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Abstract: In a linear regression model of fixed dimension p ≤ n, we con-
struct confidence regions for the unknown parameter vector based on the
Lasso estimator that uniformly and exactly hold the prescribed in finite
samples as well as in an asymptotic setup. We thereby quantify estimation
uncertainty as well as the “post-model selection error” of this estimator.
More concretely, in finite samples with Gaussian errors and asymptotically
in the case where the Lasso estimator is tuned to perform conservative
model selection, we derive exact formulas for computing the minimal cov-
erage probability over the entire parameter space for a large class of shapes
for the confidence sets, thus enabling the construction of valid confidence
regions based on the Lasso estimator in these settings. The choice of shape
for the confidence sets and comparison with the confidence ellipse based on
the least-squares estimator is also discussed. Moreover, in the case where
the Lasso estimator is tuned to enable consistent model selection, we give
a simple confidence region with minimal coverage probability converging to
one. Finally, we also treat the case of unknown error variance and present
some ideas for extensions.
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1. Introduction

The Lasso estimator as introduced in Tibshirani (1996) as well as many variants
thereof have gained strong interest in the statistics community and in applied
areas over the past two decades. As is well known, the main attraction of the
Lasso estimator lies in its ability to perform model selection and parameter
estimation at very low computational cost, see for instance Alliney and Ruzinsky
(1994), Efron et al. (2004) and Rosset and Zhu (2007), and in the fact that the
estimator can be used in high-dimensional settings where the number of variables
p exceeds the number of observations n (“p � n”).

Recent years have seen an increased interest on how to perform valid in-
ference in connection with these types of estimators. Pötscher and Schneider
(2010) construct valid confidence intervals based on the Lasso as well as related
estimators in the framework of linear regression models with orthogonal design
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and give an in-depth analysis of the problems and challenges that arise in this
context. Generalizations of these results to a moderate-dimensional (orthogo-
nal) setting where p ≤ n but p diverging with n can be found in Schneider
(2016).

In a general high-dimensional setting with p � n, confidence regions and
confidence intervals in connection with the Lasso estimator have recently been
treated by different approaches. Based on Zhang and Zhang (2014), several
papers including Van de Geer et al. (2014), Javanmard and Montanari (2014),
Caner and Kock (2014) and Van de Geer and Stucky (2015) use the idea of “de-
sparsifying” the Lasso estimator. In case where p ≤ n this approach essentially
reduces to using the least-squares (LS) estimator for inference. In that sense this
theory leaves a gap on how to construct confidence regions based on the Lasso
estimator in a low-dimensional framework to provide uncertainty quantification
for the Lasso estimator in this case.

Lee et al. (2016) consider finite-sample results for confidence intervals in
connection with the Lasso estimator yet these authors take a different route
in that their intervals are not set to cover the true parameter, but a pseudo-
true value that depends on the selected model and coincides with the true
parameter if the selected model is correct. All inference is conditional on the
selected model. A model-dependent parameter is also covered in Berk et al.
(2013) who discuss an intricate procedure for obtaining confidence regions for a
pseudo-true parameter in connection with arbitrary model selection procedures.

In this paper, we construct confidence sets based on the Lasso estimator for the
entire unknown parameter vector. We stress that while in the low-dimensional
case the LS estimator can be employed to build confidence regions, the Lasso
estimator is still used in such a framework, naturally entailing the question
on how to conduct valid inference, and our results also quantify the worst-case
estimation (“post-model selection”) error of this method. Moreover, Schneider
and Ewald (2017) show that in high dimensions, the Lasso estimator may in
fact act as a low-dimensional procedure in which case the results of this paper
can also be applied.

One of the challenges of this task lies in the well-known fact that the finite-
sample distribution of the Lasso estimator depends on the unknown parameter
in a complicated manner. This phenomenon does not vanish for large samples
as can be seen within a so-called moving-asymptotic framework (see Pötscher
and Leeb (2009) for a detailed analysis in orthogonal design) and also occurs for
related estimators. In order to construct valid confidence sets, we need to know
the smallest coverage probability occurring over the whole parameter space.
Pötscher and Schneider (2010) derive a formula for the minimal coverage prob-
ability of fixed-width confidence intervals based on the Lasso estimator in one
dimension using knowledge of its finite-sample distribution. In the general case,
this finite-sample distribution is not known, so it is not clear how to obtain an
expression for the coverage probability in more than one dimension. Addition-
ally, this coverage probability clearly depends on the shape that is used for the
confidence set and it is a not clear a priori what this shape should be. We do
the following.
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While the finite sample distribution and therefore the coverage probabil-
ity for any kind of set based on the Lasso estimator is unknown in general
dimensions, we show that computing the minimal coverage probability can ac-
tually be carried out without this explicit knowledge. We obtain an explicit
formula for the minimal coverage probability by, in a way, deferring the min-
imization problem into the objective function that defines the estimator, as is
depicted in Section 3. For the confidence regions, we consider a large class of
shapes that is determined by a condition involving the regressor matrix. This
class encompasses the elliptic shape one would use if the confidence region was
based on the LS estimator, thus enabling comparisons with the LS confidence el-
lipse. Analogously to the fixed-width intervals in Pötscher and Schneider (2010),
the confidence regions we consider are random only through their centering at
the Lasso estimator (which is also in line with the setup in the literature for
high-dimensional settings, see for instance Van de Geer et al. 2014). Asymp-
totically, we distinguish between two regimes for the tuning parameters which
we call conservative and consistent tuning. As suggested from the results in
Pötscher and Schneider (2010), our results from finite samples essentially carry
over asymptotically when the estimator is tuned conservatively. In the case
of consistent tuning, the uniform convergence rate of the estimator is slower
than n−1/2 and we give the asymptotic distribution of the Lasso estimator
when scaled by the appropriate factor corresponding to the uniform conver-
gence rate, as well as suggesting a simple construction for a confidence set in
that case.

The remaining paper is organized as follows. In Section 2 we set the frame-
work by stating the model, defining the estimator and introducing some nota-
tion. The main result giving the formula for the minimal coverage probability is
presented in Section 3 and subsequently Section 4 is devoted to discussing how
to concretely construct the corresponding confidence sets, as well as their rela-
tionship to the confidence ellipse based on the LS estimator. We treat the case
of unknown error variance in Section 5, as well as several ideas for extensions
and further considerations. In Section 6 we derive asymptotic results both for
the case of conservative and the case of consistent model selection. Section 7
concludes. All proofs are deferred to Appendix A.

Literature on distributional properties of the Lasso estimator in the low-
dimensional setting (p ≤ n) include the often-cited paper by Knight and Fu
(2000) who derive the asymptotic distribution when the estimator is tuned to
perform conservative model selection. Pötscher and Leeb (2009) give a detailed
analysis in the framework of a linear regression model with orthogonal design
and derive the distribution of the Lasso estimator in finite samples as well as in
the two asymptotic regimes of consistent and conservative tuning. Implications
of these results for confidence intervals are analyzed in Pötscher and Schneider
(2010) and generalizations to a moderate-dimensional setting where p ≤ n but p
diverging with n are contained in Pötscher and Schneider (2011) and Schneider
(2016).
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2. Setting and assumptions

Consider the linear model
y = Xβ + ε,

where y is the observed n× 1 data vector, X the n× p regressor matrix which is
assumed to be non-stochastic with full column rank p, β ∈ R

p is the true param-
eter vector and ε the unobserved error term defined on some probability space
(Ω,A, P ) and consisting of independent and identically distributed components
with mean 0 and finite variance σ2. We consider a componentwise tuned Lasso
estimator β̂L, defined as the unique solution to the minimization problem

min
β∈Rp

Ln(β) = min
β∈Rp

‖y −Xβ‖2 + 2

p∑
j=1

λn,j |βj |,

where λn,j , are non-negative and non-random componentwise tuning parameters
that allow to exclude parameters from penalization. Note that if λn,j = 0 for

all j, this estimator is equal to the ordinary least-squares (LS) estimator β̂LS

and that λn,j = c > 0 for all j corresponds to the “classical” Lasso estimator
as proposed by Tibshirani (1996). For later use, let λn = (λn,1, . . . , λn,p)

′ and
Λn = diag(λn), the diagonal matrix whose diagonal elements are given by the
components of λn. We use 1{.} for the indicator function and make the following
obvious definitions. For a ∈ R

p and B ⊆ R
p, the set a + B = B + a ⊆ R

p is
defined as the set {a+ b : b ∈ B}. For a p× p matrix C̄ and a scalar c, the sets
C̄B and cB in R

p are {C̄b : b ∈ B} ⊆ R
p and {cb : b ∈ B} ⊆ R

p, respectively.
Finally, for k ∈ N, Ik stands for the k × k identity matrix and R denotes the
extended real line R ∪ {−∞,∞}.

