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Abstract

We close an unexpected gap in the literature of Stochastic Differential Equations
(SDEs) with drifts of super linear growth and with random coefficients, namely, we
prove Malliavin and Parametric Differentiability of such SDEs. The former is shown
by proving Stochastic Gâteaux Differentiability and Ray Absolute Continuity. This
method enables one to take limits in probability rather than mean square or almost
surely bypassing the potentially non-integrable error terms from the unbounded drift.
This issue is strongly linked with the difficulties of the standard methodology of [13,
Lemma 1.2.3] for this setting. Several examples illustrating the range and scope of
our results are presented.

We close with parametric differentiability and recover representations linking both
derivatives as well as a Bismut-Elworthy-Li formula.
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1 Introduction

In this manuscript we work with the class of Stochastic Differential Equations (SDEs)
with drifts satisfying a super-linear growth (locally Lipschitz) and a monotonicity condi-
tion (also called one-sided Lipschitz condition); the coefficients are furthermore assumed
to be random. This class of SDEs appears ubiquitously in mathematics and engineering,
for example, the stochastic Ginzburg-Landau equation in the theory of superconductivity;
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Differentiability of SDEs with drifts of super-linear growth

Stochastic Verhulst equation; Feller diffusion with logistic growth; Protein Kinetics and
others, see [7] and references.

There is a wealth of results on differentiability and properties of SDEs in general.
However, it is surprising that the landscape is (to the best of our knowledge) sparse
with respect to the superlinear growth setting apart from [17] which we discuss below.
Additionally, in [15] the authors discuss stochastic flows in rough path sense for a class
related to ours but only up to linear growth; and using analytical tools, [1, Chapter 1]
and [19] require ellipticity and deterministic maps to obtain some results in the same
vein as ours. Our arguments are fully probabilistic.

Malliavin differentiability. To establish Malliavin differentiability for an SDE with
solution X and with monotone drifts, the most natural path to follow is to try to apply
[13, Lemma 1.2.3] by employing a truncation procedure. This yields a sequence Xn of
SDEs with Lipschitz coefficients converging to X. Under said Lipschitz conditions the
family Xn is Malliavin differentiable under suitable differentiability assumptions, with
derivative DXn, and one is able to appeal to [13, Lemma 1.2.3] to conclude the Malliavin
differentiability of X if one is able to show that supnE

[
‖DXn‖H

]
<∞. The truncation

procedure, even smoothed out, destroys the monotonicity and, in the multi-dimensional
case, it is notoriously difficult to establish the mentioned uniform bound.

To the best of our knowledge this question was studied only in [17]. The authors
employ a truncation procedure in order to use [13, Lemma 1.2.3]. Unfortunately their
[17, Lemma 4.1] is incorrect. The constant Ml presented in their equation (4.1) depends
on the truncation level n in a non-uniformly bounded way; the reader is invited to inspect
the 2nd line of page 879. This lemma, which we were not able to fix, is used subsequently
to establish the main result in [17].

We prove Malliavin Differentiability through a less well-known method developed by
Sugita [16] which uses the concepts of Ray Absolute Continuity and Stochastic Gâteaux
Differentiability see also the posterior developments by [11, 8]. This approach is detailed
in Section 3.2 below. The merit of this method is that the limit for the Stochastic Gâteaux
derivative is a convergence in probability statement rather than a convergence in mean
square statement. Put simply, this allows us to avoid cases such as the “Witches Hat”
function where errors are non-integrable but converge to zero almost surely.

We study the case where the coefficients of the SDE are random. We follow the
ideas of [6] and present two different sets of conditions which allow for Malliavin
Differentiability. One set of conditions is sharp but somewhat difficult to use in practice.
The other is much easier to verify but not sharp. We also provide examples discussing
the scope and limitations of our approach.

Parametric differentiability. The second contribution of this work is parametric
differentiability for SDEs of this type and in particular its implications for the classical
case of deterministic coefficients. The methodology takes inspiration from the Malliavin
differentiability section and we prove Gâteaux and Fréchet differentiability with respect
to the SDEs parameters.

Representations, Absolute continuity of the law and Bismut-Elworthy-Li formulae.
We bridge both differentiability results by recovering (a) representation formulae linking
the Malliavin derivative and the parametric one; (b) establishing absolute continuity of
the solution’s Law; and (c) a Bismut-Elworthy-Li formula.

Technical results. In this setting the drift term is not bounded and, conditional on the
coefficients’ integrability, the solution may not be sufficiently integrable - see Remark 2.3
and the examples in Section 3.3. This means that the error terms appearing in the proofs
of differentiability will not be assumed to be sufficiently integrable. We negotiate this
obstacle by proving everything in convergence in probability and ensuring that adequate
conditions are met so that results can be lifted to the relevant setting of mean square
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and almost sure convergence. Proposition 2.6 contains a Grönwall type inequality for
the topology of Convergence in Probability that is of independent interest and is key to
the methods used in this paper.

This paper is organized as follows. In Section 2, we lay out the notation and setting
for this paper and recall a few baseline results from the literature. In Section 3 we
prove Malliavin differentiability of SDEs of the form (2.1). There are two main results:
Theorem 3.2 which provides a sharp method and Theorem 3.7 which has easier to
verify Assumptions but is not sharp. There is a collection of examples which explain the
merits and limitations of the results we present. In Section 4, we use similar methods to
describe the Jacobian of the SDE. Finally, Section 5 bridges Section 3 and Section 4 and
contains the so-called representations formulae and existence and smoothness results
for densities.
Acknowledgments. The authors thank C. Geiss (U. of Jyväskylä), A. Steinicke (U. of
Graz) and A. Réveillac (U. of Toulouse) for their helpful comments. In particular to the
two referees whose reviews led to nontrivial improvements of the initial manuscript.

2 Preliminaries

2.1 Notation and spaces

We denote by N = {1, 2, · · · } the set of natural numbers and N0 = N ∪ {0}; R denotes
the set of real numbers respectively; R+ = [0,∞). By a . b we denote the relation
a ≤ C b where C > 0 is a generic constant independent of the relevant parameters and
may take different values at each occurrence. By bxc we denote the largest integer less
than or equal to x. Let A be a d×m matrix, we denote the Transpose of A by AT . When
A is a matrix, we denote |A| by Tr(A ·AT )1/2.

Let f : Rd → R be a differentiable function. Then we denote ∇f to be the gradient
operator and H[f ] to be the Hessian operator. ∂xi is the 1st partial derivative wrt i-th
position. 1A denotes the usual indicator function over some set A

We use standard big O and little o notation to mean that for fn, f > 0

fn = O(f) ⇐⇒ lim sup
n→∞

fn
f
≤ C and fn = o(f) ⇐⇒ lim

n→∞

fn
f

= 0.

where C is a constant independent of the limiting variable.
Let p ∈ [1,∞). We introduce the following spaces and when there is no ambiguity

about the underlying spaces or measures, we omit their arguments. Let T > 0, so that
the set [0, T ] is a compact subset of the real line.

• Let C([0, T ]) denote the space of continuous functions f : [0, T ]→ R endowed with
the uniform norm ‖f‖∞ = sups∈[0,T ] |f(s)| and ‖f‖∞,t = sups∈[0,t] |f(s)|; C0([0, T ])

be the subspace of continuous functions that start at 0; Ckb (Rm) the set of k-times
differentiable real valued maps defined on Rm with bounded partial derivatives up
to order k, and C∞b (Rm) = ∩k≥1C

k
b (Rm); C0

b its subspace of continuous bounded
functions;

• Let Lp([0, T ]) denote the space of functions f : [0, T ] → R satisfying ‖f‖p =( ∫ T
0
|f(r)|pdr

)1/p
<∞.

• Let (Ω,F ,Ft,Q) be a probability space. Let Lp(Ft;Rd;Q), t ∈ [0, T ], is the space of
Rd-valued Ft-measurable random variables X with norm ‖X‖Lp = EQ[ |X|p]1/p <
∞; L∞ refers to the subset of bounded random variables with norm ‖X‖L∞ =

ess supω∈Ω |X(ω)|;
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Let L0(Ft;Rd) be the space of Rd-valued Ft-measurable, adapted random variables
with the topology of convergence in probability.

• Sp([0, T ],Rm,Q) is the space of Rd-valued processes (Yt)t∈[0,T ] that are F -adapted
and satisfying ‖Y ‖Sp = EQ[‖Y ‖p∞]1/p = EQ[supt∈[0,T ] |Y (t)|p]1/p < ∞; additionally
S∞([0, T ],Rm,Q) refers to the intersection of Sp([0, T ],Rm,Q) for every p ≥ 1.

• Let H be the usual Cameron-Martin Hilbert space for Brownian Motion

H =
{
h(t) =

∫ t

0

ḣ(s)ds, t ∈ [0, T ]; h(0) = 0, ḣ ∈ L2([0, T ])
}
.

2.2 Malliavin calculus

Here we briefly outline the ideas of Malliavin calculus. For more details, see [13]. We
denote by E and E[·|Ft] the usual expectation and conditional expectation operator (wrt
to P) respectively. For a random variable X we denote its probability distribution (or
Law) by LX ; the law of a process (Y (t))t∈[0,T ] at time t is denoted by LYt .

The probability space

Let Ω̃ = C0([0, T ];Rm) be the canonical m-dimensional Wiener space and let W be
the Wiener process with law P̃. Let (F̃t)t∈[0,T ] be the standard augmentation of the
filtration generated by the Brownian motion. Then we have the probability space
(Ω̃, F̃ , (F̃t)t∈[0,T ], P̃). Additionally, let ([0, 1],B([0, 1]),P) be a probability space with the
Lebesgue measure P. Our probability space is structured as follows:

1. The sample space will be Ω = [0, 1]× Ω̃

2. The σ-algebra over this space will be F = σ(B([0, 1]) × F̃) with filtration Ft =

σ(B([0, 1])× F̃t).

3. The probability measure will be the product measure P = P× P̃.

Thus for a random variable θ that is F0 = σ
(
B([0, 1])× F̃0

)
measurable, the Malliavin

Derivative of θ is trivially 0. Hence when for ω ∈ Ω we write ω + h in Section 3, we
think of this perturbation as only being in the canonical Wiener sense. In Section 4, we
perturb on the space Lp(F0;Rd;P).

Malliavin derivatives via cylindrical functions

Let H be a Hilbert space and let E, B be separable Banach spaces. Let i : H → E be
an injective, continuous linear map with dense image. The triple (H, E, i) are called
an Abstract Wiener space. The map i radonifies the canonical Gaussian cylinder set
measure over H and the induced measure over E is called the Abstract Wiener measure.

Let W : H → L2(F ;R;P) a Gaussian random variable. The space W (H) endowed
with an inner product 〈W (h1),W (h2)〉 = E[W (h1)W (h2)] is a Gaussian Hilbert space.

A mapping f : E → R is called a Polynomial if ∃n ∈ N, ∃g1, ..., gn ∈ E∗ and ∃f̃ : Rn →
R such that

f(x) = f̃
(
g1(x), ..., gn(x)

)
.

The set of all polynomials is denoted P. Similarly, a mapping F : E → B is said to be an
B-valued polynomial if ∃m ∈ N, ∃f1, ..., fm ∈ P and ∃b1, ..., bm ∈ B such that

F (x) =

m∑
j=1

fj(x)bj .
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The set of all B-valued polynomials is denoted by P[B]. It is well documented that
P[B] is dense in the space Lp(F ;E;P) where P is the induced measure over E. See for
instance [16]. For the canonical space, E = C0([0, T ];Rm) is the space of all continuous
Rm valued paths starting at 0 with uniform norm.

For F ∈ P[B], we define the derivative of F to be the B ⊗H (tensor product of B and
H) valued

DF (x) =

n∑
k=1

m∑
j=1

∂xkfj
(
g1(x), ..., gn(x)

)
ej ⊗ (gk ◦ i).

Recall that (gk◦i) can be thought of as an element ofH∗, which is isometrically isomorphic
to H. The operator D is closable, and we define the Sobolev space D1,p(B) to be the
closure of P[B] with respect to the norm

‖F‖1,p,B =

[∫
E

∥∥∥F (x)
∥∥∥p
B
dP(x) +

∫
E

∥∥∥‖DF (x)‖H
∥∥∥p
B
dP(x)

] 1
p

.

2.3 Existence and uniqueness of SDE with local Lipschitz coefficients

We present the class of SDEs that we will be working with.

Lipschitz and locally Lipschitz coefficients

Let (t, ω, θ) ∈ [0, T ]× Ω× L0(F0;P;Rd).
In this paper, we prove differentiability properties of the SDE

Xθ(t)(ω) = θ +

∫ t

0

b
(
s, ω,X(s)(ω)

)
ds+

∫ t

0

σ
(
s, ω,X(s)(ω)

)
dW (s), (2.1)

driven by a m-dimensional Brownian motion W .

Assumption 2.1. Let p ≥ 2. Let θ : Ω→ Rd, b : [0, T ]×Ω×Rd → Rd and σ : [0, T ]×Ω×
Rd → Rd×m be progressively measurable maps and L > 0 such that:

• θ ∈ Lp(F0;Rd;P).

• b and σ are integrable in the sense that

E
[( ∫ T

0

|b(t, ω, 0)|dt
)p]

, E
[( ∫ T

0

|σ(t, ω, 0)|2dt
)p

2
]
<∞. (2.2)

• ∃L such that for almost all (s, ω) ∈ [0, T ]× Ω and ∀x, y ∈ Rd we have〈
x− y, b(s, ω, x)− b(s, ω, y)

〉
Rd
≤ L|x− y|2 and |σ(s, ω, x)− σ(s, ω, y)| ≤ L|x− y|.

• For x, y ∈ Rd such that |x|, |y| < N , ∃LN > 0 such that

|b(s, ω, x)− b(s, ω, y)| ≤ LN |x− y|,

for almost all (s, ω) ∈ [0, T ]× Ω.

The next result extends results found in the literature to the case of random coeffi-
cients. Existence and uniqueness of a solution follow the methods of [10, Theorem 2.3.6];
the case of random coefficients is not addressed there but the general methodology is
applicable in the same way with only more care being taken when proving integrability.
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Theorem 2.2. Let p ≥ 2. Suppose Assumption 2.1 is satisfied. Then there exists a
unique solution (X(t))t∈[0,T ] to the SDE (2.1) in Sp and

E
[
‖X‖p∞

]
.
(
E
[
|θ|p
]

+ E
[( ∫ T

0

|b(s, ω, 0)|ds
)p]

+ E
[( ∫ T

0

∣∣∣σ(s, ω, 0)
∣∣∣2ds)p2 ]).

Moreover, the map t 7→ X(t)(ω) is P-a.s. continuous.
Finally, the solution of the SDE is Stochastically Stable in the sense that for ∀ξ, θ ∈

Lp(F0;Rd;P), (with a constant depending on the other parameters but not on θ or ξ)

E
[
‖Xξ −Xθ‖p∞

]
. E

[
|θ − ξ|p

]
.

Proof. This proof can be found in Appendix A.1.

Remark 2.3 (Issues with integrability and Fubini - Sharp conditions). The integrability
conditions of Assumption 2.1 are designed to be sharp. However, they yield processes
which can have some problematic properties.

It is very important to note that we cannot (in general) swap the order of integration
at this point! This is a key point in our manuscript. We are not able to assume that the
drift term is sufficiently integrable (given (2.2)) and hence the error terms appearing in
the proofs of differentiability below will not be assumed to be integrable.

To emphasize our point consider the following monotone drift function b(t, ω, x) =

x− x5 and σ(t, ω, x) is chosen so that for some t′ ∈ [0, T )

E
[∣∣ ∫ T

0

|σ(t, ω, 0)|2dt
∣∣2] <∞, E

[∣∣ ∫ t′

0

|σ(t, ω, 0)|2dt
∣∣ 52 ] =∞.

These satisfy the conditions of Assumption 2.1 for p = 4 but not for p = 5. We can then
argue as follows: for t ∈ [t′, T ]

E[ |X(t)|4] <∞, E[ |X(t)|5] =∞ and in particular E
[ ∫ t

t′
|X(s)|5ds

]
=∞.

The existence of finite fourth moments ensures we have finite first moments and hence
for t > t′

E
[ ∫ t

0

(
X(s)−X(s)5

)
ds
]
<∞ which implies that E

[ ∫ t

t′
X(s)5ds

]
<∞.

On SDEs with linear coefficients

Let (t, ω, θ) ∈ [0, T ]× Ω× L0(F0;P;Rd) and take an SDE of the form

Xθ(t)(ω) = θ +

∫ t

0

[
B
(
s, ω
)
Xθ(s)(ω) + b(s, ω)

]
ds

+

∫ t

0

[
Σ
(
s, ω
)
X(s)(ω) + σ(s, ω)

]
dW (s), (2.3)

driven by a m-dimensional Brownian motion W . The derivatives of SDEs of the form
(2.1) will satisfy linear SDEs of the form (2.3).

