact representation; see the proof of Corollary 2.3 in the Appendix for the
exact steps that lead to the expression in (2.28). The bound has more of a
conceptual character and better constants are possible at the cost of a more
complicated expression.

3. Bounds when the MLE is not known explicitly

The calculation of some of the terms in the general bound of Theorem 2.1
requires an analytic expression for the MLE. This fact generates problems in
models where no closed-form solution to the maximization problem is known
or available; in these cases, a numerical method, such as the Newton-Raphson
algorithm, can often be used to approximate the MLE and a normal approxi-
mation is still of interest. In this section, we will first explain how, under some
further assumptions, we can put the dependence of the bound on the MLE only

through the MSE, E
[∑d

j=1 Q
2
j

]
. Then, the MSE will get bounded by a quan-

tity which is independent of θ̂n(X) and it can therefore be used to get upper
bounds on the distributional distance of interest that can be applied when the
vector MLE is not expressed in a closed-form. To the best of our knowledge,
such bounds have not appeared before in the literature for the case of a vector
MLE that can not be expressed in a closed form. The extra assumptions are

(Con.1) For an ε = ε(θ0) > 0, the MLE is within an ε-neighbourhood of θ0, in

the sense that ∀j ∈ {1, 2, . . . , d},
∣∣∣θ̂n(X)j − θ0,j

∣∣∣ < ε;

(Con.2) for all θ0 ∈ Θ, where Θ is the open parameter space,

sup
θ:|θq−θ0,q|<ε
∀q∈{1,2,...,d}

∣∣∣∣ ∂3

∂θk∂θj∂θi
log f(x1|θ)

∣∣∣∣ ≤ Mkji,

where Mkji = Mkji(θ0) is a constant that may depend on θ0;

(Con.3) the Hessian matrix of the second-order partial derivatives of the log-
likelihood function is symmetric and invertible.

Section 2 gave an upper bound for the distributional distance between the dis-
tribution of the MLE and the multivariate normal distribution. As explained
in the outline of the proof of Theorem 2.1, this bound in (2.6) can be split
into terms coming from Stein’s method, and terms due to Taylor expansions
and conditional expectations. With Ṽ as in (2.5), for ease of presentation we
abbreviate the terms coming from Stein’s method by

D = D(θ0, h,X) :=
‖h‖2
4
√
n

d∑
j=1

⎡
⎣Var

⎡
⎣( d∑

k=1

Ṽjk
∂

∂θk
log f(X1|θ0)

)2
⎤
⎦
⎤
⎦

1
2
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+
‖h‖2
2
√
n

d−1∑
k=1

d∑
j=k+1

⎡
⎣Var

⎡
⎣ d∑

q=1

d∑
v=1

Ṽjq
∂

∂θq
log f(X1|θ0)Ṽkv

∂

∂θv
log f(X1|θ0)

⎤
⎦
⎤
⎦

1
2

+
‖h‖3
12

√
n
E

[
d∑

i=1

∣∣∣∣∣
d∑

l=1

Ṽil

(
∂

∂θl
log f(X′

1|θ0)−
∂

∂θl
log f(X1|θ0)

)∣∣∣∣∣
]3

. (3.29)

We will now first explain how we can put the dependence of the general bound

in (2.6) on MLE only through the quantity E

[∑d
j=1 Q

2
j

]
with Qj as in (2.5).

After that, we will give an upper bound for E
[∑d

j=1 Q
2
j

]
.

A bound depending on the mean squared error: Under (Con.1) and with
Ṽ , Q(m), Qj and Tkj as in (2.5), and for D in (3.29), we obtain, using (2.6),
that ∣∣∣E [h(√n[I(θ0)]

1
2 (θ̂n(X)− θ0)

)]
− E[h(Z)]

∣∣∣ ≤ D

+
‖h‖1√

n

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

[
E
[
Q2

j

]
E
[
T 2
kj

]] 1
2 (3.30)

+
‖h‖1
2
√
n

⎧⎨
⎩

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣E
∣∣∣∣∣∣

d∑
j=1

d∑
i=1

QjQi
∂3

∂θk∂θj∂θi
�(θ∗

0 ;X)

∣∣∣∣∣∣
⎫⎬
⎭ . (3.31)

Step 1: Upper bound for (3.30). Since E [Tkj ] = 0, ∀j, k ∈ {1, 2, . . . , d},

(3.30) = ‖h‖1
d∑

k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

√
E
[
Q2

j

]√
Var

[
∂2

∂θk∂θj
log f(X1|θ0)

]

≤ ‖h‖1
d∑

k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

√
E
[
Q2

j

]√√√√ d∑
i=1

Var

[
∂2

∂θk∂θi
log f(X1|θ0)

]
, (3.32)

where the inequality comes from the trivial bound

Var

[
∂2

∂θk∂θj
log f(X1|θ0)

]
≤

d∑
i=1

Var

[
∂2

∂θk∂θi
log f(X1|θ0)

]

since the variance of a random variable is always non-negative. Now, using that(∑d
j=1 αj

)2
≤ d
(∑d

j=1 α
2
j

)
for αj ∈ R, yields

⎛
⎝ d∑

j=1

√
E
[
Q2

j

]⎞⎠
2

≤ d

d∑
j=1

E
[
Q2

j

]
.
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Taking square roots in both sides of the above inequality and applying this
result to (3.32) gives

(3.30) ≤ ‖h‖1
√
d

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣
√√√√ d∑

i=1

Var

[
∂2

∂θk∂θi
log f(X1|θ0)

]√√√√√E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦.

