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Abstract

We establish an existence and uniqueness result for a class of multidimensional
quadratic backward stochastic differential equations (BSDE). This class is charac-
terized by constraints on some uniform a priori estimate on solutions of a sequence
of approximated BSDEs. We also present effective examples of applications. Our
approach relies on the strategy developed by Briand and Elie in [Stochastic Process.
Appl. 123 2921–2939] concerning scalar quadratic BSDEs.
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1 Introduction

Backward Stochastic Differential Equations Backward stochastic differential equa-
tions (BSDEs) have been first introduced in a linear version by Bismut [Bis73], but since
the early nineties and the seminal work of Pardoux and Peng [PP90], there has been
an increasing interest for these equations due to their wide range of applications in
stochastic control, in finance or in the theory of partial differential equations. Let us
recall that, solving a BSDE consists in finding an adapted pair of processes (Y, Z), where
Y is a Rd-valued continuous process and Z is a Rd×k-valued progressively measurable
process, satisfying the equation

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dWs, 0 ≤ t ≤ T, a.s. (1.1)

whereW is a k-dimensional Brownian motion with filtration (Ft)t∈R+ , ξ is a FT -measurable
random variable called the terminal condition, and f is a (possibly random) function
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called the generator. Since the seminal paper of Pardoux and Peng [PP90] that gives an
existence and uniqueness result for BSDEs with a Lipschitz generator, a huge amount
of paper deal with extensions and applications. In particular, the class of BSDEs with
generators of quadratic growth with respect to the variable z, has received a lot of
attention in recent years. Concerning the scalar case,i.e. d = 1, existence and unique-
ness of solutions for quadratic BSDEs has been first proved by Kobylanski in [Kob00].
Since then, many authors have worked on this question and the theory is now well
understood: we refer to [Kob00, Tev08, BE13] when the terminal condition is bounded
and to [BH06, BEK13, DHR11] for the unbounded case. We refer also to [GY14] for a
study of BMO properties of Z.

In this paper we will focus on existence and uniqueness results for quadratic BSDEs
in the multidimensional setting, i.e. d > 1. Let us remark that, in addition to its
intrinsic mathematical interest, this question is important due to many applications of
such equations. We can mention for example following applications: nonzero-sum risk-
sensitive stochastic differential games in [EKH03, HT16], financial market equilibrium
problems for several interacting agents in [ET15, FDR11, Fre14, BLDR15], financial
price-impact models in [KP16b, KP16a], principal agent contracting problems with
competitive interacting agents in [EP16], stochastic equilibria problems in incomplete
financial markets [KXŽ15, XŽ16] or existence of martingales on curved spaces with a
prescribed terminal condition [Dar95].

Let us note that moving from the scalar framework to the multidimensional one is
quite challenging since tools usually used when d = 1, like monotone convergence or
Girsanov transform, can no longer be used when d > 1. Moreover, Frei and dos Reis
provide in [FDR11] an example of multidimensional quadratic BSDE with a bounded
terminal condition and a very simple generator such that there is no solution to the
equation. This informative counterexample show that it is hopeless to try to obtain
a direct generalization of the Kobylanski existence and uniqueness theorem in the
multidimensional framework or a direct extension of the Pardoux and Peng existence
and uniqueness theorem for locally-Lipschitz generators. Nevertheless, we can find in
the literature several papers that deal with special cases of multidimensional quadratic
BSDEs and we give now a really brief summary of them.

First of all, a quite general result was obtain by Tevzadze in [Tev08], when the
bounded terminal condition is small enough, by using a fixed-point argument and the
theory of BMO martingales. Some generalizations with somewhat more general terminal
conditions are considered in [Fre14, KP16a]. In [CN15], Cheridito and Nam treat some
quadratic BSDEs with very specific generators. Before these papers, Darling was already
able to construct a martingale on a manifold with a prescribed terminal condition by
solving a multidimensional quadratic BSDE (see [Dar95]). Its proof relies on a stability
result obtained by coupling arguments. Recently, the so-called quadratic diagonal case
has been considered by Hu and Tang in [HT16]. To be more precise, they assume that
the nth line of the generator has only a quadratic growth with respect to the nth line
of Z. This type of assumption allows authors to use Girsanov transforms in their a
priori estimates calculations. Some little bit more general assumptions are treated by
Jamneshan, Kupper and Luo in [JKL14] (see also [LT15]). Finally, in the very recent
paper [XŽ16], Xing and Žitković obtained a general result in a Markovian setting with
weak regularity assumptions on the generator and the terminal condition. Instead of
assuming some specific hypotheses on the generator, they suppose the existence of
a so called Liapounov function which allows to obtain a uniform a priori estimate on
some sequence (Y n, Zn) of approximations of (Y,Z). Their approach relies on analytic
methods. We refer to this paper for references on analytic and PDE methods for solving
systems of quadratic semilinear parabolic PDEs.
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Our approach Our approach for solving multidimensional quadratic BSDEs relies on
the theory of BMO martingales and stability results as in [BE13]. To get more into the
details about our strategy, let us recall the sketch of the proof used by Briand and Elie in
[BE13]. The generator f is assumed to be locally Lipschitz and, to simplify, we assume
that it depends only on z. First of all, they consider the following approximated BSDE

YMt = ξ +

∫ T

t

f(ρM (ZMs ))ds−
∫ T

t

ZMs dWs, 0 ≤ t ≤ T, a.s.

where ρM is a projection on the centered Euclidean ball of radius M . Then existence and
uniqueness of (YM , ZM ) is obvious since this new BSDE has a Lipschitz generator. Now,
if we assume that ξ is Malliavin differentiable with a bounded Malliavin derivative, they
show that ZM is bounded uniformly with respect to M . Thus, (YM , ZM ) = (Y,Z) for M
large enough. Importantly, the uniform bound on ZM is obtained thanks to a uniform
(with respect to M ) a priori estimate on the BMO norm of the martingale

∫ .
0
ZMs dWs.

Subsequently, they extend their existence and uniqueness result for a general bounded
terminal condition: ξ is approximated by a sequence (ξn)n∈N of bounded terminal
conditions with bounded Malliavin derivatives and they consider (Y n, Zn) the solution of
the following BSDE

Y nt = ξn +

∫ T

t

f(Zns )ds−
∫ T

t

Zns dWs, 0 ≤ t ≤ T, a.s.

By using a stability result for quadratic BSDEs, they show that (Y n, Zn) is a Cauchy
sequence that converges to the solution of the initial BSDE (1.1). Once again, the
stability result used by Briand and Elie relies on a uniform (with respect to n) a priori
estimate on the BMO norm of the martingale

∫ .
0
ZndWs.

The aim of this paper is to adapt this approach in our multidimensional setting. In
the first approximation step, we are able to show that ZM is bounded uniformly with
respect to M if we have a small enough uniform (with respect to M ) a priori estimate
on the BMO norm of the martingale

∫ .
0
ZMs dWs. But, contrarily to the scalar case, it

is not possible to show that we have an a priori estimate on the BMO norm of the
martingale

∫ .
0
ZMs dWs under general quadratic assumptions on the generator (let us

recall the counterexample provides by Frei and dos Reis in [FDR11]). So, this a priori
estimate on the BMO norm of the martingale

∫ .
0
ZMs dWs becomes in our paper an a priori

assumption and this assumption has to be verified on a case-by-case basis according to
the BSDE structure. In the second approximation step, we are facing the same issue: we
are able to show the existence and uniqueness of a solution to (1.1) by using a stability
result if we have a small enough uniform (with respect to n) a priori estimate on the
BMO norm of the martingale

∫ .
0
Zns dWs, and this a priori estimate becomes, once again,

an assumption that has to be verified on a case-by-case basis according to the BSDE
structure. Let us emphasize that the estimate on the boundedness of ZM and the stability
result used in the second step come from an adaptation of results obtained by Delbaen
and Tang in [DT08]. The fact that our results are true only when we have a small enough
uniform estimate on the BMO norm of the martingale

∫ .
0
ZMs dWs or

∫ .
0
Zns dWs is the main

limitation of our results. Nevertheless, we emphasize that this limitation is related to
a crucial open question that could be independently investigated. To be precise, we
would like to know if the classical reverse Hölder inequality for exponential of BMO
martingales (see Theorem 3.1 in [Kaz94]) stays true in a multidimensional setting, i.e.
when we have a matrix valued BMO martingale. For further details we refer the reader
to Remark 3.5.

To show the interest of these theoretical results, we have to find now some frameworks
for which we are able to obtain estimates on the BMO norm of martingales

∫ .
0
ZMs dWs
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and
∫ .

0
Zns dWs. This is the purpose of Section 5 where results of [Tev08, Dar95, HT16]

are revisited. Let us note that one interest of our strategy comes from the fact that we
obtain these estimates by very simple calculations that allow to easily get new results:
for example, we are able to extend the result of Tevzadze when the generator satisfies a
kind of monotone assumption with respect to y (see subsection 2.2.2). Moreover, we can
remark that obtaining such estimates is strongly related to finding a so-called Liapounov
function in [XŽ16]. Result on the boundedness of Z is also interesting in itself since
it allows to consider the initial quadratic BSDE (1.1) as a simple Lipschitz one which
gives access to numerous results on Lipschitz BSDEs: numerical approximation schemes,
differentiability, stability, and so on. Finally, as noticed by an anonymous referee, it could
be possible to extend our approach to quadratic BSDEs driven by more general càdlàg
martingales like BSDEs in the Wiener-Poisson filtration. In this framework, notions of
BMO martingales and Malliavin derivative remain meaningful and the stability result of
Delbaen and Tang [DT08] could be extended. Nevertheless, to avoid too many additional
technicalities, we decided to restrict our study to the classical Wiener framework. Let
us remark that, up to our knowledge, there is no result on existence or uniqueness
of solutions to multidimensional quadratic BSDEs in this framework and it should be
interesting to investigate it further in a futur work.

Structure of the paper In the remaining of the introduction, we introduce notations,
the framework and general assumptions. We have collected in Section 2 all our main
results in order to improve the readability of the paper. Section 3 contains some general
results about SDEs and linear BSDEs adapted from [DT08]. Section 4 is devoted to the
proof of stability properties, existence and uniqueness theorems for multidimensional
quadratic BSDEs. Finally, proofs of the applications of previous theoretical results are
given in Section 5.

1.1 Notations

� Let T > 0. We consider
(
Ω,F , (Ft)t∈[0,T ],P

)
a complete probability space where

(Ft)t∈[0,T ] is a Brownian filtration satisfying the usual conditions. In particular every
càdlàg process has a continuous version. Every Brownian motion will be considered
relatively to this filtered probability space. A k-dimensional Brownian motion W =(
W i
)

16i6k
is a process with values in Rk and with independent Brownian components.

Almost every process will be defined on a finite horizon [0, T ], either we will precise it
explicitly. The stochastic integral of an adapted process H will be denoted by H ?W ,
and the Euclidean quadratic variation by 〈., .〉. The Dolean-Dade exponential of a
continuous real local martingale M is denoted by

E(M) := exp

(
M − 1

2
〈M,M〉

)
.

� Linear notions – On each Rp, the scalar product will be simply denoted by a dot,
including the canonical scalar product onMdk(R):

M.N =
∑

16i6d,16j6k

Mi,jNi,j .

For A ∈ Mdk(R), A(:,p) will be the column p ∈ {1, ..., k} of A, and A(l,:) the line
l ∈ {1, ..., d}. If B ∈ L(Rd×k,Rd), we write for i ∈ {1, ..., k}, B(:,i,:) ∈ L(Rd,Rd) the
linear map such that Bx =

∑k
i=1B

(:,i,:)x(:,i) for all x ∈ Rd×k. If A and B are two
processes with values in Mdk(R) and Rk, the quadratic variation 〈A,B〉 is the Rd
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vector process (
d∑
l=1

〈
Ail, Bl

〉)d
i=1

and we have the integration by part formula d (AB) = dA.B + A.dB + d 〈A,B〉. We
can also define the covariation of (A,B) ∈Mdk(R)×Mkd′(R) by

(
d∑
l=1

〈
Ail, Blj

〉)d,d′
i,j=1

.

� Functional spaces – In a general way, Euclidean norms will be denoted by |.| while
norms relatively to ω and t will be denoted by ‖.‖.
For a F -adapted continuous process Y with values in Rd and 1 6 p 6∞ , let us define

‖Y ‖Sp = E

(
sup

06s6T
|Ys|p

)1/p

, and ‖Y ‖S∞ = esssup sup
06s6T

|Ys| .

If Z is a random variable with values in Rd, we define

‖Z‖Lp = E (|Z|p)1/p
.

A continuous martingale M with values in R is in Hp(R), or only Hp when it is not
necessary to specify the state space, if

√
〈M,M〉T ∈ Lp. And we define the Hp norm

by

‖M‖Hp := E
(
〈M,M〉p/2T

)1/p

<∞.

If M is a martingale with values in Rd, M is in Hp(Rd) if |M | is in Hp(R). A real
martingale M = (Mt)06t6T is said to be BMO (bounded in mean oscillation) if there
exists a constant C > 0 such that for every stopping time 0 6 τ 6 T :

E
(
(MT −Mτ )2

∣∣Fτ) 6 C2 a.s.

The best constant C is called the BMO norm of M , denoted by ‖M‖BMO(P) or some-

times only ‖M‖BMO. In particular, the one dimensional local martingale Z ? W 1 =∫ .

0

Zs dW 1
s is BMO if there exists a constant C > 0 such that, for all stopping time τ

with values in [0, T ], we have

E

(∫ T

τ

|Zs|2 ds

∣∣∣∣∣Fτ
)
6 C2 a.s.

In the sequel, to simplify notations we will skip the superscript 1 on the Brownian
motion after a star. For more details about BMO martingales, we can refer to [Kaz94].
For k > 1, C∞b (Rk) is the set of all C∞ functions with values in R defined on Rk, which
have bounded derivatives.
Given b0 ∈ Rd and a sequence (αn) ∈ (0, 1]N, a function g : [0, T ]×Rd → Rd is said to

be in C(αn),loc
b0

if there exists a sequence (cn) of positive constants, such that, for all
n ∈ N,

sup
(t,x)∈[0,T ]×Bn(b0)

|g(t, x)|+ sup
(t,x) 6=(t′,x′)∈[0,T ]×Bn(b0)

|g(t, x)− g(t′, x′)|
|t− t′|αn/2 + |x− x′|αn

6 cn,
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where Bn(b0) states for the Euclidean ball on Rd of center b0 and radius n. If the
last term does not depend on b0, we shall say that g is in C(αn),loc. Finally, for a given
α ∈ (0, 1], a function g : [0, T ]×Rd → Rd is said to be in Cα if

sup
(t,x)6=(t′,x′)∈[0,T ]×Rd

|g(t, x)− g(t′, x′)|
|t− t′|α/2 + |x− x′|α

< +∞.

Remark 1.1. We can plainly show that if there exists (αn) ∈ (0, 1]N such that a
bounded solution v is in C(αn),loc, then v ∈ Cα1 .

� Inequalities – BDG inequalities claim that ‖.‖Sp and ‖.‖Hp are equivalent on martingale
spaces with two universal constants denoted C ′p, Cp. It means that for all continuous
local martingales M vanishing at 0,

‖M‖Hp 6 Cp ‖M‖Sp

and
‖M‖Sp 6 C

′
p ‖M‖Hp .

In [MR16], Marinelli and Röckner deal with martingales taking values in a separable
Hilbert space. In particular, the upper constant C ′ (Proposition 2.1 and Proposition
3.1) defined below is valid for all dimensions:

C ′p =


(

p
p−1

) p
2
(
p(p−1)

2

)2

if p > 2,

4
√

2
p if p < 2,

4 if p = 2.