3. Finite-sample results

We aim to construct confidence sets for the entire parameter vector β based on
the Lasso estimator β̂L. That means that for a non-random set M ⊆ R

p, we
consider sets of the form

β̂L −M = {β̂L −m : m ∈ M},

which have to satisfy that the probability of actually covering the unknown
parameter β never (for no value of β) falls below a prescribed level 1− α with

α ∈ [0, 1]. In other words, we need Pβ(β ∈ β̂L − M) ≥ 1 − α for all β ∈ R
p

(where we stress the dependence of the probability measure on β whenever it
occurs), so that

inf
β∈Rp

Pβ(β ∈ β̂L −M) ≥ 1− α.

In order to achieve this, we need to be able to compute this “infimal” (mini-
mal) coverage probability. Throughout this and the two subsequent sections we
suppose that the errors as normally distributed

ε ∼ N(0, σ2In),
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although our results do not heavily depend on this assumption, also see Re-
mark 1. The assumption that will be removed for asymptotic results in Sec-
tion 6. We will show that the minimum occurs when the components of the
unknown parameter become large in absolute value by essentially doing the fol-
lowing. We reparametrize the objective function defining the Lasso estimator
so that the dependence on the unknown parameter becomes more transparent
and easier to handle. We then consider the limiting cases of the objective func-
tions when the components of the unknown parameter vector β become large
in absolute value (that is, tend to +∞ or −∞). We will see that it is possible
to minimize the resulting objective functions explicitly, with minimizers that
follow a shifted normal distribution that has the same covariance matrix as the
LS estimator and by construction do not depend on the unknown parameter.
Finally, we will show that the infimal coverage probability of the proposed sets
is indeed “achieved” for one of these finitely many limiting cases.

To state the main theorem, we need several definitions. First we define the
reparametrized objective function Qn(u) = Ln(β+n−1/2u)−Ln(β) so that Qn

is uniquely minimized at ûn = n1/2(β̂L−β), the estimation error scaled by n1/2.
Of course, this scaling factor is arbitrary in finite samples, but proves to be of
advantage when considering the problem in large samples in Section 6.1. We
can write Qn as

Qn(u) = u′Cnu− 2u′Wn + 2n−1/2

p∑
j=1

λn,j

[
|uj + n1/2βj | − |n1/2βj |

]
,

where Cn = X ′X/n and Wn = n−1/2X ′ε ∼ N(0, σ2Cn). Note that for a set
M ⊆ R

p we then have

Pβ(β ∈ β̂L − n−1/2M) = Pβ(ûn ∈ M).

The above mentioned limiting cases of the objective function that we consider
are defined as

Qd
n(u) = u′Cnu− 2u′Wn + 2n−1/2

p∑
j=1

λn,jdjuj , (1)

where d = (d1, . . . , dp)
′ ∈ {−1, 1}p. Holding Wn fixed for a moment, we indeed

see that
Qd

n(u) = lim
djβj→∞
j=1,...,p

Qn(u).

As shorthand notation, we write ûd
n for the unique minimizer of Qd

n. To define
the shape that we want to consider for the confidence regions, we introduce the
following notation. For m ∈ R

p, a vector d ∈ {−1, 1}p and a matrix C̄ ∈ R
p×p,

we define

Ad
C̄(m) =

p⋂
j=1

{z ∈ R
p : dj(C̄m)j ≤ dj(C̄z)j , djzj ≤ 0}.
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Fig 1. The set A−ι
C̄

(m) with ι = (1, 1)′, m = (1.5, 2)′ and C̄ =
(

1 −0.5
−0.5 1

)
along with the

hyperplanes defining the set. The point m = (1.5, 2)′ is displayed as a dot.

The set Ad
C̄
(m) is an intersection of 2p half-spaces, p of which determine the

orthant the set is located in via the parameter d. The other p half-spaces are
defined by hyperplanes that intersect at the pointm. Figure 1 shows one example
of such a set. Note that in general, Ad

C̄
(m) could be non-empty also for sgn(m) �=

−d. The sets we consider are determined by the following condition.

Condition A. Let C̄ ∈ R
p×p be given. We say that a set M ⊆ R

p satisfies
Condition A with matrix C̄ if

Ad
C̄(m) ⊆ M

for all d ∈ {−1, 1}p and for all m ∈ M .

The above condition will be discussed in more detail in Section 4. Using this
notation, we can now state the main theorem.

Theorem 1. If Mn ⊆ R
p is non-random and satisfies Condition A with C̄ =

Cn, then

inf
β∈Rp

Pβ(ûn ∈ Mn) = min
d∈{−1,1}p

P (ûd
n ∈ Mn),

where ûd
n ∼ N(−n−1/2C−1

n Λnd, σ
2C−1

n ).

The distributions of ûd
n determining the formula for the infimal coverage

probability are shifted normal distributions with the same covariance matrix as
the corresponding (shifted and scaled) LS estimator ûLS = n1/2(β̂LS − β) and
mean that depends on the regressors and the vector of tuning parameters.

Remark 1. Note that (the proof of) Theorem 1 does not hinge on the normality
assumption, as it exploits the structure of the underlying optimization problem
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rather than stochastic properties of the error distribution. Different error distri-
butions could be used in Theorem 1, only the distributions of ûd

n would have to
be adapted accordingly.

Since Condition A for p = 1 simply requires the corresponding set Mn to
be an interval containing zero, Theorem 1 is indeed a generalization of the
formula in Theorem 5(a) in Pötscher and Schneider (2010), as discussed in the
introduction. (To make the connection, note that the tuning parameter ηn in
that reference corresponds to a component n−1/2λn,j of the vector of tuning
parameters in our paper.) The following obvious corollary specifies the resulting
valid confidence region based on the Lasso estimator.

Corollary 2. Let 0 < α < 1. If Mn ⊆ R
p is non-random and satisfies Con-

dition A with C̄ = Cn, as well as mind∈{−1,1}p P (ûd
n ∈ Mn) = 1 − α with

ûd
n ∼ N(−n−1/2C−1

n Λnd, σ
2C−1

n ), then

inf
β∈Rp

Pβ(β ∈ β̂L − n−1/2Mn) = 1− α.

4. Constructing the confidence set

We now turn to discussing the important matter of how to choose an appropriate
set Mn ⊆ R

p for some desired level of confidence 1 − α by discussing concrete
shapes for the confidence regions as well as their size and relation to confidence
sets based on the LS estimator. As mentioned in the previous section, we need
to find a set Mn ⊆ R

p that satisfies Condition A with C̄ = Cn and such that
mind∈{−1,1}p P (ûd

n ∈ Mn) = 1− α where

ûd
n ∼ N(−n−1/2C−1

n Λnd, σ
2C−1

n ).

The resulting confidence set for β is then the scaled and shifted set β̂L−Mn/n
1/2.

If we would base the set on the LS estimator β̂LS instead of β̂L, the canonical
and best choice for Mn in terms of volume is an ellipse determined by the
contour lines of a N(0, σ2C−1

n )-distribution, the Cn-ellipse. Given the fact that
the covariance matrix of the distributions of ûd

n is in fact σ2C−1
n , in addition

to the fact that the means of the distributions average to 0, it is reasonable to
consider the Cn-ellipse as a shape in connection with the Lasso estimator also.
As stated in the following proposition, this shape complies with Condition A.

Proposition 3. The Cn-ellipse given by

ECn(k) = {z ∈ R
p : z′Cnz ≤ k}

satisfies Condition A with C̄ = Cn for any k > 0.

How to choose the parameter k for a given level of coverage 1 − α is stated
in the next proposition.
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Proposition 4. For any k > 0, we have that

argmin
d∈{−1,1}p

P
(
ûd
n ∈ ECn(k)

)
= argmax

d∈{−1,1}p

‖C−1/2
n Λnd‖.

Note that if d∗ solves the above optimization problem, so does −d∗. To fi-
nally obtain the confidence ellipse based on the Lasso estimator, pick any such
optimizer d∗ and compute k∗ > 0 so that P (ud∗

n ∈ ECn(k
∗)) = 1 − α, which is

easily done based on the following proposition.

Proposition 5. For 0 < α < 1 we have P (ûd
n ∈ ECn(σ

2κ)) = 1− α for

κ = (χ2
p,ν)

−1(1− α),

where (χ2
p,ν)

−1 is the quantile function of a non-central χ2-distribution with p
degrees of freedom and non-centrality parameter

ν =
1

nσ2
d′ΛnC

−1
n Λnd.