(3.33)

Step 2:Upper bound for (3.31). Notice that from (Con.2),
∣∣∣ ∂3

∂θk∂θj∂θi
�(θ∗

0 ;x)
∣∣∣=∣∣∣∑n

l=1
∂3

∂θk∂θj∂θi
log f(xl|θ∗

0)
∣∣∣ ≤ nMkji. Also,

d∑
j=1

d∑
i=1

|QjQi|Mkji =

d∑
j=1

Q2
jMkjj + 2

d−1∑
i=1

d∑
j=i+1

|Qj | |Qi|Mkij .

Using now that 2αβ ≤ α2 + β2, ∀α, β ∈ R,

d∑
j=1

d∑
i=1

|QjQi|Mkji ≤
d∑

j=1

Q2
jMkjj +

d−1∑
i=1

d∑
j=i+1

[
Q2

j +Q2
i

]
Mkji =

d∑
j=1

Q2
j

d∑
i=1

Mkji

≤
d∑

j=1

Q2
j

d∑
m=1

d∑
i=1

Mkmi. (3.34)

Using (3.34) yields

(3.31) ≤ ‖h‖1
√
n

2

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
m=1

d∑
i=1

MkmiE

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦ . (3.35)

Hence, from (3.33) and (3.35),∣∣∣E [h(√n[I(θ0)]
1
2 (θ̂n(X)− θ0)

)]
− E[h(Z)]

∣∣∣ ≤ D

+ ‖h‖1
√
d

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣
√√√√ d∑

i=1

Var

[
∂2

∂θk∂θi
log f(X1|θ0)

]√√√√√E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦

+
‖h‖1

√
n

2

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
m=1

d∑
i=1

MkmiE

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦ . (3.36)

SinceD as defined in (3.29), is not related to the MLE, the upper bound in (3.36)

depends on θ̂n(X) only through E

[∑d
j=1 Q

2
j

]
. Our purpose now is to find a

bound for E
[∑d

j=1 Q
2
j

]
that does not contain any terms related to θ̂n(X).

A bound on the mean squared error: In order to give an upper bound
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when θ̂n(X) is not known explicitly but (Con.1)-(Con.3) are satisfied, we bound

E

[∑d
j=1 Q

2
j

]
, for Qj as in (2.5), by a quantity which does not require knowledge

of the MLE. The result is given in Theorem 3.1 below, followed by the proof.

Theorem 3.1. Let X1,X2, . . . ,Xn be i.i.d. Rt-valued random elements, for
t ∈ N, with probability density (or mass) function f(xi|θ), where θ is the d-
valued vector parameter. Assume that (Con.1), (Con.3) are satisfied. We assume

existence and uniqueness of θ̂n(X). For J(x,θ) =
{

∂2

∂θi∂θj
� (θ;x)

}
i,j=1,2,...,d

,

the Hessian matrix, it holds that

E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦≤ E

⎡
⎢⎢⎣

d∑
k=1

d∑
q=1

∂

∂θk
�(θ0;X)

∂

∂θq
�(θ0;X) sup

θ:|θj−θ0,j |<ε

∀j∈{1,2,...,d}

{[
J−2(X,θ)

]
kq

}⎤⎥⎥⎦
=: U1. (3.37)

Proof. From the definition of the MLE, we have that ∂
∂θk

�
(
θ̂n(x);x

)
= 0,

∀k ∈ {1, 2, . . . , d}. A first-order Taylor expansion of ∂
∂θk

�
(
θ̂n(x);x

)
about θ0

leads to
d∑

j=1

(
θ̂n(x)j − θ0,j

) ∂2

∂θkθj
�(θ̃;x) = − ∂

∂θk
�(θ0;x), (3.38)

where θ̃ is between θ0 and θ̂n(x). Since the result in (3.38) holds ∀k∈{1, 2, . . . , d},
we deduce that

θ̂n(x)− θ0 = −
[
J(θ̃;x)

]−1

∇ (�(θ0;x))

and therefore(
θ̂n(x)− θ0

)ᵀ (
θ̂n(x)− θ0

)
= [∇ (�(θ0;x))]

ᵀ
[
J(θ̃;x)

]−2

(�(θ0;x)) .

Going a step further and using (Con.1), we get that

E

[(
θ̂n(X)− θ0

)ᵀ (
θ̂n(X)− θ0

)]

≤ E

⎡
⎢⎢⎣[∇ (�(θ0;X))]

ᵀ
sup

θ:|θj−θ0,j |<ε

∀j∈{1,2,...,d}

{
[J(θ;X)]

−2
}
(�(θ0;X))

⎤
⎥⎥⎦ ,

which finishes the proof.
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Remark 3.1. (1) As the bound (3.37) does not include θ̂n(X), in cases where
a closed-form expression for the vector MLE is not available, we can still get an
upper bound on the distributional distance between the distribution of the MLE
and the d-variate standard normal, under the assumptions (R.C.1)-(R.C.5) and
(Con.1)-(Con.3). Combining the results in (3.36) and (3.37) and for D as in
(3.29) and U1 as in (3.37), we obtain that∣∣∣E [h(√n[I(θ0)]

1
2 (θ̂n(X)− θ0)

)]
− E[h(Z)]

∣∣∣ ≤ D

+ ‖h‖1
√

dU1

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣
√√√√ d∑

i=1

Var

[
∂2

∂θk∂θi
log f(X1|θ0)

]

+
‖h‖1

√
n

2
U1

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
m=1

d∑
i=1

Mkmi. (3.39)

(2) In the special case where the second-order partial derivatives of the log-
likelihood function do not depend on x, then the result can be simplified, since
in such scenarios J(θ;X) = −n[I(θ)] and [J(θ;X)]

−2
= 1

n2 [I(θ)]
−2. Applying

this on (3.37), leads to

U1 =
1

n2

d∑
k=1

d∑
q=1

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2,...,d}

{[
I−2(θ)

]
kq

}
E

[
∂

∂θk
�(θ0;X)

∂

∂θq
�(θ0;X)

]
.