We remark that in the case p = 2, the scalar BDG constant is valid. In the following
every BDG inequality should be understood with this choice of C ′. The Doob maximal
inequality claims that for every Rd-valued martingale M and p > 1,

‖M‖Sp 6
p

p− 1
‖MT ‖Lp ,

and for p =∞,
‖M‖S∞ 6 ‖MT ‖L∞ .

If p ∈]1,∞[, we will denote by p∗ the conjugated exponent of p such that 1
p + 1

p∗ = 1.

Finally, we say that a process L = (Lt)06t6T with values in Rd satisfies a reverse
Hölder inequality for some integer 1 6 p <∞ if there exists some constant Kp such
that for every stopping time 0 6 τ 6 T a.s,

E(|LT |p|Fτ ) 6 Kp |Lτ |p a.s.

� BMO martingales properties – We recall here several results on BMO martingales that
will be useful in the sequel. The energy inequality (see [Kaz94]) tells us that for every
BMO martingale M and every integer n > 1, we have

E (〈M〉nT ) 6 n! ‖M‖2nBMO , (1.2)

and a conditional version of this inequality is also true: for all t ∈ [0, T ],

E((〈M〉T − 〈M〉t)n|Ft) 6 n! ‖M‖2nBMO . (1.3)

Consequently the space of BMO martingales is a subset of
⋂
p>1Hp. We recall also the

so-called Fefferman inequality: for X ∈ H1 and Y ∈ BMO,

E

(∫ T

0

|d 〈X,Y 〉s|

)
6 ‖X‖H1 ‖Y ‖BMO .
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This inequality yields the following technical lemma (see [BB88] and [DT08] for more
details).

Lemma 1.2. Let m > 1. We consider X an adapted process and M a local martingale.

(i) If X ∈ Sm and M ∈ BMO, then X ?M ∈ Hm and

‖X ?M‖Hm 6
√

2 ‖X‖Sm ‖M‖BMO .

(ii) If X ∈ Hm and M ∈ BMO, then 〈X,M〉T ∈ Lm and

‖〈X,M〉T ‖Lm 6
√

2m ‖X‖Hm ‖M‖BMO .

The John-Nirenberg inequality gives a useful estimation on exponential moments of
〈Z ?W 〉T : if ‖Z ?W‖BMO < 1, for any stopping time τ ∈ [0, T ] we have

E
(
e
∫ T
τ
|Zs|2 ds

∣∣∣Fτ) 6 1

1− ‖Z ?W‖2BMO

. (1.4)

We have also a result about changes of probability law and equivalence of BMO norms
on a BMO ball (see Lemma A.4 in [HT16] and Theorem 3.6 in [Kaz94]).

Proposition 1.3. Let B > 0. There are two constants c1 > 0 and c2 > 0 depending
only on B, such that for any BMO martingale M , we have for any BMO martingale N
such that ‖N‖BMO(P) 6 B,
c1 ‖M‖BMO(P) 6 ‖M − 〈M,N〉‖BMO(Q) 6 c2 ‖M‖BMO(P) , where dQ = E(N)T dP.

To conclude this paragraph, let us show a technical proposition that will be useful in
this paper.

Proposition 1.4. Let m > 1 and a sequence of BMO-uniformly bounded local mar-
tingales (Zn ? W )n∈N. We denote K = supn∈N ‖Zn ? W‖BMO < ∞ and assume that
Zn ? W converge in Hm to a martingale Z ?W . Then Z ?W is BMO too and satisfies
the same inequality ‖Z ?W‖BMO 6 K.

Proof. Let us define by M the measure dM = dP ⊗ dt. Firstly we show that
convergence in Hm implies the convergence for the measureM. Indeed, if m > 2, the
Jensen inequality gives us

E

(∫ T

0

|Zns − Zs|
2

ds

)
6 ‖Zn ? W − Z ?W‖2Hm ,

and thus we get the convergence in measure, since for all ε > 0,

M(|Zn − Z| > ε) 6
1

ε2
‖Zn ? W − Z ?W‖2H2 6

1

ε2
‖Zn ? W − Z ?W‖2Hm .

Moreover, if m < 2 we also have

M(|Zn − Z| > ε) 6
1

εm
E

(∫ T

0

|Zns − Zs|
m

ds

)
6
T 1−m/2

εm
E

(∫ T

0

|Zns − Zs|
2

ds

)m/2 .

For the both cases, we get convergence in measure. Hence there exists a subsequence
(nk)k∈N such that

|Znk |2 −→
k→∞

|Z|2 M− a.e.

The Fatou lemma gives us for all stopping time τ ∈ [0, T ],∫ T

τ

|Zs|2 ds 6 lim inf
k→∞

∫ T

τ

|Znks |
2

ds a.s,
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and taking the conditional expectation

E

(∫ T

τ

|Zs|2 ds

∣∣∣∣∣Fτ
)
6 E

(
lim inf
k→∞

∫ T

τ

|Znks |
2

ds

∣∣∣∣∣Fτ
)

6 lim inf
k→∞

E

(∫ T

τ

|Znks |
2

ds

∣∣∣∣∣Fτ
)
6 K a.s.

Finally Z ?W is BMO and ‖Z ?W‖BMO 6 K. �

� Sliceability – For a process X and a stopping time τ we denote by τX the process
started at time τ , that is τX = Xmax(.,τ) −Xcτ where Xcτ is the process stopped at
τ . For two stopping times τ 6 σ a.s, we denote by τXcσ the process started at τ and
stopped at σ:

τXcσ = (τX)
cσ
.

Associativity property of the stochastic integral can be rewritten with this notation:

τ (H ?W )
cσ

= H ? τW cσ.

Between τ and σ, the started and stopped process is simply a translation of the stopped
process: for all u such that τ 6 u 6 σ a.s,

τXcσu = Xu −Xτ .

This process is constant after σ and vanishes before τ . Let us suppose that X is a
BMO martingale. We say that X is ε-sliceable if there exists a subsequence of stopping
times 0 = T0 6 T1 6 ... 6 TN = T , where N ∈ N is deterministic, such that∥∥∥Tn(X)cTn+1

∥∥∥
BMO

6 ε.

The set of all ε-sliceable processes will be denoted by BMOε. Schachermayer proved
in [Sch96] that ⋂

ε>0

BMOε = H∞BMO
.

Moreover the BMO norm of a started and stopped stochastic integral process τZ ?W cσ

has a simple expression:

Proposition 1.5.∥∥∥τZ ?W cσ∥∥∥
BMO

= esssup sup
τ ′∈Tτ,σ

E

(∫ σ

τ ′
|Zs|2 ds

∣∣∣∣Fτ ′) ,
where Tτ,σ = {τ ′ stopping time : τ 6 τ ′ 6 σ a.s} .

A proof of this proposition is given in the appendix part.
� Malliavin calculus – We denote by

P = {f((g1 ? W )T , ..., (gn ? W )T ) : f ∈ C∞b (Rn), gi adapted , n > 1} ,

the set of all Wiener functions. For F ∈ P, the Malliavin derivative of F is a pro-
gressively measurable process DF ∈ L2

(
[0, T ] × Ω,B([0, T ]) ⊗ F ,dx ⊗ dP

)
defined

by

DtF =

n∑
i=1

∂if((g1 ? W )T , ..., (gn ? W )T )gi(t).
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In particular D ((h ?W )T ) = h for all adapted process h. We define a kind of Sobolev
norm on P with the following definition

‖F‖1,2 :=
[
E
(
|F |2

)
+ E

(
‖DF‖2L2(dx)

)]1/2
.

We can show that D is closable, consequently it is possible to extend the definition

of D to D1,2 = P1,2
. Besides, D1,2 is dense in L2(Ω). For further considerations on

Malliavin calculus we can refer to [Nua06]. We finish this paragraph by the following
useful result proved in [Nua06] (Proposition 1.2.4).

Proposition 1.6. Let ϕ : Rd → R. We assume that there exists a constant K such
that for all x, y ∈ Rd,

|ϕ(x)− ϕ(y)| 6 K |x− y| .

Let (F 1, ..., F d) a vector in D1,2(Rd) ∩ L∞(Ω). Then ϕ(F ) ∈ D1,2(Rd) and there exists
a random vector (G1, ..., Gd) such that

Dϕ(F ) =

d∑
i=1

GiDF i, and |G| 6 K.

1.2 Framework and first assumptions

In this paper we consider the following quadratic BSDE on Rd:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 6 t 6 T, a.s. (1.5)

where f is a random function Ω× [0, T ]×Rd ×Rd×k → Rd called the generator of the
BSDE such that for all (y, z) ∈ Rd ×Rd×k and t ∈ [0, T ], (f(t, y, z))06t6T is progressively

measurable, (Y,Z) is a process with values in Rd ×Rd×k and ξ ∈ L2
(
FT ,Rd

)
.

Definition 1.7. A solution of BSDE (1.5) is a process (Y,Z) ∈ S2(Rd) × H2(Rd×k)

satisfying usual integrability conditions and solving initial BSDE:

(i)

∫ T

0

(
|f(s, Ys, Zs)|2 + |Zs|2

)
ds <∞ a.s.,

(ii) Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 6 t 6 T, a.s.

Some locally Lipschitz assumptions on f and integrability assumptions on ξ and f

will be assumed all along this paper.

(H) (i) For all (y, y′, z, z′) ∈
(
Rd
)2 × (Rd×k)2, we assume that there exists

(Ky, Ly,Kz, Lz) ∈ (R+)4 such that P− a.s for all t ∈ [0, T ]:

|f(t, y, z)− f(t, y′, z)| 6 (Ky + Ly|z|2)|y − y′|,

|f(t, y, z)− f(t, y, z′)| 6 (Kz + Lz(|z|+ |z′|)) |z − z′|,

(ii) E
(
|ξ|2 +

∫ T
0
|f(s, 0, 0)|2 ds

)
< +∞.

We denote by Bm(Ly, Lz) the following quantity depending on Ly and Lz:

Bm(Ly, Lz) :=


−LzC′m+

√
mLy+(LzC′m)2

√
2mLy

if Ly 6= 0,

1
2
√

2LzC′m
if Ly = 0.

(1.6)
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For all m > 1, let us denote by ZmBMO the set

ZmBMO =

{
Z, Rd×k − valued process

/
2mLy ‖|Z| ? W‖2BMO

+ 2
√

2LzC
′
m ‖|Z| ? W‖BMO < 1

}
,

which can be rewritten as

ZmBMO =

{
Z, Rd×k − valued process

/
‖|Z| ? W‖BMO < Bm(Ly, Lz)

}
,

where Bm(Ly, Lz) is defined in (1.6). We also denote by Zslic,mBMO the set of all Rd×k-valued
processes Z for which there exists a sequence of stopping times 0 = T0 6 T1 6 ... 6
TN = T such that TiZcTi+1 ∈ ZmBMO for all i ∈ {0, ..., N}.

To conclude this introduction, we finally consider an approximation of the BSDE (1.5).
To this purpose let us introduce a localisation of f defined by fM (t, y, z) = f(t, y, ρM (z))

where ρM : Rd×k → Rd×k satisfies the following properties :

• ρM B
Rd×k (0,M) is the identity,

• ρM Rd×k\B
Rd×k (0,M+1) is the projection onto the closed convex set BRd×k(0,M + 1),

• ρM is a C∞ function with |∇ρM (z)| 6 1 for all z ∈ Rd×k.

Thus fM is a globally Lipschitz function with constants depending on M . Indeed we
have for all (t, y, y′, z, z′) ∈ [0, T ]× (Rd)2 ×

(
Rd×k)2,∣∣fM (t, y, z)− fM (t, y′, z′)

∣∣ 6 ∣∣f (t, y, ρM (z)
)
− f

(
t, y′, ρM (z)

)∣∣
+
∣∣f (t, y′, ρM (z)

)
− f

(
t, y′, ρM (z′)

)∣∣
6
(
Ky + Ly|ρM (z)|2

)
|y − y′|

+
(
Kz + Lz

(
|ρM (z)|+ |ρM (z′)|

))
|z − z′|

6(Ky + Ly(M + 1)2) |y − y′|+ (Kz + 2Lz(M + 1)) |z − z′| .

Then, according to the classical result of Pardoux and Peng in [PP90], there exists a
unique solution (YM , ZM ) ∈ S2(Rd)×H2(Rd×k) of the localized BSDE

YMt = ξ +

∫ T

t

fM
(
s, YMs , ZMs

)
ds−

∫ T

t

ZMs dWs, 0 6 t 6 T. (1.7)

2 Main results

We have collected in this section principal results proved in our article. All proofs
are postponed to sections 4 and 5. The following subsection gives some existence and
uniqueness results while subsection 2.2 is dedicated to particular frameworks where
these existence and uniqueness results apply.

2.1 Some general existence and uniqueness results

2.1.1 Existence and uniqueness results when the terminal condition and the
generator have bounded Malliavin derivatives

We consider here a particular framework where the terminal condition and the random
part of the generator have bounded Malliavin derivatives. More precisely, let us consider
the following assumptions.
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(Dxi,b) The Malliavin derivative of ξ is bounded:

‖Dξ‖S∞ = sup
06t6T

‖Dtξ‖L∞ <∞.

(Df,b) (i) For all (t, y, z) ∈ [0, T ]×Rd ×Rd×k, we have

f(t, y, z) ∈ D1,2(Rd), and E

(∫ T

0

∫ T

0

|Duf(s, y, z)|duds

)
<∞.

(ii) There exists C > 0 such that for all (u, t, y, z) ∈ [0, T ]2 ×Rd ×Rd×k,

|Duf(t, y, z)| 6 C
(

1 + |z|2
)

a.s.

(iii) For all (u, t) ∈ [0, T ]2, there exists a random variable Cu(t) such that

for all (y1, z1, y2, z2) ∈
(
Rd ×Rd×k)2,∣∣Duf(t, y1, z1)−Duf(t, y2, z2)

∣∣ 6 Cu(t)
((

1 +
∣∣z1
∣∣2 +

∣∣z2
∣∣2) ∣∣y1 − y2

∣∣
(2.1)

+
(
1 +

∣∣z1
∣∣+
∣∣z2
∣∣)) ∣∣z1 − z2

∣∣ ) a.s.

(2.2)

By recalling that (YM , ZM ) is the unique solution of (1.7), we will also assume that we
have an a priori estimate on |ZM |?W uniform in M and small enough. For a given m > 1

we consider the following assumption:

(BMO,m) there exists a constant K < Bm(Ly, Lz) such that

sup
M∈R+

∥∥∣∣ZM ∣∣ ? W∥∥
BMO

6 K.

Theorem 2.1 (Existence and uniqueness (1)). Letm > 1. Under the main assumption (H),
the BMO a priori estimate (BMO,m), and the boundedness of the Malliavin derivatives
of ξ and f , (Dxi,b)—(Df,b), the quadratic BSDE (1.5) has a unique solution (Y,Z) ∈
S2(Rd)×ZmBMO such that

esssupΩ×[0,T ] |Z| < +∞.

A result similar to Theorem 2.1 can be obtained when the quadratic growth of z has
essentially a diagonal structure. Thus, we replace assumption (H) by the following one:

(Hdiag)

• There exist fdiag : Ω×[0, T ]×Rd×k → Rd and g : Ω×[0, T ]×Rd×Rd×k →
Rd such that for all i ∈ {1, ..., d} we have

f i(t, y, z) = f idiag(t, z) + gi(t, y, z).

• There exist five nonnegative constants Ld,Kd,y, Ld,y,Kd,z, Ld,z such
that for all (t, y, y′, z, z′) ∈ [0, T ]× (Rd)2 × (Rd×k)2 and i ∈ {1, ..., d}:∣∣f idiag(t, z)− f idiag(t, z′)

∣∣ 6 Ld (∣∣∣z(i,:)
∣∣∣+
∣∣∣(z′)(i,:)

∣∣∣) ∣∣∣(z − z′)(i,:)
∣∣∣ ,

|g(t, y, z)− g(t, y′, z)| 6
(
Kd,y + Ld,y |z|2

)
|y − y′| ,

|g(t, y, z)− g(t, y, z′)| 6 (Kd,z + Ld,z (|z|+ |z′|)) |z − z′| .
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This kind of framework has been introduced by Hu and Tang in [HT16] (see also [JKL14]).
The following result of existence and uniqueness is specific, and do not follows directly
from Theorem 2.1. Indeed, if an uniform upper bound is assumed (assumption (i) below),
we can use specific tools in the diagonal case to obtain an upper bound small enough.