Note that Proposition 5 also shows that the ellipse ECn(k
∗), and therefore

the resulting confidence set based on the Lasso estimator, is larger in volume
than the one based on the LS estimator, since P (β ∈ β̂LS − ECn(σ

2κ)) = 1− α
is satisfied for κ = (χ2

p)
−1(1 − α) where (χ2

p)
−1 is the quantile function of

a (central) χ2-distribution with p degrees of freedom. Clearly, the difference
in size will increase as the tuning parameters become large as then the non-
centrality parameter ν will grow. These observations are in line with the findings
in Pötscher and Schneider (2010) who show that a confidence interval based on
the Lasso estimator is larger than a confidence interval based on the LS estimator
with the same coverage probability.

When comparing the two confidence sets, we emphasize that since the ellipses
are centered at different values, the smaller ellipse based on the LS estimator
is in general not contained in the ellipse based on the Lasso estimator. This, as
well as the difference in volume between the two ellipses, will also be illustrated
in the example below.

It is quite obvious that the Cn-ellipse is not optimal as a shape for confidence
sets based on the Lasso estimator since we can get higher coverage with a set
of the same volume by adjusting the ellipse “towards” the contour lines of the
N(−n−1/2C−1

n Λnd
∗, σ2C−1

n )-distributions (in such a way that Condition A is
preserved). To find the best shape possible, one would have to minimize the
volume of the set over all possible shapes satisfying Condition A subject to
the constraint of holding the prescribed minimal coverage probability. This is
a highly complex optimization problem and we do not dwell further on this
subject here, but illustrate possible ways to construct “good” sets, as shown
in the example below. Before discussing this further, note that the following
proposition shows that it is easy to find the closure of an arbitrary subset of Rp

with respect to Condition A.
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Fig 2. The confidence ellipses based on and centered at the Lasso estimator β̂L = (1.15, 0)′

(red) and the smaller one based on and centered at the LS estimator β̂LS = (1.35, 0.17)′ (blue),
respectively.

Proposition 6. For any M ⊆ R
p, the set

⋃
m∈M

⋃
d∈{−1,1}p

Ad
C̄(m)

is the smallest set containing M that satisfies Condition A.

We now provide an example for p = 2 illustrating the difference between the
confidence ellipse based on the LS estimator and the one based on the Lasso, as
well as how to choose a better shape in terms of volume for the confidence set
based on the Lasso estimator. The simulations and calculations were carried out
using the statistical software package R. The example is set up in the following
way. We let n = 20 and generate the (n × 2)-matrix X using independent and
identically distributed standard normal entries that are transformed row-wise
by an appropriate (2× 2)-matrix in order to get

Cn =
X ′X

n
=

(
1 −0.5

−0.5 1

)
.

We generate the data vector y from the corresponding linear model with σ2 = 1
(so that ε ∼ N(0, In)) and true parameter chosen as β = (1, 0)′. We compute the
Lasso estimator using the glmnet-package and tuning parameters λn,1 = λn,2 =√
n/2 (asymptotically corresponding to what we will refer to as conservative

model selection in the subsequent section). We also considered estimators where
the tuning parameters were chosen by 10-fold cross-validation (as provided in the
glmnet-package) which ended up yielding comparable results for the estimator.

We then constructed confidence ellipses with level α = 0.05 based on both
the LS and the Lasso estimator in the manner described earlier in this section.
The resulting sets are shown in Figure 2. The plot clearly illustrates the above
described fact that the confidence ellipse based on the Lasso estimator is larger
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than the confidence ellipse that is based on the LS estimator. Also, the two sets
are overlapping by a large amount (in fact, the maximal distance between the
two estimators is controlled by Proposition 16 in the Appendix). However, the
LS ellipse is not entirely contained in the one based on the Lasso, stressing the
fact the Theorem 1 yields non-trivial sets.

The above comparison between the two ellipses, however, is somewhat unfair
in the sense that the shape used for both confidence sets is the optimal one (in
terms of volume) for the LS estimator, but, as discussed above, not for the Lasso
estimator. With the optimal shape for a Lasso confidence set being unknown, we
at least want to find a shape that improves upon the ellipse. As a basis for this,
we consider the union of the contour sets corresponding to the distributions of
ûd
n, that is, the 2p shifted Cn-ellipses

Un(k) =
⋃

d∈{−1,1}p

ECn(k)− n−1/2C−1
n Λnd,

where each set in the union is of optimal shape for the corresponding distri-
bution of ûd

n. As a starting point, we choose k so that P (ûd
n ∈ ECn(k) −

n−1/2C−1
n Λnd) = 1 − α (note that k is then simply the parameter of the

Cn-ellipse used for the LS estimator, but any k > 0 such that Un(k) satis-
fies P (ûd

n ∈ Un(k)) ≥ 1−α works). Clearly, this set is still too large and will not
satisfy Condition A, so we need to address these two issues. First, we add all
points necessary so that the resulting set satisfies Condition A. Proposition 6
ensures that ⋃

m∈Uk

⋃
d∈{−1,1}p

Ad
Cn

(m)

fulfills the desired condition. Note that in this particular case, it is fairly straight-
forward to see that this set is simply given by the convex hull of the shifted
ellipses Un(k). Finally, to get the smallest set with this shape that still holds
the prescribed level of coverage, we iteratively adjust the set by reducing the
parameter k and re-calculate the minimal coverage probability of the resulting
set until the desired minimal coverage probability is reached (up to an arbitrary
level of precision). The resulting alternatively shaped set is depicted in Figure 3,
(a) showing the midpoints of the 2p = 4 ellipses used in the construction and (b)
displaying the new confidence set on top of the elliptic confidence region based
on the Lasso as devised before. It is obvious that the new shape has slightly less
volume than the ellipse.

5. Extensions and further considerations

In Section 5.1 we extend the previous results for the case of unknown error vari-
ance. Furthermore, we provide some insights on how the coverage probability of
Lasso confidence regions might vary over the parameter space in Section 5.2 and
illustrate some ideas on how to build confidence intervals for a single component
of the parameter vector in Section 5.2, the latter two sections considering for
the simple case of p = 2.
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Fig 3. (a) Construction of the alternative shape based on 2p = 4 ellipses with their centers
displayed as dots. (b) The resulting improved confidence set with the alternative shape (blue)

and the previous elliptic shape (red), both based on at the Lasso estimator β̂L = (1.15, 0)′.

5.1. Unknown error variance

As the results in Section 4 on how to construct the confidence regions use knowl-
edge of the error variance σ2. We now turn to the more realistic setting when
the error variance is unknown and extend our findings to this framework. Let

σ̂2 =
1

n− k
ε̂′LSε̂LS,

the usual unbiased estimator of σ2 based on the LS residuals ε̂LS = y −Xβ̂LS.
To apply the previous results to this setting, we let the tuning parameter λ

depend on the variance estimate in the following way. For this subsection, set
λn = γn/σ̂, where γn ∈ R

p with γn,j ≥ 0 let ûd
n be defined as before. Since

the main argument for proving the results leading up to Corollary 2 depend
on the minimization problem rather than on stochastic properties, inspection
of the corresponding proofs reveals that the minimal coverage probability can
still be computed correspondingly. Not too surprisingly, rather than using (non-
central) normal distributions, we need to consider (non-central) t-distributions1

when the variance is estimated. We summarize this in the following corollary.

1A p-dimensional multivariate T (k, μ,Σ) with k degrees of freedom, non-centrality param-
eter μ ∈ R

p and positive definite matrix Σ ∈ R
p×p has Lebesgue density function

f(t) =
Γ( k+p

2
)

Γ( k
2
)(kπ)p/2|Σ|1/2

(
1 +

(t− μ)′Σ−1(t− μ)

k

)− k+p
2

.

For k > 2, the covariance matrix is given by k
k−2

Σ.
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Fig 4. The coverage probability of the Lasso ellipse for p = 2, 1−α = 0.95, n = 20 and (a)

Cn =
(

1 0.5
0.5 1

)
and (b) Cn =

(
1 −0.5

−0.5 1

)
.

Corollary 7. For λn = γn/σ̂ and if Mn ⊆ R
p is non-random and satisfies

Condition A, we have that

inf
β∈Rp

Pβ(β ∈ β̂L − σ̂Mn) = min
d∈{−1,1}p

P (ûd
n ∈ σ̂Mn) = min

d∈{−1,1}p
P (t̂dn ∈ Mn),

where t̂dn ∼ T (n − p,−n−1/2C−1
n Γnd, C

−1
n ) is a multivariate non-central

t distribution with n − p degrees of freedom, non-centrality parameter μ =
−n−1/2C−1

n Lnd where Γn = diag(γn), and matrix C−1
n .