Assumption 2.4. Let p ≥ 1. Let B : [0, T ] × Ω → Rd×d, Σ : [0, T ] × Ω → R(d×m)×d,
b : [0, T ] × Ω → Rd and σ : [0, T ] × Ω → Rd×m be progressively measurable maps such
that:

• θ ∈ Lp(F0;Rd;P).
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• B, b, Σ and σ are integrable in the sense that ∃L ≥ 0 such that ∀x ∈ Rd

xTB(t, ω)x < L|x|2 P-a.s.,

∫ T

0

‖Σ(t, ·)‖2L∞dt <∞,

E
[( ∫ T

0

|b(t, ω)|dt
)p]

, E
[( ∫ T

0

|σ(t, ω)|2dt
)p

2
]
<∞.

One advantage of SDEs of the form (2.3) is that they have an explicit solution unlike
SDEs of the form (2.1) where a solution exists but cannot be explicitly stated. Linear
SDEs do have Lipschitz coefficients, but their Lipschitz constants are not uniform over
(t, ω) ∈ [0, T ]× Ω. Therefore, we cannot apply Theorem 2.2.

Notice that for Assumption 2.4, we do not make any requirement on B being positive
definite operator. In fact, we may be interested in cases where ∃x ∈ Rd such that
xT (

∫ T
0
B(t, ω)dt)x = −∞ with positive probability.

Theorem 2.5. Let p ≥ 1. Suppose Assumption 2.4 is satisfied. Then there exists a
unique solution (X(t))t∈[0,T ] to the SDE (2.3) in Sp with explicit form

Xθ(t) = Ψ(t)

(
θ+

∫ t

0

Ψ(s)−1
[
b(s, ω)−

〈
Σ(s, ω), σ(s, ω)

〉
Rm

]
ds+

∫ t

0

Ψ(s)−1σ(s, ω)dW (s)

)
,

where Ψ : [0, T ]× Ω→ Rd×d can be written as

Ψ(t) = Id exp

(∫ t

0

[
B(s, ω)−

〈
Σ(s, ω),Σ(s, ω)

〉
Rm

2

]
ds+

∫ t

0

Σ(s, ω)dW (s)

)
, (2.4)

and

E
[
‖Xθ‖∞

]
.
(
E
[
|θ|p
]

+ E
[( ∫ T

0

|b(s, ω)|ds
)p]

+ E
[( ∫ T

0

|σ(s, ω)|2ds
)p

2
])
.

Moreover, the map t 7→ X(t)(ω) is P-a.s. continuous.
Finally, the solution Xθ of the equation is Stochastically stable in the sense that

∀ξ, θ ∈ Lp(F0;Rd;P)

E
[
‖Xξ −Xθ‖p∞

]
. E

[
|ξ − θ|p

]
.

Proof. An existence and uniqueness proof is found in [10, Theorem 3.3.1]. Moment
calculations are proved in Appendix A.1. Stochastic stability is proved in the same
fashion as in Theorem 2.2.

2.4 A Grönwall inequality

To the best of our knowledge the next result is new and of independent interest.
While unsurprising, this is key to the methods of this paper.

Proposition 2.6 (Grönwall Inequality for the Topology of Convergence in Probability). Let
n ∈ N, An : [0, T ] × Ω → R be a sequence of adapted stochastic processes such that

‖An‖∞
P−→ 0 as n→∞ (that is conv. in probability: ∀ε > 0 limn→∞P[‖Un‖∞ > ε] = 0).

Let Un be the solution of the SDE

Un(t) = An(t) +

∫ t

0

f
(
Un(s)

)
ds+

∫ t

0

g
(
Un(s)

)
dW (s), t ∈ [0, T ]

where f, g : R→ R are Monotone growth and Lipschitz respectively (see 3rd bullet point
of Assumption 2.1) and f(0) = g(0) = 0.

Then ‖Un‖∞
P−→ 0 as n→∞.
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Notice that since we do not have finite second moments of ‖An‖∞, the result cannot
be proved using a mean square type argument.

Proof. Fix δ > 0 and let n ∈ N. We have for any choice of η > 0 that

P
[
‖Un‖∞ > δ

]
≤ P

[
‖Un‖∞ > δ, ‖An‖∞ ≤ η

]
+ P

[
‖An‖∞ > η

]
.

We already have that limn→∞P
[
‖An‖∞ > η

]
= 0 for any choice of η > 0 by assumption.

Define the sequence of stopping times τn = inf{t′ > 0 : |An(t′)| > η}, n ∈ N.
Firstly, we show that limn→∞ τn ≥ T almost surely. Suppose this was not the case.

Then ∃Ω′ ⊂ Ω with P(Ω′) > 0 and ∀ω ∈ Ω′ ∃nk(ω) an increasing subsequence of integers
such that τnk(ω) < T for all k ∈ N. Then ∀ω ∈ Ω′, ‖Ank‖∞(ω) > η for all k ∈ N. But that
implies that for any k ∈ N we have

Ω′ ⊂ {ω ∈ Ω; ‖Ank‖∞(ω) > η} and hence that P
[
‖Ank‖∞ > η

]
> P[Ω′].

The latter contradicts the assumption that ‖Ank‖∞ converges to 0 in probability. So any
such set Ω′ must have measure 0 and we conclude limn→∞ τn > T almost surely.

The SDE for Un(t) is well defined for t ∈ [0, τn]. Outside of this interval, An may not
be integrable so we may not be able construct a solution. However ∀ω ∈ Ω such that
‖An‖∞(ω) ≤ η we have that τn(ω) > T . Therefore

P
[
‖Un(·)‖∞ > δ, ‖An‖∞ ≤ η

]
= P

[
‖Un(· ∧ τn)‖∞ > δ, ‖An‖∞ ≤ η

]
,

because the process Un(·) and the stopped process Un(· ∧ τn) are P-almost surely equal
when one restricts to the event where ‖An‖∞ ≤ η.

As we know that the solution Un(t ∧ τn) will exist and make sense, it serves to
introduce this stopping time. Thus we get

P
[
‖Un‖∞ > δ

]
≤ P

[
‖Un(· ∧ τn)‖∞ > δ, ‖An‖∞ ≤ η

]
+ P

[
‖An‖∞ > η

]
≤ P

[
‖Un(· ∧ τn)‖∞ > δ

]
+ P

[
‖An‖∞ > η

]
.

Now we consider the SDE for Un(t ∧ τn). The stopping time prevents the term An(t ∧
τn) from getting any larger that η and ensures that the stochastic integral is a local
martingale. Appealing to Theorem 2.2 yields existence/uniqueness of the solution and
moment bounds.

E
[
‖Un(· ∧ τn)‖2∞

]
< η2eC and therefore P

[
‖Un‖∞ > δ

]
≤ η2eC

δ2
+ P

[
‖An‖∞ > η

]
.

Choose η such that η2eC/δ2 < ε′/2. Then find N ∈ N such that ∀n ≥ N P
[
‖An‖∞ > η

]
<

ε′/2. This concludes the proof.

3 Malliavin Differentiability of SDEs with monotone coefficients

In this section we prove two Malliavin differentiability result for SDEs in the class
given by Assumption 2.1. We use a less known method using the concepts of Ray absolute
continuity and Stochastic Gâteaux Differentiability initiated by [16] and later developed
by [11, 8].

For SDEs of the form (2.1), the proof of existence and uniqueness of a solution
involves a sequence of random variables which converge almost surely to the solution
rather than in mean square. Indeed this sequence of random variables does not converge
in mean square, unlike in the proof of Existence and Uniqueness for SDEs with Lipschitz
coefficients. This means that the classical method from [13, Lemma 1.2.3] cannot be
applied; recall further our observation on the role that Proposition 2.6 will play here.
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3.1 Main results and their assumptions

We state the main assumptions and results with the proofs postponed for later
sections.

Assumption 3.1. Let b : [0, T ] × Ω × Rd → Rd and σ : [0, T ] × Ω × Rd → Rd×m satisfy
Assumption 2.1 for some p > 2. Further, suppose

(i) For almost all (t, ω) ∈ [0, T ] × Ω the functions σ(t, ω, ·) and b(t, ω, ·) have spatial
partial derivatives in all directions.

(ii) For all h ∈ H and (ε, x) ∈ R+ ×Rd, we have that the maps R+ ×Rd → L0(Ω)

(ε, x) 7→
∫ T

0

∣∣∣∇xσ(t, ω + εh, x)
∣∣∣2dt and (ε, x) 7→

∫ T

0

∣∣∣∇xb(t, ω + εh, x)
∣∣∣2dt,

are jointly continuous (where convergence in L0 means convergence in probability).

(iii) ∃U : [0, T ]2×Ω→ Rd×m and V : [0, T ]2×Ω→ R(d×m)×m which satisfy that for s > r

U(s, r, ω) = V (s, r, ω) = 0 and

E
[( ∫ T

0

(∫ T

0

∣∣∣U(s, r, ω)
∣∣∣2ds) 1

2
dr
)p]

<∞ and

E
[( ∫ T

0

∫ T

0

∣∣∣V (s, r, ω)
∣∣∣2dsdr)p2 ] <∞.

(iv) b and σ satisfy, as ε→ 0, that ∀h ∈ H

E
[( ∫ T

0

∣∣∣b(r, ω + εh,X(r))− b(r, ω,X(r))

ε
−
∫ r

0

U(s, r, ω)ḣ(s)ds
∣∣∣dr)2]

→ 0,

E
[ ∫ T

0

∣∣∣σ(r, ω + εh,X(r))− σ(r, ω,X(r))

ε
−
∫ r

0

V (s, r, ω)ḣ(s)ds
∣∣∣2dr]→ 0.

In the above condition neither b or σ are assumed to be in D1,2, they are only assumed
to be Malliavin differentiable over the sub-manifold on which X (solution to (2.1)) takes
values on. After our main results we give examples of SDE illustrating the scope of our
assumptions.

Theorem 3.2 (Malliavin Differentiability of Monotone SDEs). Take p > 2. Let Assumption
3.1 hold and denote by X the unique solution of the SDE (2.1) in Sp.

ThenX is Malliavin differentiable, i.e.X ∈ D1,p(Sp) and there exist adapted processes
U and V such that the Malliavin derivative satisfies for 0 ≤ s ≤ t ≤ T

DsX(t)(ω) =σ(s, ω,X(s)(ω)) +

∫ t

s

U(s, r, ω)dr +

∫ t

s

V (s, r, ω)dW (r) (3.1)

+

∫ t

s

∇xb(r, ω,X(r)(ω))DsX(r)(ω)dr

+

∫ t

s

∇xσ(r, ω,X(r)(ω))DsX(r)(ω)dW (r),

and otherwise DsX(t) = 0 for s > t.

The proof of Theorem 3.2 can be found in Section 3.4.
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Remark 3.3 (Notation). At the simplest level, we have X is Rd-valued and W is Rm-
valued. Therefore b, σ are Rd- and Rd×m-valued respectively. Hence we have the
collection of one-dimensional SDEs

X(i)(t)(ω) = θ(i) +

∫ t

0

b(i)(s, ω,X(s)(ω))ds+

m∑
j=1

∫ t

0

σ(i,j)(s, ω,X(s)(ω))dW (j)(s),

where i is an integer between 1 and d.
The Malliavin Derivative DX is therefore a Rd×m valued process and we get the

system of equations

D(k)
s X(i)(t)(ω) =σ(i,k)(s, ω,X(s)(ω))ds

+

∫ t

s

U (i,k)(s, r, ω)dr +

m∑
j=1

∫ t

s

V (i,j,k)(s, r, ω)dW (j)(r)

+

∫ t

s

〈
(∇xb(i))(r, ω,X(r)(ω)), D(k)

s X(t)(ω)
〉
Rd
dr

+

m∑
j=1

∫ t

s

〈
(∇xσ(i,j))(r, ω,X(r)(ω)), D(k)

s X(t)(ω)
〉
Rd
dW (j)(r),

for i an integer between 1 and d and k an integer between 1 and m.

Remark 3.4 (Mollification and non-differentiability of b and σ). Using classic mollification
arguments the assumptions of Theorem 3.2 concerning the behaviour of x 7→ b(·, ·, x)

and x 7→ σ(·, ·, x) can be further weakened. Namely, σ can be assumed to be uniformly
Lipschitz as opposed to continuously differentiable and b can be assumed to have left-
and right-derivatives not necessarily equal to each other at every point.

Under these conditions, a canonical mollification argument allows to re-obtain The-
orem 3.2 where in (3.1) one replaces ∇xb and ∇xσ by two processes corresponding to
their generalized derivatives.

If b and σ are assumed deterministic then one immediately obtains the familiar result.

Corollary 3.5 (Deterministic coefficients case). Suppose that b : [0, T ] × Rd → Rd and
σ : [0, T ] × Rd → Rd×m satisfy Assumption 2.1. Further, suppose that x 7→ b(·, x) and
x 7→ σ(·, x) are continuously differentiable in their spatial variables (uniformly in t).

Then X is Malliavin differentiable and DsX(t) = 0 for T ≥ s > t ≥ 0 while for
0 ≤ s ≤ t ≤ T

DsX(t)(ω) = σ(s,X(s)(ω)) +

∫ t

s

∇xb(r,X(r)(ω))DsX(r)(ω)dr

+

∫ t

s

∇xσ(r,X(r)(ω))DsX(r)(ω)dW (r).

Assumption 3.1 is sharp for our construction, nonetheless, it can be slightly strength-
ened to Assumption 3.6 which is much easier to verify.

Assumption 3.6. Let b : [0, T ] × Ω × Rd → Rd and σ : [0, T ] × Ω × Rd → Rd×m satisfy
Assumption 2.1 for p > 2. Further, suppose Assumption 3.1 (i) and (ii) hold and

(iii’) b and σ are Malliavin differentiable in the sense that

∀x ∈ Rd, b(·, ·, x) ∈ D1,p
(
L1([0, T ];Rd)

)
and σ(·, ·, x) ∈ D1,p

(
L2([0, T ];Rd×m)

)
.

(iv’) The Malliavin derivatives of b and σ are progressively measurable and Lipschitz in
their spacial variables i.e. ∃L > 0 constant such that ∀(s, t) ∈ [0, T ]2 and x, y ∈ Rd,
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P-almost surely

|Dsb(t, ω, x)−Dsb(t, ω, y)| ≤ L|x− y|,
|Dsσ(t, ω, x)−Dsσ(t, ω, y)| ≤ L|x− y|.

The second main result of the section is the following theorem.

Theorem 3.7. Let p > 2. Let Assumption 2.1 hold and denote by X the unique solution
of the SDE (2.1) in Sp. Let b and σ satisfy Assumption 3.6. Then the conclusion of
Theorem 3.2 still holds: X ∈ D1,p(Sp) and DX satisfies DsX(t) = 0 for T ≥ s > t ≥ 0

while for 0 ≤ s ≤ t ≤ T

DsX(t)(ω)

= σ
(
s, ω,X(s)(ω)

)
+

∫ t

s

(Dsb)
(
r, ω,X(r)(ω)

)
dr +

∫ t

s

(Dsσ)
(
r, ω,X(r)(ω)

)
dW (r) (3.2)

+

∫ t

s

∇xb
(
r, ω,X(r)(ω)

)
DsX(r)(ω)dr +

∫ t

s

∇xσ
(
r, ω,X(r)(ω)

)
DsX(r)(ω)dW (r).

The proof can be found in Section 3.5. We point out that the mollification Remark 3.4
applies to this result as well.

It is a well documented fact, see [13, Theorem 2.2.1], that if one has a SDE with
deterministic and Lipschitz drift and diffusion coefficients then the Malliavin derivative
is the solution of a homogeneous linear SDE. Both the SDE and the Malliavin Derivative
have finite moments of all orders. Therefore the solution of the SDE exists in D1,∞.

We study the case where the coefficients are random. SDEs of this kind do not always
have finite moments of all orders, and the same will apply for the Malliavin derivative.
In fact, the integrability of the derivative comes directly from the integrability of the
Malliavin derivatives of b and σ.

3.2 Overview of the methodology and results on Wiener spaces

It is important to note that the solution of an SDE is not continuous with respect
to ω ∈ Ω. As the SDE exists in a probability space with the filtration generated by an
m-dimensional Brownian motion, ω can be interpreted to mean the path of an individual
Brownian motion plus any extra information about what happens when t = 0. However,
it will be shown that the random variables are continuous, and indeed differentiable,
when perturbed with respect to a path out of the Cameron Martin space. Hence for
this section we take h ∈ H⊗m, an m-dimensional Cameron Martin path and ḣ to be its
derivative unless stated otherwise. We will not emphasize the difference between H and
H⊗m in this paper.

We start by introducing the concepts of Ray absolute continuity and Stochastic
Gâteaux Differentiability and the results yielding Malliavin differentiability under those
properties.

Let E be a separable Banach space. Let L(H,E) be the space of all bounded linear
operators V : H → E.

Definition 3.8 (Ray Absolutely Continuous map). A measurable map f : Ω→ E is said to
be Ray Absolutely Continuous if ∀h ∈ H, ∃ a measurable mapping f̃h : Ω→ E such that

f̃h(ω) = f(ω) P-a.e.

and that ∀ω ∈ Ω,

t 7→ f̃h(ω + th) is absolutely continuous on any compact subset of R.
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Definition 3.9 (Stochastically Gâteaux differentiable). A measurable mapping f : Ω→ E

is said to be Stochastically Gâteaux differentiable if there exists a measurable mapping
F : Ω→ L(H,E) such that ∀h ∈ H,

f(ω + εh)− f(ω)

ε

P−→ F (ω)[h] as ε→ 0.