Theorem 2.2 (Existence and uniqueness (1) - Diagonal Case). We assume that (Hdiag),
(Dxi,b), (Df,b) hold true and that there exists a constant B such that

(i) sup
M∈R+

∥∥∣∣ZM ∣∣ ? W∥∥
BMO

6 B,

(ii) c22dLd,yB
2 < 1,

(
c2
c1

√
Ld,y +

2c22
√
d

c21
Ld,z

)
4
√
dc22Ld,zB

2

1−c22dLd,yB2 < 1, where c1 and c2 are given

by Theorem 1.3 with B = 2LdB.

We also assume that ξ ∈ L∞(Ω,FT ) and f(., 0, 0) ∈ S∞(Rd). Then, the quadratic BSDE
(1.5) has a unique solution (Y,Z) ∈ S∞(Rd)×BMOB such that

esssupΩ×[0,T ] |Z| < +∞.

The main difference between assumptions in Theorem 2.1 and Theorem 2.2 comes
from the form of constants used in the bound of the BMO norm. In particular, for any
Ld > 0, there exists ε > 0 such that (ii) in Theorem 2.2 is fulfilled as soon as Ld,y < ε

and Ld,z < ε while we cannot take Lz as large as we want in Theorem 2.1.

2.1.2 Extension to general terminal values and generators

Now we are able to relax assumptions (Dxi,b) and (Df,b) with some density arguments.
To do so, we assume that we can write f as a deterministic function f of a progressively
measurable continuous process: the randomness of the generator will be contained into
this process.

(H’) (i) There exists a progressively measurable continuous process α ∈⋂
p∈N∗ Sp with values in Rd′ , d′ > 1, and a function f : Rd′ × Rd ×

Rd×k −→ Rd such that for all (t, y, z) ∈ [0, T ]×Rd ×Rd×k:

f(t, y, z) = f(αt, y, z).

Besides, we assume that (H) holds true for f.

(ii) There exists D ∈ R+ and δ ∈ (0, 1] such that for all (y, z) ∈ Rd ×Rd×k,
(β, β′) ∈ (Rd′)2:

|f(β, y, z)− f(β′, y, z)| 6 D
(

1 + |z|2
)
|β − β′|δ . (2.3)

For η ∈ L2(Ω,FT ), β ∈ S∞ and M ∈ R+, we denote by
(
Y (M,η,β), Z(M,η,β)

)
the unique

solution of the BSDE

Y
(M,η,β)
t = η +

∫ T

t

fM
(
βs, Y

(M,η,β)
s , Z(M,η,β)

s

)
ds−

∫ T

t

Z(M,η,β)
s dWs, 0 6 t 6 T, (2.4)

where for all (t, y, z)∈ [0, T ]×Rd×Rd×k and Rd′ -valued processes α, we have fM (αt, y, z)=

fM (t, y, z). Finally, assumption (BMO,m) will be replaced by the following one.

(BMO2,m) We assume that ξ ∈ L2m∗(Ω,FT ) and that there exists a constant K <

Bm(Ly, Lz) such that

sup
M∈R+

sup
‖η‖

L2m∗ (Ω,FT )
6‖ξ‖

L2m∗ (Ω,FT )

‖β‖L2(Ω×[0,T ])6‖α‖L2(Ω×[0,T ])

∥∥∥∣∣∣Z(M,η,β)
∣∣∣ ? W∥∥∥

BMO
6 K.
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Theorem 2.3 (Existence and uniqueness (2)). Let m > 1. Under the main assumption
(H’) and the BMO estimation (BMO2,m), the quadratic BSDE (1.5) has a unique solution
in S2m∗(Rd)× (Hm∗(Rd×k) ∩ ZmBMO).

Remark 2.4.

• Let us emphasize that the uniqueness result in Theorem 2.3 lies in a different space
than the space used in Theorem 2.1.

• It is also possible to extend the result of Theorem 2.2 (diagonal case) to more
general terminal conditions and generators. Nevertheless, the result obtained
would be less general than Theorem 2.3. See Theorem 4.11 for more details.

2.2 Applications to multidimensional quadratic BSDEs with special structures

In this subsection we give some explicit frameworks where assumptions (BMO,m)
and (BMO2,m) or assumptions (i) and (ii) of Theorem 2.2 are fulfilled. The aim is to
show that numerous results on multidimensional quadratic BSDEs already proved in
the literature can be obtained with similar assumptions by our approach. We want to
underline the simplicity of this approach since we just have to obtain some a priori
estimates on the BMO norm of |Z| ? W by using classical tools as explained in section 5.
Moreover, it is quite easy to construct some « new » frameworks where (BMO,m) and
(BMO2,m) or assumptions (i) and (ii) of Theorem 2.2 are also fulfilled.

2.2.1 An existence and uniqueness result for BSDEs with a small terminal con-
dition

In [Tev08], Tevzadze obtains a result of existence and uniqueness for multidimensional
quadratic BSDEs when the terminal condition is small enough by using a contraction
argument in S∞ × BMO. We are able to deal with this kind of assumption with our
approach. We consider the following hypothesis.

(HQ) (i) There exists γ ∈ R+ such that for all (t, y, z) ∈ [0, T ]×Rd ×Rd×k, we
have |f(t, y, z)| 6 γ |z|2 ,

(ii) 32γ2 ‖ξ‖2L∞ 6 1.

Proposition 2.5. Let m > 1. Under (H’)—(HQ), and the following condition on γ:

1

2
√

2γ

(
1−

√
1− 32γ2 ‖ξ‖2L∞

)1/2

< Bm(Ly, Lz),

the BSDE (1.5) has a unique solution in S2m∗(Rd)× (Hm∗(Rd×k)∩ZmBMO). If in addition
(Dxi,b) and (Df,b) hold true, there exists an unique solution (Y,Z) ∈ S∞(Rd)× ZmBMO

such that
esssupΩ×[0,T ] |Z| < +∞.

2.2.2 An existence and uniqueness result for BSDEs with a monotone genera-
tor

In this part we investigate the case where we have for f a kind of monotonicity assump-
tion with respect to y.

(HMon) (i) There exists µ > 0 and α, γ > 0 such that for all (s, y, z) ∈ [0, T ]×Rd ×
Rd×k

y.f(s, y, z) 6 α |y| − µ |y|2 + γ |y| |z|2 ,
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(ii) 32γ2A2 6 1, where A = max
(
‖ξ‖L∞ ,

α
µ

)
.

Proposition 2.6. Let m > 1. Under (H’)—(HMon) and the following estimate on γ:

1

2
√

2γ

(
1−

√
1− 32γ2A2

)1/2

< Bm(Ly, Lz),

the quadratic BSDE (1.5) has a solution in S2m∗(Rd)×(Hm∗(Rd×k)∩ZmBMO). If in addition
(Dxi,b) and (Df,b) hold true, there exists a unique solution (Y, Z) ∈ S∞(Rd) × ZmBMO

such that

esssupΩ×[0,T ] |Z| < +∞.

2.2.3 An existence and uniqueness result for diagonal quadratic BSDEs

Now we consider the diagonal framework introduced in section 2.1.1. We assume
that the generator satisfies (Hdiag), i.e. the generator f can be written as f(t, y, z) =

fdiag(t, z) + g(t, y, z) where fdiag has a diagonal structure with respect to z.

Proposition 2.7. We assume that

(i) (Hdiag), (Dxi,b) and (Df,b) hold true,

(ii) there exist nonnegative constants Gd and G such that, for all (t, y, z) ∈ [0, T ]×Rd×
Rd×k, we have

|fdiag(t, z)| 6 Gd |z|2 , |g(t, y, z)| 6 G |z|2 , (2.5)

(iii)

4
∑d
i=1 e

2Gd‖ξi‖
L∞

Gd
G 6 1,

(iv) c22dLd,y(4GdG)−1 < 1,
(
c2
c1

√
Ld,y +

2c22
√
d

c21
Ld,z

)
4
√
dc22Ld,z(4GdG)−1

1−c22dLd,y(4GdG)−1 < 1, where c1 and

c2 are given by Theorem 1.3 with B = 2Ld(4GdG)−1/2.

Then, the quadratic BSDE (1.5) has a unique solution (Y,Z) ∈ S∞(Rd)×BMO(4GdG)−1/2

such that

esssupΩ×[0,T ] |Z| < +∞.

Remark 2.8. If Kd,z = 0, then we have necessary G 6 Ld,z.

Remark 2.9. The growing assumption (2.5) is only one example of hypothesis that can
be tackled by our approach. It is also possible to obtain the same kind of result by
replacing (2.5) by one of the following assumption:

• We assume that for all (t, y, z) ∈ [0, T ]×Rd ×Rd×k,

|g(t, y, z)| 6 C(1 + |y|) + ε |z|2

and T, ε are supposed to be small enough. This framework is studied in [HT16,
JKL14].

• We assume that for all (t, y, z) ∈ [0, T ]×Rd ×Rd×k,

|g(t, y, z)| 6 C(1 + |y|).

This situation is already studied in [HT16].
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2.2.4 Existence and uniqueness of martingales in manifolds with prescribed
terminal condition

The problem of finding martingales on a manifold with prescribed terminal value has
generated a huge amount of literature. On the one hand with geometrical methods,
Kendall in [Ken90] treats the case where the terminal value lies in a geodesic ball and is
expressed as a functional of the Brownian motion. Kendall gives also a characterisation
of the uniqueness in terms of existence of a convex separative function, i.e. a convex
function on the product space which vanishes exactly on the diagonal. Besides, in
[Ken92], Kendall proved that the property every couple of points are connected by a
unique geodesic is not sufficient to ensure existence of a separative convex function,
which was conjectured by Émery. An approach by barycenters, of the martingale notion
on a manifold, is used by Picard in [Pic94] for Brownian filtrations. Arnaudon in [Arn97]
solved the problem in a complex analytic manifold having a convex geometry property for
continuous filtrations: the main idea is to consider a differentiable family of martingales.
For all these results, a convex geometry property is assumed. The first approach using
the tool of BSDEs is proposed by Darling in [Dar95].

Let us now define more precisely the problem. A so-called linear connection structure
is required to define martingales on a manifoldM in a intrinsic way. A contrario, for
semimartingales, a differential structure is enough. The definition of a martingale can
be rewritten with a system of coupled BSDEs having a quadratic growth, so we begin
to recall it. We can refer to [Eme89] for more details about stochastic calculus on
manifolds.

Let us consider (M,∇) a differential manifold equipped with a linear connection ∇.
This is equivalent to give ourselves a Hessian notion or a covariant derivative. We say
that a continuous process X is a semimartingale on M if for all F ∈ C2(M), F ◦X is a
real semimartingale. Consistence of the definition is simply due to the Itô formula. We
say that a continuous process Y is a (local) ∇-martingale if for all F ∈ C2(M),

F (Y )t −
1

2

∫ t

0

∇ dF (dY,dY )s

is a real local martingale on [0, T ]. Again it is not very hard to see with the Itô formula
that this definition is equivalent to the Euclidean one in the flat case. Let us remember

that

∫ .

0

∇ dF (dY,dY )s is a notation for the quadratic variation of Y with respect to

the (0, 2)-tensor field ∇ dF . This notion is defined by considering a proper embedding
(xi)16i6d into Rd such that every bilinear form b can be written as b = bij dxi ⊗ dxj

(implicit summation). On the other hand it can be proved that the quantity∫ .

0

b(dY,dY )s :=

∫ .

0

bij(Ys) d
〈
Y i, Y j

〉
s

does not depend on (xi)16i6d and so the quantity

∫ .

0

∇dF (dY,dY )s is intrinsic. It is

well-known that for all m ∈M,

(∇ dF )ij (m) = DijF (m)− Γkij(m)DkF (m),

where Γkij(m) denotes a ∇-Christoffel symbol at the point m. The coefficients are
symmetric with respect to i, j. Hence martingale property in the domain of a local chart
is equivalent to the existence of a process Z such that (Y,Z) solves the following BSDE

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dWs, 0 6 t 6 T,
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with f : [0, T ] ×Rd ×Rd×k → Rd defined by f(s, y, z) = 1
2

(
Γkij(y)z(i,:).z(j,:)

)
16k6d

. It is
an easy consequence of the representation theorem for Brownian martingales and the
definition applied to F = xi. We consider in addition the following assumption

(HGam) there exists two constants Ly and Lz such that for all i, j, k ∈ {1, ..., d}∣∣Γkij(y)− Γkij(y
′)
∣∣ 6 2Ly |y − y′| ,

∣∣Γkij(y)
∣∣ 6 2Lz.

For example (HGam) is in force if the domain of the chart is a compact set. It is also
true if we choose an exponential chart. Without loss of generality we can suppose that
M has a global system of coordinates: all the Christoffel symbols will be computed in
this system.

Under (HGam), assumption (H) is in force: for all (y, y′, z, z′) ∈ (Rd)2 ×
(
Rd×k)2,

|f(t, y, z)− f(t, y′, z)| 6 Ly |z|2 |y − y′| ,

and with the symmetric property of the Christoffel symbols, we have

f(t, y, z′)− f(t, y, z) = −1

2

∑
i,j

Γ•ij(y)
(
z(i,:).z(j,:) − (z′)(i,:).(z′)(j,:)

)
= −1

2

∑
i,j

Γ•ij(y)
(
z(i,:) − (z′)(i,:)

)(
z(j,:) + (z′)(j,:)

)
,

which implies that

|f(t, y, z)− f(t, y, z′)| 6 Lz (|z|+ |z′|) |z − z′| .

To obtain some important a priori estimate for the BMO norm of Z ? W , Darling
introduce in [Dar95] a convex geometry assumption.

Definition 2.10. We say that a function F ∈ C2(M,R) (seen as a function on Rd) is
doubly convex on a set G ⊂ Rd if for all y ∈ G and z ∈ Rd,

min {HessF (y)(z, z),∇ dF (y)(z, z)} > 0,

and, for α > 0, F is α-strictly doubly convex on G if for all y ∈ G and z ∈ Rd,

min {HessF (y)(z, z),∇dF (y)(z, z)} > α |z|2 .

This property means that F is convex with respect to the flat connection, and, with
respect to the connection ∇.

Theorem 2.11. Let m > 1 and assume that:

(i) there exists a function F dc ∈ C2(M,R), such that G =
(
F dc

)−1
(]−∞, 0]) is compact

and ξ ∈ G,

(ii) F dc is doubly convex on M, and there exists α > 0 and m > 1 such that F dc is
α-strictly doubly convex on G and satisfies(

sup
(x,y)∈G2

{
F dc(x)− F dc(y)

})1/2

6

√
α

2
×Bm(Ly, Lz),

(iii) (HGam) holds true.
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Then there exists a unique ∇-martingale Y in S∞(Rd) with terminal value ξ such that√
| 〈Y, Y 〉 | ? W ∈ ZmBMO. Moreover, if (Dxi,b) holds true we have

esssupΩ×[0,T ] | 〈Y, Y 〉 | < +∞.

Remark 2.12. By using the same approach, it should be possible to extend the previous
result to ∇-Christoffel symbols that depend on time or even that are progressively
measurable random processes.

Remark 2.13. In this theorem we do not need to assume a doubly convex geometry
assumption as Darling in [Dar95]. This is already the case for results of Xing and Žitković
in [XŽ16]. Nevertheless, the assumption (ii) implies that the manifold G is small and
Émery showed (in [Eme89], Corollary 4.61) that doubly convex geometry always exists
locally.