One can now construct confidence regions in case where σ2 is unknown. Note
that the shape of the contour sets of the above t-distribution is the same as
for the original distribution of ûn, namely ECn(k) = {z ∈ R

p : z′Cnz ≤ k}.
Therefore, all considerations from Section 4 also apply in this setting, only the
choice of the parameter k needs to be adapted.

5.2. Coverage probabilities over the parameter space

Since the derivation of Theorem 1 intimates that the minimal coverage proba-
bility occurs for “large” values of the unknown parameter one might ask how
the coverage looks for “small” values. As explicit expressions for the coverage
probability are not known, we give plots of the simulated coverage probability
of the 95% Lasso ellipse for p = 2 for positive and negative correlation of the
two components in Figure 4. As can be seen, the minimal coverage occurs when
the true parameter is “not small”. More concretely, for the case of positive cor-
relation it occurs when both components are of opposite signs, and in case of
negative correlation it occurs when both components are of the same sign. It
can also be seen that in case the parameter space is known to be sparse (for
p = 2, this means that at least one component of the parameter vector is equal
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to 0), the minimal coverage over the restricted parameter space will certainly
be higher than the minimal coverage over the entire parameter space. We can-
not provide analytic expressions for minimal coverage probability over a sparse
parameter space using our theory and it covers the case where no additional
information about the parameter space is available. It can, however, also be
gleaned from Figure 4 that the common restriction of assuming that the true
parameter is either equal to zero or bounded away from zero (asymptotically at
a certain rate) does not alleviate the situation for the Lasso estimator!

5.3. Inference on single components

We now consider the case where one might be interested in covering only a
subvector of the entire unknown parameter vector. While it is clear that pro-
jecting the confidence region constructed for the entire parameter vector to the
appropriate subspace will yield a valid confidence set for this purpose, it will
generally not result in the most favorable shape.

In this subsection, we assume that the goal is to cover a single component of
the parameter vector and give general considerations on how to determine the
shape of the confidence region for the entire parameter vector so that the pro-
jection onto the single component of interest will yield the smallest symmetric2

interval possible.
More formally, consider the following. Assume that we want to construct a

confidence interval for βj , the j-th component of the unknown parameter vector
β, with level of coverage 1− α. For this, we want to choose M ⊆ R

p such that

• M satisfies Condition A.
• supm∈M |mj | = a < ∞.
• infd∈{−1,1}p P (ûd

n ∈ M) = 1− α.

Clearly, this can be achieved by finding for any fixed but arbitrary a ≥ 0 the
largest set that satisfies Condition A and then choosing a so that the prescribed
coverage level is achieved. Note that this set may be unbounded with respect
to the components that are not of interest. We construct the optimal shape for
this explicitly for the case where p = 2, assuming that both components are
penalized (both λ1 and λ2 are non-zero) in the following section.

5.3.1. Constructing the optimal shape in case p = 2

The following construction yields the set M as described above for the case of
p = 2. Without loss of generality, we assume that we are interested in covering
β1, the first component of β. Recall that Cn = X ′X/n. If Cn is diagonal, it is
easily seen that the set

M̃ = {z ∈ R
2 : |z1| ≤ a}

2Pötscher and Schneider (2010) show (for the case of orthogonal regressors) that for single
components, symmetric intervals are the shortest, we therefore restrict ourselves also the
symmetric case here.
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Fig 5. The set M for C =
(

1 0.5
0.5 1

)
and a = 1.

complies with Condition A and cannot be enlarged while maintaining a fixed
projection onto the subspace associated with the first component. Also note
that in this case, the resulting confidence interval will coincide with the one
suggested in Pötscher and Schneider (2010).

If Cn is not diagonal, assume that the off-diagonal element c12 satisfies c12 >
03. Define

M =
⋃

d∈{−1,1}2

Md

with
M (1,1) = M̃ ∩ {z ∈ R

2 : z1, z2 ≥ 0, (Cnz)1 ≤ (Cna)1},
where a = (a, 0)′ and

M (−1,1) = M̃ ∩ {z ∈ R
2 : z1 ≤ 0, z2 ≥ 0, (Cnz)2 ≤ (Cnb)2},

where b = (0, b)′ satisfies (Cna)1 = (Cnb)1. Moreover, we define

M (−1,−1) = −M (1,1) and M (1,−1) = −M (−1,1).

The shape of the resulting set is depicted in Figure 5. Note that, even though we
are only interested in a confidence set that is bounded for one of the components,
the need to comply with Condition A forces us to bound the set in the other
component as well whenever c12 �= 0. The interpretation of this fact is the
following. As the Lasso can be viewed as a shifted LS estimator where the size
and direction of the shift depend on both components of the LS estimator, we
need to ensure that the influence of the second parameter on the shift is also
corrected for by the procedure.

The following proposition ensures that M satisfies Condition A and does
indeed yield the largest such set with fixed projection [−a, a] onto the first

3Otherwise construct a confidence interval for β1 from the model yi = β1xi1 + β̃2xi2 + εi
where β̃2 = −β2 and x̃i2 = −xi2.
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component – therefore providing the shape that results in the smallest confidence
interval for β1.

Proposition 8. The set M ⊆ R
2 as defined above satisfies Condition A. More-

over, if another M̄ ⊆ R
2 with maxm∈M̄ |m1| ≤ a satisfies Condition A also,

M̄ ⊆ M follows.

It is again easily seen that for a given coverage probability 1− α, the quan-
tity a must be greater than the half-length of the standard interval based on the
LS estimator, that is, the (1 − α/2)-quantile of the standard normal distribu-
tion. One might now be interested in the size difference between the confidence
intervals constructed from the Lasso and LS estimates, respectively. Pötscher
and Schneider (2010) have already shown that in the orthogonal regressor case,
the length of confidence intervals which are based on the Lasso is greater than
the length of the standard interval and that the difference increases with the
penalization parameter λn = (λn,1, λn,2)

′. Table 1 contains the required values
of a, that is, the half-lengths of the Lasso confidence interval for c11 = c22 = 1,
σ2 = 1 and various combinations of λ̄ = λn,1 = λn,2 and c12. Note that in this
case the LS estimator is the the Lasso estimator with λ̄ = 0.

|c12| 0.25 0.5 0.75 0.9
λ̄ = 0 1.96 1.96 1.96 1.96
λ̄ = 0.1 2.1 2.4 3.1 4.9
λ̄ = 0.5 2.4 2.9 4.5 8.8
λ̄ = 1 3.0 3.9 6.5 13.8
λ̄ = 2 4.4 5.9 10.5 23.8
λ̄ = 3 5.7 7.9 14.5 33.8

Table 1

Half-lengths of the 95% confidence intervals based on an equally tuned Lasso estimator for
and c11 = c22 = 1 and σ2 = 1.

For small values of λ̄ and c12, the resulting confidence interval is only slightly
longer than the one based on the LS estimator. For increasing λ̄ and |c12|, the
required length of the interval increases significantly, in particular in the latter
case, with the length more than doubling as c12 increases from 0.25 to 0.9 for
each of the presented values of λ̄ > 0. This ratio is even more extreme for larger
values of λ̄ > 0. Two effects are at play here. On the one hand, the area of
M decreases for fixed a > 0 as c12 increases. On the other hand, some of the
corners of the distorted λ-box, −n−1/2C−1

n Λnd with d ∈ {−1, 1}p, which are the
means of the normal distributions that must be covered, shift further apart as
c12 increases in absolute value. Obviously, increasing the tuning parameter also
shifts the means further away from the origin, resulting in even larger confidence
sets.

6. Asymptotic framework

We now derive asymptotic results that hold without assuming normality of
the errors. Additionally to the assumptions in Section 2, for all asymptotic
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considerations, we assume that X = (x′
1, . . . , x

′
n)

′ where x′
i ∈ R

p, meaning that
the regressor matrix X changes with n only by appending rows, and that

Cn =
X ′X

n
−→ C

as n → ∞, where C is finite and positive definite. This setting assures con-
sistency and asymptotic normality of the LS estimator. We will consider two
different regimes of the asymptotic behavior of the tuning parameter λn and
start with the regime we call conservative tuning.

6.1. Conservative tuning

In this regime and throughout this subsection, we require that

λn

n1/2
−→ λ ∈ [0,∞)p

as n → ∞. This implies that λn,j/n → 0 for all j = 1, . . . , p, which in turn

implies consistency of β̂L (see Theorem 1 in Knight and Fu (2000) with the
slight modification that in our paper we allow for componentwise defined tuning
parameters). We let Λ = diag(λ).

Remark 2. Such a choice of tuning parameters indeed yields a conservative
model selection procedure in the sense that

lim sup
n→∞

sup
β∈Rp

Pβ

(
β̂j = 0

)
< 1 (2)

for each j = 1, . . . , p. In particular, if βj = 0, we have

lim sup
n→∞

Pβ

(
β̂j = 0

)
< 1.