Malliavin differentiability follows from [16, Theorem 3.1] which was later improved
upon by [11, Theorem 4.1]. We recall both results next.

Theorem 3.10 ([16]). Let p > 1. The space D1,p(E) is equivalent to the space of all
random variables f : Ω → E such that f ∈ Lp(Ω;E) is Ray Absolutely Continuous,
Stochastically Gâteaux differentiable and the Stochastic Gâteaux derivative F : Ω →
L(H,E) is F ∈ Lp(Ω;L(H,E)).

Remark 3.11. We know from standard references such as [18] that the map t 7→
f̃h(ω + th) is continuous as a map from [0, 1]→ L0(Ω). The point of proving the stronger
absolute continuity is to find a representation of the form

f̃h(ω + εh)− f̃h(ω) =

∫ ε

0

F (ω + rh)[h]dr,

where the object F (ω) is a candidate for the Malliavin Derivative. Proving Stochastic
Gâteaux Differentiability is then verifying that this object is a bounded linear operator
and allows one to extend from Gâteaux to Fréchet. Thus a random variable which is
Ray Absolutely Continuous but not Stochastic Gâteaux Differentiable has a Malliavin
Directional Derivative in all directions, but there is a sequence of elements hn ∈ H such
that F (ω)[hn]→∞.

By contrast, if one has Stochastic Gâteaux Differentiability but not Ray Absolute
Continuity, then one can prove existence of the Malliavin Derivative but which is not in
L1(Ω) e.g. E[‖F (ω)‖L(H,E)] =∞.

Definition 3.12 (Strong Stochastically Gâteaux differentiable). Let p > 1. A random
variable f ∈ Lp(Ω;E) is said to be Strong Stochastically Gâteaux differentiable if there
exists a measurable mapping F : Ω→ L(H,E) such that ∀h ∈ H

lim
ε→0

E
[∥∥∥f(ω + εh)− f(ω)

ε
− F (ω)[h]

∥∥∥]→ 0. (3.3)

Theorem 3.13 ([11]). Let p > 1. The space D1,p(E) is equivalent to the space of all
random variables f ∈ Lp(Ω;E) that are Strong Stochastically Gâteaux differentiable and
have measurable mapping F ∈ Lp(Ω;L(H,E)).

The merit of [16] is that it allows one to prove Malliavin differentiability by first
establishing existence of a Gâteaux derivative and then extending to the full Frechét
derivative. The convergence of the Gâteaux derivative in probability is a very weak
condition that is much easier to prove than full Malliavin differentiability. [11] extends
this result to the stronger Strong Stochastic Gâteaux Differentiability condition and
removed the Ray Absolute Continuity condition.

Both of these methods have their merits. While studying different examples of
processes with monotone growth, we became interested in the particular example where
the drift term has polynomial growth of order q but only finite moments up to p < q − 2.
In this case, one cannot in general find a dominating function for the error terms coming
from the drift of the SDE while trying to prove Stochastic Gâteaux Differentiability. It
therefore became necessary to prove only a convergence in probability statement.
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Corollary 3.14. Suppose a measurable map f : Ω → E is Stochastically Gâteaux
Differentiable and additionally that for δ > 0

sup
ε≤1

E

[∣∣∣f(ω + εh)− f(ω)

ε

∣∣∣1+δ
]
<∞. (3.4)

Then f is Malliavin Differentiable (and so f is Ray Absolutely Continuous).

Proof. Condition (3.4) yields the collection of random variables
(
(f(ω + εh)− f(ω))/ε

)
ε≤1

to be uniformly integrable. Stochastic Gâteaux Differentiability means that this collection
of random variables converges in probability to a limit. Since δ > 0, we conclude that
the sequence of random variables converges in mean, or equivalently we have Strong
Stochastic Gâteaux differentiability. Theorem 3.13 shows this is equivalent to Malliavin
Differentiability and Theorem 3.10 implies we must have Ray Absolute Continuity.

The convergence conditions on U and V in Assumption 3.1(iii) and (iv) could equiv-
alently been stated in terms of a Ray Absolute Continuity and Stochastic Gâteaux
Differentiability criterion instead of Strong Stochastic Gâteaux Differentiability.

Classical results on the Cameron Martin transforms

We recall two useful results from [18]. First we introduce the notation for a Doléans-Dade
exponential over [0, T ] of some sufficient integrable Rm-valued process, (M(t))t∈[0,T ],
namely, we define for t ∈ [0, T ] and an m-dimensional Brownian motion W ,

E(M)(t) = exp
(∫ t

0

M(s)dW (s)−
1

2

∫ t

0

|M(s)|2ds
)
. (3.5)

Proposition 3.15 (The Cameron-Martin Formula – [18]). Let F be an FT -measurable
random variable. For h ∈ H let E(ḣ)(·) be the associated Doléans-Dade exponential.

Then, when both sides are well defined,

E
[
F (ω + h)

]
= E

[
F exp

(∫ T

0

ḣ(s)dW (s)− 1

2

∫ T

0

|ḣ(s)|2ds
)]

= E
[
F (ω)E(ḣ)(T )

]
.

Moreover, ∀h ∈ H and ∀p ≥ 1 that E(ḣ)(·) ∈ Sp([0, T ]).

Proposition 3.16 (Continuity of the Cameron Martin Transform – [18]). The map τh :

[0, 1] → L0(Ω) defined by t 7→ f(ω + th) is continuous map from a compact interval of
the real line to a measurable function with respect to the topology of convergence in
probability.

3.3 Examples

In this section, we discuss some interesting examples which emphasize the scope
and sharpness of the assumptions made.

Example 3.17 (Concerning the continuity of s 7→ DsX(·)). Previous works on Malliavin
calculus, see for example [13], treat the solution of this SDE as being continuous in
s. While this is true for those examples studied, it is not true in the general case that
we study here. We only have that it is square integrability; this example shows that
it is not necessary for the derivative to be continuous in s. Take g ∈ L2([0, T ]) be a
deterministic discontinuous function (a step function would be adequate) and assume
the one dimensional setting. Consider σ of the form

σ(t, ω, x) = x+

∫ t

0

g(s)dW (s) and b(t, ω, x) = 0.
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Hence X(t) satisfies X(t) = 1 +
∫ t

0

[
X(s) +

∫ s
0
g(r)dW (r)

]
dW (s). It can be shown that the

explicit solution of this equation is

X(t) = exp
(
W (t)− t

2

)[
1−

∫ t

0

∫ r

0

exp
(r

2
−W (r)

)
g(u)dudr

+

∫ t

0

∫ r

0

exp
(r

2
−W (r)

)
g(u)dW (u)dr

]
.

Note that, as expected, X is a continuous process.
The process V , which represents the Malliavin derivative of σ, is

V (s, t, ω) = Dsσ(t, ω,X(t)(ω)) = g(s)1(0,t)(s)

⇒
∫ t

s

V (s, r, ω)dW (r) = g(s)[W (t)−W (s)].

Clearly, the latter map is not continuous in s. The Malliavin derivative of X solves

DsX(t) = X(s) +

∫ s

0

g(r)dW (r) + g(s)[W (t)−W (s)] +

∫ t

s

DsX(r)dW (r).

Define Js(t) = exp
(

[W (t)−W (s)]− t−s
2

)
. Then the Malliavin derivative has the explicit

solution

DsX(t) = Js(t)
[
X(s) +

∫ s

0

g(r)dW (r) + g(s)
(∫ t

s

Js(r)
−1dW (r)−

∫ t

s

Js(r)
−1dr

)]
.

Since g is assumed not to be continuous, this will also not be continuous in s.

We present a case where the coefficients are not Malliavin differentiable in general
but are only differentiable on the set where the solution X takes its values. In other
words, Assumption 3.1 is satisfied but Assumption 3.6 is not.

Example 3.18 (Malliavin Differentiable on the right manifold). Let d = m = 1 for simplic-
ity. Let b(t, ω, x) = −x and

σ(t, ω(t), x) =

{
(x− 1)2(x+ 1)2 , x ∈ [−1, 1]

φ(x) · f(ω(t)) , |x| > 1
,

where φ ∈ C∞, φ(x) = 0 for |x| ≤ 1 and φ(x) = 1 for |x| ≥ 2. The function f is any
function f : R→ R which is bounded, continuous but not differentiable and ω is the path
of the Brownian motion.

An example of such a function f could be

f(x) =

{
W ′(x) , x ∈ [−1, 1]

−2 , |x| > 1
,

where W ′(x) is the Weierstrass function. The Weierstrass function is continuous but not
differentiable anywhere and satisfies W ′(−1) = W ′(1) = −2. The latter implies that f
is continuous. Hence f(ω(t)) will not be Malliavin differentiable but ε 7→ f(ω(t) + εh(t))

will be continuous.
The derivative of σ will satisfy

∂xσ(t, ω, x) =


4x(x− 1)(x+ 1) , x ∈ [−1, 1]

φ′(x) · f(ω(t)) , 1 < x < 2

0 , |x| > 2

,
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so since f is bounded, we conclude that σ is Lipschitz ∀ω ∈ Ω and differentiable.
When the initial conditions determine that the process starts inside the interval

[−1, 1], this is a so-called Wright-Fisher process (see [12]) and the solution will remain
within the interval [−1, 1] with probability 1. This is important because the non-Malliavin
Differentiability only affects the system when the process exits the [−1, 1] interval. The
conditions of Assumption 3.1 are satisfied but σ(·, x) is not Malliavin differentiable for
all x ∈ Rd.
Remark 3.19 (The square-integrability case). In [11], it is proved that one does not
require the Ray Absolute Continuity condition if one can prove a Strong Stochastic
Gâteaux Differentiability condition, see Theorem 3.13 and Equation (3.3). However,
in [8], the authors provide a random variable Z ∈ D1,2 which is not Strong Stochastic
Gâteaux differentiable in the sense that

E
[∣∣∣Z(ω + εh)− Z(ω)

ε
−DhZ

∣∣∣2]9 0, as ε→ 0.

It is however true that for all values q ∈ [1, 2)

E
[∣∣∣Z(ω + εh)− Z(ω)

ε
−DhZ

∣∣∣q]→ 0, as ε→ 0.

In our framework, it is necessary to study the square of increments of the process due
to the nature of the monotonicity property. Therefore we require that our SDE has
finite moment of order p for some p > 2. However, in light of the example provided in
[8], we believe (but do not show) that that there exists a case where the solution to an
SDE of the form (2.1) which has finite moments of order up to p = 2 which is Malliavin
Differentiable. Stochastic Gâteaux Differentiability would follow as before, but it was
unclear to us how one would prove Ray Absolute Continuity of such a process.

Remark 3.20 (The spatial Lipschitz condition for the Malliavin Derivatives of b and σ). In
Assumption 3.6 (iv’) we assume that Db and Dσ are Lipschitz in the spacial variable.
We chose this condition because it is easy to verify and strong enough to ensure that
∀x ∈ Rd

E
[( ∫ T

0

(∫ t

0

|Dsb(t, ω,X(t))|2ds
) 1

2
dt
)p]

<∞,

E
[( ∫ T

0

∫ t

0

|Dsσ(t, ω,X(t))|2dsdt
)p

2
]
<∞.

However, this condition is by no means necessary. One could consider the case where
Db is locally Lipschitz in space and satisfies a linear growth condition and equivalently
prove Theorem 3.7. However, the proof is more involved as it involves a careful interplay
using Hölder’s inequality between the maximal integrability of X, Db, Dσ and several
other stochastic terms.

3.4 Proofs of the 1st main result - Theorem 3.2

In what follows, the choice of θ (the initial condition in (2.1)) does not affect the
Malliavin derivative because θ is F0-measurable. If Y is Ft-measurable then DsY = 0 for
any t < s, see [13, Corollary 1.2.1].

Existence and uniqueness of the Malliavin derivative DsX(t)

We start by establishing that (3.1) has a unique solution where X solves (2.1). At this
point, nothing is said about the solution of (3.1) being the Malliavin derivative to X

solution of (2.1), showing it is the subsequent step.
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Differentiability of SDEs with drifts of super-linear growth

Theorem 3.21. Let p > 2. For (s, t) ∈ [0, T ]2, let X be the solution to the SDE (2.1)
under Assumption 3.1. Let (Ms(t)) be defined by the matrix of L2([0, T ])-valued SDEs

Ms(t)(ω) =σ(s, ω,X(s)(ω)) +

∫ t

s

U(s, r, ω)dr +

∫ t

s

V (s, r, ω)dW (r) (3.6)

+

∫ t

s

∇xb(r, ω,X(r)(ω))Ms(r)(ω)dr +

∫ t

s

∇xσ(r, ω,X(r)(ω))Ms(r)(ω)dW (r),

for s < t and Ms(t) = 0 for s > t.
Then a unique solution exists in Sp([0, T ];L2([0, T ])) for (3.6) and the process M has

finite pth moment, namely

E
[(

sup
t∈[0,T ]

∫ T

0

|Ms(t)|2ds
)p

2
]
<∞.

Observe that Equation (3.6) is linear in M , so the sharpness of the integrability is
determined by the integrability of U , V and σ (given the assumed behavior of ∇xb and
∇xσ). In the trivial case where U = V = 0 and σ = 1 then M has finite moments of all
orders.

Proof of Theorem 3.21. For brevity, t ∈ [0, T ] and we omit the explicit ω dependency
throughout.

Equation (3.6) is an infinite dimensional SDE. We see this when we think of the
Malliavin Derivative as being an L2([0, T ]) valued stochastic process. Therefore, we need
to extend results from Section 2 to infinite dimensional spaces. Let en be an orthonormal
basis of the space L2([0, T ];Rm). This is a separable Hilbert space, so without loss of
generality we can say the orthonormal basis is countably infinite. Let Vn be the linear
span of the set {e1, ..., en}. Let Pn : L2([0, T ];Rm) → Vn be the canonical projection
operators

Pn[f ](t) =

n∑
k=1

〈f, ek〉L2([0,T ];Rm)ek(t).

Then it is clear that limn→∞ ‖Pn[f ]− f‖L2([0,T ];Rm) = 0. For k ∈ N, consider the sequence
of 1-dimensional Linear Stochastic Differential Equations

Mk(t) =

∫ t

0

σ(u,X(u))ek(u)du+

∫ t

0

(∫ r

0

U(u, r)ek(u)du
)
dr

+

∫ t

0

(∫ r

0

V (u, r)ek(u)du
)
dW (r) +

∫ t

0

∇xb(r,X(r))Mk(r)dr

+

∫ t

0

∇xσ(r,X(r))Mk(r)dW (r).

These equations are of the same form as (2.3), hence a unique solution exists for each k
by Theorem 2.5. Also, observe that the fundamental matrix Ψ will be the same for each
choice of k ∈ N. Ψ will have the explicit solution

Ψ(t) = exp
(∫ t

0

∇b(r,X(r))dr − 1

2

∫ t

0

〈
∇σ
(
r,X(r)

)
,∇σ

(
r,X(r)

)〉
Rm
dr

+

∫ t

0

∇σ(r,X(r))dW (r)
)
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and Mk has explicit solution

Mk(t) =Ψ(t)

(∫ t

0

σ
(
u,X(u)

)
ek(u)du+

∫ t

0

Ψ(r)−1
[ ∫ r

0

U
(
u, r
)
ek(u)du

−
〈
∇σ
(
r,X(r)

)
,

∫ r

0

V
(
u, r
)
ek(u)du

〉
Rm

]
dr +

∫ t

0

Ψ(r)−1

∫ r

0

V
(
u, r
)
ek(u)dudW (r)

)
.

Next define for 0 ≤ s, t ≤ T , n ∈ N the process M(n),s(t) =
∑n
k=1Mk(t)⊗ ek(s)1[0,t)(s).

This process makes sense as the projection space is finite dimensional so we can rewrite
it in a finite dimensional vector form. The solution exists in the space Sp(L2([0, T ];Rd×m))

and has the explicit solution

M(n),s(t) =

n∑
k=1

Ψ(t)

(∫ t

0

σ
(
u,X(u)

)
ek(u)du+

∫ t

0

Ψ(r)−1
[ ∫ r

0

U
(
u, r
)
ek(u)du

−
〈
∇σ
(
r,X(r)

)
,

∫ r

0

V
(
u, r
)
ek(u)du

〉
Rm

]
dr

+

∫ t

0

Ψ(r)−1
[ ∫ r

0

V
(
u, r
)
ek(u)du

]
dW (r)

)
⊗ ek(s)1[0,t)(s),

=Ψ(t)

(
Pn

[
σ(·, X(·))

]
(s) +

∫ t

s

Ψ(r)−1
(
Pn

[
U(·, r)

]
(s)

−
〈
∇σ
(
r,X(r)

)
, Pn

[
V
(
·, r
)]

(s)
〉
Rm

)
dr +

∫ t

s

Ψ(r)−1Pn

[
V
(
·, r
)]

(s)dW (r)

)
.