2.2.5 The Markovian setting

The aim of this subsection is to refine some results of Xing and Žitković obtained in
[XŽ16]: in this paper, authors establish existence and uniqueness results for a general
class of Markovian multidimensional quadratic BSDEs. Let us start by introducing the
Markovian framework. For all t ∈ [0, T ] and x ∈ Rk we denote Xt,x a diffusion process
satisfying the following SDE{

dXt,x
s = b(s,Xt,x

s ) dt+ σ(s,Xt,x
s ) dWs, s ∈ [t, T ],

Xt,x
s = x, s ∈ [0, t].

(2.6)

In all this part, we assume following assumptions that ensure, in particular, that for all
(t, x) ∈ [0, T ]×Rk, there exists a unique strong solution of (2.6).

(HX) • The drift vector b : [0, T ] × Rk → Rk is measurable and uniformly
bounded,

• The dispersion matrix σ : [0, T ]×Rk → Rk×k is symmetric, measurable
and there exists a constant Λ > 0 such that Λ |u|2 > |σ(t, x)u|2 > 1

Λ |u|
2

for all (t, x) ∈ [0, T ]×Rk and u ∈ Rk,

• b and σ are Lipschitz functions with respect to x.

The aim of this subsection is to study the following Markovian BSDE

Y t,xu = G(Xt,x
T ) +

∫ T

u

f
(
s,Xt,x

s , Y t,xs , Zt,xs
)

ds−
∫ T

u

Zt,xs dWs, t 6 u 6 T, (2.7)

for which we assume following assumptions:

(HMark) • (s, y, z) ∈ [0, T ]×Rd ×Rd×k 7−→ f(s,Xt,x
s , y, z) satisfies (H),

• There exists D ∈ R+ and κ ∈ (0, 1] such that for all (x, x′) ∈ (Rk)2,

|G(x)| 6 D, |G(x)− G(x′)| 6 D |x− x′|κ .

As in [XŽ16] we say that a pair (v, w) of functions is a continuous Markovian solution of
(2.7) if

• v : [0, T ] × Rk → Rd is a continuous function and w : [0, T ] × Rk → Rd×k is a
measurable function,

• for all (t, x) ∈ [0, T ]×Rk, (Y t,x, Zt,x) := (v(., Xt,x), w(., Xt,x)) is a solution of (2.7).
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Two Markovian solutions, (v, w) and (v′, w′), are considered equal if v(t, x) = v′(t, x)

for all (t, x) ∈ [0, T ] × Rk and w = w′ a.s. with respect to the Lebesgue measure on
[0, T ]×Rk.

Some existence and uniqueness results about continuous Markovian solutions of (2.7)
are obtained in [XŽ16] by assuming the existence of a so-called Lyapunov function. We
recall here the definition of these functions given in [XŽ16].

Definition 2.14 (Lyapunov function associated to g). Let g : [0, T ]×Rk×Rd×Rd×k → Rd

a Borel function. A nonnegative function F ∈ C2(Rd,R) is said to be a Lyapunov function
associated to g if for all (t, x, y, z) ∈ [0, T ]×Rk ×Rd ×Rd×k:

1

2

d∑
l=1

HessF (y)
(
z(:,l), z(:,l)

)
− dF (y)g(t, x, y, z) > |z|2 .

We are now able to give a uniqueness result that partially refine the result given by
[XŽ16].

Theorem 2.15 (Uniqueness for the Markovian case). We assume that

(i) (HX) and (HMark) are in force.

(ii) there exists a Lyapunov function F associated to f.

Then (2.7) admits at most one continuous Markovian solution (v, w) such that v is
bounded.

Moreover, we are also able to precise the regularity of the solution when it exists.

Theorem 2.16 (Regularity of the Markovian solution). We assume that:

(i) (HX) and (HMark) are in force,

(ii) there exists D ∈ R+ and κ ∈ (0, 1] (same constant κ as in (HMark)) such that for
all (s, x, x′, y, z) ∈ [0, T ]× (Rk)2 ×Rd ×Rd×k,

|f(s, x, y, z)| 6 D(1 + |y|+ |z|2), |f(s, x, y, z)− f(s, x′, y, z)| 6 D(1 + |z|2) |x− x′|κ ,

(iii) there exists a Lyapunov function F associated to f.

If (v, w) is a continuous Markovian solution of (2.7) such that v is bounded, then v ∈
Cκ. Particularly, if κ = 1 then w is essentially bounded: the multidimensional quadratic
BSDE (2.7) becomes a standard multidimensional Lipschitz BSDE by a localisation
argument.

Remark 2.17. An existence result is given by Theorem 2.7 in [XŽ16]. A less general
existence result can be obtained thanks to our approach by combining estimates obtained
by Xing and Žitković in Theorem 2.5 of [XŽ16], small BMO estimates obtained in the
proof of Theorem 2.15 and Theorem 4.10 but the approach is less direct than in [XŽ16].
Concerning the uniqueness, Xing and Žitković have proved a uniqueness result for
generators that do not depend on y: our result allows to fill this small gap. Finally, Xing
and Žitković prove that there exists a Markovian solution that satisfies v ∈ Cκ′,loc with
κ′ ∈ (0, κ]. Thus, our regularity result gives a better estimation of the solution regularity
since the regularity of the terminal condition and the generator is retained. In particular,
we obtain that Z is bounded when κ = 1 which can have important applications, as
pointed out in the introduction.

Remark 2.18. The existence of a Lyapunov function seems to be an ad hoc theoretical
assumption at first sight but Xing and Žitković provide in [XŽ16] a lot of examples
and concrete criteria to obtain such kind of functions. Moreover we can note that the
Lyapunov function can be used to obtain a priori estimates on ‖|Z| ? W‖BMO (see the
proof of Theorem 2.15 and Theorem 2.16).
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3 Generalities about SDEs and linear BSDEs

We collect in this section some technical results that will be useful for section 4 and
section 5.

3.1 The linear case: representation of the solutions

We investigate here the following linear BSDE

Ut = ζ +

∫ T

t

(AsUs +BsVs + fs) ds−
∫ T

t

VsdWs, 0 6 t 6 T, (3.1)

where ζ ∈ L2(FT ,Rd), f ∈ L2(Ω× [0, T ]) and A,B, f are three processes with values in
L(Rd,Rd), L

(
Rd×k,Rd

)
and Rd. Under suitable assumptions on A and B we can obtain

an explicit formulation of the solution. To avoid non necessary technical assumptions,
we will restrict ourself to a very simple framework by assuming:∫ T

0

|As|+ |Bs|2ds 6 CA,B , a.s. (3.2)

Let us begin to recall the classical scalar formula which can be obtained using the
Girsanov transform.

Remark 3.1 (One-dimensional case (d = 1)). It is well-known that the solution of (3.1) is
given by the formula

Ut = E

(
S−1
t ST ζ +

∫ T

t

S−1
t Ssfsds

∣∣∣∣∣Ft
)
, 0 6 t 6 T,

where

St = exp

(∫ t

0

BsdWs −
1

2

∫ t

0

|Bs|2ds+

∫ t

0

Asds

)
= E (B ?W )t exp

(∫ t

0

Asds

)
.

To extend this last formula in the general case we define, as in [DT08], the process
S ∈ S2(Rd×d) as the unique strong solution of

dSt =

k∑
p=1

StB
(:,p,:)
t dW p

t + StAtdt, S0 = Id×d. (3.3)

Proposition 3.2 (Formula for U ). Let us assume that (3.2) is in force.

(i) The process S is almost surely invertible for all t ∈ [0, T ] and S−1 is the solution of

dS−1
t =

[(
k∑
p=1

(
B

(:,p,:)
t

)2

−At

)
dt−

k∑
p=1

B
(:,p,:)
t dW p

t

]
S−1
t , S−1

0 = Id×d.

(ii) The BSDE (3.1) has a unique solution (U, V ) in S2
(
Rd
)
×H2

(
Rd×k), and U is given

by:

Ut = E

(
S−1
t ST ζ +

∫ T

t

S−1
t Ssfsds

∣∣∣∣∣Ft
)
. (3.4)

Proof. Existence and uniqueness of a solution (U, V ) in S2(Rd)×H2(Rd×k) is guaranteed
by a mere generalisation of the Pardoux and Peng result in [PP90]. The solution (U, V )

satisfies

Ut = ζ +

∫ T

t

(
AsUs +

k∑
p=1

B(:,p,:)
s V (:,p)

s + fs

)
ds−

k∑
p=1

∫ T

t

V (:,p)
s dW p

s .
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The Itô formula gives the invertibility of S and the formula for S−1 on the one hand. On
the other hand:

d (StUt) = −Stft dt+

k∑
p=1

(
StB

(:,p,:)
t Ut + StV

(:,p)
t

)
dW p

t ,

and thus we get, for all t ∈ [0, T ],

StUt = ST ζ +

∫ T

t

Ssfs ds−
∫ T

t

k∑
p=1

(
SsB

(:,p,:)
s Us + SsV

(:,p)
s

)
dW p

s .

By taking the conditional expectation StUt = E

(
ST ζ +

∫ T

t

Ssfs ds

∣∣∣∣∣Ft
)
. Adaptability

and invertibility of S give the result. �

3.2 A result about SDEs

We consider a SDE on Rd×d of the form

Xt = X0 +

∫ t

0

F (s,Xs)ds+

k∑
p=1

∫ t

0

Gp(s,Xs)dW
p
s , (3.5)

where F : Ω×[0, T ]×Rd×d → Rd×d and for all p ∈ {1, ..., k}, Gp : Ω×[0, T ]×Rd×d → Rd×d

are progressively measurable functions. We start by recalling a result of Delbaen and
Tang (see [DT08], Theorem 2.1) about existence and uniqueness of a solution to the
equation (3.5), under BMO assumptions.

Proposition 3.3. Let m > 1. We suppose that there exist two non-negative adapted
processes α and β such that

(i) (Regularity) F (t, 0) = 0, G(t, 0) = 0 and for all (x1, x2, t) ∈ (Rd×d)2 × [0, T ],

|F (t, x1)− F (t, x2)| 6 αt |x1 − x2| a.s,

k∑
p=1

|Gp(t, x1)−Gp(t, x2)|2 6 β2
t |x1 − x2|2 a.s.

(ii) (Sliceability) (
√
α ?W , β ? W ) ∈ BMOε1 ×BMOε2 with the condition

2mε2
1 +
√

2ε2C
′
m < 1.

Then there exists a solution X ∈ Sm(Rd) to the equation (3.5) and a constant Km,ε1,ε2

such that
‖X‖Sm 6 Km,ε1,ε2 ‖X0‖Lm .

For the reader convenience a proof of this result can be found in the appendix. From
this last proposition we can deduce the following corollary (see [DT08], Corollary 2.1)

Corollary 3.4. Let m > 1. We suppose that there are two non-negative adapted pro-
cesses α and β such that

(i) (Regularity) F (t, 0) = 0, G(t, 0) = 0 and for all (x1, x2, t) ∈ (Rd×d)2 × [0, T ],

|F (t, x1)− F (t, x2)| 6 αt |x1 − x2| a.s,

k∑
p=1

|Gp(t, x1)−Gp(t, x2)|2 6 β2
t |x1 − x2|2 a.s.
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(ii) (Sliceability) (
√
α ?W , β ? W ) ∈ BMOε1 ×BMOε2 with the condition

2mε2
1 +
√

2ε2C
′
m < 1.

For t ∈ [0, T ], let Xt,Id the unique solution defined on [t, T ] of the SDE (3.5) such that
Xt,Id
t = Id. Then Xt,Id is in Sm(Rd) and satisfies for a constant Km depending only on

C ′m, m, k and ε1, ε2:

E

(
sup
t6s6T

∣∣Xt,Id
s

∣∣m∣∣∣∣Ft) 6 Km
m,ε1,ε2 . (3.6)

In particular, if X is an invertible solution to the equation (3.5) and if F and G are linear
with respect to x, we get the reverse Hölder inequality

E

(
sup
t6s6T

∣∣X−1
t Xs

∣∣m∣∣∣∣Ft) 6 Km
m,ε1,ε2 .

Proof. We can use Theorem 3.3. For all t ∈ [0, T ] and all event A ∈ Ft,∥∥Xt,Id × 1A
∥∥
Sm([t,T ])

6 Km,ε1,ε2 ‖Id × 1A‖Lm .

Then we get, for all t ∈ [0, T ],

E

(
sup
t6s6T

∣∣Xt,Id
s × 1A

∣∣m) 6 Km
m,ε1,ε2E (|1A|m) ,

and we have

E

(
sup
t6s6T

∣∣Xt,Id
s

∣∣m × 1A) 6 Km
m,ε1,ε2E (1A) .

Finally, the definition of conditional expectation gives us the result. If X is invertible and
if F and G are linear with respect to x, the process X−1

t X is for all t a solution taking
the value Id at s = t. The particular case is shown using (3.6). �

Remark 3.5. The main limitation of Theorem 3.4 comes from assumption (ii): we need
to have a small BMO norm estimate on processes (

√
α?W , β ?W ) to get a reverse Hölder

inequality. It is well known that we have a more general result when d = 1: if α = 0 and
β ?W ∈ BMO then there exists m > 1 (that depends on the BMO norm of β ?W ∈ BMO)
such that X satisfies a reverse Hölder inequality with the exponent m (see Theorem 3.1
in [Kaz94] and references inside, or [CM13] for a new recent proof). We do not know
if this result stays true in the multidimensional framework but we emphasize that this
is a crucial open question. Indeed, if such a result is true, then we whould be able to
prove that Theorem 2.1 and Theorem 2.3 stay true without assuming K < Bm(Ly, Lz)

in hypothesis (BMO,m) (at least when the generator is Lipschitz with respect to y, i.e.
Ly = 0).

3.3 Estimates for the solution to BSDE (3.1)

We come back to the linear BSDE (3.1), and we want to obtain some Sq-estimations
for U with q large enough, including q =∞, under BMO assumptions.

Proposition 3.6. Letm > 1. We assume that B and A are adapted, bounded respectively
by two non negative processes β and α such that: (

√
α ?W , β ?W ) ∈ BMOε1 ×BMOε2

with the condition
2mε2

1 +
√

2ε2C
′
m < 1.

We also assume that (3.2) is in force. Then
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(i) If ζ ∈ L∞(Ω,FT ) and f ∈ S∞, then U ∈ S∞(Rd) and

‖U‖S∞ 6 Km,ε1,ε2 (‖ζ‖L∞ + T ‖f‖S∞) ,

(ii) Let us assume that m > 1. If ζ ∈ L∞(Ω,FT ), and
√
|f | ? W ∈ BMO, then U ∈ S∞

and

‖U‖S∞ 6 (m∗)!Km,ε1,ε2

(
‖ζ‖L∞ +

∥∥∥√|f | ? W∥∥∥2

BMO

)
.

(iii) Let us assume that m > 1. For all q > m∗ = m
m−1 , if

(
ζ,

∫ T

0

|fs| ds

)
∈ Lq × Lq,

then U ∈ Sq(Rd) and

‖U‖qSq 6 2q−1Kq
m,ε1,ε2

(
q

q −m∗

)q/m∗ (
‖ζ‖qLq +

∥∥∥∥∥
∫ T

0

|fs|ds

∥∥∥∥∥
q

Lq

)
.

More importantly, all previous constants do not depend on CA,B. In the following we will

denote simply Kq,m,ε1,ε2 = 2q−1Kq
m,ε1,ε2

(
q

q−m∗

)q/m∗
.

Proof. The formula (3.4) gives us, for all t ∈ [0, T ]:

|Ut| 6 E
(∣∣S−1

t ST
∣∣ |ζ|∣∣Ft)+ E

(∫ T

t

∣∣S−1
t Ss

∣∣ |fs|ds
∣∣∣∣∣Ft
)
,

with

dSt =

k∑
p=1

StB
(:,p,:)
t dW p

t + StAtdt, S0 = Id×d.