The latter statement was also noted by Zou (2006) in Proposition 1.

The following proposition implicitly states the asymptotic distribution of the
estimator in a so-called moving-parameter framework. This proposition essen-
tially is Theorem 5 from Knight and Fu (2000) and can be proven in the same
manner simply by adjusting for componentwise tuning.

Proposition 9. Assume that n1/2βn → t ∈ R
p
. Then n1/2(β̂L − βn)

d−→ û =
argminu∈Rp Q(u), where

Q(u) = u′Cu− 2W ′u+ 2

p∑
j=1

λj

[
1{tj∈R}(|tj + uj | − |tj |) + 1{|tj |=∞} sgn(tj)uj

]

(3)
and W ∼ N(0, σ2C).
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Note that the vector t takes over the role of n1/2β in the finite-sample version
of the function, Qn, where the cases of n1/2βj = ±∞ are now included in the

asymptotic setting. Also, the assumption of n1/2βn converging in R
p
is not a

restriction in the sense that, by compactness of R
p
, Proposition 9 characterizes

all accumulation points of the distributions (with respect to weak convergence)
corresponding to completely arbitrary sequences of βn.

Similarly to the finite-sample case, we define û to be the unique minimizer
of Q, and for d ∈ {−1, 1}p, we define Qd(u) = u′Cu − 2W ′u + 2

∑p
j=1 λjdjuj

with unique minimizer ûd. We can then formulate an asymptotic version of
Theorem 1.

Theorem 10. If M ⊆ R
p satisfies Condition A with C̄ = C, then

inf
t∈R

p
Pt (û ∈ M) = min

d∈{−1,1}p
P

(
ûd ∈ M

)
,

where ûd ∼ N(C−1Λd, σ2C−1).

Given this result we can, again, construct asymptotically valid confidence
sets for the parameter β in the following way.

Corollary 11. If M ⊆ R
p satisfies Condition A with C̄ = C and

mind∈{−1,1}p P
(
ûd ∈ M

)
= 1− α, where ûd ∼ N(C−1Λd, σ2C−1) then

lim inf
n→∞

inf
β∈Rp

P
(
β ∈ β̂L − n−1/2M

)
= 1− α.

We find that asymptotically in the case of conservative tuning, we essentially
get the same results as in finite samples when assuming normally distributed
errors. The only difference is that the minimal coverage holds asymptotically
and that the quantities Cn and n−1/2Λn have settled to their limiting values C
and Λ, respectively.

6.2. Consistent tuning

In the second regime and throughout this subsection, we suppose that

λn,j

n1/2
−→ ∞

for at least one j with 1 ≤ j ≤ p as well as

1

n
λn,j −→ 0

for all j = 1, . . . , p as n → ∞, where the latter condition ensures estimation
consistency of the estimator. We refer to this regime as consistent tuning to
highlight the contrast to conservative tuning where λn,j/n

1/2 converges for each

j = 1, . . . , p. Yet we emphasize that in order to ensure Pβ(β̂L,j = 0) → 1
whenever βj = 0, we would need λn,j/n

1/2 → ∞ for each j = 1, . . . , p as well
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as need additional conditions on the regressor matrix X. We refer the reader
to Zou (2006), Zhao and Yu (2006) and Yuan and Lin (2007) for a discussion
concerning necessary and sufficient conditions on X in this context.

In the case of consistent tuning, the rate of the estimator is no longer n−1/2,
neither when looked at in a fixed-parameter asymptotic framework (as has been
noted by Zou (2006) in Lemma 3), nor (a fortiori) within a moving-parameter
asymptotic framework, as discussed in in Pötscher and Leeb (2009) in Theo-
rem 2. The latter reference shows that the correct (uniform) convergence rate
depends on the sequence of tuning parameters λn. Since we allow for componen-
twise tuning, in fact, the rate depends on the largest component of the vector
of tuning parameters, as can be seen from the following proposition. We define

λ∗
n = max

1≤j≤p
λn,j

and λ0 = (λ0,1, . . . , λ0,p)
′ by

λn,j/λ
∗
n −→ λ0,j ∈ [0, 1]

for each j = 1, . . . , p as n → ∞. Note that λ0,j = 1 for all j in case all compo-
nents are equally tuned.

Proposition 12. Assume that nβn/λ
∗
n → ζ ∈ R

p
. Then n(β̂L−β)/λ∗

n
p−→ m =

argminu∈Rp V ζ(u), where

V ζ(u) = u′Cu+ 2

p∑
j=1

λ0,j

[
1{ζj∈R}(|uj + ζj | − |ζj |) + 1{|ζj |=∞} sgn(ζj)uj

]
.

(In contrast to the finite-sample and the conservative case, we make the
dependence of the objective function V ζ on the unknown parameter ζ ∈ R

p

apparent in the notation to clarify what we do in the following). Proposition 12
shows that λ∗

n/n is indeed the correct (uniform) convergence rate as the limit

of n(β̂L − β)/λ∗
n is not 0 in general. The proposition also reveals that in the

consistently tuned case, when scaled according the correct convergence rate,
the limit of the sequence of estimators is always non-random, a fact that in a
moving-parameter asymptotic framework has already been noted in the one-
dimensional case in Pötscher and Leeb (2009). This fact allows us to construct
very simple confidence sets in the case of consistent tuning by first observing
that the limit of n(β̂L − β)/λ∗

n is always contained in a bounded set which is
described in Proposition 13. To this end, define the set

M =
⋃

ζ∈R
p

argmin
u∈Rp

V ζ(u) (4)

and note that the following can be shown.

Proposition 13. The set M can be written as

{m ∈ R
p : |(Cm)j | ≤ λ0,j , 1 ≤ j ≤ p} = C−1 {z ∈ R

p : |zj | ≤ λ0,j , 1 ≤ p} .
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Fig 6. The set M for C =
(

1 −0.5
−0.5 1

)
and λ0 = (1, 1)′.

Thus M can be viewed as a box distorted by the linear function C−1, a
bounded set in R

p. In fact, this turns out to be a parallelogram whose corner
points are given by the set {C−1Λ0d : d ∈ {−1, 1}p}, where Λ0 = diag(λ0). Note
that fittingly, these corner points can be viewed as the equivalent of the means
in the normal distributions (determining the minimal coverage probability) in
the conservative case in Theorem 10, appearing without randomness in the
limit in the consistently tuned case. Using Proposition 13, a simple asymptotic
confidence set can now be constructed as is done in the following corollary.

Corollary 14. We have

lim
n→∞

inf
β∈Rp

Pβ

(
β ∈ β̂L − d

λ∗
n

n
M

)
= 1

for any d > 1 and

lim
n→∞

inf
β∈Rp

Pβ

(
β ∈ β̂L − d

λ∗
n

n
M

)
= 0

for any d < 1.

Note that nothing can be said about the boundary case d = 1. This corollary
is a generalization of the simple confidence interval given in Proposition 6 in
Pötscher and Schneider (2010). The shape of M is depicted in Figure 6. Finally,
also note the set M is not required to satisfy Condition A and, in fact, will not
comply with this condition for certain matrices C.

7. Summary and conclusion

We consider confidence regions based on the Lasso estimator covering the entire
unknown parameter vector, thereby quantifying estimation uncertainty of this
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estimator. We provide exact formulas for the minimal coverage probability of
these regions in finite samples and asymptotically in a low-dimensional frame-
work when the estimator is tuned to perform conservative model selection. We
do this without explicit knowledge of the distribution but by carefully exploit-
ing the structure of the optimization problem that defines the estimator. The
sets we consider as confidence regions need to satisfy certain shape constraints
which apply to the regular confidence ellipse based on the LS estimator. We
show that the LS confidence ellipse is always smaller than the one based on the
Lasso estimator, but not contained in the Lasso ellipse in general. An ellipse is
not the optimal shape for the confidence region based on the Lasso estimator in
terms of volume. We give some guidelines on how to construct regions of smaller
volume. We show how a set can be minimally enlarged in order to comply with
the imposed shape condition, allowing to start the construction with sets of
arbitrary shapes. We also illustrate how the coverage probability of the Lasso
ellipse varies over the parameter space for the case when p = 2, in which we also
show how our results can be used for constructing valid confidence intervals for
single components of the parameter space. In case the error variance needs to
be estimated, our results involve non-central t-distributions rather than shifted
normal distributions. Finally, in the consistently tuned case, we give a simple
asymptotic confidence regions in the shape of a parallelogram that is determined
by the regressor matrix.