This process satisfies the SDE

M(n),s(t) =Pn

[
σ(·, X(·))

]
(s) +

∫ t

s

Pn

[
U(·, r)

]
(s)dr +

∫ t

s

Pn

[
V (·, r)

]
(s)dW (r)

+

∫ t

s

∇xb(r,X(r))M(n),s(r)dr +

∫ t

s

∇xσ(r,X(r))M(n),s(r)dW (r).

For a(i,j) ∈ L2([0, T ]) and for A(u) = (a(i,j)(u))i∈{1,...,d},j∈{1,...,m}, define the norm

‖A·‖ =
( d∑
i=1

m∑
j=1

∫ T

0

|a(i,j)(u)|2du
)1/2

=
(∫ T

0

|A(u)|2du
)1/2

. (3.7)

By Itô’s formula, we have∣∣∣M(n),s(t)−M(m),s(t)
∣∣∣2 =

d∑
i=1

m∑
k=1

∣∣∣M (i,k)
(n),s(t)−M

(i,k)
(m),s(t)

∣∣∣2,
=
∑
i,k

∣∣∣(Pn − Pm)
[
σ(·, X(·))

](i,k)

(s)
∣∣∣2

+ 2
∑
i,k

∫ t

s

(
M

(i,k)
(n),s(r)−M

(i,k)
(m),s(r)

)
· (Pn − Pm)

[
U(·, r)

](i,k)

(s)dr

+ 2
∑
i,j,k

∫ t

s

(
M

(i,k)
(n),s(r)−M

(i,k)
(m),s(r)

)
· (Pn − Pm)

[
V (·, r)

](i,j,k)

(s)dW (j)(r)

+ 2
∑
i,k

∫ t

s

(
M

(i,k)
(n),s(r)−M

(i,k)
(m),s(r)

)
·
〈
∇xb(i)(r,X(r)),M

(·,k)
(n),s(r)−M

(·,k)
(m),s(r)

〉
dr
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+ 2
∑
i,j,k

∫ t

s

(
M

(i,k)
(n),s(r)−M

(i,k)
(m),s(r)

)
·
〈
∇xσ(i,j)(r,X(r)),M

(·,k)
(n),s(r)−M

(·,k)
(m),s(r)

〉
dW (j)(r)

+
∑
i,j,k

∫ t

s

∣∣∣(Pn − Pm)
[
V (·, r)

](i,j,k)

(s) +
〈
∇xσ(i,j)(r,X(r)),M

(·,k)
(n),s(r)−M

(·,k)
(m),s(r)

∣∣∣2dr.
Denote Ns(t) = M(n),s(t)−M(m),s(t) and (Pn − Pm) = Q for brevity. Integrating over

s and since every term is positive, we can change the order of integration to obtain∫ t

0

∣∣∣N (i,k)
s (t)

∣∣∣2ds =

∫ t

0

∣∣∣Q[σ(·, ω,X(·))
](i,k)

(s)
∣∣∣2ds

+ 2

∫ t

0

∫ r

0

N (i,k)
s (r) ·

[
Q
[
U(·, r)

](i,k)
(s) +

〈
∇xb(i)(r,X(r)), N (·,k)

s (r)
〉]
dsdr

+ 2
∑
j

∫ t

0

∫ r

0

N (i,k)
s (r) ·

[
Q
[
V (·, r)

](i,j,k)
(s) +

〈
∇xσ(i,j)(r,X(r)), N (·,k)

s (r)
〉]
dsdW (j)(r)

+
∑
j

∫ t

0

∫ r

0

∣∣∣Q[V (·, r)
](i,j,k)

(s) +
〈
∇xσ(i,j)(r,X(r)), N (·,k)

s (r)
〉∣∣∣2dsdr.

Next, we use Itô’s formula for the function g(x) =
(∑

i x
(i)
)p/2

to get

‖N·(t)‖p =
(∑
i,k

∫ t

0

|N (i,k)
s (t)|2ds

)p
2

=
(∫ t

0

∣∣∣Q[σ(·, ω,X(·))
]
(s)
∣∣∣2ds)p2

+ p

∫ t

0

‖N·(r)‖p−2
(∑
i,k

∫ r

0

N (i,k)
s (r)

[
Q
[
U(·, r)

](i,k)
(s)

+
〈
∇xb(i)

(
r,X(r)

)
, N (·,k)

s (r)
〉
ds
)
dr (3.8)

+
p

2

∫ t

0

‖N·(r)‖p−2
∑
i,j,k

∫ r

0

∣∣∣Q[V (·, r)
]i,j,k

(s)

+
〈
∇xσ(i,j)(r,X(r)), N (·,k)

s (r)
〉∣∣∣2dsdr (3.9)

+ p

∫ t

0

‖N·(r)‖p−2
∑
i,j,k

∫ r

0

N (i,k)
s (r)

(
Q
[
V (·, r)

](i,j,k)
(s)

+
〈
∇xσ(i,j)

(
r,X(r)

)
, N (·,k)

s (r)
)
dsdW (r) (3.10)

+ p(p− 2)

∫ t

0

‖N·(r)‖p−4
∑
i,j,k

(∫ r

0

N (i,k)
s (r)

(
Q
[
V (·, r)

](i,j,k)
(s)

+
〈
∇xσ(i,j)

(
r,X(r)

)
, N (·,k)

s (r)
)
ds
)2

dr. (3.11)

We take a supremum over t ∈ [0, T ] then expectations to show that E[‖N‖2∞] can be
made arbitrarily small for n,m ∈ N large enough. Let a ∈ N be an integer which we will
choose later.

Firstly,

(3.8) ≤ pE
[ ∫ T

0

‖N·(r)‖p−2
(∑
i,k

∫ r

0

N (i,k)
s (r)Q

[
U(·, r)

](i,k)
(s)ds

)
dr
]

(3.12)

+ pE
[ ∫ T

0

‖N·(r)‖p−2
(∑
i,k

∫ r

0

N (i,k)
s (r)

〈
∇xb(i)

(
r,X(r)

)
, N (·,k)

s (r)
〉
ds
)
dr
]
. (3.13)
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Now we deal with (3.12) using Hölder inequality, the norm (3.7), then dominate via
the supremum norm and move the term outside the integral to merge it with the outer
integrand term

(3.12) ≤pE
[
‖N·‖p−1

∞

∫ T

0

(∑
i,k

∫ r

0

|Q[U(·, r)](i,k)(s)|2ds
) 1

2
dr
]

≤
E
[
‖N·‖p∞

]
a

+ [a(p− 1)]p−1E
[( ∫ T

0

‖Q[U(·, r)](s)‖2ds
)p]

,

and

(3.13) ≤ pL
∫ T

0

E
[
‖N·‖p∞,r

]
dr.

using the Monotonicity property of b. Secondly,

(3.9) ≤pE
[ ∫ T

0

‖N·(r)‖p−2
(∑
i,j,k

∫ r

0

|Q[V (·, r)](i,j,k)|2ds
)
dr
]

+ pE
[ ∫ T

0

‖N·(r)‖p−2
(∑
i,j,k

∫ r

0

〈
∇xσ(i,j)(r,X(r)), N (·,k)

s (r)
〉2

ds
)
dr
]

≤
E
[
‖N·‖p∞

]
a

+ 2[a(p− 2)]
p−2

2 E
[( ∫ T

0

‖Q[V (·, r)](·)‖22dr
)p

2
]

+ pL2

∫ t

0

E
[
‖N·‖p∞,r

]
dr,

using the boundedness of ∇σ. Thirdly, using the Burkholder-Davis-Gundy Inequality

(3.10) ≤pC1E
[( ∫ T

0

‖N·(r)‖2p−4
∑
j

(∑
i,k

∫ r

0

N (i,k)
s (r)

[
Q[V (·, r)](i,j,k)(s)

+
〈
∇xσ(i,j)(r,X(r)), N (·,k)

s (r)
〉]
ds
)2

dr
) 1

2
]

≤
√

2pC1E
[
‖N·‖p−2

∞

(∫ T

0

[∑
i,j,k

∫ r

0

|N (i,k)
s (r)| · |Q[V (·, r)](i,j,k)(s)|ds

]2
dr
) 1

2
]

(3.14)

+
√

2pC1E
[
‖N·‖p−2

∞

(∫ T

0

[∑
i,j,k

∫ r

0

|N (i,k)
s (r)|

·
∣∣∣〈∇xσ(i,j)(r,X(r)), N (·,k)

s (r)
〉∣∣∣ds]2dr) 1

2
]
. (3.15)

As before, we have

(3.14) ≤
√

2pC1E
[
‖N·‖p−1

∞

(∫ T

0

‖Q[V (·, r)](·)‖22dr
) 1

2
]

≤
E
[
‖N·‖p∞

]
a

+ (
√

2C1)p[a(p− 1)]p−1E
[( ∫ T

0

‖Q[V (·, r)](·)‖22dr
)p

2
]
,

and put together

(3.15) ≤
√

2pC1LE
[( ∫ T

0

‖N·(r)‖2pdr
) 1

2
]
≤
√

2pC1LE
[
‖N·‖

p
2∞

(∫ T

0

‖N·(r)‖pdr
) 1

2
]

≤
E
[
‖N·‖p∞

]
a

+
(pC1L)2a

2

∫ T

0

E
[
‖N·‖p∞,r

]
dr.
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Finally, for

(3.11) ≤2p(p− 2)E
[ ∫ T

0

‖N·(r)‖p−4
(∑
i,j,k

∫ r

0

|N (i,k)
s (r)| · |Q[V (·, r)](i,j,k)(s)|ds

)2

dr
]
(3.16)

+ 2p(p− 2)E
[ ∫ T

0

‖N·(r)‖p−4
(∑
i,j,k

∫ r

0

|N (i,k)
s (r)|

·
∣∣∣〈∇xσ(i,j)(r,X(r)), N (·,k)

s (r)
〉∣∣∣ds)2

dr
]
. (3.17)

Repeating the same ideas as before, we get

(3.16) ≤2p(p− 2)E
[
‖N·‖p−2

∞ ·
∫ T

0

‖Q[V (·, r)](·)‖22dr
]

≤
E
[
‖N·‖p∞

]
a

+ 2
p+2

2 · a
p−2

2 · (p− 2)p−1E
[( ∫ T

0

‖Q[V (·, r)](·)‖22dr
)p

2
]
.

and (3.17) ≤ 2p(p− 2)L2E
[ ∫ T

0
‖N·‖p∞,rdr

]
. Therefore, choosing a = 6 we conclude

E
[
‖N·‖p∞

]
6

≤

(
E
[
‖Q[σ(·, X(·))](·)‖p2

]
+ C̃1E

[( ∫ T

0

‖Q[U(·, r)](·)‖2dr
)p]

+ C̃2E
[( ∫ T

0

‖Q[V (·, r)](·)‖22dr
)p

2
])

+ C̃3

∫ T

0

E
[
‖N·‖p∞,r

]
dr.

By applying Grönwall’s inequality we conclude that

E
[

sup
t∈[0,T ]

‖M(n),· −M(m),·‖p
]
.

(
E
[
‖(Pn − Pm)

[
σ(·, X(·))

]
‖p2
]

+ E
[( ∫ T

0

‖(Pn − Pm)[U(·, r)]‖2dr
)p]

+ E
[( ∫ T

0

‖(Pn − Pm)[V (·, r)]‖22dr
)p

2
])
.

Given that by assumption we already have

E
[
‖σ(·, X(·))‖p2

]
, E

[( ∫ T

0

‖U(·, r)‖2dr
)p]

, E
[( ∫ T

0

‖V (·, r)‖22dr
)p

2
]
<∞,

we are able to apply the Dominated Convergence Theorem to swap the order of limits
and integrals. Taking a limit as m,n go to infinity lets us conclude that the sequence M(n)

is Cauchy in Sp(L2([0, T ];Rd×m)). This is a Banach space, so a limit must exist which we
denote by M ′,

M ′s(t) = lim
n→∞

Ψ(t)

(
Pn

[
σ(·, X(·))

]
(s) +

∫ t

s

Ψ(r)−1
(
Pn

[
U(·, r)

]
(s)

−
〈
∇σ
(
r,X(r)

)
, Pn

[
V
(
·, r
)]

(s)
〉
Rm

)
dr +

∫ t

s

Ψ(r)−1Pn

[
V
(
·, r
)]

(s)dW (r)

)
.

Now let g ∈ L2([0, T ];Rm) be chosen arbitrarily. Then we define Mg ′(·) as
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Mg ′(t) =

∫ t

0

M ′s(t)g(s)ds

=Ψ(t)

(∫ t

0

σ(s,X(s))g(s)ds+

∫ t

s

Ψ(r)−1
(∫ t

0

U(s, r)g(s)ds

−
〈
∇σ
(
r,X(r)

)
,

∫ t

0

V
(
s, r
)
g(s)ds

〉
Rm

)
dr +

∫ t

s

Ψ(r)−1

∫ t

0

V
(
s, r
)
g(s)dsdW (r)

)
.

In order to move the limit inside the different integrals, we use the Dominated Conver-
gence Theorem again.

Given an explicit solution, we know Mg ′ will satisfy the SDE

Mg ′(t) =

∫ t

0

σ(s,X(s))g(s)ds+

∫ t

0

(∫ r

0

U(s, r)g(s)ds
)
dr +

∫ t

0

(∫ r

0

V (s, r)g(s)ds
)
dW (r)

+

∫ t

0

∇xb(r,X(r))Mg ′(r)dr +

∫ t

0

∇xσ(r,X(r))Mg ′(r)dW (r).

Therefore by a duality argument

M ′s(t) =σ(s,X(s)) +

∫ t

0

U(s, r)dr +

∫ t

0

V (s, r)dW (r)

+

∫ t

0

∇xb(r,X(r))M ′s(r)dr +

∫ t

0

∇xσ(r,X(r))M ′s(r)dW (r),

which is the same SDE as (3.6).
Next we prove uniqueness. Suppose that there are two solutions to the SDE (3.6), M

and M ′. Denote M −M ′ = Ñ . Then Ñ will satisfy the linear SDE

dÑs(t) = ∇xb(t,X(t))Ñs(t)dt+∇xσ(t,X(t))Ñs(t)dW (t), Ñs(s) = 0.

Let g ∈ L2([0, T ];Rm) be chosen arbitrarily. Define Ñg(t) =
∫ t

0
Ñs(t)g(s)ds. Clearly,

this linear SDE will almost surely be equal to 0 independently of the choice of g. Hence
Ñ must also be equal to 0. So M = M ′ and we have proved uniqueness.

Ray absolute continuity of X

We show that the expectation of ‖
(
X(·)(ω + εh)−X(·)(ω)

)
/ε‖2∞ has a bound uniform in

ε. This relies on having finite pth moments of the random variable ‖X‖∞ for p > 2.
The case p = 2 is problematic. It is not the case that Z ∈ D1,2 implies that

(
Z(ω +

εh)− Z(ω)
)
/ε converges in mean square as ε↘ 0, see Remark 3.19 and [8] for in-depth

discussion. If we were dealing with the sharp case where the solution of the SDE exists
in S2, it would be unreasonable to expect the Malliavin Derivatives of b and σ to satisfy
Assumption 3.1(iv), which is necessary for the following Proposition. The power p must
be greater that 2, as opposed to 1, because the monotonicity condition lends itself to
studying the moments of the SDE for moments of greater than or equal to 2 but is a
hindrance for the moments of order less than 2 (computations may involve local times).

Proposition 3.22. Let X be solution to the SDE (2.1) under Assumption 3.1. We have

E
[ ∥∥∥X(·)(ω + εh)−X(·)(ω)

ε

∥∥∥2

∞

]
= O(1) as ε→ 0. (3.18)

After we have proved Stochastic Gâteaux Differentiability (see Theorem 3.23), Corol-
lary 3.14 and Equation (3.18) will imply Ray Absolute Continuity.
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Differentiability of SDEs with drifts of super-linear growth

Proof. Let t ∈ [0, T ]. Using Assumption 3.1, we have

E
[( ∫ T

0

∣∣∣b(t, ω + εh,X(t)(ω))− b(t, ω,X(t)(ω))

ε

∣∣∣dt)2]
≤ 2E

[
‖h‖22

(∫ T

0

(∫ t

0

|U(s, t, ω)|2ds
) 1

2
dt
)2

+
(∫ T

0

∣∣∣b(t, ω + εh,X(t))− b(t, ω,X(t))

ε
−
∫ t

0

U(s, t, ω)ḣ(s)ds
∣∣∣dt)2

]
≤ O(1),

and

E
[ ∫ T

0

∣∣∣σ(t, ω + εh,X(t)(ω))− σ(t, ω,X(t)(ω))

ε

∣∣∣2ds]
≤ 2E

[
‖h‖22

∫ T

0

∫ t

0

|V (s, t, ω)|2dsdt

+

∫ T

0

∣∣∣σ(t, ω + εh,X(t))− σ(t, ω,X(t))

ε
−
∫ t

0

V (s, t, ω)ḣ(s)ds
∣∣∣2dt] ≤ O(1).