S is the solution of an SDE on Rd×d for which we can use Theorem 3.4 by taking, for
all 1 6 p 6 k and (x, y) ∈ (Rd×d)2, Gp(s, x) = xB

(:,p,:)
s and F (s, y) = yAs. Let us note that∣∣B(:,p,:)

∣∣ 6 |B| for all p ∈ {1, ..., k}. Thus there exists a constant Km,ε1,ε2 such that:

E

(
sup
t6s6T

∣∣S−1
t Ss

∣∣∣∣∣∣Ft) 6 Km
m,ε1,ε2 .

� If ζ ∈ L∞ and f ∈ S∞, by using the Hölder inequality we have

|Ut| 6 ‖ζ‖L∞ Km,ε1,ε2 + ‖f‖S∞ E

(
(T − t) sup

t6s6T

∣∣S−1
t Ss

∣∣m∣∣∣∣Ft)1/m

6Km,ε1,ε2 (‖ζ‖L∞ + T ‖f‖S∞) .

� Let us consider m > 1 and assume that ζ ∈ L∞,
√
|f | ? W is BMO. Then, by using

Hölder and energy inequalities

|Ut| 6Km,ε1,ε2 ‖ζ‖L∞ +Km,ε1,ε2E

(∫ T

t

|fs|ds

)m∗ ∣∣∣∣∣∣Ft
1/m∗

6(m∗)!Km,ε1,ε2

(
‖ζ‖L∞ +

∥∥∥√|f | ? W∥∥∥2

BMO

)
.
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� Let us consider m > 1 and q > m∗. We get, for all t ∈ [0, T ],

|Ut|q 62q−1

(
E
(∣∣S−1

t ST
∣∣ |ζ|∣∣Ft)q + E

(∫ T

t

∣∣S−1
t Ss

∣∣ |fs|ds
∣∣∣∣∣Ft
)q)

62q−1E
(∣∣S−1

t ST
∣∣m∣∣∣Ft)q/mE

(
|ζ|m

∗
∣∣∣Ft)q/m∗

+ 2q−1E

(
sup
t6s6T

∣∣S−1
t Ss

∣∣m∣∣∣∣Ft)q/mE

(∫ T

t

|fs|ds

)m∗ ∣∣∣∣∣∣Ft
q/m∗

62q−1Kq
m,ε1,ε2

E
(
|ζ|m

∗
∣∣∣Ft)q/m∗ + E

(∫ T

0

|fs|ds

)m∗ ∣∣∣∣∣∣Ft
q/m∗

 .

The processes Mt = E
(
|ζ|m

∗
∣∣∣Ft) and Nt = E

(∫ T

0

|fs|ds

)m∗ ∣∣∣∣∣∣Ft
 are two martin-

gales with terminal values, respectively given by |ζ|m
∗

and

(∫ T

0

|fs|ds

)m∗
. Hence

the Doob maximal inequality gives us, if q > m∗,

E

(
sup

06t6T
|Mt|q/m

∗
)

= ‖M‖q/m
∗

Sq/m∗ 6

(
q

q −m∗

)q/m∗
‖MT ‖q/m

∗

Lq/m∗
=

(
q

q −m∗

)q/m∗
‖ζ‖qLq ,

and

E

(
sup

06t6T
|Nt|q/m

∗
)
6

(
q

q −m∗

)q/m∗ ∥∥∥∥∥
∫ T

0

|fs|ds

∥∥∥∥∥
q

Lq

.

So we obtain the announced result:

‖U‖qSq 6 2q−1Kq
m,ε1,ε2

(
q

q −m∗

)q/m∗ (
‖ζ‖qLq +

∥∥∥∥∥
∫ T

0

|fs|ds

∥∥∥∥∥
q

Lq

)
.

�

Corollary 3.7 (Affine upper bound). Let m > 1. Let us consider A and B adapted,
bounded respectively by two real processes α and β of the form

αs = K + LAs, βs = K ′ + L′Bs,

with (K,L,K ′, L′) ∈ (R+)4, A, B two non negative real processes such that
√
A ? W and

B ? W are BMO with the condition

2mL
∥∥∥√A ? W∥∥∥2

BMO
+
√

2L′ ‖B ? W‖BMO C
′
m < 1.

We also assume that (3.2) is in force. We have the following estimates, with constants

Km, Kq,m depending only on m, q,Ky,Kz, Ly, Lz and the BMO norms
∥∥∥√A ? W∥∥∥

BMO
,

‖B ? W‖BMO but not on CA,B:

(i) If ζ ∈ L∞(Ω,FT ) and f ∈ S∞, then U ∈ S∞(Rd) and

‖U‖S∞ 6 Km (‖ζ‖L∞ + T ‖f‖S∞) ,
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(ii) Let us assume that m > 1. If ζ ∈ L∞(Ω,FT ),
√
|f | ? W ∈ BMO, then U ∈ S∞ and

‖U‖S∞ 6 (m∗)!Km

(
‖ζ‖L∞ +

∥∥∥√|f | ? W∥∥∥2

BMO

)
.

(iii) Let us assume that m > 1. For all q > m∗ = m
m−1 , if

(
ζ,

∫ T

0

|fs| ds

)
∈ Lq × Lq,

then U ∈ Sq(Rd) and

‖U‖qSq 6 2q−1Kq
m

(
q

q −m∗

)q/m∗ (
‖ζ‖qLq +

∥∥∥∥∥
∫ T

0

|fs|ds

∥∥∥∥∥
q

Lq

)
.

In the following we will denote simply Kq,m = 2q−1Kq
m

(
q

q−m∗

)q/m∗
.

Proof. We obtain easily estimates about BMO-norms of
√
α ?W and β ? W by using the

triangle inequality,

‖
√
α ?W‖BMO 6

√
KT +

√
L‖
√
A ? W‖BMO, ‖β ? W‖BMO 6 K

′
√
T + L′‖B ? W‖BMO,

and it follows that
√
α ?W, β ? W are BMO. To use Theorem 3.6 we just have to show

that
√
α ?W and β ? W are respectively ε1 and ε2 sliceable with 2mε2

1 +
√

2ε2C
′
m < 1. To

this end, we consider the following uniform sequence of deterministic stopping times

Tj = j
T

N
, j ∈ {0, ..., N} ,

and a parameter η > 0. With Theorem 1.5 and defining η = T
N , previous inequalities

become on [Ti, Ti+1]∥∥∥Ti√α ?W cTi+1

∥∥∥
BMO

6
√
Kη +

√
L‖
√
A ? W‖BMO, (3.7)

‖Tiβ ? W cTi+1‖BMO 6 K
′√η + L′‖B ? W‖BMO. (3.8)

By taking η small enough, we get 2mε2
1 +
√

2ε2C
′
m < 1 since the following upper bound

holds true

2mL
∥∥∥√A ? W∥∥∥2

BMO
+
√

2L′ ‖B ? W‖BMO C
′
m < 1.

�

Remark 3.8. In inequalities (3.7) and (3.8), we have used that
∥∥TiB ? W cTi+1

∥∥
BMO

6
‖B ? W‖BMO and∥∥∥Ti√A ? W cTi+1

∥∥∥
BMO

6
∥∥∥√A ? W∥∥∥

BMO
. We can easily obtain a more general result

by replacing the following assumption: A, B are two positive real processes such that√
A ? W,B ? W are BMO with the condition

2mL
∥∥∥√A ? W∥∥∥2

BMO
+
√

2L′ ‖B ? W‖BMO C
′
m < 1,

by the new one: A, B are two positive real processes such that
√
A ? W,B ? W are in

BMOε1 and BMOε2 with the condition

2mLε2
1 +
√

2L′ε2C
′
m < 1.

Remark 3.9. We have not mentioned the dependence of the constants with respect to∥∥∥√A ? W∥∥∥
BMO

and ‖B ? W‖BMO in notations but we will precise it explicitly when it is

important.
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4 Stability, existence and uniqueness results for general multidi-
mensional quadratic BSDEs

4.1 Proofs of Theorem 2.1 and Theorem 2.2

We recall first that (YM , ZM ) is the unique solution of the localized BSDE (1.7). To
show Theorem 2.1 we begin to prove the following proposition which gives an uniform
estimates for ZM . This is the keystone of our procedure.

Proposition 4.1. Let m > 1. If assumptions (H)—(BMO,m)—(Dxi,b)—(Df,b) hold true
then

sup
M

esssupΩ×[0,T ] |ZM | < +∞.

Proof.

Step 1 — Malliavin differentiation. We assume that f is continuously differentiable
with respect to (y, z). This assumption is not restrictive by considering a smooth regular-
ization of f .

Recalling assumptions (Dxi,b) and (Df,b), Proposition 5.3 in [EKPQ97] gives us that
for all 0 6 u 6 t 6 T , YMt and ZMt are respectively in D1,2(Rd) and D1,2(Rd×k). Moreover
the process (DuY

M ,DuZ
M ) = (DuY

M
t ,DuZ

M
t )06t6T solves for all u the following linear

BSDE in Rd×k:

DuY
M
t = Duξ +

∫ T

t

(
∇yfM

(
s, YMs , ZMs

)
DuY

M
s +∇zfM

(
s, YMs , ZMs

)
DuZ

M
s

+ (Duf
M )
(
s, YMs , ZMs

) )
ds−

∫ T

t

DuZ
M
s dWs, (4.1)

and (DtYt)06t6T is a version of (Zt)06t6T . In particular, there exists a continuous
version of Z. Let us emphasize that BSDE (4.1) means that for each p ∈ {1, ..., k},

Dp
uY

M
t = Dp

uξ +

∫ T

t

(
∇yfM

(
s, YMs , ZMs

)
Dp
uY

M
s +∇zfM

(
s, YMs , ZMs

)
Dp
uZ

M
s

+ (Dp
uf

M )
(
s, YMs , ZMs

) )
ds−

∫ T

t

Dp
uZ

M
s dWs, (4.2)

besides DpYM is a process with values in Rd for each p ∈ {1, ..., k}.

Step 2 — S∞-Estimation. We are looking for an S∞-estimate of DuY
M for all u ∈ [0, T ]

applying results of Section 3. Since |∇zρM (z)| 6 1, we obtain the following inequalities
by recalling the main assumption (H),∣∣∇yfM (s, YMs , ZMs

)∣∣ =
∣∣∇yf (s, YMs , ρM (ZMs )

)∣∣ 6 Ky + Ly
∣∣ZMs ∣∣2 ,∣∣∇zfM (s, YMs , ZMs

)∣∣ =
∣∣∇zf (s, YMs , ρM (ZMs )

)∣∣ 6 Kz + 2Lz
∣∣ZMs ∣∣ .

Moreover, theses two processes are also bounded by a constant that depends on M . Let
us consider the two positive processes αM and βM defined below,

αM = Ky + Ly
∣∣ZM ∣∣2 , βM = Kz + 2Lz

∣∣ZM ∣∣ .
For all p ∈ {1, ..., k}, by recalling (BMO,m), we can apply Theorem 3.7 (ii), to the

BSDE (4.2) with the following constants and processes:

L = Ly, K = Ky, K ′ = Kz, L′ = 2Lz, A =
∣∣ZM ∣∣2 , B =

∣∣ZM ∣∣ .
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Thus, we obtain, for all u ∈ [0, T ],

∥∥DuY
M
∥∥
S∞ 6

k∑
p=1

∥∥Dp
uY

M
∥∥
S∞

6(m∗)!Km

k∑
p=1

(
‖Dp

uξ‖L∞ +

∥∥∥∥√|Dp
ufM (., YM , ZM )| ? W

∥∥∥∥2

BMO

)

6Cm

(
‖Duξ‖L∞ +

∥∥∥∥√|DufM (., YM , ZM )| ? W
∥∥∥∥2

BMO

)
,

where Cm does not depend on M . Indeed, it is important to remark that the constant
Km given by Theorem 3.7 depends on

∥∥∣∣ZM ∣∣ ? W∥∥
BMO

and so, could depend on M . But,
by checking the proof of Theorem 3.3 in the Appendix it is easy to see that the constant
Km given by Theorem 3.7 is equal to

N−1∑
i=0

(
1

1− 2mLy ‖ZM ? W‖2BMO − 2Lz ‖ZM ? W‖BMO C
′
m

)i

6
N−1∑
i=0

(
1

1− 2mLyK2 − 2LzKC ′m

)i
,

where N is an integer large enough and the uniform bound with respect to M follows.
Under the assumption (Df,b) together with (BMO,m), the last term has a S∞-upper

bound uniform with respect to M . Indeed we have, for all (u, t) ∈ [0, T ]2,

E

(∫ T

t

∣∣Duf
M (s, YMs , ZMs )

∣∣ ds∣∣∣∣∣Ft
)
6 C

(
T +

∥∥∣∣ZM ∣∣ ? W∥∥2

BMO

)
,

hence we deduce

sup
M

∥∥∥∥√|DufM (., YM , ZM )| ? W
∥∥∥∥
BMO

6
√
C

(√
T + sup

M

∥∥∣∣ZM ∣∣ ? W∥∥
BMO

)
.

The last supremum is finite under assumption (BMO,m) and we obtain the announced
result since

sup
M

∥∥ZM∥∥S∞ = sup
M

∥∥(DtY
M
t )t∈[0,T ]

∥∥
S∞ 6 sup

M
sup
u

∥∥DuY
M
∥∥
S∞ < +∞.

When f is not continuously differentiable with respect to (y, z) we consider a smooth
regularization of f and we obtain by this classical approximation that

sup
M

esssupΩ×[0,T ] |ZM | < +∞.

�

We are now able to prove Theorem 2.1.

Proof. [of Theorem 2.1] For the existence result, we can fix M? > supM esssupΩ×[0,T ] |ZM |
according to Theorem 4.1. Thanks to assumptions on f and fM , we get

fM
?
(
s, YM

?

s , ZM
?

s

)
= f

(
s, YM

?

s , ρM∗
(
ZM

?

s

))
= f

(
s, YM

?

s , ZM
?

s

)
P⊗ [0, T ] a.e.

Then,
(
YM

?

, ZM
?)

becomes a solution of the quadratic BSDE (1.5) in S2(Rd) ×
(S∞(Rd×k) ∩ ZmBMO). The uniqueness comes from the classical uniqueness result of
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Pardoux and Peng [PP90]: indeed, if we have two solutions (Y 1, Z1) and (Y 1, Z1) with
esssupΩ×[0,T ] |Z1| + |Z2| < +∞ then they are solution of the Lipschitz localized BSDE
(1.7) where M = esssupΩ×[0,T ] |Z1|+ |Z2|. �

Remark 4.2. By using Theorem 3.8, Theorem 2.1 can be adapted if we replace (BMO,m)
by the following one: there exist a constantK and a sequence 0 = T0 6 T1 6 ... 6 TN = T

of stopping times (that does not depend on M ) such that

(i) 2mLyK
2 +
√

2LzKC
′
m < 1, or equivalently K < Bm(Ly, Lz),

(ii) for all i ∈ {0, ...N − 1}, sup
M∈R+

∥∥∥Ti ∣∣ZM ∣∣ ? W cTi+1

∥∥∥
BMO

6 K.

In this case, if all the other assumptions of Theorem 2.1 are fulfilled, then the quadratic
BSDE (1.5) has a unique solution (Y,Z) ∈ S∞(Rd)×Zslic,mBMO such that

esssupΩ×[0,T ] |Z| < +∞.

We do not give the proof of Theorem 2.2 since it is quite similar to the proof of
Theorem 2.1. Indeed, the main point is to show that Theorem 4.1 stays true. To do that
we just have to mimic its proof and replace the application of Theorem 3.7 (iii) by a new
tailored one adapted to the diagonal framework and proved by using the same strategy
as in the proof of Theorem 4.6.