Appendix A: Proofs

We start the proof section with introducing some notation that will be used
throughout this section. Let ej denote the jth unit vector in R

p and let ι =
(1, . . . , 1)′ ∈ R

p. For a vector d ∈ {−1, 1}p, we define Od to be the corresponding
orthant of Rp, that is, Od = {z ∈ R

p : djzj ≥ 0} and Ōd to be the corresponding

orthant of R
p
, that is, Ōd = {z ∈ R

p
: djzj ≥ 0}. By Oι

int we denote the orthant
with strictly positive components only, that is, Oι

int = {z ∈ R
p : zj > 0}. The

sup-norm on R
p is denoted by ‖.‖∞.

To remind the reader of some notation relevant for the following proofs that
was introduced previously throughout the paper, note that ûn = n1/2(β̂L − β),

where ûn is the minimizer of Qn, and ûLS = n1/2(β̂LS−β). The minimizer of Qd
n

was labeled ûd
n. The asymptotic versions in the conservatively tuned case were

labeled û and Q, as well as ûd and Qd, respectively.
The directional derivative of a function g : Rp → R at u in the direction of

r ∈ R
p \ {0} is defined as

∂g(u)

∂r
= lim

h↘0

g(u+ hr)− g(u)

h
.

A.1. Proofs for Section 3

In order to prove the main theorem, we start by re-writing Condition A. For
m ∈ R

p and a p× p matrix C̄, we define
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A
dj

C̄,j
(m) = {z ∈ R

p : dj(C̄m)j ≤ dj(C̄z)j , djzj ≤ 0} and

B
dj

C̄,j
(m) = {z ∈ R

p : (C̄z)j = (C̄m)j , djzj > 0}

for j = 1, . . . , p. Note that clearly we have

Ad
C̄(m) =

p⋂
j=1

A
dj

C̄,j
(m),

and that, in fact, also the following lemma holds.

Lemma 15.

⋃
d∈{−1,1}p

p⋂
j=1

A
dj

C̄,j
(m) =

⋃
d∈{−1,1}p

p⋂
j=1

A
dj

C̄,j
(m) ∪B

dj

C̄,j
(m)

Proof. We fix m and C̄, drop the corresponding subscripts and show that the
set on the left-hand side of the equation contains the set on the right-hand side
of the equation. To this end, take any z from the set on right-hand side. Then
there exists a d ∈ {−1, 1}d such that for each j = 1, . . . , p, z is either contained

in A
dj

j or in B
dj

j . We pick f ∈ {−1, 1}p in the following way: if z ∈ A
dj

j , set

fj = dj and if z ∈ B
dj

j , set fj = −dj . Then, by construction, z ∈ Af
j for all

j = 1, . . . , p and therefore z ∈
⋂

j A
f
j so that z is contained in the set on the

left-hand side of the equation.

Since needed later on, we also prove the following proposition which quantifies
the maximal distance between the Lasso and the LS estimator in finite samples.

Proposition 16. For each j = 1, . . . , p, we have

∣∣∣(X ′X(β̂L − β̂LS))j

∣∣∣ ≤ λn,j ,

or, equivalently, ∣∣∣(Cn(ûn − ûLS))j

∣∣∣ ≤ n−1/2λn,j ,

where ûLS = n1/2(β̂LS − β).

Proof. The two inequalities above just differ by a scaling factor. We show the
latter one. We have Wn = n−1/2X ′ε = CnûLS. Consider the directional deriva-
tive of Qn at its minimizer ûn in the direction of ej and −ej . We have

0 ≤ ∂

∂ej
Qn(ûn) = 2(Cnûn)j − 2Wn,j

+ 2n−1/2λn,j

[
1{ûj≥−n1/2βj} − 1{ûj<−n1/2βj}

]

≤ 2(Cnûn)j − 2(CnûLS)j + 2n−1/2λn,j ,
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as well as

0 ≤ ∂

∂(−ej)
Qn(ûn) = −2(Cnûn)j + 2Wn,j

+ 2n−1/2λn,j

[
1{ûj≤−n1/2βj} − 1{ûj>−n1/2βj}

]

≤ −2(Cnûn)j + 2(CnûLS)j + 2n−1/2λn,j .

Piecing the two displays above together yields the second inequality in the
proposition.

To proceed note that Qd
n as defined in (1) is a simple quadratic and strictly

convex function in u with unique minimizer ûd
n given by

ûd
n = C−1

n (Wn − n−1/2Λnd), (5)

where Wn ∼ N(0, σ2Cn). We first show Theorem 1 for one orthant of the pa-
rameter space R

p, as is formulated in Proposition 17.

Proposition 17. If Mn ⊆ R
p satisfies that

p⋂
j=1

A
ιj
Cn,j

(m) ∪B
ιj
Cn,j

(m) ⊆ Mn

for all m ∈ Mn, then

inf
β∈Oι

Pβ(ûn ∈ Mn) = P (ûι
n ∈ Mn).

In essence, Proposition 17 states Theorem 1 for the orthant of the parameter
space where all components of β are non-negative. The condition in Proposi-
tion 17 takes the role of Condition A for the corresponding orthant, as will
become apparent later on in the proof of Theorem 1.

Proof of Proposition 17. We first show that infβ∈Oι Pβ(ûn ∈ Mn) ≥ P (ûι
n ∈

Mn) by showing that for each fixed ω ∈ Ω, ûι
n ∈ Mn implies that ûn ∈ Mn as

long as βj ≥ 0 for all j. For this, we first show the following two facts.

(a) (Cnû
ι
n)j ≤ (Cnûn)j for all j = 1, . . . , p.

Suppose there exists a j0 with such that (Cnû
ι
n)j0 > (Cnûn)j0 and note

that by (5) we have (Cnû
ι
n)j = Wn,j−n−1/2λn,j for each j = 1, . . . , p. Now

consider the directional derivative of Qn at its minimizer ûn in direction
ej0 ,

∂Qn(ûn)

∂ej0
= 2(Cnûn)j0 − 2Wn,j0

+ 2n−1/2λn,j0

[
1{ûn,j0≥−n1/2βj0} − 1{ûn,j0<−n1/2βj0}

]

≤ 2(Cnûn)j0 − 2Wn,j0 + 2n−1/2λn,j0

= 2(Cnûn)j0 − 2(Cnû
ι
n)j0 < 0,

which is a contradiction to ûn minimizing Qn.
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(b) ûn,j > 0 implies (Cnûn)j = (Cnû
ι
n)j for any 1 ≤ j ≤ p.

If ûn,j > 0 (and hence ûn,j+n1/2βj > 0 when βj ≥ 0), then Qn is partially
differentiable at ûn with respect to the jth component. Therefore, we have

∂Qn(ûn)

∂uj
= 2(Cnûn)j − 2Wn,j + 2n1/2λn,j

= 2(Cnûn)j − 2(Cnû
ι
n)j = 0.

Now, by Facts (a) and (b) we clearly have that ûn ∈ A
ιj
Cn

(ûι
n)∪B

ιj
Cn

(ûι
n). So,

by assumption, ûι
n ∈ Mn clearly implies ûn ∈ Mn as long as βj ≥ 0 for all j.

We have therefore shown that

inf
β∈Oι

Pβ(ûn ∈ Mn) ≥ P (ûι
n ∈ Mn).

To see the reverse inequality, note that if ûn,j + n1/2βj > 0 for all j, then
Qn is differentiable at ûn and

∂Qn(ûn)

∂u
= 2Cnûn − 2Wn + 2n−1/2λn = 2Cnûn − 2Cnû

ι
n = 0,

implying that ûn = ûι
n. Also note that ûn,j +n1/2βj > 0 for each j is equivalent

to β̂L ∈ Oι
int, so that

{ûn ∈ Mn} ⊆ {ûι
n ∈ Mn} ∪ {β̂L /∈ Oι

int}.

Now let κ be a bound in the sup-norm on the set {z ∈ R
p : ‖Cnz‖∞ ≤

n−1/2‖λn‖∞} and for an arbitrary ε > 0, pick β∗ ∈ R
p such that P (ûLS ≤

κι − n1/2β∗) ≤ ε, where ûLS = n1/2(β̂LS − β∗) ∼ N(0, σ2C−1
n ). Note that by

Proposition 16, this implies that

Pβ∗(β̂L ≤ 0) = Pβ∗(ûn−ûLS+ûLS ≤ −n1/2β∗) ≤ Pβ∗(−κι+ûLS ≤ −n1/2β∗) ≤ ε,

yielding

inf
β∈Oι

Pβ(ûn ∈ Mn) ≤ Pβ∗(ûn ∈ Mn) ≤ P (ûι
n ∈ Mn) + ε.