For notational compactness let us introduce Pε(t)(ω) =
(
X(t)(ω + εh)−X(t)(ω)

)
/ε.

We have

Pε(t)(ω) =

∫ t

0

σ(s, ω,X(s)(ω))ḣ(s)ds

+

∫ t

0

(
σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))

)
ḣ(s)ds

+
1

ε

∫ t

0

(
b(s, ω + εh,X(s)(ω + εh))− b(s, ω,X(s)(ω))

)
ds

+
1

ε

∫ t

0

(
σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))

)
dW (s).

Using Itô’s formula for f(x) = x2 we have∣∣∣Pε(t)(ω)
∣∣∣2 = 2

∫ t

0

〈
Pε(s)(ω), σ(s, ω,X(s)(ω))ḣ(s)

〉
ds (3.19)

+ 2

∫ t

0

〈
Pε(s)(ω),

(
σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω + εh,X(s)(ω))

)
ḣ(s)

〉
ds (3.20)

+ 2

∫ t

0

〈
Pε(s)(ω),

(
σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

)
ḣ(s)

〉
ds (3.21)

+ 2

∫ t

0

〈
Pε(s)(ω),

b(s, ω + εh,X(s)(ω + εh))− b(s, ω + εh,X(s)(ω))

ε

〉
ds (3.22)

+ 2

∫ t

0

〈
Pε(s)(ω),

b(s, ω + εh,X(s)(ω))− b(s, ω,X(s)(ω))

ε

〉
ds (3.23)

+ 2

∫ t

0

〈
Pε(s)(ω),

σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω + εh,X(s)(ω))

ε
dW (s)

〉
(3.24)

+ 2

∫ t

0

〈
Pε(s)(ω),

σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε
dW (s)

〉
(3.25)

+

∫ t

0

∣∣∣σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))

ε

∣∣∣2ds. (3.26)
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We take a supremum over t then expectations. Let n be an integer that we will
choose later. By using a combination of Young’s Inequality, Cauchy-Schwartz Inequality,
Burkholder-Davis-Gundy Inequality and the continuity properties from Assumption 3.1
we find the following upper bounds:

For (3.19)⇒E
[
2

∫ T

0

∣∣∣〈Pε(s)(ω), σ(s, ω,X(s)(ω))ḣ(s)
〉∣∣∣ds]

≤E[‖Pε‖2∞]

n
+ n‖ḣ‖22E

[ ∫ T

0

∣∣∣σ(s, ω,X(s)(ω))
∣∣∣2ds]

≤E[‖Pε‖2∞]

n
+ 2n‖ḣ‖22

(
L2E

[
‖X‖2∞

]
+ E

[ ∫ T

0

∣∣∣σ(s, ω, 0)
∣∣∣2ds]),

For (3.20)

⇒ E
[
2

∫ T

0

∣∣∣〈Pε(s)(ω),
(
σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω + εh,X(s)(ω))

)
ḣ(s)

〉∣∣∣ds]
≤ 2Lε

∫ T

0

E
[
‖Pε‖2∞,s

]
· |ḣ(s)|ds,

For (3.21)⇒E
[
2

∫ T

0

∣∣∣〈Pε(s)(ω),
(
σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

)
ḣ(s)

〉∣∣∣ds]
≤E[‖Pε‖2∞]

n
+ n‖εḣ‖22E

[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε

∣∣∣2ds],
For (3.22)⇒E

[
2

∫ T

0

∣∣∣〈Pε(s)(ω),
b(s, ω + εh,X(s)(ω + εh))− b(s, ω + εh,X(s)(ω))

ε

〉∣∣∣ds]
≤2L

∫ T

0

E
[
‖Pε‖2∞,s

]
ds,

For (3.23)⇒E
[
2

∫ T

0

∣∣∣〈Pε(s)(ω),
b(s, ω + εh,X(s)(ω))− b(s, ω,X(s)(ω))

ε

〉∣∣∣ds]
≤E[‖Pε‖2∞]

n
+ nE

[( ∫ T

0

∣∣∣b(s, ω + εh,X(s)(ω))− b(s, ω,X(s)(ω))

ε

∣∣∣ds)2]
,

For (3.24)

⇒ E
[

sup
t∈[0,T ]

2

∫ t

0

〈
Pε(s),

σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω + εh,X(s)(ω))

ε
dW (s)

〉]
≤ 2C1E

[
‖Pε‖∞

(∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω + εh,X(s)(ω))

ε

∣∣∣2ds)1/2]
≤ E[‖Pε‖2∞]

n
+ nC2

1E
[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω + εh,X(s)(ω))

ε

∣∣∣2ds]
≤ E[‖Pε‖2∞]

n
+ nC2

1

∫ T

0

E
[
‖Pε‖2∞,s

]
ds,

For (3.25)⇒E
[

sup
t∈[0,T ]

2

∫ t

0

〈
Pε(s),

σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε
dW (s)

〉]
≤E[‖Pε‖2∞]

n
+ nC1E

[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε

∣∣∣2ds],
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For (3.26)⇒E
[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))

ε

∣∣∣2ds]
≤2E

[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω + εh,X(s)(ω))

ε

∣∣∣2ds] (3.27)

+ 2E
[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε

∣∣∣2ds],
and finally that (3.27) ≤ 2L2

∫ T
0
E
[
‖Pε‖2∞,s

]
ds.

Combining all these inequalities and choosing n = 6, we have

1

6
E
[
‖Pε‖2∞

]
≤ E

[
‖Aε‖2∞

]
+ C̄1

∫ T

0

E
[
‖Pε‖2∞,s

]
ds,

where E
[
‖Aε‖2∞

]
= O(1) as ε→ 0. Grönwall’s inequality yields that E[ ‖Pε‖2∞] = O(1) as

ε→ 0.

Stochastic Gateaux differentiability of X

Next we prove the convergence in probability statement of Definition 3.9.

Theorem 3.23. Let X be solution to the SDE (2.1) under Assumption 3.1 and let h ∈ H.
Then we have as ε→ 0∥∥∥X(·)(ω + εh)−X(·)(ω)

ε
−
∫ ·

0

Ms(·)(ω)ḣ(s)ds
∥∥∥
∞

P−→ 0.

Hence X satisfies Definition 3.9, i.e. is Stochastically Gâteaux differentiable.

Proof. Let t ∈ [0, T ]. To make the proof more readable we introduce several shorthand
notations Mh, Pε and Yε, to denote increments and its differences, namely, define

Mh(t)(ω) :=

∫ t

0

Ms(t)(ω)ḣ(s)ds, Pε(t)(ω) := X(t)(ω+εh)−X(t)(ω)
ε ,

and Yε(t)(ω) := Pε(t)(ω) −Mh(t)(ω). The proof’s goal is to show that ‖Yε(·)(ω)‖∞
P−→ 0

as ε↘ 0.
Methodologically, we write out the SDE for Yε(t)(ω) = Pε(t)(ω) −Mh(t)(ω) which

we then break into a sequence of terms that are manipulated individually to yield an
final inequality amenable to our Grönwall type result for Convergence in Probability of
Proposition 2.6.

Firstly, we have

Pε(t)(ω) =

∫ t

0

σ(s, ω + εh,X(s)(ω + εh))ḣ(s)ds

+

∫ t

0

[
b(s, ω + εh,X(s)(ω + εh))− b(s, ω,X(s)(ω))

]
ds

+

∫ t

0

[
σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))

]
dW (s).

This would mean we can decompose the SDE for Yε = Pε −Mh as

Yε(t)(ω) = Pε(t)(ω)−Mh(t)(ω) =
X(t)(ω + εh)−X(t)(ω)

ε
−Mh(t)(ω)

=

∫ t

0

[
σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))

]
ḣ(s)ds (3.28)
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+

∫ t

0

[b(s, ω + εh,X(s)(ω))− b(s, ω,X(s)(ω))

ε
−
∫ s

0

U(r, s, ω)ḣ(r)dr
]
ds (3.29)

+

∫ t

0

[σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε
−
∫ s

0

V (r, s, ω)ḣ(r)dr
]
dW (s) (3.30)

+

∫ t

0

[ ∫ 1

0

∇xb(s, ω + εh,Ξ(s))dξ −∇xb(s, ω,X(s)(ω))
]
Pε(s)(ω)ds (3.31)

+

∫ t

0

[ ∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
]
Pε(s)(ω)dW (s) (3.32)

+

∫ t

0

∇xb(s, ω,X(s)(ω))Yε(s)(ω)ds+

∫ t

0

∇xσ(s, ω,X(s)(ω))Yε(s)(ω)dW (s),

where Ξ(·) = X(·)(ω) + ξ[X(·)(ω + εh)−X(·)(ω)].
Then we take sup over t ∈ [0, T ]. Notice that we will not use an Itô type formula on

the SDE, but proving convergence for each of the individual terms.
Firstly we consider the mean convergence of (3.28),

E
[( ∫ T

0

∣∣∣[σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))
]
ḣ(s)

∣∣∣ds)2]
≤‖ḣ‖22 · E

[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω + εh))− σ(s, ω,X(s)(ω))
∣∣∣2ds]

≤2‖ḣ‖22
(
E
[ ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))
∣∣∣2ds]

+ 2L2TE
[
‖X(ω + εh)−X(ω)‖2∞

])
≤O
(
ε2
)

+O
(
ε2
)
,

hence this random variable converges to zero in mean square as ε→ 0.
The term (3.29) converges in mean from Assumption 3.1 since as ε→ 0

E
[ ∫ T

0

∣∣∣b(s, ω + εh,X(s)(ω))− b(s, ω,X(s)(ω))

ε
−
∫ s

0

U(r, s, ω)ḣ(r)dr
∣∣∣ds]→ 0.

The term (3.30) converges in mean from Assumption 3.1, namely as ε→ 0

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

[σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε
−
∫ s

0

V (r, s, ω)ḣ(r)dr
]
dW (s)

∣∣∣]
≤C1E

[( ∫ T

0

∣∣∣σ(s, ω + εh,X(s)(ω))− σ(s, ω,X(s)(ω))

ε
−
∫ s

0

V (r, s, ω)ḣ(r)dr
∣∣∣2ds) 1

2
]
→0.

For equation (3.31), we are not able to use mean convergence arguments because
the terms ∇xb(s, ω, x) have polynomial growth in x and we will not necessarily have
enough finite moments to ensure that this term can be dominated. We already have
limε→0E[‖X(ω + εh)−X(ω)‖∞] = 0, so clearly we also have convergence in probability.
Also by Proposition 3.16, we have∫ T

0

∣∣∣∇xb(s, ω + εh,X(s)(ω + εh))−∇xb(s, ω,X(s)(ω))
∣∣∣ds P−→ 0.

for any choice of x ∈ Rd. Therefore, by continuity of ∇xb from Assumption 3.1, we get∫ T

0

∣∣∣ ∫ 1

0

∇xb(s, ω + εh,Ξ(s))dξ −∇xb(s, ω,X(s)(ω))
∣∣∣ds P−→ 0, as ε→ 0.
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Since we also have finite moments of ‖X(ω + εh)−X(ω)‖∞/ε by Proposition 3.22, we
can conclude that (3.31) converges to zero in probability.

For (3.32) we know that σ is Lipschitz so we have ∇xσ is bounded. Hence, we won’t
have the same integrability issues as with (3.31). Therefore, we use convergence in
mean. By the Burkholder-Davis-Gundy Inequality and recalling Proposition 3.22 we get

E
[

sup
t′∈[0,T ]

∣∣∣ ∫ t′

0

(∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
)
· Pε(s)(ω)dW (s)

∣∣∣]
≤C1E

[( ∫ T

0

∣∣∣ ∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
∣∣∣2 · ∣∣∣Pε(s)(ω)

∣∣∣2ds) 1
2
]

≤C1E
[( ∫ T

0

∣∣∣ ∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
∣∣∣2ds) 1

2 · ‖Pε(ω)‖∞
]

≤C1E
[
‖Pε(ω)‖2∞

] 1
2 · E

[ ∫ T

0

∣∣∣ ∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
∣∣∣2ds] 1

2
.

In the same way as earlier, by continuity of ∇xσ from Assumption 3.1 and Proposition
3.16 we get ∫ T

0

∣∣∣ ∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
∣∣∣2ds P−→ 0.

Also, by boundedness of ∇xσ, we have the immediate domination∫ T

0

∣∣∣ ∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
∣∣∣2ds ≤ 4L2T,

so we clearly have uniform integrability of all orders. Hence

lim
ε→0

E
[ ∫ T

0

∣∣∣ ∫ 1

0

∇xσ(s, ω + εh,Ξ(s))dξ −∇xσ(s, ω,X(s)(ω))
∣∣∣2ds] 1

2
= 0.

Finally, the SDE for the process Yε(t)(ω) can be written in the convenient form

Yε(t)(ω) =Aε(ω) +

∫ t

0

∇xb(s, ω,X(s)(ω))Yε(s)(ω)ds

+

∫ t

0

∇xσ(s, ω,X(s)(ω))Yε(s)(ω)dW (s),

where the sequence Aε is a sequence of random variables which converge to zero in
probability. By Proposition 2.6 the random variable ‖Yε‖∞ converges in probability to
zero as ε→ 0.

Strong stochastic Gâteaux differentiability

Theorem 3.24. Let X be solution to the SDE (2.1) under Assumption 3.1. Then for any
h ∈ H

lim
ε→0

E

[∥∥∥X(ω + εh)−X(ω)

ε
−Mh(ω)

∥∥∥
∞

]
= 0.

Hence X satisfies Equation (3.3), i.e. is Strong Stochastically Gâteaux differentiable.
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Proof. By Theorem 3.23, we have convergence in Probability. Combining this with
Proposition 3.22 and Theorem 3.21, we have

E
[ ∥∥∥X(ω + εh)−X(ω)

ε

∥∥∥2

∞

]
, E

[
‖Mh(ω)‖2∞

]
<∞.

Apply Corollary 3.14 to conclude.

Remark 3.25. Although convergence in probability may seem to be rather a weak result
relative to the much stronger Almost sure convergence or convergence in mean square,
it is actually the case that we now have both. After all, we proved that the sequence of
random variables

(
X(·)(ω + εh)−X(·)(ω)

)
/ε have uniform finite p moments over ε and

the limit DhX(·) has finite p moments. Therefore, by standard probability theory we
have mean square convergence.

Proof of the Malliavin differentiability result, Theorem 3.2

Proof of Theorem 3.2. The proof is straightforward and follows from Theorem 3.24 and
Theorem 3.13. Further, the Malliavin Derivative satisfies the SDE (3.1) which has a
unique solution as proved in Theorem 3.21.

3.5 Proofs of the 2nd main result - Theorem 3.7

In order to prove the Malliavin differentiability (Theorem 3.2) under the weakest
possible conditions, we only assumed enough properties to ensure convergence of
the Stochastic Gâteaux Derivatives. However, the Stochastic Gâteaux differentiability
conditions for b and σ do not require that b and σ are Malliavin differentiable. These
conditions need to be checked by the user on a case-by-case basis. Under slightly
stronger conditions, but much easier to verify, we present an argument to establish
integrability and convergence of b and σ to prove Theorem 3.2.

In [6], there is a discussion about how much continuity is required for the spacial
variable in the Malliavin Derivatives of b and σ in order to prove Malliavin Differen-
tiability of the solution X. The authors prove results similar to those in this paper
using much weaker continuity condition, but in doing so assume the integrability of the
terms Dsb(t, ω,X(t)) and Dsσ(t, ω,X(t)). In our manuscript, we were unable to ensure
integrability of b and σ evaluated at X without the Lipschitz (or otherwise tractable
assumptions). Weaker continuity conditions would have allowed for examples where
b(t, ω,X(t)(ω) and σ(t, ω,X(t)(ω)) were not adequately integrable. Therefore, for easy to
check conditions, we work under Assumption 3.6 (iii’) and (iv’) (see Remark 3.20).

For simplicity, we introduce Assumption 3.26 which contains all of the relevant
properties of Assumption 3.6 that we require for this section. The function f represents
b or σ depending on the choice of m.

Assumption 3.26. Let m ∈ {1, 2}. Suppose that f : [0, T ]× Ω×Rd → Rd such that

(i) ∀x ∈ Rd f(·, ·, x) ∈ D1,p(Lm([0, T ];Rd)).

(ii) f is Locally Lipschitz in the spacial variable i.e ∃LN > 0 such that ∀x, y ∈ Rd such
that |x|, |y| ≤ N and ∀t ∈ [0, T ],

|f(t, ω, x)− f(t, ω, y)| ≤ LN |x− y| P-almost surely.

(iii) Df are Lipschitz in their spatial variables i.e. ∃L > 0 constant such that ∀(s, t) ∈
[0, T ]2 and ∀x, y ∈ Rd,

|Dsf(t, ω, x)−Dsf(t, ω, y)| ≤ L|x− y| P-almost surely.
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Integrability and indistinguishability of the Malliavin Derivative

Lemma 3.27. Let m ∈ {1, 2} and p > 2. Let X be solution to the SDE (2.1) under
Assumption 2.1 and let f satisfy Assumption 3.26. Then

E
[( ∫ T

0

(∫ t

0

|Dsf(t, ω,X(t)(ω))|2ds
)m

2
dt
) p
m
]
<∞.