4.2 Stability result

With the classical linearisation tool we can prove a stability theorem for the BSDE
(1.5) by using results of section 3. Let us consider two solutions of (1.5) in Rd ×
Rd×k, denoted (Y 1, Z1) and (Y 2, Z2), with terminal conditions ξ1 and ξ2 and generators
respectively f1 and f2:

Y 1
t = ξ1 +

∫ T

t

f1

(
s, Y 1

s , Z
1
s

)
ds−

∫ T

t

Z1
sdWs, 0 6 t 6 T,

Y 2
t = ξ2 +

∫ T

t

f2

(
s, Y 2

s , Z
2
s

)
ds−

∫ T

t

Z2
sdWs, 0 6 t 6 T.

We assume that f1,f2 satisfies the usual conditions (H). Let us denote

δYs = Y 1
s − Y 2

s , δZs = Z1
s − Z2

s , δFs = f1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s ),

δfs = f1(s, Y 2
s , Z

2
s )− f2(s, Y 2

s , Z
2
s ) and δξ = ξ1 − ξ2.

The process (δY, δZ) solves the BSDE

δYt = δξ +

∫ T

t

δFsds−
∫ T

t

δZsdWs, 0 6 t 6 T. (4.3)

Theorem 4.3 (Stability result). Let m > 1, p > m∗

2 and let us suppose that

(i) 2mLy
∥∥∣∣Z1

∣∣ ? W∥∥2

BMO
+
√

2Lz
(∥∥∣∣Z1

∣∣ ? W∥∥
BMO

+
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
C ′m < 1 or

(Z1, Z2) ∈ ZmBMO ×ZmBMO,

(ii) (Y i,
∣∣Zi∣∣ ? W ) ∈ S2p+ε ×H2p+ε with i ∈ {1, 2} and ε > 0.

(iii)

∫ T

0

|δfs|ds ∈ L2p.
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Then, there exists a constant K̃p

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
,
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
(depending only on

p,Ky, Ly,Kz, Lz, T and the BMO norms of
∣∣Z1
∣∣ ? W and

∣∣Z2
∣∣ ? W ) such that

‖δY ‖pS2p + ‖|δZ| ? W‖pHp 6 K̃p

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
,
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
×

(
‖δξ‖pL2p +

∥∥∥∥∥
∫ T

0

|δfs|ds

∥∥∥∥∥
p

L2p

)
.

Finally, if the generator is Lipschitz with respect to z, the result stays true for ε = 0

and with a constant K̃p

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
,
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
that does not depend on this

Lipschitz constant.

Proof. We firstly assume that

2mLy
∥∥∣∣Z1

∣∣ ? W∥∥2

BMO
+
√

2Lz
(∥∥∣∣Z1

∣∣ ? W∥∥
BMO

+
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
C ′m < 1.

By using the classical linearisation tool, we can rewrite (4.3) as

δY = δξ +

∫ T

t

(AsδYs +Bs(δZs) + δfs) ds−
∫ T

t

δZsdWs,

where

� B is a L(Rd×k,Rd) process defined by blocks by, for all i ∈ {1, ..., k},

Bis =

{
f1(s,Y 2

s ,Z
1
s )−f1

1 (s,Y 2
s ,Z

2
s )

|δZs|2
(TδZ

(:,i)
s ) if δZs 6= 0,

0 otherwise,

and BsδZs =
∑k
i=1B

i
sδZ

(:,i)
s ,

� A is a L(Rd,Rd)-process defined by

As =

{
f1(s,Y 1

s ,Z
1
s )−f1(s,Y 2

s ,Z
1
s )

|δYs|2
(

TδYs
)

if δYs 6= 0,

0 otherwise,

Assumption (H) on f1 and f2 gives the following inequalities:

|Bs| 6 Kz + Lz
(∣∣Z1

s

∣∣+
∣∣Z2
s

∣∣) ,
|As| 6 Ky + Ly

∣∣Z1
s

∣∣2 .
Step 1 – Control of δY . A and B are bounded respectively by two real processes α
and β defined by

α = Ky + Ly|Z1|2, β = Kz + Lz
(
|Z1|+ |Z2|

)
,

and (δY, δZ) solves a linear BSDE of the form (3.1) with δf instead of f . Even if (A,B)

does not satisfy (3.2), we can define an increasing sequence of stopping times (τn)n∈N

such that τn
n→+∞−−−−−→ T a.s. and∫ τn

0

|As|+ |Bs|2 ds 6 n, a.s.

Then we can apply Theorem 3.7, (iii) with

B =
∣∣Z1
∣∣+
∣∣Z2
∣∣ , A =

∣∣Z1
∣∣2 , L′ = Lz, K = Ky, K ′ = Kz, L = Ly, and T = τn
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which gives, for all 2p+ ε > q > 1 such that q > m∗,

‖δY ‖qSq 6 Kq,m

(
‖δYτn‖

q
Lq +

∥∥∥∥∥
∫ T

0

|δfs|ds

∥∥∥∥∥
q

Lq

)
.

More importantly, Kq,m does not depend on n. If the generator is Lipschitz with respect
to z, then τn = T a.s. for n large enough and so we get, for 2p > q > 1,

‖δY ‖qSq 6 Kq,m

(
‖δξ‖qLq +

∥∥∥∥∥
∫ T

0

|δfs|ds

∥∥∥∥∥
q

Lq

)
. (4.4)

Otherwise, we use the fact that (|δYτn |q)n∈N is uniformly integrable since δY ∈ S2p+ε.
By taking n→ +∞ we finally get, for 2p+ ε > q > 1,

‖δY ‖qSq 6 Kq,m

(
‖δξ‖qLq +

∥∥∥∥∥
∫ T

0

|δfs|ds

∥∥∥∥∥
q

Lq

)
. (4.5)

Since,

Step 2 – Control of δZ. The Itô formula applied to |δY |2 gives us∫ T

0

|δZs|2 ds = |δξ|2 − |δY0|2 − 2

∫ T

0

δYs.(δZs dWs) + 2

∫ T

0

(δY.δF )s ds

6 |δξ|2 − 2

∫ T

0

δYs.(δZs dWs) + 2

∫ T

0

(δY.δF )s ds. (4.6)

Recalling assumption (H) we have

|δFs| =
∣∣f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )
∣∣

6
(
Ky + Ly

∣∣Z1
s

∣∣2) |δYs|+ (Kz + Lz
(∣∣Z1

s

∣∣+
∣∣Z2
s

∣∣)) |δZs|+ |δfs| .
With the Cauchy-Schwarz and Young inequalities, we get

2

∫ T

0

(δY.δF )s ds 6 2

∫ T

0

|δYs| |δFs|ds

62

∫ T

0

[(
Ky + Ly

∣∣Z1
s

∣∣2) |δYs|2 +
(
Kz + Lz

(∣∣Z1
s

∣∣+
∣∣Z2
s

∣∣)) |δYs| |δZs|+ |δfs| |δYs|] ds

62

(
sup

06s6T
|δYs|2

)∫ T

0

[
Ky + Ly

∣∣Z1
s

∣∣2 +
(
Kz + Lz

(∣∣Z1
s

∣∣+
∣∣Z2
s

∣∣))2 +
1

2

]
ds

+
1

2

∫ T

0

|δZs|2 ds+

(∫ T

0

|δfs|ds

)2

.

By using this last inequality in (4.6) we obtain

1

2

∫ T

0

|δZs|2 ds 6 |δξ|2 − 2

∫ T

0

δYs.(δZs dWs)

+ 2

(
sup

06s6T
|δYs|2

)∫ T

0

[
Ky+Ly

∣∣Z1
s

∣∣2+
(
Kz+Lz

(∣∣Z1
s

∣∣+∣∣Z2
s

∣∣))2+
1

2

]
ds

+

(∫ T

0

|δfs|ds

)2

.
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Thus, for all p > 1, there exists a constant K depending only on p such that

‖|δZ| ? W‖pHp 6 K

[
‖δξ‖pLp + E

((
sup

06t6T

∣∣∣∣∫ t

0

δYs.(δZs dWs)

∣∣∣∣)p/2
)

+ E

( sup
06s6T

|δYs|2
∫ T

0

[
Ky + Ly

∣∣Z1
s

∣∣2 +
1

2

(
Kz + Lz

(∣∣Z1
s

∣∣+
∣∣Z2
s

∣∣))2 + 1

]
ds

)p/2
+ E

((∫ T

0

|δfs|ds

)p)]
.

In the following we keep the notation K for all constants appearing in the upper bounds.
Then, according to the BDG inequalities, we get for all p > 1:

E

((
sup

06t6T

∣∣∣∣∫ t

0

δYs.(δZs dWs)

∣∣∣∣)p/2
)

=

∥∥∥∥∫ .

0

δYs.(δZs dWs)

∥∥∥∥p/2
Sp/2

6 (C ′p/2)p/2
∥∥∥∥∫ .

0

δY.(δZs dWs)

∥∥∥∥p/2
Hp/2

.

Since we have∥∥∥∥∫ .

0

δY.(δZs dWs)

∥∥∥∥p/2
Hp/2

= E

( k∑
i=1

∫ T

0

(
δYs.δZ

(:,i)
s

)2

ds

)p/4
6 E

( sup
06s6T

|δYs|2 ×
∫ T

0

|δZs|2 ds

)p/4 ,

then the Cauchy-Schwartz inequality gives us

E

((
sup

06t6T

∣∣∣∣∫ t

0

δYs.(δZs dWs)

∣∣∣∣)p/2
)
6 (C ′p/2)p/2 ‖|δZ| ? W‖p/2Hp ‖δY ‖

p/2
Sp .

Moreover we obtain with Cauchy-Schwarz and Young inequalities:

‖|δZ| ? W‖pHp

6K

[
‖δξ‖pLp + ‖|δZ| ? W‖p/2Hp ‖δY ‖

p/2
Sp +

‖δY ‖pS2p E

((∫ T

0

[
1 +

∣∣Z1
s

∣∣2 +
∣∣Z2
s

∣∣2] ds

)p)1/2

+ E

((∫ T

0

|δfs|ds

)p)]

6K

[
‖δξ‖pLp + ‖δY ‖pSp + ‖δY ‖pS2p E

((∫ T

0

[
1 +

∣∣Z1
s

∣∣2 +
∣∣Z2
s

∣∣2] ds

)p)1/2

+ E

((∫ T

0

|δfs|ds

)p)]

+
1

2
‖|δZ| ? W‖pHp .

The energy inequality allows us to bound E

((∫ T

0

[
1 +

∣∣Z1
s

∣∣2 +
∣∣Z2
s

∣∣2] ds

)p)
by

K
(

1 +
∥∥∣∣Z1

∣∣ ? W∥∥2p

BMO
+
∥∥∣∣Z2

∣∣ ? W∥∥2p

BMO

)
,
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which is finite recalling assumption (i). Finally, for all p > 1, there exists a constant K
(which depends only on p,Ky, Ly,Kz, Lz, T and the BMO norms of

∣∣Z1
∣∣ ? W ,

∣∣Z2
∣∣ ? W )

such that

‖|δZ| ? W‖pHp 6 K

(
‖δξ‖pLp + ‖δY ‖pS2p +

∥∥∥∥∥
∫ T

0

|δfs|ds

∥∥∥∥∥
p

Lp

)
. (4.7)

Step 3 – Stability. Considering p > m∗

2 and combining (4.4) or (4.5) where q = 2p with

(4.7), we obtain existence of a constant K̃p

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
,
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
which

depends only on p,Ky, Ly,Kz, Lz, T,K and the BMO norms of
∣∣Z1
∣∣ ? W ,

∣∣Z2
∣∣ ? W such

that

‖δY ‖pS2p + ‖|δZ| ? W‖pHp

6 K̃p

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
,
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)(
‖δξ‖pL2p +

∥∥∥∥∥
∫ T

0

|δfs|ds

∥∥∥∥∥
p

L2p

)
.

Step 4 – The alternative assumption (i) We can deal with assumption (Z1, Z2) ∈
ZmBMO × ZmBMO by changing the linearization step in the proof. We can remark that

δFs = ÃsδYs + B̃sδZs + δfs, where

ÃsδYs =
1

2

(
f1(s, Y 1

s , Z
1
s )− f1(s, Y 2

s , Z
1
s ) + f1(s, Y 1

s , Z
2
s )− f1(s, Y 2

s , Z
2
s )
)
,

B̃sδZs =
1

2

(
f1(s, Y 2

s , Z
1
s )− f1(s, Y 2

s , Z
2
s ) + f1(s, Y 1

s , Z
1
s )− f1(s, Y 1

s , Z
2
s )
)
,

and we get symmetric bounds for Ã and B̃:∣∣∣Ãs∣∣∣ 6 Ky +
Ly
2

(∣∣Z1
s

∣∣2 +
∣∣Z2
s

∣∣2) , ∣∣∣B̃s∣∣∣ 6 Kz + Lz
(∣∣Z1

s

∣∣+
∣∣Z2
s

∣∣) .
Then (i) becomes

mLy

(∥∥∣∣Z1
∣∣ ? W∥∥2

BMO
+
∥∥∣∣Z2

∣∣ ? W∥∥2

BMO

)
+
√

2LzC
′
m

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
+
∥∥∣∣Z2

∣∣ ? W∥∥)
BMO

< 1,

wich is fulfilled as soon as we have (Z1, Z2) ∈ ZmBMO ×ZmBMO. �

Remark 4.4. A more restrictive stability result is already obtained in [KP16b] (see
Theorem 2.1).

Remark 4.5. By using Theorem 3.8, it is clear that Theorem 4.3 stays true when Z1

and Z2 are only in Zslic,mBMO . Indeed, if we denote 0 = T j0 6 T j1 6 ... 6 T jNj the sequence
of stopping times associated to Zj ? W for j ∈ {1, 2}, we can define a new common
sequence of stopping times:

TkN1+i = (T 1
i ∨ T 2

k ) ∧ T 2
k+1, i ∈ {0, ..., N1 − 1}, k ∈ {0, ..., N2 − 1}.

Then, by applying the stability result on each interval [Ti, Ti+1] for i ∈ {0, N1N2 − 1} we
obtain

‖δY ‖pS2p + ‖|δZ| ? W‖pHp

6N1N2
N1N2−1∏
k=0

K̃p

(∥∥∥Tk ∣∣Z1
∣∣ ? W cTk+1

∥∥∥
BMO

,
∥∥∥Tk ∣∣Z2

∣∣ ? W cTk+1

∥∥∥
BMO

)
×

(
‖δξ‖pL2p +

∥∥∥∥∥
∫ T

0

|δfs|ds

∥∥∥∥∥
p

L2p

)
.
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Obviously, when sequences of stopping times are the same for
∣∣Z1
∣∣ ?W and

∣∣Z2
∣∣ ?W ,

we can use it directly as the common sequence of stopping time.

4.3 Stability result for the diagonal quadratic case

We give here a specific result when the quadratic growth of z has essentially a
diagonal structure: we assume that assumption (Hdiag) is in force. As explained in
section 2.1.1, this kind of framework has been introduced by Hu and Tang in [HT16]
(see also [JKL14]).

To simplify notations in this paragraph, the line i of z will be denoted in a simple
way by (z)i, or zi if there is no ambiguity, instead of z(i,:). Let us consider two solutions
(Y 1, Z1) and (Y 2, Z2) which correspond to terminal conditions ξ1, ξ2 and generators
f1 = fdiag,1 + g1, f2 = fdiag,2 + g2. We have for all i ∈ {1, ..., d},

δY it = δξi +

∫ T

t

δF is ds−
∫ T

t

δZis.dWs,

with
δYs := Y 1

s − Y 2
s , δZs := Z1

s − Z2
s ,

δFs :=
(
fdiag,1(s, Z1

s )− fdiag,2(s, Z2
s )
)
+
(
g1(s, Y 1

s , Z
1
s )− g2(s, Y 2

s , Z
2
s )
)

and δξ := ξ1−ξ2.