Since ε > 0 was arbitrary, this shows the desired inequality.

Essentially, we have now shown the main theorem for one part of the param-
eter space R

p. By flipping signs, we can apply Proposition 17 to each orthant
Od, thus obtaining the formula for the infimal coverage over the whole space.

Proof of Theorem 1. First note that

inf
β∈Rp

Pβ(ûn ∈ Mn) = min
d∈{−1,1}p

inf
β∈Od

Pβ(ûn ∈ Mn).

Thus, if we can show that

inf
β∈Od

Pβ(ûn ∈ Mn) = P (ûd
n ∈ Mn)
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for each d ∈ {−1, 1}p, the proof is done. Now, fix d and set D = diag(d). We
consider the function

Q̃n(u) = Qn(Du) = u′DCnDu− 2u′DWn

+ 2n−1/2

p∑
j=1

λn,j

[
|djuj + n1/2βj | − |n1/2βj |

]

= u′C̃nu− 2u′W̃n + 2n−1/2

p∑
j=1

λn,j

[
|uj + n1/2djβj | − |n1/2djβj |

]
,

where C̃n = DCnD, W̃n = DWn ∼ N(0, σ2C̃n). We write ũn for the minimizer
of Q̃n, and, analogously to Section 3, we define ũι

n to be the minimizer of the
function u′C̃nu− 2u′W̃n + 2n−1/2

∑p
j=1 λn,juj .

If we can show that the set DMn satisfies the requirement of Proposition 17
with the matrix C̃n in place of Cn, we may conclude that

inf
β:djβj≥0

Pβ(ũn ∈ DMn) = P (ũι
n ∈ DMn).

Note that ûn = Dũn, û
d
n = Dũι

n and D−1 = D, so that

inf
β∈Od

P (ûn ∈ Mn) = inf
β∈Od

P (ũn ∈ DMn) = P (ũι
n ∈ DMn) = P (ûd

n ∈ Mn),

which proves the formula for the infimal coverage probability. We now show that
the set DMn satisfies that

p⋂
j=1

Aι
C̃n,j

(Dm) ∪Bι
C̃n,j

(Dm) ⊆ DMn

for all m ∈ Mn. A straightforward calculation shows that this is equivalent to

p⋂
j=1

A
dj

Cn,j
(m) ∪B

dj

Cn,j
(m) ⊆ Mn

for each m ∈ M which clearly holds by Condition A and Proposition 15.
The distributional result on ûd

n immediately follows by (5).

A.2. Proofs for Section 4

Proof of Proposition 3. Let m ∈ ECn(k) and y ∈ Ad
Cn

(m). We show that y ∈
ECn(k). Remember that D = diag(d) satisfies DD = Ip. Since y ∈ Ad

Cn
(m) we

have −Dy ∈ Oι and −DC(m− y) ∈ Oι implying that

y′C(m− y) = (Dy)′DC(m− y) ≥ 0.

Furthermore, since (m− y)′C(m− y) ≥ 0, we have

m′C(m− y) ≥ y′C(m− y) ≥ 0,
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which in turn yields
m′Cm ≥ m′Cy ≥ y′Cy ≥ 0.

But this means that k ≥ m′Cm ≥ m′Cy ≥ y′Cy and therefore y ∈ ECn(k).

Proof of Proposition 4. We transform the ellipse to a sphere and the correspond-
ing normal distribution to have independent components with equal variances.

P
(
ûd
n ∈ ECn(k)

)
= P

(
C1/2

n ûd
n ∈ C1/2

n ECn(k)
)
,

where C
1/2
n ûd

n ∼ N(−n−1/2C
−1/2
n Λnd, σ

2Ip) and C
1/2
n ECn(k) = {z ∈ R

p :
‖z‖2 ≤ k}. So clearly, the smallest probability will be achieved for the dis-
tribution with mean furthest away from the origin, which is any d∗ maximizing

‖C−1/2
n Λnd‖ over all d ∈ {−1, 1}p.

Proof of Proposition 5. Similarly to the proof of Proposition 4, note that

P
(
ûd
n ∈ ECn(k)

)
= P

(
C1/2

n ûd
n/σ ∈ C1/2

n ECn(k)/σ
)

with ŵ = C
1/2
n ûd

n/σ ∼ N(−n−1/2C
−1/2
n Λnd/σ, Ip) and C

1/2
n ECn(k)/σ = {z ∈

R
p : ‖z‖2 ≤ k/σ2}. Therefore, the probability in the above display is given by

P (‖ŵ‖2 ≤ k/σ2)

where ‖ŵ‖2 clearly follows the claimed non-central χ2-distribution.

Proof of Proposition 6. We start by showing that for any m ∈ R
p, d ∈ {−1, 1}p,

we have
Ad

C̄(y) ⊆ Ad
C̄(m) for all y ∈ Ad

C̄(m). (6)

Let z ∈ Ad
C̄
(y). Then djzj ≤ 0 and (C̄y)j ≤ (C̄z)j for all j. But since y ∈ Ad

C̄
(m),

we also have (C̄m)j ≤ (C̄y)j for all j so that that (C̄m)j ≤ (C̄z)j for all j and
therefore z ∈ Ad

C̄
(m), thus proving (6). So clearly, the set

⋃
m∈M

⋃
d∈{−1,1}p

Ad
C̄(m)

satisfies Condition A. For each m ∈ M , choose d ∈ {−1, 1}p in such a way that
dj = 1 if mj = 0 and dj = − sgn(mj) for mj �= 0. We then get m ∈ Ad

C̄
(m),

implying that the set in the display above actually contains M .

A.3. Proofs for Section 5

Proof of Proposition 8. We start by proving that M satisfies Condition A. For
this, we need to show that for d ∈ {−1, 1}2, we have Ad

Cn
(m) = Ad

Cn
(m)∩O−d ⊆

M−d for all m ∈ M . We start by doing so d = (1, 1)′. Note that

A
(1,1)
Cn

(m) = {z ∈ O−(1,1) : (Cm)j ≤ (Cz)j , j = 1, 2}
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and

M−(1,1) = {m ∈ O−(1,1) : −(Ca)1 ≤ (Cm)1} ⊆ M̃.

If m ∈ M−(1,1), then clearly −(Ca)1 ≤ (Cm)1 ≤ (Cz)1 for any z ∈ A
(1,1)
Cn

(m),

so that z ∈ M−(1,1) follows. If m ∈ M (1,1), then A
(1,1)
Cn

(m) = ∅ unless m = 0, in

which case A
(1,1)
Cn

(0) = {0}. In either case, A
(1,1)
Cn

(m) ⊆ M−(1,1) follows immedi-

ately. If m ∈ M (−1,1) ⊆ {m ∈ R
2 : −a ≤ m1 ≤ 0, m2 ≤ 0}, we have −(Ca)1 =

−c11a ≤ c11m1 + c12m2 = (Cm)1 ≤ (Cz)1 for any z ∈ A
(1,1)
Cn

(m), so that z ∈
M−(1,1) again follows. Finally, if m ∈ M (1,−1) ⊆ {m ∈ O(1,−1) : −c11c22a/c12 ≤
(Cm)2}, we have −c11a ≤ c212/(c11c22) c11m1+ c12m2 ≤ (Cm)1 ≤ (Cz)1 for any

z ∈ A
(1,1)
Cn

(m), so that z ∈ M−(1,1) follows yet again.
The remaining cases d = −(1, 1)′, d = (−1, 1)′ and d = (1,−1)′ can be shown

in a similar manner.
To show the second part of Proposition 8, assume there exists m̄ ∈ M̄ with

m̄ /∈ M and show that this implies maxm∈M̄ |m1| > a if M̄ complies with
Condition A. If m̄ ∈ O(1,1), then m̄ /∈ M (1,1) entails that c11m̄1 + c12m̄2 =
(Cm̄)1 > (Ca)1 = c11a. Let ā = (ā, 0)′ where ā = m̄1 + c12m̄2/c11 > a and note

that ā ∈ A
−(1,1)
Cn

⊆ M̄ which implies that maxm∈M̄ |m1| ≥ ā > a The remaining

cases m̄ ∈ O−(1,1), m̄ ∈ O(−1,1) and m̄ ∈ O(1,−1) can be shown in a similar
manner.

A.4. Proofs for Section 6

Proof of Remark 2. We show (2). Note that Proposition 16 entails that

β̂L ∈ β̂LS −
1

n1/2
Bn,

where

Bn = {z ∈ R
p : |(Cnz)j | ≤ n−1/2λn,j for j = 1, . . . , p}.