(3.40)

Example: The Beta distribution

Here, we briefly explain how we can calculate U1 in (3.37) for the specific exam-
ple of i.i.d. random variables from the Beta distribution with both shape param-
eters unknown. An analytic expression for the MLE is not available. Let Ψj(.)

to be the jth derivative of the digamma function Ψ, with Ψ(z) = Γ′(z)
Γ(z) , z > 0.

The function Ψj(z) can be defined through a sum, with

Ψm(z) = (−1)m+1m!

∞∑
k=0

1

(z + k)m+1
, for z ∈ C \ {Z−

0 } and m > 0. (3.41)

Corollary 3.1 gives the bound U1 for the MSE in the case of the Beta distribution.
The proof is given in the Appendix. For ease of presentation, and for x, y > 0,
allow us from now on to denote by

δI := δI(α, β) = Ψ1(α)Ψ1(β)−Ψ1(α+ β) (Ψ1(α) + Ψ1(β))

C1(x, y) := Ψ1(x)−Ψ1(x+ y). (3.42)

Corollary 3.1. Let X1, X2, . . . , Xn be i.i.d. random variables from the Beta(α, β)
distribution with θ0 = (α, β). Under (Con.1)-(Con.3) and with U1 as in (3.37)
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and δI , C1(x, y) as in (3.42), we get that

U1 =
1

n[δI(α+ ε, β + ε)]2

⎧⎨
⎩C1(α, β)

[
(α+ ε)2Ψ2

2(β − ε) + Ψ2
1(α+ β − 2ε)

]
+C1(β, α)

[
(β + ε)2Ψ2

2(α− ε) + Ψ2
1(α+ β − 2ε)

]
+2Ψ1(α+ β) [(β + ε)Ψ2(α− ε) + (α+ ε)Ψ2(β − ε)]

⎫⎬
⎭ . (3.43)

Remark 3.2. This bound basically relies on the calculation of the expressions
defined in (3.37). It can be easily seen that it is of order O

(
n−1
)
. We deduce

that, if we use the result in (3.43) in order to calculate the bound in (3.39) for
the specific case of the Beta distribution, then the obtained bound will be, as
expected, of order O

(
n−1/2

)
.

4. Proof of Theorem 2.1

In this section, the complete steps of the proof of the main theorem of our paper
are given. The following lemma (special case of Chebyshev’s ‘other’ inequality)
is useful for bounding conditional expectations, which sometimes can be difficult
to derive. The proof is given in the Appendix.

Lemma 4.1. Let M ∈ R
d be a random vector with Mi > 0 ∀i = 1, 2, . . . , d and

ε > 0. For every continuous function f : Rd → R such that f(m) is increasing
and f(m) ≥ 0, for mi > 0 ∀i ∈ {1, 2, . . . , d}, where m = (m1,m2, . . . ,md),

E[f(M)|Mi < ε ∀i = 1, 2, . . . , d] ≤ E[f(M)].

Proof of Theorem 2.1. It has already been shown in the outline of the proof
that the triangle inequality yields∣∣∣E [h(√n

[
Īn(θ0)

] 1
2

(
θ̂n(X)− θ0

))]
− E[h(Z)]

∣∣∣ ≤ (2.14) + (2.15).

Step 1: Upper bound for (2.14). First,∇(�(θ0;x)) =
∑n

i=1 ∇ (log(fi(xi|θ0)))
due to independence. With Ṽ as in (2.5), the results of Theorem 2.1 of Reinert
& Röllin (2009) will be used for

W =
1√
n
Ṽ

n∑
i=1

∇(log(fi(Xi|θ0))) = (W1,W2, . . . ,Wd)
ᵀ ∈ R

d×1. (4.44)

From (4.44) we have that for all k ∈ {1, 2, . . . , d}, Wk =
∑n

i=1 ξik, with ξik as in
(2.5). From the regularity conditions, E [∇(�(θ0;X))] = 0 and thus E[W ] = 0.
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Also, Īn(θ0) is symmetric. Therefore, Ṽ is also symmetric. Using the regularity
conditions we know that

∑n
i=1 Cov [∇ (log (fi(Xi|θ0)))] = nĪn(θ0) and basic

calculations show that Cov[W ] = Id×d. Since E[W ] = 0 and E [WW ᵀ] = Id×d,
the first assumption of Theorem 2.1 from Reinert & Röllin (2009) is satisfied.
This theorem also assumes that ∃W ′ such that (W ,W ′) is an exchangeable

pair meaning that (W ,W ′)
d
== (W ′,W ), where

d
== denotes equality in distri-

bution. In addition, it is assumed that

E [W ′ −W |W ] = −ΛW +R (4.45)

for an invertible d×dmatrix Λ and a σ(W )-measurable random vectorR. To de-
fineW ′ in our case such that (4.45) is satisfied, let