We also define
δfs = f1(s, Y 2

s , Z
2
s )− f2(s, Y 2

s , Z
2
s ).

Theorem 4.6 (Stability result for the diagonal quadratic case). Let us assume that

(i) f1 and f2 satisfy (Hdiag),

(ii) there exists B > 0 such that (Y 1, Z1) and (Y 2, Z2) are in S∞(Rd)×BMOB and

c22dLd,yB
2 < 1,

(
c2
c1

√
Ld,y +

2
√
dc22
c21

Ld,z

)
4
√
dc22Ld,zB

2

1− c22dLd,yB2
< 1, (4.8)

where c1 and c2 are given by Theorem 1.3 with B = 2LdB.

Then there exists a constant K̃diag
(∥∥∣∣Z1

∣∣ ? W∥∥
BMO

,
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
depending only

on B and constants in (Hdiag) such that

‖δY ‖S∞ + ‖|δZ| ? W‖BMO

6 K̃diag
(∥∥∣∣Z1

∣∣ ? W∥∥
BMO

,
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)(
‖δξ‖L∞ +

∥∥∥√|δf | ? W∥∥∥2

BMO

)
.

Remark 4.7. For a given Ld and a given B, condition (4.8) is fulfilled as soon as Ld,y
and Ld,z are small enough.

Proof.

Step 1 – Control of δY . As in the proof of Theorem 4.3, we write δF i as

δF is =
(
fdiag,1(s, Z1

s )− fdiag,1(s, Z2
s )
)i

+
(
g1(s, Y 1

s , Z
1
s )− g1(s, Y 2

s , Z
2
s )
)i

+ δf is

= βisδZ
i
s + αisδYs + Tr(γisδZs) + δf is,

where βi, α and γ satisfy: for all i ∈ {1, ..., d},
∣∣βi∣∣ 6 Ld (∣∣(Z1)i

∣∣+
∣∣(Z2)i

∣∣) , and

|α| 6 Kd,y + Ld,y
∣∣Z1
∣∣2 , |γ| 6 Kd,z + Ld,z

(∣∣Z1
∣∣+
∣∣Z2
∣∣) .
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From
(
|(Z1)i| ? W, |(Z2)i| ? W

)
∈ BMO×BMO, we deduce that |βi| ?W is BMO too and

E
(
βi ? W

)
is an uniform integrable martingale. Consequently we can apply the Girsanov

theorem:

δY it = δξi +

∫ T

t

(
αisδYs + Tr(γisδZs) + δf is

)
ds−

∫ T

t

δZis.dWs
i
, (4.9)

where W
i

:= W i −
∫ .

0
βis ds is a Brownian motion with respect to the probability Qi

defined by dQi = E
(
βi ? W

)
T

dP. Taking the Qi-conditional expectation we get

δY it = EQi

(
δξi +

∫ T

t

(
αisδYs + Tr(γisδZs) + δf is

)
ds

∣∣∣∣∣Ft
)
.

Since, we have∥∥∥√|α| ? W∥∥∥2

BMO
6 Kd,yT + Ld,y

∥∥∣∣Z1
∣∣ ? W∥∥2

BMO
,

‖|γ| ? W‖BMO 6 Kd,z

√
T + Ld,z

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
+
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

)
,

the process
√

(|αi| |δY |+ |γi| |δZ|+ |δf i|) ? W is a BMO martingale, and we can apply
Theorem 1.3: there exists a constant c2 that depend only on Ld and B such that

∣∣δY it ∣∣ 6∥∥δξi∥∥L∞ + c22

(
‖δY ‖S∞

∥∥∥√|αi| ? W∥∥∥2

BMO
+ ‖|δZ| ? W‖BMO

∥∥∣∣γi∣∣ ? W∥∥
BMO

+
∥∥∥√|δf i| ? W∥∥∥2

BMO

)
,

and consequently we get

‖δY ‖S∞ 6
d∑
i=1

∥∥δY i∥∥S∞
6
√
d ‖δξ‖L∞ + c22d ‖δY ‖S∞

(
Kd,yT + Ld,y

∥∥∣∣Z1
∣∣ ? W∥∥2

BMO

)
+ c22 ‖|δZ| ? W‖BMO

(
dKd,z

√
T + dLd,z

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
+
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

))
(4.10)

+ c22d
∥∥∥√|δf | ? W∥∥∥2

BMO
. (4.11)

As in the proof of Theorem 3.3, now we slice [0, T ] in small pieces. We consider η = T
N

with N ∈ N∗ and we set Ti = iη for i ∈ {0, ..., N}. The process δY is equal to

δYt = δYT1{T}(t) +

N−1∑
k=1

δ̃Y
k

t 1[Tk,Tk+1[(t), with δ̃Y
k

t = δYt1[Tk,Tk+1](t), k ∈ {0, ..., N −1}.

(4.12)
On the interval [Tk, Tk+1] the inequality (4.11) becomes:∥∥∥∥δ̃Y k∥∥∥∥

S∞
6

√
d

1− c22d(Kd,yη + Ld,yB2)

∥∥∥∥δ̃Y kTk+1

∥∥∥∥
L∞

+
∥∥∥Tk |δZ| ? W cTk+1

∥∥∥
BMO

c22d(Kd,z
√
η + 2Ld,zB)

1− c22d(Kd,yη + Ld,yB2)

+
∥∥∥√|δf | ? W∥∥∥2

BMO

c22d

1− c22d(Kd,yη + Ld,yB2)
(4.13)

by taking N large enough to get 1− c22d(Kd,yη + Ld,yB
2) > 0.
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Step 2 – Control of δZ. Applying the Itô formula for the process
∣∣δY i∣∣2 and taking the

Qi-conditional expectation, we get for all t ∈ [0, T ],

∣∣δY it ∣∣2+ EQi

(∫ T

t

∣∣δZis∣∣2 ds

∣∣∣∣∣Ft
)

=
∣∣δξi∣∣2
+ 2EQi

(∫ T

t

(
δY is .(g1(s, Y 1

s , Z
1
s )− g1(s, Y 2

s , Z
2
s ))i

)
ds

∣∣∣∣∣Ft
)

+ 2EQi

(∫ T

t

δY is .(δf
i)s ds

∣∣∣∣∣Ft
)
.

Under (Hdiag) we get that martingales
√
|δY i| |(g1(., Y 1, Z1)− g1(., Y 2, Z2))i| ? W and√

|δY i| |δf i| ? W are BMO. By using Theorem 1.3, there exist two constants c1 > 0 and
c2 > 0 that depend only on Ld and B such that

c21
∥∥∣∣δZi∣∣ ? W∥∥2

BMO
6
∥∥δξi∥∥2

L∞
+ 2c22

∥∥∥√|δY i| |(g1(., Y 1, Z1)− g1(., Y 2, Z2))i| ? W
∥∥∥2

BMO

+ 2c22

∥∥∥√|δY i| |δf i| ? W∥∥∥2

BMO
.

By summing with respect to i and by using assumption (Hdiag) we get

c21 ‖|δZ| ? W‖
2
BMO 6 ‖δξ‖

2
L∞ + 2c22d ‖δY ‖S∞

∥∥∥√|g1(., Y 1, Z1)− g1(., Y 2, Z2)| ? W
∥∥∥2

BMO

+ 2c22d ‖δY ‖S∞
∥∥∥√|δf | ? W∥∥∥2

BMO

6 ‖δξ‖2L∞ + 2c22vd
(
TKd,y + Ld,y

∥∥∣∣Z1
∣∣ ? W∥∥2

BMO

)
‖δY ‖2S∞

+ 2c22d
(
Kd,zT + Ld,z

(∥∥∣∣Z1
∣∣ ? W∥∥

BMO
+
∥∥∣∣Z2

∣∣ ? W∥∥
BMO

))
‖|δZ| ? W‖BMO ‖δY ‖S∞

+ 2c22d ‖δY ‖S∞
∥∥∥√|δf | ? W∥∥∥2

BMO
.

Once again, for each k ∈ {0, ..., N − 1} we can write this inequality on [Tk, Tk+1], and
with the same notations as in (4.12) we obtain

c21

∥∥∥Tk |δZ| ? W cTk+1

∥∥∥2

BMO
6

∥∥∥∥δ̃Y kTk+1

∥∥∥∥2

L∞
+ 2c22d

(
ηKd,y + Ld,yB

2
) ∥∥∥∥δ̃Y k∥∥∥∥2

S∞

+ 2c22d (ηKd,z + 2BLd,z)

∥∥∥∥δ̃Y k∥∥∥∥
S∞

∥∥∥Tk |δZ| ? W cTk+1

∥∥∥
BMO

+ 2c22d

∥∥∥∥δ̃Y k∥∥∥∥
S∞

∥∥∥√|δf | ? W∥∥∥2

BMO
.

Applying Young inequality we finally obtain:

c1√
2

∥∥∥Tk |δZ| ? W cTk+1

∥∥∥
BMO

6

∥∥∥∥δ̃Y kTk+1

∥∥∥∥
L∞

(4.14)

+

(√
2c2
√
d
(√

ηKd,y +
√
Ld,yB

)
+
√

2
c22d

c1
(ηKd,z + 2BLd,z) + ε

)∥∥∥∥δ̃Y k∥∥∥∥
S∞

+
c22d

ε

∥∥∥√|δf | ? W∥∥∥2

BMO
. (4.15)
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Step 3 – Stability. Combining (4.13) and (4.14), we can obtain a stability result on
[Tk, Tk+1] as soon as η and ε are sufficiently small to get c22d(Kd,yη + Ld,yB

2) < 1 and

√
2

c1

(√
2c2
√
d
(√

ηKd,y +
√
Ld,yB

)
+
√

2
c22d

c1
(ηKd,z + 2BLd,z) + ε

)
×

c22d(Kd,z
√
η + 2Ld,zB)

1− c22d(Kd,yη + Ld,yB2)
< 1.

We obtain the existence of a constant K which does not depend on k such that∥∥∥∥δ̃Y k∥∥∥∥
S∞

+
∥∥∥Tk |δZ| ? W cTk+1

∥∥∥
BMO

6 K

(∥∥∥∥δ̃Y kTk+1

∥∥∥∥
L∞

+
∥∥∥√|δf | ? W∥∥∥2

BMO

)
.

By a direct iteration we finally get a constant K̃, that depends only on B and constants
in (Hdiag), such that

‖δY ‖S∞ + ‖|δZ| ? W‖BMO 6 K̃

(
‖δξ‖L∞ +

∥∥∥√|δf | ? W∥∥∥2

BMO

)
.

�

4.4 Proof of Theorem 2.3

Theorem 2.3 is proved by relaxing assumptions (Dxi,b) and (Df,b) of Theorem 2.1
thanks to some density arguments. To ensure the convergence, the keystone result will
be the stability Theorem 4.3.

Proof. [of Theorem 2.3]

Step 1– Approximations. We can approach ξ with a sequence of random variables
(ξn)n∈N such that for every n, ξn has a bounded Malliavin derivative:

‖Dξn‖S∞ <∞.

More precisely ξn can be chosen of the form Φn(Wt1 , ...,Wtn) where Φn ∈ C∞b (Rn),
(t1, ..., tn) ∈ [0, T ]n and ξn tends to ξ in every Lp for p > 1 (see [Nua06], Exercise 1.1.7).

Since α is adapted, we can approach this process with a sequence of sample processes
αn of the form

αnt =

pn−1∑
i=0

αtni 1[tni ,t
n
i+1[(t),

where (tni )pni=0 is a sequence of subdivisions of [0, T ], with sup06i6pn−1

∣∣tni+1 − tni
∣∣ −→n→∞

0, and, for all 0 6 i 6 pn − 1, n ∈ N, αi,n is a Ftni -measurable random variable. We have
a convergence of this sequence to α in L2(Ω× [0, T ]):

E

(∫ T

0

|αns − αs|
2

ds

)
−→
n→∞

0.

We can assume in addition that for all n and for all 0 6 i 6 pn, αi,n has a bounded
Malliavin derivative since this set is dense in L2(Ω). It is obvious that for all 0 6 u 6 T
and 0 6 t 6 T ,

Duα
n
t =

pn−1∑
i=0

Duα
i,n
t 1[tni ,t

n
i+1[(u).
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According to Theorem 1.6 applied to ϕ = f(., y, z), there exists for all n ∈ N and t ∈ [0, T ]

a bounded random variable G such that

Dtf(α
n
t , y, z) = G.Dtα

n
t , and |G| 6 D(1 + |z|2).

For each n ∈ N: ξn satisfies (Dxi,b), f(αn. , ., .) satisfies (Df,b) and (BMO,m) is fulfilled.
So, we can apply Theorem 2.1: there exists an unique solution (Y n, Zn) ∈ S2(Rd)×ZmBMO

of the equation

Y nt = ξn +

∫ T

t

f (αns , Y
n
s , Z

n
s ) ds−

∫ T

t

Zns dWs, 0 6 t 6 T.

Step 2– Application of the stability result. We can assume that for all n, ‖ξn‖L2m∗ 6

‖ξ‖L2m∗ . If it is not true, we consider the sequence ξ̃n =
‖ξ‖

L2m∗

‖ξ‖
L2m∗+‖ξn−ξ‖

L2m∗
ξn instead of

ξn. The same argument allows us to assume that

‖αn‖L2m∗ (Ω×[0,T ]) 6 ‖α‖L2m∗ (Ω×[0,T ]) .

Under (BMO2,m), we have the estimate

mLy ‖|Zn| ? W‖2BMO +
√

2Lz ‖|Zn| ? W‖BMO C
′
m 6 mLyK

2 +
√

2LzKC
′
m <

1

2
.

Hence, for all n1, n2 ∈ N, we can use Theorem 4.3 for p = m∗ which gives us:

‖Y n1 − Y n2‖m
∗

S2m∗ + ‖|Zn1 − Zn2 | ? W‖m
∗

Hm∗

6 K̃m∗

‖ξn1 − ξn2‖m
∗

L2m∗ + E

(∫ T

0

|f (αn1
t , Y

n2
t , Zn2

t )− f (αn2
t , Y

n2
t , Zn2

t )|dt

)2m∗
1/2

 .

where the constant K̃m∗ appearing does not depend on n under (BMO2,m). This fact
was already highlighted in the proof of Theorem 4.1 where an explicit formula for K̃m∗

was given. We recall that (ξn)n∈N is a Cauchy sequence in L2m∗ , so

‖ξn1 − ξn2‖L2m∗ −→
n1,n2→∞

0.

For the second term, we use the Hölder inequality:

E

(∫ T

0

|f (αn1
t , Y

n2
t , Zn2

t )− f (αn2
t , Y

n2
t , Zn2

t )|dt

)2m∗


6D2m∗E

(∫ T

0

(
1 + |Zn2

t |
2
)
|αn1
t − α

n2
t |

δ
dt

)2m∗


6D2m∗ ‖αn1 − αn2‖2m
∗δ

S4m∗δ E

(∫ T

0

(
1 + |Zn2

t |
2
)

dt

)4m∗
1/2

. (4.16)

Since |Zn| ? W ∈ BMO, and (BMO2,m) holds true, we have

sup
n2∈N

E

(∫ T

0

(
1 + |Zn2

t |
2
)

dt

)4m∗
1/2

< +∞.

EJP 24 (2019), paper 4.
Page 36/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP260
http://www.imstat.org/ejp/


A stability approach for solving multidimensional quadratic BSDEs

Moreover, by using the uniform continuity of trajectories of α on [0, T ], we get:

sup
t∈[0,T ]

|αn1
t − α

n2
t | −→

n1,n2→∞
0 a.s.

Since we have

E

(
sup
t∈[0,T ]

|αn1
t − α

n2
t |

4m∗+1

)
6 2CE

(
sup
t∈[0,T ]

|αt|4m
∗+1

)
< +∞,

then, a uniform integrability argument gives us

E

(
sup
t∈[0,T ]

|αn1
t − α

n2
t |

4m∗

)
−→

n1,n2→∞
0.