Since λn/n
1/2 converges, we have Bn ⊆ C−1

n B̄δ with B̄δ = {x ∈ R
p : ‖x‖∞ ≤

δ} for some δ > 0. Since C−1
n → C−1, the set {C−1

n : n ∈ N} is bounded
in operator sup-norm by Banach-Steinhaus, so that the set Bn is uniformly
bounded over n in sup-norm by, say, γ > 0. We now fix a component j and
show that lim infn→∞ infβ∈Rp Pβ(β̂L,j �= 0) > 0. To this end, define Rj = R

j−1×
{0} × R

p−j . Let ξ2j,n and ξ2j be the positive jth diagonal element of C−1
n and

C−1, respectively. Observe that

inf
β∈Rp

Pβ(β̂L,j �= 0) ≥ inf
β∈Rp

Pβ

(
(β̂LS −

1

n1/2
Bn) ∩Rj = ∅

)

≥ inf
β∈Rp

Pβ(n
1/2β̂LS,j + γ < 0 or n1/2β̂LS,j − γ > 0)

= 2Φ(−γ/ξi,n) −→ 2Φ(−γ/ξi) > 0
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In order to prove Theorem 10, we need an asymptotic version of Proposi-
tion 17 which is formulated in the following.

Proposition 18. If M ⊆ R
p satisfies that

p⋂
j=1

A
ιj
C,j(m) ∪B

ιj
C,j(m) ⊆ M

for all m ∈ Mn, then

inf
t∈Ōι

Pt(û ∈ M) = P (ûι ∈ M).

Proof. The first part of the proof is completely analogous to the first part of the
proof of Proposition 17 after identifying n1/2β with t and dropping the subscript
n. To see the reverse inequality, note that for t∗ = (∞, . . . ,∞) ∈ R

p
, we actually

have Q = Qι, so that û = ûι in this case which already yields that

inf
t∈Ōι

Pt(û ∈ M) ≤ Pt∗(û ∈ M) = P (ûι ∈ M).

Proof of Theorem 10. The proof again is completely analogous to the proof of
Theorem 1 after identifying n1/2β with t, dropping the subscript n everywhere
and using Proposition 18 instead of Proposition 17. Also, replace Od by Ōd and
note that

Qd(u) = Q(Du) = u′DCDu− 2u′DW

+ 2

p∑
i=1

λj

[
1{tj∈R}(|tj + djuj | − |tj |) + 1{|tj |=∞} sgn(tj)djuj

]

= u′C̃u− 2u′W̃

+ 2

p∑
i=1

λj

[
1{djtj∈R}(|uj + djtj | − |djtj |) + 1{|djtj |=∞} sgn(djtj)uj

]
,

where C̃ = DCD and W̃ = DW .

Proof of Corollary 11. Let c = lim infn→∞ infβ∈Rp Pβ(β ∈ β̂L −n−1/2M). Then

there exists a sequence βn in R
p such that Pβn(βn ∈ β̂L−n−1/2M) → c. Assume

that n1/2βn → t ∈ R
p
(if the sequence does not converge, pass to subsequences).

Since

Pβn(βn ∈ β̂L − n−1/2M) = Pβn(n
1/2(β̂L − βn) ∈ M) −→ c = Pt(û ∈ M)

as n → ∞ in the notation of Proposition 9. Theorem 10 then yields c ≥
mind∈{−1,1}p P (ûd ∈ M) = 1 − α. To see the reverse inequality, let βn = d ∈
{−1, 1}p and note that for this sequence, we have

Pβn(βn ∈ β̂L − n−1/2M) = Pβn(n
1/2(β̂L − βn) ∈ M) −→ Pt(û ∈ M)

as n → ∞, where t = (d1∞, . . . , dp∞)′ ∈ R
p
. Note that for this choice of t,

Pt(û ∈ M) = P (ûd ∈ M). Since d ∈ {−1, 1}p was arbitrary, c ≤
mind∈{−1,1}p P (ûd ∈ M) = 1− α follows.
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Proof of Proposition 12. Define the function Vn(u) = n[Ln(βn + λ∗
nu/n) −

Ln(βn)]/(λ
∗
n)

2 and note that Vn is minimized at n(β̂L − βn)/λ
∗
n. The function

Vn is then given by

Vn(u) = u′X
′X

n
u− 2

1

λ∗
n

u′X ′ε+ 2

p∑
j=1

λn,j

λ∗
n

[∣∣∣uj +
n

λ∗
n

βn,j

∣∣∣ −
∣∣∣ n

λ∗
n

βn,j

∣∣∣
]
.

Clearly u′X ′Xu/n → u′Cu by assumption. Since X ′ε/λ∗
n = (n1/2/λ∗

n)X
′ε/n1/2

and λ∗
n/n

1/2 → ∞ as well as X ′ε/n1/2 = OP (1), the second term in the
above display vanishes in probability. To treat the third term, simply note that
λn,j/λ

∗
n → λ0,j ∈ [0, 1] and nβn,j/λ

∗
n → ζi ∈ R by assumption. Piecing this

together yields

Vn(u)
p−→ u′Cu+ 2

p∑
j=1

λ0,j

[
1{ζj∈R}(|uj + ζj | − |ζj |) + 1{|ζj |=∞} sgn(ζj)uj

]

= V ζ(u).

Since Vn and V ζ are strictly convex and V ζ is non-random, it follows by Geyer
(1996) that also the corresponding minimizers converge in probability to the
minimizer of the limiting function.

Proof of Proposition 13. The equality of the two sets given in the display of
Proposition 13 is trivial. We show that the set M as defined in (4) is equal
to the set on the left-hand side and start by proving that M is contained in
that set. Take any m ∈ M, by definition, there exists a ζ ∈ R

p
so that m is

the minimizer of V ζ . We need to show that |(Cm)j | ≤ λ0,j for all j. Assume
that |(Cm)j0 | > λ0,j0 for some 1 ≤ j0 ≤ p. If (Cm)j0 > λ0,j0 we consider the
directional derivative of V ζ at its minimizer m in the direction of −ej0 to get

∂V ζ(m)

∂(−ej0)
= −2(Cm)j + 2λ0,j0

[
1{mj+ζj≤0} − 1{mj+ζj>0}

]

≤ −2(Cm)j + 2λ0,j0 < 0,

which is a contradiction to m minimizing V ζ . If (Cm)j0 < −λ0,j0 , then consider
the directional derivative of V ζ at m in the direction of ej0 to arrive at

∂V ζ(m)

∂ej0
= 2(Cm)j + 2λ0,j0

[
1{mj+ζj≥0} − 1{mj+ζj<0}

]

≤ −2(Cm)j + 2λ0,j0 < 0,

yielding a contradiction also.
To see the reverse set-inclusion, we need to show that for any m ∈ R

p satis-
fying |(Cm)j | ≤ λ0,j for all j = 1, . . . , p, there exists a ζ ∈ R

p
such that m is

the minimizer of V ζ . Let ζ = −m ∈ R
p and consider the directional derivative

of V ζ at m in any direction r ∈ R
p \ {0}:
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∂V ζ(m)

∂r
= 2r′Cm+ 2

p∑
j=1

λ0,j |rj | ≥
p∑

j=1

−2|(Cm)jrj |+ 2λ0,j |rj |

=

p∑
j=1

[−|(Cm)j |+ λ0,j ] |rj | ≥ 0.

Since the directional derivative is non-negative in any direction r ∈ R
p \{0} and

V ζ is (strictly) convex, m must be the minimizer.

Proof of Corollary 14. We start with the case d > 1. Let c =
lim infn→∞ infβ∈Rp Pβ(β ∈ β̂L − dλ∗

nM/n). By definition, there exists a sub-
sequence nk and elements βnk

∈ R
p such that

Pβnk

(
βnk

∈ β̂L − d
λ∗
nk

nk
M

)
= Pβnk

(
nk

λ∗
nk

(β̂L − βnk
) ∈ dM

)
−→ c

as k → ∞. Note that dM = {m ∈ R
p : |(Cm)j | ≤ dλ0,j , 1 ≤ j ≤ p}. Now,

pick a further subsequence nkl
such that λ∗

nkl
βnkl

/nkl
converges in R

p
to, say,

ζ. Proposition 12 then shows that nkl
(β̂L − βnkl

)/λ∗
nkl

converges in probability

to the unique minimizer of V ζ as l → ∞. Finally, Proposition 13 implies that
c = 1.

We next look the case where d < 1. Let m = C−1λ0 so that m ∈ M \ dM.
From the proof of Proposition 13, we know that for ζ = −m we have m =
argminu∈Rp V ζ(u). Let βn = nζ/λ∗

n. By Proposition 12, n(β̂L−βn)/λ
∗
n converges

to m in Pβn -probability, so that Pβn(n(β̂L − βn)/λ
∗
n ∈ dM) → 0.
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