Proof. By the definition of D1,p(Lm([0, T ];Rd)) we have for any t ∈ [0, T ]

E
[( ∫ T

0

(∫ t

0

|Dsf(t, ω, 0)|2ds
)m

2
dt
) p
m
]
<∞.

Therefore for some constant C (depending on p, m, T , L) we have

E
[( ∫ T

0

(∫ t

0

∣∣∣Dsf(t, ω,X(t)(ω))
∣∣∣2ds)m2 dt) p

m
]

≤2
p−m
m C

(
E
[( ∫ T

0

(∫ t

0

|Dsf(t, ω, 0)|2ds
)m

2
dt
) p
m
]

+ E
[
‖X‖p∞

])
<∞.

We have by Assumption 3.26 that for every x ∈ Rd the random field f(·, ·, x) is a
Malliavin differentiable process. However, it is not immediate that we have the same for
f(·, ·, X(·)(·)). We first prove an indistinguishability property for when we replace x by
X(·)(ω).

Lemma 3.28. Let m ∈ {1, 2} and p > 2. Let X be solution to the SDE (2.1) under
Assumption 2.1. Let f satisfy Assumption 3.26 and recall the directional derivative
notation introduced previously, DhF = 〈DF, h〉 for any choice of h ∈ H.

Then, for h ∈ H we have, (t, ω)-almost surely that

f
(
t, ω + εh,X(t)(ω)

)
− f

(
t, ω,X(t)(ω)

)
=

∫ ε

0

Dhf(t, ω + rh,X(t)(ω))dr.

Proof. We have that ∀x ∈ Rd that ∃Cx ⊂ [0, T ]×Ω with E[
∫ T

0
1Cx(t, ω)dt] = 0, dependent

on the choice of x, for which ∀(t, ω) ∈ [0, T ]× Ω\Cx that

f(t, ω + εh, x)− f(t, ω, x) =

∫ ε

0

Dhf(t, ω + rh, x)dr. (3.33)

We wish to prove that we can choose a null set C which is independent of x outside
of which the equality holds. To do this, it suffices to prove almost sure continuity with
respect to x of both the left and right hand side of (3.33).

Almost sure continuity of the left hand side is immediate since f is locally Lipschitz.
For the right hand side, we use the Lipschitz properties of the Malliavin derivative.
Let ri be an enumeration of the rationals Qd. Then we have

⋃
i Cri is also a null set

since it is the countable union of null sets. Then for (t, ω) ∈ [0, T ] × Ω\
(⋃

i Cri

)
and

∀x ∈ Qd equation (3.33) holds. Then by the continuity of f and its Malliavin derivative
we conclude that this also holds ∀x ∈ Rd.

Strong stochastic Gâteaux differentiability

Lemma 3.29. Let m ∈ {1, 2} and p > 2. Let X be solution to the SDE (2.1) under
Assumption 2.1. Let f satisfy Assumption 3.26. Then

E

[(∫ T

0

∣∣∣f(t, ω + εh,X(t)(ω))− f(t, ω,X(t)(ω))

ε

∣∣∣mdt) 2
m

]
= O(1), as ε↘ 0.
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Proof. Fix ε > 0. By Lemma 3.28, for almost all ω ∈ Ω we have that∫ T

0

∣∣f(t, ω + εh,X(t)(ω))− f(t, ω,X(t)(ω))
∣∣mdt =

∫ T

0

∣∣∣ ∫ ε

0

Dhf(t, ω + rh,X(t)(ω))dr
∣∣∣mdt.

Arguing from this, we have with the help of the directional derivative Dh, Jensen and
reverse Jensen inequality,

(∫ T

0

∣∣f(t, ω + εh,X(t)(ω))− f(t, ω,X(t)(ω))
∣∣mdt) 2

m

=
(∫ T

0

∣∣∣ ∫ ε

0

Dhf(t, ω + rh,X(t)(ω))dr
∣∣∣mdt) 2

m

≤ ε
∫ ε

0

(∫ T

0

|Dhf(t, ω + rh,X(t)(ω))|mdt
) 2
m
dr

≤ ε‖ḣ‖22
∫ ε

0

(∫ T

0

(∫ t

0

|Dsf(t, ω + rh,X(t)(ω))|2ds
)m

2
dt
) 2
m
dr

≤ 2
2
m ε‖ḣ‖22

(∫ ε

0

(∫ T

0

(∫ t

0

|Dsf(t, ω + rh, 0)|2ds
)m

2
dt
) 2
m
dr + ε‖X(ω)‖2∞ · T

2
m+1

)
.

Therefore

E
[ 1

ε2

( ∫ T

0

∣∣f(t, ω + εh,X(t)(ω))− f(t, ω,X(t)(ω))
∣∣mdt) 2

m
]

≤ 2
2
m ‖ḣ‖22E

[1

ε

∫ ε

0

(∫ T

0

(∫ t

0

|Dsf(t, ω + rh, 0)|2ds
)m

2
dt
) 2
m
dr
]

(3.34)

+ 2
2
m ‖ḣ‖22T

2
m+1E

[
‖X(ω)‖2∞

]
.

We estimate term (3.34) as follows and with the help of Proposition 3.15

(3.34) ≤2
2
m ‖ḣ‖22

1

ε

∫ ε

0

E
[ ∫ T

0

(∫ t

0

|Dsf(t, ω, 0)|2ds
)m

2 · E(rḣ)(t)dt
] 2
m
dr

≤2
2
m ‖ḣ‖22E

[( ∫ T

0

(∫ t

0

|Dsf(t, ω, 0)|2ds
)m

2
dt
) p
m
] 2
p 1

ε

∫ ε

0

E
[
‖E(rḣ)(·)‖

p
p−m
∞

] 2(p−m)
pm

dr

<O(1),

with E(rḣ) denoting the stochastic exponential of rḣ as introduced in (3.5).

Lemma 3.30. Let m ∈ {1, 2} and p > 2. Let X be solution to the SDE (2.1) under
Assumption 2.1. Let f satisfy Assumption 3.26. Then for h ∈ H and any δ > 0

lim
ε→0

P
[( ∫ T

0

∣∣∣1
ε

∫ ε

0

Dhf
(
t, ω + rh,X(t)(ω)

)
dr −Dhf

(
t, ω,X(t)(ω)

)∣∣∣mdt > δ
]

= 0. (3.35)

Proof. By Proposition 3.16, we know that for any δ > 0 that

lim
ε→0

P
[ ∫ T

0

∣∣∣Dhf(t, ω + εh,X(t)(ω + εh))−Dhf(t, ω,X(t)(ω))
∣∣∣mdt > δ

]
= 0. (3.36)

Similarly

lim
ε→0

P
[
‖X(ω + εh)−X(ω)‖∞ > δ

]
= 0,
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so by Lipschitz continuity of Df we also have

lim
ε→0

P
[ ∫ T

0

∣∣∣Dhf(t, ω + εh,X(t)(ω + εh))−Dhf(t, ω + εh,X(t)(ω))
∣∣∣mdt > δ

]
= 0. (3.37)

Combining Equations (3.36) and (3.37), we conclude

lim
ε→0

P
[ ∫ T

0

∣∣∣Dhf(t, ω + εh,X(t)(ω))−Dhf(t, ω,X(t)(ω))
∣∣∣mdt > δ

]
= 0.

Next, using the Fundamental Theorem of Calculus, we also have

lim
ε→0

P
[ ∫ T

0

∣∣∣1
ε

∫ ε

0

Dhf
(
t, ω + rh,X(t)(ω)

)
dr −Dhf

(
t, ω,X(t)(ω)

)∣∣∣mdt > δ
]

= 0.

The next result establishes the Strong Stochastic Gâteaux differentiability, see Defini-
tion 3.12.

Lemma 3.31. Let m ∈ {1, 2} and p > 2. Let X be solution to the SDE (2.1) under
Assumption 2.1. Let f satisfy Assumption 3.26. Then for h ∈ H

lim
ε→0

E
[( ∫ T

0

∣∣∣f(t, ω + εh,X(t)(ω))− f(t, ω,X(t)(ω))

ε
−Dhf(t, ω,X(t)(ω))

∣∣∣mdt) 1
m
]

= 0.

Proof. First, using Lemma 3.28, we have P-almost surely that∫ T

0

∣∣∣f(t, ω + εh,X(t)(ω))− f(t, ω,X(t)(ω))

ε
−Dhf(t, ω,X(t)(ω))

∣∣∣mdt
=

∫ T

0

∣∣∣1
ε

∫ ε

0

Dhf
(
t, ω + rh,X(t)(ω)

)
dr −Dhf(t, ω,X(t)(ω))

∣∣∣mdt.
By Lemma 3.30, both sides converge to 0 in probability (as ε→ 0).

Next, by Lemma 3.27 and Lemma 3.29, we have uniform L1 integrability of this
collection of random variables since they are bounded in L2. Convergence in probability
and Uniform Integrability imply convergence in mean.

Proof of Theorem 3.7

Proof of Theorem 3.7. The difference between Assumptions 3.1 and Assumptions 3.6 is
(iii’) and (iv’). Here we verify that b and σ satisfying Assumption 3.6 implies Assumptions
3.1.

Lemma 3.27 implies Assumptions 3.1 (iii) is satisfied. Lemma 3.31 implies Assump-
tions 3.1 (iv) is satisfied. In this case, the identification U, V with Db and Dσ respectively
is straightforward.This also means that the Existence proof in Theorem 3.21 holds so a
solution to the SDE (3.2) must exist.

4 Parametric differentiability

In this section, we study the differentiability properties of solutions of SDEs with
respect to the initial condition. For a detailed exploration of the subject of Stochastic
flows, see [9]. The main contribution of this section is to prove similar results for SDEs
with only locally Lipschitz and monotone coefficients as opposed to previous results
which rely on a Lipschitz condition. Similar problems have been studied in [15], [1,
Chapter 1] and [19].
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4.1 Gâteaux and Frechét differentiability of monotone SDEs

We start by recalling the concept of Gâteaux and Frechét Differentiability for abstract
Banach Spaces.

Definition 4.1 (Gâteaux and Frechét Differentiability). Let V and W be Banach spaces
and let U be an open subset of V . Let f : U →W . The map f is Gâteaux differentiable
at x ∈ U in direction h ∈ V if the limit

lim
ε→0

f(x+ εh)− f(x)

ε
=

d

dε
f(x+ εh),

exists. The limit is called the Gâteaux derivative in direction h.

The map f is said to be Frechét differentiable at x ∈ U if there exists a bounded
linear operator A : U →W such that

lim
‖h‖V→0

‖f(x+ h)− f(x)−Ah‖W
‖h‖V

= 0.

The linear operator A is called the Frechét derivative of f at x

Let Xθ be the solution of SDE (2.1). We next show that the map θ ∈ Lp(F0;Rd;P) 7→
Xθ(·) ∈ Sp([0, T ]) is Frechét differentiable. As we will be differentiating with respect to
θ for this section, we emphasize the dependency on θ.

Assumption 4.2. Let b : [0, T ] × Ω × Rd → Rd and σ : [0, T ] × Ω × Rd → Rd×m satisfy
Assumption 2.1 for some p ≥ 2. Further, suppose

(i) For almost all (t, ω) ∈ [0, T ] × Ω we have the functions σ(t, ω, ·) and b(t, ω, ·) have
partial derivatives in all directions.

(ii) For all x ∈ Rd, we have P-almost sure continuity of the maps

x 7→
∫ T

0

∣∣∣∇xσ(t, ω, x)
∣∣∣2dt and x 7→

∫ T

0

∣∣∣∇xb(t, ω, x)
∣∣∣2dt.

Theorem 4.3. Let p ≥ 2 and let 1 ≤ q < p. Let Xθ be the solution of SDE (2.1) under
Assumption 4.2 in Sq. Then the map θ → Xθ is Gâteaux Differentiable in direction h and
the derivative is equal to F [h] the solution of the SDE (4.1)

Further, the operator F : Lp(F0;Rd;P)→ Sq([0, T ]) is the Frechét derivative.

Remark 4.4. It is important to note that we were unable to prove Gâteaux Differen-
tiability in the Banach space Sp. Convergence in Sp would be equivalent to uniform
integrability of the random variable∥∥∥Xθ+h −Xθ − F [h]

‖h‖Lp(F0;Rd;P)

∥∥∥p
∞
,

over all possible choices of h ∈ Lp(F0;Rd;P). Unlike in the case where the coefficients
are Lipschitz, see [2], this is not true.

The proof is given after several intermediary results. The first results relates to
Gâteaux differentiability and its properties, we address the Frechét differentiability
afterwards. For the proof once one has established Gâteaux differentiability, extending
to Frechét differentiability is remarkably easy. Gâteaux differentiability is the weaker
condition and is usually considered the easier property to prove.
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Existence and uniqueness for the candidate process

Theorem 4.5. Let p ≥ 2 and suppose Assumption 4.2 holds. Let Xθ be the solution to
(2.1). Let h ∈ Lp(F0;Rd;P). Then the SDE

F (t)[h] = h+

∫ t

0

∇xb
(
s, ω,Xθ(s)(ω)

)
F (s)[h]ds

+

∫ t

0

∇xσ
(
s, ω,Xθ(s)(ω)

)
F (s)[h]dW (s), (4.1)

has a unique solution in Sp([0, T ];Rd).

Proof. This just follows from Theorem 2.5. We simply verify that Assumption 2.4 holds:

1. |∇xσ| < L by the Lipschitz property we have E
[ ∫ T

0
|∇xσ(s, ω,Xθ(s))|2ds

]
<∞.

2. From the differentiability and the monotonicity property of b, we have that ∇xb is
P-almost surely negative semidefinite1. Therefore, for z ∈ Rd

zT
(∫ T

0

∇xb(s, ω,Xθ(s))ds
)
z ≤

∫ T

0

L|z|2ds ≤ LT |z|2,

Hence, using the moment estimates we conclude that E
[
‖F [h]‖p∞

]
. ‖h‖p

Lp(F0;Rd;P)
.

Unlike with the Malliavin Derivative, the SDE (4.1) is not a general linear stochastic
differential equation. As b and σ do not have dependency on θ, we do not have extra
terms akin to the Malliavin derivatives Db and Dσ. This means that, unlike the Malliavin
Derivative, F has finite moments of all orders provided the initial condition has adequate
integrability.

Proposition 4.6. Let p ≥ 2. Suppose Assumption 4.2. Let Xθ be the solution to (2.1).
The operator F : Lp(F0;Rd;P)→ Sp([0, T ]) defined by h 7→ F [h] the solution of Equation
(4.1), is a bounded linear operator ‖F [h]‖Sp . ‖h‖Lp(F0;Rd;P).

Proof. Firstly, we show that F [0](·) = 0d a.s. (0d is the Rd-vector of zeros). Since F [0] is
the solution to the SDE

F (t)[0] =

∫ t

0

∇xb(s, ω,Xθ(s)(ω))F (s)[0]ds+

∫ t

0

∇xσ(s, ω,Xθ(s)(ω))F (s)[0]dW (s),

F (0)[0] =0

and this SDE has a unique solution, we only need to show that F [0](·) = 0d is a solution.
Clearly we have P-almost surely that∫ t

0

∇xb(s, ω,Xθ(s)(ω)) · 0dds = 0 and

∫ t

0

∇xσ(s, ω,Xθ(s)(ω)) · 0ddW (s) = 0,

so this is immediate.
Let λ ∈ R. Next we have

F [h1](t) + λF [h2](t)

= h1 + λh2 +

∫ t

0

∇xb(s, ω,Xθ(s)(ω))F [h1](s)ds+ λ

∫ t

0

∇xb(s, ω,Xθ(s)(ω))F [h2](s)ds

+

∫ t

0

∇xσ(s, ω,Xθ(s)(ω))F [h1](s)dW (s) + λ

∫ t

0

∇xσ(s, ω,Xθ(s)(ω))F [h2](s)dW (s),

1We do not prove this fact; it is straightforward using inner products and the definition of derivative.
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(
F [h1] + λF [h2]

)
(t)

= (h1 + λh2) +

∫ t

0

∇xb(s, ω,Xθ(s)(ω))
(
F [h1](s) + λF [h2](s)

)
(s)ds

+

∫ t

0

∇xσ(s, ω,Xθ(s)(ω))
(
F [h1](s) + λF [h1](s)

)
(s)dW (s),

which is the same as the SDE for F [h1 + λh2]. Hence, by existence and uniqueness, the
two must be equal up to a null set.

For the boundedness, observe that ‖F [h]‖Sp . ‖h‖Lp(F0;Rd;P) from Theorem 4.5.

Differentiability of θ 7→ Xθ

It is immediate to prove the stochastic stability result that E
[
‖Xθ+h − Xθ‖p∞

]1/p
=

O
(
‖h‖Lp

)
as ‖h‖Lp → 0, see Theorem 2.2. Hence we have

lim
‖h‖Lp→0

E
[
‖Xθ+h −Xθ‖p∞

]
→ 0.