{
X′

i, i = 1, 2, . . . , n
}
be an in-

dependent copy of {Xi, i = 1, 2, . . . , n} and let the index I ∈ {1, 2, . . . , n} follow
the uniform distribution on {1, 2, . . . , n}, independently of the set{
Xi,X

′
i, i = 1, 2, . . . , n

}
. Let

ξ′ik =
1√
n

d∑
j=1

Ṽkj
∂

∂θj
log(fi(X

′
i|θ0))

and

W ′
k = Wk − ξIk + ξ′Ik, ∀k ∈ {1, 2, . . . , d} ,

with E [W ′
k −Wk|W ] = E [ξ′Ik − ξIk|W ] = −E [ξIk|W ] = − 1

n

∑n
i=1 E [ξik|W ] =

−Wk

n . Hence (4.45) is satisfied with Λ = 1
nId×d and R = 0. Therefore, Theorem

2.1 from Reinert & Röllin (2009) gives in our case that

|E[h(W )]− E[h(Z)]|

≤ n

⎛
⎝‖h‖2

4

d∑
i=1

d∑
j=1

[
Var
[
E
[
(W ′

i −Wi)
(
W ′

j −Wj

)
|W
]]] 1

2

⎞
⎠ (4.46)

+ n

⎛
⎝‖h‖3

12

d∑
i=1

d∑
j=1

d∑
k=1

E
∣∣(W ′

i −Wi)
(
W ′

j −Wj

)
(W ′

k −Wk)
∣∣
⎞
⎠ . (4.47)

To bound the variance of the conditional expectations in (4.46), let A =
σ (X1,X2, . . . ,Xn). Since σ(W ) ⊂ A , for any random variable Y , we have
that Var [E[Y |W ]] ≤ Var [E [Y |A ]]. Then,

(4.46) ≤ n
‖h‖2
4

⎧⎨
⎩

d∑
j=1

√
Var
[
E

[
(ξ′Ij − ξIj)2|A

]]

+2

d−1∑
k=1

d∑
j=k+1

√
Var
[
E

[
(ξ′Ik − ξIk)

(
ξ′Ij − ξIj

)
|A
]]⎫⎬
⎭ . (4.48)
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Since
{
X′

i, i = 1, 2, . . . , n
}
is an independent copy of {Xi, i = 1, 2, . . . , n} and

ξ′ik is independent of A ,

(4.48) = n
‖h‖2
4

{
d∑

j=1

[
Var
[
E
[
(ξ′Ij)

2
]
− 2E[ξ′Ij ]E[ξIj |A ] + E

[
ξ2Ij |A

]]] 1
2

+ 2

d−1∑
k=1

d∑
j=k+1

[
Var
[
E
[
ξ′Ikξ

′
Ij

]
− E

[
ξ′Ij
]
E [ξIk|A ]− E [ξ′Ik]E [ξIj |A ]

+ E [ξIkξIj |A ]
]] 1

2

}
. (4.49)

Using that E [ξ′ik] = 0,

(4.49) = n
‖h‖2
4

⎧⎨
⎩

d∑
j=1

[
1

n2
Var

[
n∑

i=1

E
[
ξ2ij |A

]]] 1
2

+2

d−1∑
k=1

d∑
j=k+1

[
1

n2
Var

[
n∑

i=1

E [ξikξij |A ]

]] 1
2

⎫⎬
⎭

=
‖h‖2
4

⎧⎨
⎩

d∑
j=1

[
Var

[
n∑

i=1

ξ2ij

]] 1
2

+ 2

d−1∑
k=1

d∑
j=k+1

[
Var

[
n∑

i=1

ξikξij

]] 1
2

⎫⎬
⎭

=
‖h‖2√

n
K2(θ0),

with K2(θ0) defined in (2.8). For (4.47), using again the definition of ξik in
(2.5), after basic calculations we obtain that

(4.47) ≤ ‖h‖3√
n

K3(θ0),

with K3(θ0) as in (2.9). Therefore,

(2.14) ≤ ‖h‖2√
n

K2(θ0) +
‖h‖3√

n
K3(θ0). (4.50)

Step 2: Upper bound for (2.15). With Ṽ as in (2.5), for ease of presentation
let us denote by

R1(θ0;x) =
1

2
√
n
Ṽ

d∑
j=1

d∑
q=1

QjQq

(
∇
(

∂2

∂θj∂θq
�(θ;x)

∣∣∣
θ=θ∗

0

))

T1 = T1(θ0;X, h) := h
(√

n
[
Īn(θ0)

] 1
2

(
θ̂n(X)− θ0

))

− h

⎛
⎝ 1√

n
Ṽ (∇(�(θ0;x))) +R1(θ0;X)

⎞
⎠
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T2 = T2(θ0;X, h) := h

⎛
⎝ 1√

n
Ṽ (∇(�(θ0;x))) +R1(θ0;x)

⎞
⎠

− h

(
1√
n
Ṽ (∇ (�(θ0;X)))

)
. (4.51)

Using the above notation and the triangle inequality

(2.15) = |E [T1 + T2]| ≤ E|T1|+ E|T2|.

With A[j] the j
th row of a matrix A, a first order multivariate Taylor expansion

gives that

|T1| ≤ ‖h‖1

∣∣∣∣∣∣
d∑

j=1

⎛
⎝√

n
[[
Īn(θ0)

] 1
2

]
[j]

(θ̂n(X)− θ0)−
1√
n
Ṽ[j]∇ (�(θ0;X))

− 1

2
√
n
Ṽ[j]

⎧⎨
⎩

d∑
k=1

d∑
q=1

QkQq

(
∇
(

∂2

∂θk∂θq
�(θ;x)

∣∣∣
θ=θ∗

0

))⎫⎬
⎭
⎞
⎠
∣∣∣∣∣∣ .