Theorem 4.7. Let p ≥ 2 and 1 ≤ q < p. Let h ∈ Lp(F0;Rd;P). Suppose we have
Assumption 4.2, let Xθ be the solution of the SDE (2.1) and let F (t)[h] be the solution to
the SDE (4.1). Then we have

‖Xθ+h −Xθ − F [h]‖Sq = o
(
‖h‖Lp

)
,

and therefore F [h] is the Gâteaux derivative of X.

Proof. Let t ∈ [0, T ]. Define Ξ(·) = Xθ(·) + ξ[Xθ+h(·)−Xθ(·)] and consider

Xθ+h(t)−Xθ(t)− F [h](t)

‖h‖Lp
=

(θ + h)− θ − h
‖h‖Lp

+

∫ t

0

[ ∫ 1

0

∇xb(s, ω,Ξ(s))dξ −∇xb(s, ω,Xθ(s))
]
·
[
Xθ+h(s)−Xθ(s)

‖h‖Lp

]
ds (4.2)

+

∫ t

0

[ ∫ 1

0

∇xσ(s, ω,Ξ(s))dξ −∇xσ(s, ω,Xθ(s))
]
·
[
Xθ+h(s)−Xθ(s)

‖h‖Lp

]
dW (s) (4.3)

+

∫ t

0

∇xb(s, ω,Xθ(s))
[
Xθ+h(s)−Xθ(s)−F (s)[h](s)

‖h‖Lp

]
ds

+

∫ t

0

∇xσ(s, ω,Xθ(s))
[
Xθ+h(s)−Xθ(s)−F (s)[h]

‖h‖Lp

]
dW (s).

Arguing the same way as in Theorem 3.23, we show that Equation (4.2) and (4.3)
converge to zero in probability as ‖h‖Lp → 0. Then we apply Proposition 2.6 to conclude
that

‖Xθ+h −Xθ − F [h]‖∞
‖h‖Lp

P−→ 0.

Finally, from Theorem 2.2 and Theorem 4.5 we have that

E
[
‖Xθ+h −Xθ‖p∞

]
‖h‖pLp

= O(1),
E
[
‖F [h]‖p∞

]
‖h‖pLp

= O(1) as ‖h‖Lp → 0.

Therefore, the random variable
∥∥∥Xθ+h(t)−Xθ(t)−F [h](t)

‖h‖Lp

∥∥∥q
∞

is uniformly integrable and we

conclude ∥∥∥Xθ+h −Xθ − F [h]

‖h‖Lp

∥∥∥
Sq
→ 0.
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Proof of the Frechét differentiability theorem

Proof of Theorem 4.3. In Proposition 4.6 we proved that F is a bounded linear operator
and in Theorem 4.7 we proved that it satisfies Definition 4.1.

4.2 Classical differentiability of SDEs

For this section, we will be studying the specific case where θ = x (a constant point in
Rd) and our perturbations are all in the constant function directions. Fix (t, ω) ∈ [0, T ]×Ω

and consider the map x ∈ Rd 7→ Xx(t, ω). We will be proving that, with probability 1
and for Lebesgue almost all t ∈ [0, T ], it is a diffeomorphism from Rd to Rd. For this
section, h ∈ Rd will represent some deterministic vector in Euclidean space. We will be
calculating the partial derivatives in direction h.

The Jacobian matrix J

Definition 4.8. Let p ≥ 2. Let Xx be solution to the SDE (2.1) under Assumption 4.2
and with initial condition Xx(0) = x ∈ Rd. Let Id be the d-dimensional identity matrix.
For q ≥ 1 and let J ∈ Sq([0, T ];Rd×d) be the solution of the matrix valued SDE, t ∈ [0, T ]

J(t) = Id +

∫ t

0

∇xb
(
s, ω,Xx(s)(ω)

)
J(s)ds+

∫ t

0

∇xσ
(
s, ω,Xx(s)(ω)

)
J(s)dW (s). (4.4)

Notice that Equation (4.4) is the same SDE as (2.4). This means the Jacobian has an
explicit solution which will be useful in Section 5 below.

Theorem 4.9. Let p ≥ 2. Let Xx be solution to the SDE (2.1) under Assumption 4.2 and
with initial condition x ∈ Rd. Then the SDE (4.4) has a unique solution in Sp and for any
choice of t ∈ [0T ] the map x 7→ Xx(t)(ω) is differentiable P-almost surely. The derivative
is almost surely equal to the solution of the Jacobian Equation, SDE (4.4).

Differentiability of Xx

In the previous section we proved almost sure continuity of ‖Xx+εh −Xx‖∞/ε, we need
to show that the limit as ε→ 0 is equal to the solution of the Jacobian SDE.

Assumption 4.10. Let b : [0, T ]× Ω×Rd → Rd and σ : [0, T ]× Ω×Rd → Rd×m satisfy
Assumption 2.1 for some p ≥ 2. Further, suppose that ∇xb : [0, T ]× Ω×Rd → Rd×d and
∇xσ : [0, T ]× Ω×Rd → Rd×m×d are progressively measurable and that

(i) For almost all (t, ω) ∈ [0, T ] × Ω we have the functions σ(t, ω, ·) and b(t, ω, ·) have
partial derivatives in all directions.

(ii) For x ∈ Rd, we have that the maps Rd → L0(Ω)

x 7→
∫ T

0

∣∣∣∇xσ(t, ω, x)
∣∣∣2dt and x 7→

∫ T

0

∣∣∣∇xb(t, ω, x)
∣∣∣2dt,

are continuous (where convergence in L0 means convergence in probability).

(iii) For almost all (t, ω) ∈ [0, T ]× Ω we have

|∇xσ(t, ω, x)−∇xσ(t, ω, y)| ≤ L|x− y|.

(iv) For x, y ∈ Rd such that |x|, |y| < N and for almost all (s, ω) ∈ [0, T ] × Ω, ∃LN > 0

such that

|∇xb(s, ω, x)−∇xb(s, ω, y)| ≤ LN |x− y|.
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Proposition 4.11. Let p ≥ 2. Let Xx be solution to the SDE (2.1) under Assumption
4.10 and with initial condition x ∈ Rd. Then we have that the map

ε 7→
∥∥∥Xx+εh(ω)−Xx(ω)

ε

∥∥∥
∞
,

can be extended to when ε = 0 and the extension is almost surely continuous.

Proof. By the Stochastic Stability from Theorem 2.2 we have E
[
‖Xx −Xy‖p∞

]
. |x− y|p,

hence by the Kolmogorov Continuity Criterion we have that the map ε 7→ Xx+εh is almost
surely continuous. In fact, one can show α-Hölder continuity for α < 1 but not for when
α = 1 (which would imply Lipschitz Continuity). Therefore, we additionally need to prove
almost sure continuity of the map ε 7→ (Xx+εh −Xx)/ε.

Denote for any t ∈ [0, T ] the auxiliary process Kε(t) = (Xx+εh(t)−Xx(t))/ε. This
process satisfies the Linear SDE

Kε(t) = h+

∫ t

0

[ ∫ 1

0

∇xb
(
s, ω,Xx(s) + ξ[Xx+εh(s)−Xx(s)]

)
dξ
]
Kε(s)ds

+

∫ t

0

[ ∫ 1

0

∇xσ
(
s, ω,Xx(s) + ξ[Xx+εh(s)−Xx(s)]

)
dξ
]
Kε(s)dW (s),

and, introducing the auxiliary process Ξε(·) := Xx(·) + ξ[Xx+εh(·)−Xx(·)]
)
, we can write

the explicit solution of Kε (as it is the solution a geometric Brownian motion type SDE)

Kε(t) = h · exp

(∫ t

0

[ ∫ 1

0

∇xb
(
s, ω,Ξε(s)

)
dξ
]
ds

)
· E

(∫ 1

0

∇xσ
(
·, ω,Ξε(·)

)
dξ

)
(t), (4.5)

where E is the Doléan-Dade operator introduced in (3.5), which for shorthand notation
we denote K ′ε(t) = E

( ∫ 1

0
∇xσ

(
·, ω,Ξε(·)

)
dξ
)
(t).

We now analyze the behaviour of differences of increments of K ′ε in ε parameter.
Take δ > 0, using the properties of the Doléan-Dade exponential, we have

K ′ε(t)−K ′δ(t) =

∫ t

0

[ ∫ 1

0

∇xσ
(
s, ω,Ξε(s)

)
−∇xσ

(
s, ω,Ξδ(s)

)
dξ
]
K ′ε(s)dW (s)

+

∫ t

0

[ ∫ 1

0

∇xσ
(
s, ω,Ξδ(s)

)
dξ
]
·
[
K ′ε(s)−K ′δ(s)

]
dW (s).

Applying Itô’s formula for f(x) = |x|p and denoting L(·) = K ′ε(·)−K ′δ(·) we get

|L(t)|p = p

∫ t

0

|L(s)|p−2L(s)T ·
[ ∫ 1

0

∇xσ
(
s, ω,Ξε(s)

)
−∇xσ

(
s, ω,Ξδ(s)

)
dξ
]
K ′ε(s)dW (s) (4.6)

+ p

∫ t

0

|L(s)|p−2L(s)T ·
[ ∫ 1

0

∇xσ
(
s, ω,Ξδ(s)

)
dξ
]
· L(s)dW (s) (4.7)

+
p

2

∫ t

0

|L(s)|p−2
∣∣∣[ ∫ 1

0

∇xσ
(
s, ω,Ξε(s)

)
−∇xσ

(
s, ω,Ξδ(s)

)
dξ
]
K ′ε(s)

∣∣∣2ds (4.8)

+
p

2

∫ t

0

|L(s)|p−2
∣∣∣[ ∫ 1

0

∇xσ
(
s, ω,Ξδ(s)

)
dξ
]
· L(s)

∣∣∣2ds (4.9)

+
p(p− 2)

2

∫ t

0

|L(s)|p−4
∣∣∣L(s)T

[ ∫ 1

0

∇xσ
(
s, ω,Ξε(s)

)
−∇xσ

(
s, ω,Ξδ(s)

)
dξ
]
K ′ε(s)

∣∣∣2ds (4.10)
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+
p(p− 2)

2

∫ t

0

|L(s)|p−4
∣∣∣L(s)T

[ ∫ 1

0

∇xσ
(
s, ω,Ξδ(s)

)
dξ
]
· L(s)

∣∣∣2ds. (4.11)

Next, take a supremum over time then expectations. Using the methods that have
already been explored in detail for the proof of Theorem 3.21, we know that the terms
from lines (4.7), (4.9) and (4.11) will all yield terms of the form .

∫ T
0
E
[
‖L‖p∞,t

]
dt which

will be accounted for with the Grönwall inequality.
Firstly, following the same methods for Theorem 3.21 and using the additional

Assumption 4.10(iii), for

for (4.6)

⇒ pE
[

sup
t∈[0,T ]

∫ t

0

|L(s)|p−2 ·
[ ∫ 1

0

∇xσ
(
s, ω,Ξε(s)

)
−∇xσ

(
s, ω,Ξδ(s)

)
dξ
]
K ′ε(s)dW (s)

]
,

≤ pC1E
[( ∫ T

0

|L(s)|2p−4 ·
∣∣∣[ ∫ 1

0

∇xσ
(
s, ω,Ξε(s)

)
−∇xσ

(
s, ω,Ξδ(s)

)
dξ
]
K ′ε(s)

∣∣∣2ds) 1
2
]
,

≤
E
[
‖L‖p∞

]
n

+ Cp1
[
n(p− 1)

]p−1
E
[(
TL‖Xx+εh −Xx+δh‖2∞ · ‖K ′ε‖2∞

)p
2
]
,

≤
E
[
‖L‖p∞

]
n

+ Cp1
[
n(p− 1)

]p−1
(TL)

p
2E
[
‖Xx+εh −Xx+δh‖2p∞

] 1
2 · E

[
‖K ′ε‖2p∞

] 1
2
.

Secondly,

for (4.8)⇒p

2
E
[ ∫ T

0

|L(s)|p−2
∣∣∣[ ∫ 1

0

∇xσ
(
s, ω,Ξε(s)

)
−∇xσ

(
s, ω,Ξδ(s)

)
dξ
]
K ′ε(s)

∣∣∣2ds],
≤
E
[
‖L‖p∞

]
n

+
[n(p− 2)

2

]p−2
2

(LT )
p
2E
[
‖Xx+εh −Xx+δh‖2p∞

] 1
2 · E

[
‖K ′ε‖2p∞

] 1
2
.

The terms from (4.10) are treated in exactly the same way.

Finally, we use that E
[
‖K ′ε‖2p∞

]1/2
<∞ and E

[
‖Xx+εh −Xx+δh‖2p∞

]1/2
. |δ − ε|p|h|p to

conclude
E
[
‖K ′ε −K ′δ‖p∞

]
. |ε− δ|p|h|p.

Hence by Kolmogorov Continuity Criterion, we have the map ε 7→ K ′ε(t)(ω) is almost
surely continuous for any t ∈ [0, T ] P-almost surely.

Now, we return to Equation (4.5). Using the almost sure continuity of ε 7→ Xx+εh(t)(ω)

and Assumption 4.10 (iv), we have that

ε 7→ exp

(∫ t

0

[ ∫ 1

0

∇xb
(
s, ω,Xx(·) + ξ[Xx+εh(·)−Xx(·)]

)
dξ
]
ds

)
,

is almost surely continuous. Hence ε 7→ Kε(t)(ω) is also almost surely continuous.

Theorem 4.12. Let p ≥ 2. Let Xx be solution to the SDE (2.1) under Assumption 4.10
and with initial condition x ∈ Rd. Then we have that ∀t ∈ [0, T ]

Xx+εh(t)(ω)−Xx(t)(ω)

ε
→ h · J(t)(ω) P-almost surely as ε→ 0.

Proof. Let t ∈ [0, T ]. First, we show convergence in probability of (Xx+εh(t)−Xx(t))/ε

to h · J(t) using Proposition 2.6. Convergence in probability will imply the existence of a
subsequence which converges almost sure. Finally, using Proposition 4.11 we know the
limit will be almost surely unique.
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Writing out the SDE for the increments’ process, we have

Xx+εh(t)−Xx(t)

ε
− hJ(t)

=

∫ t

0

[ ∫ 1

0

∇xb(s, ω,Ξε(s))dξ −∇xb(s, ω,Xx(s))
][Xx+εh(s)−Xx(s)

ε

]
ds (4.12)

+

∫ t

0

[ ∫ 1

0

∇xσ(s, ω,Ξε(s))dξ −∇xσ(s, ω,Xx(s))
][Xx+εh(s)−Xx(s)

ε

]
dW (s) (4.13)

+

∫ t

0

∇xb(s, ω,Xx(s))
[Xx+εh(s)−Xx(s)

ε
− hJ(s)

]
ds

+

∫ t

0

∇xσ(s, ω,Xx(s))
[Xx+εh(s)−Xx(s)

ε
− hJ(s)

]
dW (s),

where Ξε(·) = Xx(·)+ξ[Xx+εh(·)−Xx(·)]. As with Theorem 3.23, we argue that the terms
(4.12) and (4.13) converge in probability to 0, then use Proposition 2.6 to conclude that∥∥∥Xx+εh(ω)(·)−Xx(ω)(·)

ε
− hJ(ω)(·)

∥∥∥
∞

P−→ 0.

Thus there exists a sequence εn such that εn → 0 as n→∞ and an event C1 ⊂ Ω with
P[C1] = 0 such that ∀ω ∈ Ω\C1

lim
n→∞

∥∥∥Xx+εnh(ω)−Xx(ω)

εn
− hJ(ω)

∥∥∥
∞
→ 0.

Finally, by Proposition 4.11 there exists an event C2 ⊂ Ω with P[C2] = 0 such that
∀ω ∈ Ω\C2 the map

ε 7→
∥∥∥Xx+εh(ω)−Xx(ω)

ε
− hJ(ω)

∥∥∥
∞
,

is continuous for ε at 0. Then for ∀ω ∈ Ω\(C1 ∪ C2)

lim
ε→0

∥∥∥Xx+εh(ω)−Xx(ω)

ε
− hJ(ω)

∥∥∥
∞
→ 0,

and P[C1 ∪ C2] = 0.

Invertibility of the Jacobian matrix

Next, we wish to show that the Jacobian Matrix J(t) is P-almost surely invertible for any
choice of t ∈ [0, T ]. Notice that due to the initial condition, we have that this is true for
t = 0 since J(0) = Id.

To prove the Jacobian is invertible, we consider a matrix valued stochastic process
and observe that for any choice of t ∈ [0, T ], this process will take value equal to the left
inverse of J . This proof follows that of Nualart, [13, Chapter 2.3; Equation 2.8].

We introduce the SDE

K(t) = Id −
∫ t

0

K(s)
[
∇xb(s, ω,X(s))−

〈
∇xσ,∇xσ

〉
Rm

(
s, ω,X(s)

)]
ds

−
∫ t

0

K(s)∇xσ(s, ω,X(s))dW (s). (4.14)

Proposition 4.13. Let p ≥ 2. Let Xx be solution to the SDE (2.1) under Assumption 4.2
and with initial condition x ∈ Rd. Then we have the following identity K(t)J(t) = Id for
all t ∈ [0, T ] P-a.s.
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Proof. We deal here with matrix valued processes which cannot necessarily be assumed
commutative, this makes the analysis slightly more involved. Itô’s formula for matrices
gives that (KJ)(0) = Id and

d(KJ)(t) =K(t)dJ(t) + dK(t)J(t) + d[K,J ](t),

=K(t)∇xb(t, ω,X(t))J(t)dt+K(t)σ(t, ω,X(t))J(t)dW (t)

−K(t)∇xb(t, ω,X(t))J(t)dt−K(t)σ(t, ω,X(t))J(t)dW (t)

+K(t)
〈
∇xσ,∇xσ

〉
Rm

(
s, ω,X(s)

)
J(t)dt

−K(t)
〈
∇xσ,∇xσ

〉
Rm

(
s, ω,X(s)

)
J(t)dt = 0dt+ 0dW (t).

SDE (4.14) does not necessarily satisfy Assumption 2.4, the issue being that the
term −zT∇xb(t, ω,X(t))z is not bounded from above by a constant almost surely for any
choice of vector |z| = 1. However, an explicit solution to the SDE can be written out
pathwise, even if it does not have finite moments. This construction has the property
that it is the left inverse of J .

Proposition 4.14. The determinant of the Matrix J(t), denoted D(t), is called the
Stochastic Wronskian and satisfies the SDE

dD(t) =Tr
(
∇xb(t, ω,X(t))

)
D(t)dt+ Tr

(
∇xσ(t, ω,X(t))

)
D(t)dW (t) (4.15)

+
[〈

Tr
(
∇xσ(t, ω,X(t))

)
,Tr
(
∇xσ(t, ω,X(t))

)〉
Rm

− Tr
(〈
∇xσ(t, ω,X(t)),∇xσ(t, ω,X(t))

〉
Rm

)]
D(t)dt,

with D(0) = 1. D(t) has explicit form

D(t) = exp

(∫ t

0

Tr
(
∇xb(s, ω,X(s))

)
− 1

2
Tr
(〈
∇xσ(s, ω,X(s)),∇xσ(s, ω,X(s))

〉
Rm

)
ds

+

∫ t

0

Tr
(
∇xσ(s, ω,X(s))

)
dW (s)

)
. (4.16)

Proof. The proof can be found in [10, Theorem 3.2.2]. The proof involves applying Itô’s
formula to the determinant of J(t) and establishing that it satisfies Equation (4.15). Then
one applies Itô’s formula to Equation (4.16) and verifies that this likewise satisfies (4.15).
Finally, by Theorem 2.5, the solution is unique.

The matrix ∇xb being lower semidefinite means that Tr(∇xb) is bounded from above,
but not necessarily from below. We can conclude the D(·) is almost surely positive
and therefore the process K is P-almost surely the inverse (left or right) of J provided
Tr(∇xb) 6= −∞ with positive probability.

5 Applications

In this section, we recover and discuss some standard applications of Malliavin
Differentiation and evaluate some of the problems that occur under our framework.

5.1 Representation formulae

Firstly, we present a way of writing the Malliavin Derivative of Xθ in terms of the
Jacobian.
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Proposition 5.1 (Representation formulae). Let Xx be solution to the SDE (2.1) under
Assumption 3.1 and with initial condition Xx(0) = x ∈ Rd. Let J satisfy the SDE (4.4).
Consider the SDE for the process J(t)J(s)−1 for t > s.

Js(t) =J(t)J(s)−1

=J(s)J(s)−1 +

∫ t

s

∇xb(r, ω,X(r)(ω))J(r)J(s)−1dr

+

∫ t

s

∇xσ(r, ω,X(r)(ω))J(r)J(s)−1dW (r)

=Id +

∫ t

s

∇xb(r, ω,X(r)(ω))Js(r)dr +

∫ t

s

∇xσ(r, ω,X(r)(ω))Js(r)dW (r). (5.1)

Equation (5.1) is the Fundamental Matrix of the Linear Stochastic Differential Equation
(3.1). As such, under Assumption 3.1 the Malliavin Derivative of X can be expressed for
t > s as

DsX(t) = Js(t)A(s, t),

where A(s, t) is defined for t > s as

A(s, t) = σ(s, ω,X(s)(ω)) +

∫ t

s

Js(r)
−1
(
U(s, r, ω)−

〈
∇xσ(r, ω,X(r)(ω)), V (s, r, ω)

〉
Rm

)
dr

+

∫ t

s

J−1
s (r)V (s, r, ω)dW (r).

Proof. The proof of this representation formula follows the same ideas as Theorem 3.21.
Equation (3.1) is an infinite dimensional SDE, so we project from the infinite dimensional
space into a finite dimensional space. We follow the method of [10, Theorem 3.3.1] to
solve the solution explicitly in the projection space then use the Dominated Convergence
Theorem to ensure the passage to the limit.

Absolute continuity

In [13, Theorem 2.3.1], it is proved that the solution of a Stochastic Differential Equation
with Lipschitz, deterministic coefficients and elliptic diffusion term has a law which is
absolutely continuous with respect to Lebesgue measure on Rd. This proof can be easily
extended to the case where the drift term has monotone growth.

Theorem 5.2. Let Xx be solution to the SDE (2.1) under Assumption 3.1 and with initial
condition Xx(0) = x ∈ Rd. Suppose additionally that ∀z ∈ Rd that

zTA(s, t)A(s, t)T z > λ(s, t)|z|2 ≥ 0,

∫ t

0

λ(s, t)ds > 0 P-almost surely.

Then the law of Xx(t) is absolutely continuous with respect to the Lebesgue measure on
Rd.

Proof. For this proof, recall [13, Corollary 2.1.2] and following that our strategy is to
show that the Malliavin matrix is P-almost surely non zero.

The Malliavin Matrix, Q(t) is defined to be

Q(t) =

∫ t

0

DsX(t)DsX(t)T ds = J(t)

(∫ t

0

K(s)A(s, t)A(s, t)TK(s)T ds

)
J(t)T .

Therefore, for z ∈ Rd we have zTQ(t)z ≥
∫ t

0
λ(s, t)|K(s)|2ds · |J(t)|2 · |z|2 which is greater

than zero because |J |, |K| > 0.
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Remark 5.3. Observe that the Ellipticity condition for σ is no longer enough to ensure
that the law is absolutely continuous. When b and σ are deterministic, U and V are
uniformly 0 and Ellipticity is enough.

5.2 Bismut-Elworthy-Li formula

In [3], the author uses Malliavin Differentiability of an SDE Xx to prove differentiabil-
ity for functions of the form u(x) = E[φ(Xx(t))] where φ is assumed to be a continuous
function and t ∈ [0, T ]. This was later extended in [5] and [4] to cover functions φ which
are integrable and even measurable (provided u remains finite).

Define for t ∈ (0, T ] the set Γt =
{
a ∈ L2([0, T ]);

∫ t
0
a(s)ds = 1

}
.

Theorem 5.4 (Bismut-Elworthy-Li formula). Let Φ : Rd → Rd be a bounded, measurable
function. Let Xx be solution to the SDE (2.1) under Assumption 3.1 and with initial
condition Xx(0) = x ∈ Rd. Let t ∈ (0, T ]. Suppose additionally that (δ(·) stands for the
usual Skorokhod integral, see [13])

1. ∀s ∈ [0, t] the matrix A(s, t) has a right inverse,

2. ∃a ∈ Γt such that a(·)A(·, t)−1J(·) ∈ dom(δ).

Then
∇xE

[
Φ(Xx(t)

]
= E

[
Φ(Xx(t))δ

(
a(s)A(s, t)−1J(s)

)]
.

Proof. We give only a sketch of the proof. For a more detailed proof, see [5] and [4].
First suppose that Φ is continuously differentiable with bounded derivatives, then

∇xE
[
Φ(Xx(t))

]
=E
[
∇xΦ(Xx(t))

]
= E

[
∇Φ(Xx(t))J(t)

]
=E
[
∇Φ(Xx(t))DsXx(t)A(s, t)−1J(s)

]
.

Multiplying both sides by a ∈ Γs, integrating over [0, t] (using
∫ t

0
a(s)ds = 1 on the LHS)

and Fubini gives

∇xE
[
Φ(Xx(t))

]
= E

[ ∫ t

0

a(s)∇Φ(Xx(t))DsXx(t)A(s, t)−1J(s)ds
]

=E
[ ∫ t

0

Ds

(
Φ(Xx(t))

)
a(s)A(s, t)−1J(s)ds

]
= E

[
Φ
(
Xx(t)

)
δ
(
a(s)A(s, t)−1J(s)

)]
,

where in the last line we used integration-by-parts formula.
Secondly, let Φ be bounded and measurable. Then using that C1

b is dense in the
set of bounded measurable functions, we approximate Φ by a sequence of functions
Φn ∈ C1

b . Finally, using a domination argument it is shown that one can swap the limits
and integrals and one reaches the conclusion.

A Proofs

A.1 The existence and uniqueness theorem plus moment calculations

Proof of Theorem 2.2. As p ≥ 2, we also have that

E
[ ∫ T

0

∣∣∣σ(s, ω,Xθ(s))
∣∣∣2ds] ≤ 2E

[ ∫ T

0

∣∣∣σ(s, ω, 0)
∣∣∣2ds]+ 2L2TE

[
‖X‖2∞

]
<∞.

This means we can use [14, Theorem 3.2.5] to get P-almost sure continuity of the
stochastic integral. The drift term is a Lebesgue integral so likewise is continuous in
time. Hence P-almost sure continuity of t 7→ Xθ(t) is immediate.
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Finally, let t ∈ [0, T ] and ξ, θ ∈ Lp(F0;Rd;P). We have

Xξ(t)−Xθ(t) = ξ − θ +

∫ t

0

[
b(s, ω,Xξ(s))− b(s, ω,Xθ(s))

]
ds

+

∫ t

0

[
σ(s, ω,Xξ(s))− σ(s, ω,Xθ(s))

]
dW (s).

We write Q(s) = Xξ(s)−Xθ(s) and by applying Itô’s formula with f(x) = |x|p we get

|Q(t)|p = |ξ − θ|p + p

∫ t

0

|Q(s)|p−2
〈
Q(s), b(s, ω,Xξ(s))− b(s, ω,Xθ(s))

〉
ds

+ p

∫ t

0

|Q(s)|p−2
〈
Q(s),

[
σ(s, ω,Xξ(s))− σ(s, ω,Xθ(s))

]
dW (s)

〉
+
p

2

∫ t

0

|Q(s)|p−2 ·
∣∣∣σ(s, ω,Xξ(s))− σ(s, ω,Xθ(s))

∣∣∣2ds
+
p(p− 2)

2

∫ t

0

|Q(s)|p−4
∣∣∣Q(s)T ·

[
σ(s, ω,Xξ(s))− σ(s, ω,Xθ(s))

]∣∣∣2ds.
Taking a supremum over time and then taking expectations, we get

E
[
‖Xξ −Xθ‖p∞

]
= E

[
‖Q‖p∞

]
≤ E

[
|ξ − θ|p

]
+ pE

[ ∫ T

0

|Q(s)|p−2
∣∣∣〈Q(s), b(s, ω,Xξ(s))− b(s, ω,Xθ(s))

〉∣∣∣ds] (A.1)

+ pE
[

sup
t∈[0,T ]

∫ t

0

|Q(s)|p−2
〈
Q(s),

[
σ(s, ω,Xξ(s))− σ(s, ω,Xθ(s))

]
dW (s)

〉]
(A.2)

+
p

2
E
[ ∫ T

0

|Q(s)|p−2
∣∣∣σ(s, ω,Xξ(s))− σ(s, ω,Xθ(s))

∣∣∣2ds] (A.3)

+
p(p− 2)

2
E
[ ∫ T

0

|Q(s)|p−4|Q(s)T
[
σ(s, ω,Xξ(s))− σ(s, ω,Xθ(s))

]
|2ds

]
. (A.4)

Firstly by monotonicity of b we have (A.1) ≤ pL
∫ T

0
E
[
‖Q‖p∞,s

]
ds. Secondly, by the

Burkholder-Davis-Gundy inequality we have

(A.2) ≤pC1LE
[
‖Q‖

p
2∞

(∫ T

0

‖Q‖p∞,sds
) 1

2
]
≤
E
[
‖Q‖p∞

]
2

+
p2C2

1L
2

2

∫ T

0

E
[
‖Q‖p∞,s

]
ds.

Finally, we have

(A.3) ≤ pL

2

∫ T

0

E
[
‖Q‖p∞,s

]
ds and (A.4) ≤ p(p− 2)L

2

∫ T

0

E
[
‖Q‖p∞,s

]
ds.

Gathering all the estimates we have finally

1

2
E
[
‖Xξ −Xθ‖p∞

]
≤ E

[
|ξ − θ|p

]
+ Ĉ

∫ T

0

E
[
‖Xξ −Xθ‖p∞,s

]
ds,

where Ĉ = p2L(LC2
1 + 2)/2. Grönwall’s inequality yields E

[
‖Xξ−Xθ‖p∞

]
. E[|ξ−θ|p].

Moment Calculations for Theorem 2.5 . Fix t ∈ [0, T ] and using Itô’s formula with f(x) =

|x|p and Xθ satisfying Equation (2.3), we get that
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|Xθ(t)|p= |θ|p + p

∫ t

0

|Xθ(s)|p−2〈Xθ(s), B(s, ω)Xθ(s)〉ds+ p

∫ t

0

|Xθ(s)|p−2〈Xθ(s), b(s, ω)〉ds

+ p

∫ t

0

|Xθ(s)|p−2〈Xθ(s),Σ(s, ω)Xθ(s)dW (s)〉

+ p

∫ t

0

|Xθ(s)|p−2〈Xθ(s), σ(s, ω)dW (s)〉

+
p

2

∫ t

0

|Xθ(s)|p−2
[
Σ(s, ω)Xθ(s) + σ(s, ω)

]2
ds

+
p(p− 2)

2

∫ t

0

|Xθ(s)|p−4
〈
Xθ(s),

[
Σ(s, ω)Xθ(s) + σ(s, ω)

]〉2

ds.

Take a supremum over t ∈ [0, T ] and expectations to have

E
[
‖Xθ‖p

]
≤E
[
|θ|p
]

+ pE
[ ∫ T

0

|Xθ(s)|p−2
〈
Xθ(s),

[
B(s, ω)Xθ(s) + b(s, ω)

]〉
ds
]

(A.5)

+ pE
[

sup
t∈[0,T ]

∫ t

0

|Xθ(s)|p−2
〈
Xθ(s),

[
Σ(s, ω)Xθ(s) + σ(s, ω)

]
dW (s)

〉]
(A.6)

+
p(p− 1)

2
E
[ ∫ T

0

|Xθ(s)|p−2
[
Σ(s, ω)Xθ(s) + σ(s, ω)

]2
ds
]
.

Fix n ∈ N to be chosen later. Throughout the next three arguments, we use Young’s
Inequality. Using the negative semidefinite properties of B, we get that

(A.5) ≤ pL
∫ T

0

E
[
‖Xθ‖p∞,s

]
ds+

E
[
‖Xθ‖p∞

]
n

+ np−1(p− 1)p−1 × E
[( ∫ T

0

|b(s, ω)|ds
)p]

.

Secondly, using the Burkholder-Davis-Gundy Inequality gives that

(A.6) ≤
2E
[
‖Xθ‖p∞

]
n

+
p2C2

1n
√

2

4

∫ T

0

E
[
‖Xθ‖p∞,s

]
‖Σ(s, ·)‖2L∞ds

+ Cp1n
p−1p

p
2 (p− 2)

p−2
2

2
p
4

2p−1
· E
[( ∫ T

0

|σ(s, ω)|2ds
)p

2
]
.

Thirdly, we have

(A.6) ≤
E
[
‖Xθ‖p∞

]
n

+ p(p− 1)

∫ T

0

E
[
‖Xθ‖p∞,s

]
‖Σ(s, ·)‖L∞ds

+ 2[n(p− 2)]
p−2

2 (p− 1)
p
2E
[( ∫ T

0

|σ(s, ω)|2ds
)p

2
]
.

When applying Young’s Inequality for the case p = 2, we use the convention that 00 = 1.
Adding these together, we have that there are constants C̃1, C̃2 and C̃3 such that

1

5
E
[
‖Xθ‖p∞

]
≤E
[
|θ|p
]

+ C̃1E
[( ∫ T

0

|b(s, ω)|ds
)p]

+ C̃2E
[( ∫ T

0

|σ(s, ω)|2ds
)p

2
]

+ C̃3

∫ T

0

[
1 + ‖Σ(s, ·)‖L∞

]
E
[
‖Xθ‖p∞,s

]
ds.
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Applying Grönwall Inequality yields

E
[
‖Xθ‖p∞

]
≤ 5

(
E
[
|θ|p
]

+ C̃1E
[( ∫ T

0

|b(s, ω)|ds
)p]

+ C̃2E
[( ∫ T

0

|σ(s, ω)|2ds
)p

2
])

× exp
(

5C̃3

∫ T

0

[
1 + ‖Σ(s, ·)‖L∞

]
ds
)
.
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