Using (2.13) component-wise and the Cauchy-Schwarz inequality, we have that

E|T1| ≤
‖h‖1√

n

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

√√√√E
[
Q2

j

]
E

[(
∂2

∂θj∂θk
�(θ0;X) + n[Īn(θ0)]kj

)2
]
.

(4.52)

To bound now E |T2|, with T2 as in (4.51), we need to take into account that
∂3

∂θk∂θq∂θj
�(θ;x)

∣∣∣
θ=θ∗

0

is in general not uniformly bounded. For ε > 0, the law of

total expectation and Markov’s inequality yield

E |T2| ≤ 2‖h‖P
(∣∣Q(m)

∣∣ ≥ ε
)
+ E

[
|T2|
∣∣∣∣Q(m)

∣∣ < ε
]

≤ 2‖h‖
ε2

E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦+ E

[
|T2|
∣∣∣∣Q(m)

∣∣ < ε
]
, (4.53)

with Q(m) as in (2.5). To bound E
[
|T2|
∣∣∣∣Q(m)

∣∣ < ε
]
, a first-order Taylor expan-

sion and (2.13) yield

|T2| ≤
‖h‖1
2
√
n

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

d∑
v=1

∣∣∣∣QjQv
∂3

∂θk∂θj∂θv
�(θ;X)

∣∣∣
θ=θ∗

0

∣∣∣∣ . (4.54)

Therefore, from (4.53) and (4.54) we have that

E|T2| ≤
2‖h‖
ε2

E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦
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+
‖h‖1
2
√
n

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣E
⎡
⎣ d∑

j=1

d∑
v=1

∣∣∣∣∣∣QjQv
∂3

∂θk∂θj∂θv
�(θ;X)

∣∣∣
θ=θ∗

0

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣Q(m)

∣∣ < ε

⎤
⎦ .

The Cauchy-Schwarz inequality and Lemma 4.1 yield

E|T2| ≤
2‖h‖
ε2

E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦

+
‖h‖1
2
√
n

⎧⎪⎨
⎪⎩

d∑
k=1

d∑
l=1

∣∣∣Ṽlk

∣∣∣ d∑
j=1

d∑
v=1

[
E
[
Q2

jQ
2
v

]] 1
2

[
E

[
(Mkjv(X))

2
∣∣∣∣∣Q(m)

∣∣ < ε
]] 1

2

⎫⎪⎬
⎪⎭ .

(4.55)

Therefore, from (4.52) and (4.55) we obtain that

(2.15) ≤ 2‖h‖
ε2

E

⎡
⎣ d∑
j=1

Q2
j

⎤
⎦+

‖h‖1√
n

K1(θ0), (4.56)

whereK1(θ0) is as in (2.7). Using now (4.50) and (4.56) we obtain the assertion.�

Appendix: Proofs of Lemma 4.1 and of Corollaries 2.3 and 3.1

Proof of Lemma 4.1. Let k ∈ {1, 2, . . . , d}. We set Md+1 = 0. It will be shown
that for k = 1, 2, . . . , d we have that

E[f(M)|Mi < ε , i = k, . . . , d] ≤ E[f(M)|Mi < ε , i = k + 1, . . . , d].

From the law of total expectation,

E[f(M)|Mi < ε , i = k + 1, . . . , d]

= E[f(M)|Mi < ε , i = k, . . . , d]P [Mk < ε|Mi < ε , i = k + 1, . . . , d]

+ E[f(M)|Mi < ε , i = k + 1, . . . , d, Mk ≥ ε]P [Mk ≥ ε|Mi < ε ,

i = k + 1, . . . , d] .

Using that

P [Mk < ε|Mi < ε , i = k + 1, . . . , d] = 1− P [Mk ≥ ε|Mi < ε , i = k + 1, . . . , d]

yields

E[f(M)|Mi < ε , i = k + 1, . . . , d] = E[f(M)|Mi < ε , i = k, . . . , d]

+ P [Mk ≥ ε|Mi < ε , i = k + 1, . . . , d]

⎧⎨
⎩E[f(M)|Mi < ε , i = k + 1, . . . , d,
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Mk ≥ ε]− E[f(M)|Mi < ε , i = k, . . . , d]

⎫⎬
⎭ . (4.57)

Since f(m) is an increasing function,

E[f(M)|Mi < ε, i = k + 1, . . . , d,Mk ≥ ε]− E[f(M)|Mi < ε, i = k, . . . , d] ≥ 0.

Applying this to (4.57) gives that

E[f(M)|Mi < ε , i = k, . . . , d] ≤ E[f(M)|Mi < ε , i = k + 1, . . . , d].

A simple iteration over k gives that

E[f(M)|Mi < ε ∀i = 1, 2, . . . , d] ≤ E[f(M)],

which is the result of the lemma. �

Proof of Corollary 2.3. For one random variable, the first and second-order
partial derivatives of the logarithm of the normal density function are

∂

∂η1
log f(x1|η0) = −x2

1 +
1

2η1
+

η22
4η21

,
∂

∂η2
log f(x1|η0) = x1 −

η2
2η1

,

∂2

∂η21
log f(x1|η0) = −

(
1

2η21
+

η22
2η31

)
,

∂2

∂η22
log f(x1|η0) = − 1

2η1
,

∂2

∂η1∂η2
log f(x1|η0) =

∂2

∂η2∂η1
log f(x1|η0) =

η2
2η21

. (4.58)

Hence, the expected Fisher Information matrix for one random variable is

I(η0) =
1

2η1

(
1
η1

+
η2
2

η2
1

−η2

η1

−η2

η1
1

)
, (4.59)

and after simple calculations we obtain that

[I(η0)]
− 1

2 = Ṽ =

√
2

α

(
η

3
2
1

(
1 +

√
η1
)

η1η2
η1η2 η1

(
1 +

√
η1
)
+ η22

)
,

where α = η1
(
1 +

√
η1
)2

+ η22 as defined in Corollary 2.3. We bound the terms
in Theorem 2.1 in order of appearance. The term K1(η0) is given in (2.7) and
the first quantity of K1(η0) vanishes due to the fact that

E
[
T 2
kj

]
= 0, ∀k, j ∈ {1, 2} . (4.60)

This comes from the definition of Tkj in (2.5) and the results of (4.58) and (4.59).

For the second term of K1(η0), we note that Cov
[
X̄, 1

n

∑n
i=1

(
Xi − X̄

)2]
= 0

(Casella & Berger, 2002)[p.218] and simple calculations lead to

E
[
Q2

1Q
2
2

]
<

2nη31(2n+ 63) + 3η21η
2
2

(
4n2 + 172n+ 315

)
(n− 5)2(n− 9)2

,
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E
[
Q4

1

]
<

η41
(
12n2 + 516n+ 945

)
(n− 5)2(n− 9)2

E
[
Q4

2

]
<

12n2
(
η1 + η22

)2
+ 12nη22

(
43η22 + 63η1

)
+ 945η42

(n− 5)2(n− 9)2
, (4.61)

where Q1 and Q2 are defined in (2.5). In addition, forMkjl(x) and 0 < ε = ε(η0)
as in the condition (R.C.3), simple calculations and (4.58) yield for m = 1, 2

sup
θ:|θm−ηm|<ε

∣∣∣∣ ∂3

∂θ31
�(θ;X)

∣∣∣∣ = sup
θ:|θm−ηm|<ε

∣∣∣∣ nθ31 +
3nθ22
2θ41

∣∣∣∣
<

n

(η1 − ε)
3

(
1 +

3(η2 + ε)2

2(η1 − ε)

)
=: M111(x),

sup
θ:|θm−ηm|<ε

∣∣∣∣ ∂3

∂θ32
�(θ;X)

∣∣∣∣ = 0 =: M222(x),

sup
θ:|θm−ηm|<ε

∣∣∣∣ ∂3

∂θ21θ2
�(θ;X)

∣∣∣∣ =
∣∣∣∣−nη2

η31

∣∣∣∣ < n(η2 + ε)

(η1 − ε)3
=: M112(x),

sup
θ:|θm−ηm|<ε

∣∣∣∣ ∂3

∂θ1θ22
�(θ;X)

∣∣∣∣ =
∣∣∣∣ n

2η21

∣∣∣∣ < n

2(η1 − ε)2
=: M221(x). (4.62)

For the choice of ε = ε0 as in (R.C.3), (4.62) requires that 0 < ε < η1. There is a
trade-off on its choice for the fourth term of the bound in (2.6) and the results
in (4.62). This is because the last term of the general bound in (2.6) is divided
by ε2 indicating that we should choose ε away from zero. However the terms in
(4.62) have powers of η1 − ε on the denominator and it would be reasonable for
ε to be close to zero and away from η1. An optimisation process with respect to
ε becomes quite tedious and therefore we choose ε to be the midpoint of (0, η1),
which is sufficiently away from both zero and η1. Using this value of ε and for Ṽ
as in (2.5), our results in (4.62) and (4.61) give, for the second term of K1(η0),
that

1

2

⎧⎨
⎩

2∑
k=1

2∑
l=1

∣∣∣Ṽlk

∣∣∣ 2∑
j=1

2∑
i=1

√
E
[
Q2

jQ
2
i

]√
E

[
(nMkji(X))

2
∣∣∣∣∣Q(m)

∣∣ < ε
]⎫⎬
⎭

<
n2

√
2α(n− 5)(n− 9)

⎧⎨
⎩8 (

√
η1 + |η2|+ η1)

√
12 +

516

n
+

945

n2

×
(
1 +

3
(
|η2|+ η1

2

)2
η1

)

+2

√
12(η1 + η22)

2 +
12η22(43η

2
2 + 63η1)

n
+

945η42
n2

×
(
4
∣∣η32∣∣
η31

+
(2|η2|+ η1)

(
3|η2|+ 2 + 2

√
η1
)

η21
+

1
√
η1

+ 1

)
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+
4

η1

√
4 (η1 + 3η22) +

6

n
(21η1 + 86η22) + 945η22

× ((η1 + |η2|)(η1 + 3|η2|+ 2
√
η1) + η1)

⎫⎬
⎭ , (4.63)

which is an upper bound for K1(η0). We now proceed to find an upper bound on
K2(η0), which is a sum of two quantities as (2.8) shows, involving the calculation
of variances of ξij as defined in (2.5). For the first quantity, using (4.58) and
(4.60), after straightforward calculation of moments (up to fourth order) of X1

and with α and β as in the corollary, we get that

1

4

2∑
j=1

⎡
⎣Var

⎡
⎣( 2∑

k=1

Ṽjk
∂

∂ηk
log f(X1|η0)

)2
⎤
⎦
⎤
⎦

1
2

=
1

4

⎧⎨
⎩
√√√√Var

[(
X2

1 − 1

2η1
− η22

4η21

)2
](

Ṽ 2
11 + Ṽ 2

12

)

+

√√√√Var

[(
X1 −

η2
2η1

)2
](

Ṽ 2
22 + Ṽ 2

12

)⎫⎬
⎭

=
1

2α

{
α

√
7

2
+

η42
2η21

+
7η22
η1

+
1√
2η1

(
η21η

2
2 + β2

)}
. (4.64)

For the second quantity in K2(η0), simple calculation of moments leads to

1

2

⎡
⎣Var

⎡
⎣ 2∑

q=1

2∑
v=1

Ṽ2q
∂

∂ηq
log f(X1|η0)Ṽ1v

∂

∂ηv
log f(X1|η0)

⎤
⎦
⎤
⎦

1
2

≤ 1

2

[
E

[
Ṽ11Ṽ21

(
∂

∂η1
log f(X1|η0)

)2

+ Ṽ22Ṽ12

(
∂

∂η2
log f(X1|η0)

)2

+
∂

∂η1
log f(X1|η0)

∂

∂η2
log f(X1|η0)

(
Ṽ 2
21 + Ṽ22Ṽ11

)]2] 1
2

≤
√
3

2

[
Ṽ 2
11Ṽ

2
21E

[(
∂

∂η1
log f(X1|η0)

)4
]
+ Ṽ 2

22Ṽ
2
12E

[(
∂

∂η2
log f(X1|η0)

)4
]

+
(
Ṽ 2
21 + Ṽ22Ṽ11

)2
E

[(
∂

∂η1
log f(X1|η0)

∂

∂η2
log f(X1|η0)

)2
]] 1

2

=
3η2
2α

[(
α− η22

)(
5 +

η22
η1

)2

+ β2 +

(
2
√
η1η2 +

α

η2

)2(
5

3
+

η22
η1

)] 1
2

. (4.65)
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For an upper bound on K3(η0) as in (2.9), we use that X ′
1 is an independent

copy of X1 and also

E

[∣∣∣∣ ∂

∂η1
log f(X1|η0)

∣∣∣∣
3
]
= E

[∣∣∣∣−X2
1 +

1

2η1
+

η22
4η21

∣∣∣∣
3
]
≤ 18

η31

(
1 +

η32

2η
3
2
1

√
π

)

E

[∣∣∣∣ ∂

∂η2
log f(X1|η0)

∣∣∣∣
3
]
=

1
√
πη

3
2
1

.

Then, the triangle inequality and (2.24) yield

1

12
E

[
2∑

i=1

∣∣∣∣∣
2∑

l=1

Ṽil

(
∂

∂ηl
log f(X ′

1|η0)−
∂

∂ηl
log f(X1|η0)

)∣∣∣∣∣
]3

≤ 32

3

{
E

[∣∣∣∣ ∂

∂η1
log f(X1|η0)

∣∣∣∣
3
](∣∣∣Ṽ11

∣∣∣3 + ∣∣∣Ṽ21

∣∣∣3)

+E

[∣∣∣∣ ∂

∂η2
log f(X1|η0)

∣∣∣∣
3
](∣∣∣Ṽ12

∣∣∣3 + ∣∣∣Ṽ22

∣∣∣3)
}

=
64

√
2

3α
3
2

⎧⎨
⎩18

(
1 +

η32

2η
3
2
1

√
π

)(
η

3
2
1 (1 +

√
η1)

3
+ |η2|3

)
+

η31 |η2|3 + β3

√
πη

3
2
1

⎫⎬
⎭ .

(4.66)

For the last term of (2.6), we obtain that

2‖h‖
ε2

E

⎡
⎣ 2∑
j=1

Q2
j

⎤
⎦ =

2‖h‖
ε2(n− 3)(n− 5)

(
(2n+ 15)η21 + 2n

(
η22 + η1

)
+ 15η22

)

=
8‖h‖

η21(n− 3)(n− 5)

(
(2n+ 15)

(
η21 + η22

)
+ 2nη1

)
, (4.67)

where for the second equality we used that ε = η1

2 , with our choice explained
in the paragraph after (4.62). Using the results in (4.60), (4.63), (4.64), (4.65),
(4.66) and (4.67) we get the result of the corollary. �

Proof of Corollary 3.1.
Part a). The probability density function is

f(x|θ) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

with α, β > 0 and x ∈ [0, 1]. Hence, for j, k ∈ Z
+

∂

∂α
log f(x|θ) = Ψ(α+ β)−Ψ(α) + log(x),
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∂

∂β
log f(x|θ) = Ψ(α+ β)−Ψ(β) + log(1− x)

∂j+1

∂αj+1
log f(x|θ) = Ψj(α+ β)−Ψj(α),

∂j+1

∂βj+1
log f(x|θ) = Ψj(α+ β)−Ψj(β)

∂k+j

∂αk∂βj
log f(x|θ) = Ψk+j−1(α+ β). (4.68)

From (4.68), we see that we are under the scenario (2) of Remark 3.1 and U1

will be calculated using (3.40). The expected Fisher Information matrix is

I(θ0) =

(
Ψ1(α)−Ψ1(α+ β) −Ψ1(α+ β)

−Ψ1(α+ β) Ψ1(β)−Ψ1(α+ β)

)
.

Simple calculations show that the inverse of I(θ0) is

[I(θ0)]
−1

=
1

δI

(
C1(β, α) Ψ1(α+ β)
Ψ1(α+ β) C1(α, β)

)
.

Therefore,

[I(θ0)]
−2

=
1

δ2I

(
C2

1 (β, α)+Ψ2
1(α+β) Ψ1(α+β)(C1(α, β)+C1(β, α))

Ψ1(α+β)(C1(α, β)+C1(β, α)) C2
1 (α, β)+Ψ2

1(α+β)

)
.

For k, q = 1, 2, we now proceed to calculate the quantities

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{[
I−2(θ)

]
kq

}
.

Firstly, the fact that δI(α, β) as in (3.42) is a positive, decreasing function of α
and β, means that

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{
1

[δI(θ1, θ2)]2

}
=

1

[δI(α+ ε, β + ε)]2
. (4.69)

In regards to C2
1 (θ1, θ2) as in (3.42), we have that using a first-order Taylor

expansion and for θ̃ between θ1 and θ1 + θ2,

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{
C2

1 (θ1, θ2)
}
= sup

θ:|θj−θ0,j |<ε

∀j∈{1,2}

{
θ22Ψ

2
2(θ̃)
}

= (β + ε)2 sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{
Ψ2

2(θ1)
}
= (β + ε)2Ψ2

2(α− ε),

(4.70)
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since Ψ2
2(x) is a decreasing function of x; see the definition of Ψ2(·) in (3.41).

In the same way, we can find an upper bound for C2
1 (θ2, θ1). With regards to

the quantity C1(θ1, θ2) + C1(θ2, θ1), we have that a similar first-order Taylor
expansion as in (4.70) leads to

C1(θ1, θ2) + C1(θ2, θ1) = −θ2Ψ2

(
θ̃
)
− θ1Ψ2

(
˜̃
θ
)
, (4.71)

where θ̃ is between θ1 and θ1+θ2, while
˜̃
θ is between θ2 and θ1+θ2. It is important

to highlight that Ψ2(x), as defined in (3.41) is a negative and increasing function
of x. Continuing from (4.71),

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{C1(θ1, θ2) + C1(θ2, θ1)} = − [(β + ε)Ψ2(α− ε) + (α+ ε)Ψ2(β − ε)] .

(4.72)
Using the results in (4.69), (4.70), as well as the fact that Ψ1(x) defined in (3.41)
is a positive, decreasing function of x, we have that

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{[
I−2(θ)

]
11

}
=

(α+ ε)2Ψ2
2(β − ε) + Ψ2

1(α+ β − 2ε)

[δI(α+ ε, β + ε)]2

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{[
I−2(θ)

]
12

}
= sup

θ:|θj−θ0,j |<ε

∀j∈{1,2}

{[
I−2(θ)

]
21

}

= − [(β + ε)Ψ2(α− ε) + (α+ ε)Ψ2(β − ε)]

[δI(α+ ε, β + ε)]2

sup
θ:|θj−θ0,j |<ε

∀j∈{1,2}

{[
I−2(θ)

]
22

}
=

(β + ε)2Ψ2
2(α− ε) + Ψ2

1(α+ β − 2ε)

[δI(α+ ε, β + ε)]2
. (4.73)

To derive the expression for U1 as in (3.40) in this special case, we need to cal-

culate the quantities E

[
∂

∂θk
�(θ0;X) ∂

∂θq
�(θ0;X)

]
, for k, q = 1, 2. Using (4.68),

we have that

E

[(
∂

∂α
�(θ0;X)

)2
]
= E

⎡
⎣(n(Ψ(α+ β)−Ψ(α)) +

n∑
i=1

log(Xi)

)2
⎤
⎦

= Var

[
n∑

i=1

log(Xi)

]
= nC1(α, β)

E

[(
∂

∂β
�(θ0;X)

)2
]
= E

⎡
⎣(n(Ψ(α+ β)−Ψ(β)) +

n∑
i=1

log(1−Xi)

)2
⎤
⎦

= Var

[
n∑

i=1

log(1−Xi)

]
= nC1(β, α)
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E

[
∂

∂α
�(θ0;X)

∂

∂β
�(θ0;X)

]
= n(Ψ(α+ β)−Ψ(β))E

[
n∑

i=1

log(Xi)

]

+ E

⎡
⎣ n∑

i=1

n∑
j=1

log(Xi) log(1−Xj)

⎤
⎦

= n2(Ψ(α+ β)−Ψ(β))(Ψ(α)−Ψ(α+ β))

+ n ((Ψ(α)−Ψ(α+ β))(Ψ(β)−Ψ(α+ β))

−Ψ1(α+ β))

+ n(n− 1)(Ψ(α)−Ψ(α+ β))(Ψ(β)−Ψ(α+ β))

= −nΨ1(α+ β). (4.74)

Applying the results of (4.73) and (4.74) to (3.40), we conclude that

E

[
2∑

j=1

Q2
j

]
≤ 1

n[δI(α+ ε, β + ε)]2

{
C1(α, β)

[
(α+ ε)2Ψ2

2(β − ε) + Ψ2
1(α+ β − 2ε)

]
+ C1(β, α)

[
(β + ε)2Ψ2

2(α− ε) + Ψ2
1(α+ β − 2ε)

]
+ 2Ψ1(α+ β) [(β + ε)Ψ2(α− ε) + (α+ ε)Ψ2(β − ε)]

}
,

which completes the proof. �
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