Finally we get

E

(∫ T

0

|f (αn1
t , Y

n2
t , Zn2

t )− f (αn2
t , Y

n2
t , Zn2

t )|dt

)2m∗
 −→

n1,n2→∞
0.

Consequently (Y n, Zn ?W )n∈N is a Cauchy sequence in S2m∗(Rd)×Hm∗(Rd×k), thus
it converges in S2m∗(Rd) × Hm∗(Rd×k) to a process (Y, Z ? W ), and (Y, Z) solves the
BSDE (1.5). Finally, according to Theorem 1.4 the upper bound for ‖|Zn| ? W‖BMO holds
true for ‖|Z| ? W‖BMO and so the uniqueness follows from the stability theorem. �

Remark 4.8. If f is a deterministic function, then the assumption (Df,b) is not required.

Remark 4.9. If we replace the inequality (2.3) by the new one: there exist η > 0, D > 0

and δ ∈ (0, 1] such that for all (β, β′, y, z) ∈ (Rd′)2 ×Rd ×Rd×k we have

|f(β, y, z)− f(β′, y, z)| 6 D
(

1 + |z|2−η
)
|β − β′|δ ,

then we do not have to assume that α is a continuous process. Indeed, we can change
the inequality (4.16) by the following one: by using the Hölder and Cauchy-Schwartz
inequalities we have, for all p > 1,

E

(∫ T

0

|f (αn1
t , Y

n2
t , Zn2

t )− f (αn2
t , Y

n2
t , Zn2

t )|dt

)2m∗


6D2m∗E

(∫ T

0

(
1 + |Zn2

t |
2−η
)
|αn1
t − α

n2
t |

δ
dt

)2m∗


6D2m∗E

(∫ T

0

(
1 + |Zn2

t |
2−η
)p

dt

)2m∗/p

×

(∫ T

0

|αn1
t − α

n2
t |

δp∗
dt

)2m∗/p∗


6D2m∗E

(∫ T

0

(
1 + |Zn2

t |
2−η
)p

dt

)2m∗
1/p

E

(∫ T

0

|αn1
t − α

n2
t |

δp∗
dt

)2m∗
1/p∗

6D2m∗T
4m∗
p∗ −2m∗E

(∫ T

0

(
1 + |Zn2

t |
2−η
)p

dt

)2m∗
1/p ∥∥∥|αn1 − αn2 |δp

∗
? W

∥∥∥4m∗/p∗

H4m∗
.

With the energy inequality, the first term is uniformly bounded with respect to n2 under
the assumption (BMO2,m) by choosing 1 < p 6 2

2−η . The second one tends to zero when
n1, n2 go to infinity since the convergence in every Hr for r > 1 holds true.
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Remark 4.10. By using Theorem 3.8 once again, Theorem 2.3 can be adapted if we
replace the assumption (BMO2,m) by the following one: ξ ∈ L2m∗ and there exist a
constant K and a sequence 0 = T0 6 T1 6 ... 6 TN = T of stopping times (that does not
depend on M ) such that

(i) 2mLyK
2 + 2

√
2LzKC

′
m < 1,

(ii) for all i ∈ {0, ...N−1}, sup
M∈R+

sup
‖η‖

L2m∗6‖ξ‖L2m∗

‖β‖L2(Ω×[0,T ])6‖α‖L2(Ω×[0,T ])

∥∥∥Ti ∣∣∣Z(M,η,β)
∣∣∣ ? W cTi+1

∥∥∥
BMO

6

K.

In this case, if all the other assumptions of Theorem 2.3 are fulfilled, then the quadratic
BSDE (1.5) has a unique solution (Y,Z) ∈ S∞(Rd)×Zslic,mBMO such that

esssupΩ×[0,T ] |Z| < +∞.

Remark 4.11. It is possible to extend the existence and uniqueness result for the
diagonal case given by Theorem 2.2 to more general terminal conditions and generators.
More precisely, it is possible to apply the same strategy as for the proof of Theorem 2.3 by
applying the stability result given by Theorem 4.6 instead of Theorem 4.3. Nevertheless
we can only obtain an existence and uniqueness result for terminal conditions (resp.
generators) that can be approximated in L∞ (resp. BMO) by terminal conditions
satisfying assumption (Dxi,b) (resp. generators satisfying assumption (Df,b)).

5 Proofs of section 2.2 results

5.1 Proof of Theorem 2.5

We start by proving some uniform (with respect toM ) a priori estimates on
(
YM , ZM

)
.

Proposition 5.1. Let us assume that (H) and (HQ) are in force. Then
∣∣ZM ∣∣?W ∈ BMO,

YM ∈ S∞ and we have the following estimates:

(i)
∥∥∣∣ZM ∣∣ ? W∥∥2

BMO
6 1

8γ2

(
1−

√
1− 32γ2 ‖ξ‖2L∞

)
,

(ii)
∥∥YM∥∥S∞ 6 ‖ξ‖L∞ + γ

∥∥∣∣ZM ∣∣ ? W∥∥2

BMO
.

We can note that upper bound do not depend on M .

Proof. To simplify notations in the proof, we skip the superscript M on (YM , ZM ) and
fM . The unique solution (Y, Z) ∈ S2 × H2 of (1.7) can be constructed with a Picard
principle as in the seminal paper of Pardoux and Peng (see [PP90]). We consider a
sequence (Y n, Zn)n∈N such that (Y n, Zn)n∈N tends to (Y,Z) in S2

(
Rd
)
× H2

(
Rd×k).

This sequence is given by

Y n+1
t = ξ +

∫ T

t

f (s, Y ns , Z
n
s ) ds−

∫ T

t

Zn+1
s dWs, 0 6 t 6 T, (Y 0, Z0) = (0, 0).

We will prove with an induction that: for all n ∈ N, Y n ∈ S∞, |Zn| ? W ∈ BMO and

‖|Zn| ? W‖2BMO 6
1

8γ2

(
1−

√
1− 32γ2 ‖ξ‖2L∞

)
.

The case n = 0 is obviously satisfied. Let us suppose that Y n ∈ S∞ and |Zn| ?W ∈ BMO.
Then for all t ∈ [0, T ], under (HQ),

∣∣Y n+1
t

∣∣ 6 E(|ξ||Ft) + γ ×E

(∫ T

t

|Zns |
2

ds

∣∣∣∣∣Ft
)
. (5.1)
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We get Y n+1 ∈ S∞ since
∥∥Y n+1

∥∥
S∞ 6 ‖ξ‖L∞ + γ ‖|Zn| ? W‖2BMO. Itô formula gives the

following equality

∣∣Y n+1
t

∣∣2 = |ξ|2 + 2

∫ T

t

Y n+1
s .f(s, Y ns , Z

n
s ) ds− 2

∫ T

t

Y n+1
s .

(
Zn+1
s dWs

)
−
∫ T

t

∣∣Zn+1
s

∣∣2 ds.

By taking conditional expectation we get for every stopping time τ :

∣∣Y n+1
τ

∣∣2 + E

(∫ T

τ

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣∣Fτ
)
6E
(
|ξ|2
∣∣∣Ft)+ 2E

(∫ T

τ

Y n+1
s .f(s, Y ns , Z

n
s ) ds

∣∣∣∣∣Fτ
)

6 ‖ξ‖2L∞ + 2
∥∥Y n+1

∥∥
S∞ E

(∫ T

τ

γ |Zns |
2

ds

∣∣∣∣∣Fτ
)

6 ‖ξ‖2L∞ + 2γ
∥∥Y n+1

∥∥
S∞ ‖|Z

n| ? W‖2BMO .

Taking the essential supremum with respect to τ in following inequalities, we obtain∣∣Y n+1
τ

∣∣2 6 ‖ξ‖2L∞ + 2γ
∥∥Y n+1

∥∥
S∞ ‖|Z

n| ? W‖2BMO

E

(∫ T

τ

∣∣Zn+1
s

∣∣2 ds

∣∣∣∣∣Fτ
)
6 ‖ξ‖2L∞ + 2γ

∥∥Y n+1
∥∥
S∞ ‖|Z

n| ? W‖2BMO .

Thus |Zn+1| ? W ∈ BMO and we have:∥∥Y n+1
∥∥2

S∞ +
∥∥∣∣Zn+1

∣∣ ? W∥∥2

BMO
62 ‖ξ‖2L∞ + 4γ

∥∥Y n+1
∥∥
S∞ ‖|Z

n| ? W‖2BMO

62 ‖ξ‖2L∞ +
∥∥Y n+1

∥∥2

S∞ + 4γ2 ‖|Zn| ? W‖4BMO ,

which leads to ∥∥∣∣Zn+1
∣∣ ? W∥∥2

BMO
6 2 ‖ξ‖2L∞ + 4γ2 ‖|Zn| ? W‖4BMO .

Using the induction assumption we obtain

∥∥∣∣Zn+1
∣∣ ? W∥∥2

BMO
6

1

8γ2

(
1−

√
1− 32γ2 ‖ξ‖2L∞

)
.

The induction is achieved. Now we can use Theorem 1.4 with K = 1
8γ2 ×(

1−
√

1− 32γ2 ‖ξ‖2L∞
)

: since Zn ? W tends to Z ? W in H2, we conclude that

‖|Z| ? W‖2BMO 6
1

8γ2

(
1−

√
1− 32γ2 ‖ξ‖2L∞

)
. Finally, we use that Y n tends to Y in

S2 to pass to the limit into (5.1) and to obtain the final upper bound on ‖Y ‖S∞ . �

Proof. [of Theorem 2.5] The proof of the proposition is a direct consequence of Theo-
rem 2.3 together with Theorem 5.1: since the map

x ∈ R+ 7−→ 1

2
√

2γ

(
1−

√
1− 32γ2x2

) 1
2

is nondecreasing, the assumption (BMO2,m) is satisfied. �
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5.2 Proof of Theorem 2.6

Once again, we start by proving some uniform (with respect to M ) a priori estimates
on (YM , ZM ).

Proposition 5.2. Let us assume that (H) and (HMon) are in force. Then
∣∣ZM ∣∣ ? W ∈

BMO, YM ∈ S∞ and we have

(i) esssup supt∈[0,T ] E

(∫ T

t

e−µ(s−t) ∣∣ZMs ∣∣2 ds

∣∣∣∣∣Ft
)
6 1

8γ2

(
1−

√
1− 32γ2A2

)
,

(ii)
∥∥YM∥∥S∞ 6 1

4γ

(
1−

√
1− 32γ2A2

)
+

√
2A2 + 1

16γ2

(
1−

√
1− 32γ2A2

)2

.

with A = max
(
‖ξ‖L∞ ,

α
µ

)
.

Proof. To simplify notations in the proof, we skip the superscript M on (YM , ZM ) and
fM . The unique solution (Y,Z) of (1.7) can be constructed with a Picard principle.
We consider a sequence (Y n, Zn)n∈N such that (Y n, Zn ? W )n∈N tends to (Y,Z ? W ) in
S2
(
Rd
)
×H2

(
Rd×k), with

Y n+1
t = ξ +

∫ T

t

f
(
s, Y n+1

s , Zns
)

ds−
∫ T

t

Zn+1
s dWs, 0 6 t 6 T, (Y 0, Z0) = (0, 0), .

We can easily show that replacing Y n+1 by Y n in the generator does not affect the
convergence of the scheme since f is a Lipschitz function. Moreover, applying Itô

formula to eKt
∣∣Y n+1
t

∣∣2 with K large enough, we justify with classical inequalities that
for all n ∈ N, Y n+1 ∈ S∞, with a bound that depend on M for the moment. Applying Itô

formula to the process e−µt
∣∣Y n+1
t

∣∣2, we obtain

e−µt
∣∣Y n+1
t

∣∣2 = e−µT |ξ|2

−
∫ T

t

(
−µe−µs

∣∣Y n+1
s

∣∣2 − 2e−µsY n+1
s .f(s, Y n+1

s , Zns ) + e−µs
∣∣Zn+1
s

∣∣2)ds

− 2

∫ T

t

e−µsY n+1
s .

(
Zn+1
s dWs

)
.

Taking conditional expectation, and using assumption (HMon), we get:∣∣Y n+1
t

∣∣2 6 e−µ(T−t) ‖ξ‖2L∞

+ E

(∫ T

t

2e−µ(s−t)
(
α
∣∣Y n+1
s

∣∣− µ

2

∣∣Y n+1
s

∣∣2 + γ
∣∣Y n+1
s

∣∣ |Zns |2) ds

∣∣∣∣∣Ft
)

−E

(∫ T

t

e−µ(s−t) ∣∣Zn+1
s

∣∣2 ds

∣∣∣∣∣Ft
)
.

With the Young inequality we have the following estimate for all n and s ∈ [0, T ]:

α
∣∣Y n+1
s

∣∣ 6 µ

2

∣∣Y n+1
s

∣∣2 +
α2

2µ
,
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and thus∣∣Y n+1
t

∣∣2 6e−µ(T−t) ‖ξ‖2L∞ + E

(∫ T

t

2e−µ(s−T )

(
α2

2µ
+ γ

∣∣Y n+1
s

∣∣ |Zns |2)ds

∣∣∣∣∣Ft
)

−E

(∫ T

t

e−µ(s−t) ∣∣Zn+1
s

∣∣2 ds

∣∣∣∣∣Ft
)

6 e−µ(T−t) ‖ξ‖2L∞ +
α2

µ2

(
1− e−µ(T−t)

)
︸ ︷︷ ︸

6A2

+2γ ×E

(∫ T

t

e−µ(s−t) ∣∣Y n+1
s

∣∣ |Zns |2 ds

∣∣∣∣∣Ft
)

−E

(∫ T

t

e−µ(s−t) ∣∣Zn+1
s

∣∣2 ds

∣∣∣∣∣Ft
)
.

Finally we obtain

∣∣Y n+1
t

∣∣2+E

(∫ T

t

e−µ(s−t) ∣∣Zn+1
s

∣∣2 ds

∣∣∣∣∣Ft
)
6 A2+2γ×E

(∫ T

t

e−µ(s−t) ∣∣Y n+1
s

∣∣ |Zns |2 ds

∣∣∣∣∣Ft
)
.

Then∥∥Y n+1
∥∥2

S∞ + esssup sup
t∈[0,T ]

E

(∫ T

t

e−µ(s−t) ∣∣Zn+1
s

∣∣2 ds

∣∣∣∣∣Ft
)

62A2 + 4γ
∥∥Y n+1

∥∥
S∞ esssup sup

t∈[0,T ]

E

(∫ T

t

e−µ(s−t) |Zns |
2

ds

∣∣∣∣∣Ft
)

(5.2)

62A2 +
∥∥Y n+1

∥∥2

S∞ + (2γ)2 esssup sup
t∈[0,T ]

E

(∫ T

t

e−µ(s−t) |Zns |
2

ds

∣∣∣∣∣Ft
)2

.

Once again with an induction we show easily that for all n ∈ N, |Zn| ? W ∈ BMO,
Y n ∈ S∞ and

esssup sup
t∈[0,T ]

E

(∫ T

t

e−µ(s−t) |Zns |
2

ds

∣∣∣∣∣Ft
)
6

1

8γ2

(
1−

√
1− 32γ2A2

)
.

Moreover the inequality (5.2) gives us

∥∥Y n+1
∥∥
S∞ 6 2γ × esssup sup

t∈[0,T ]

E

(∫ T

t

e−µ(s−t) |Zns |
2

ds

∣∣∣∣∣Ft
)

+

√√√√2A2 + 4γ2

(
esssup sup

t∈[0,T ]

E

(∫ T

t

e−µ(s−t) |Zns |
2

ds

∣∣∣∣∣Ft
))2

.

Letting n to infinity, and with the Theorem 1.4, we finally get

esssup sup
t∈[0,T ]

E

(∫ T

t

e−µ(s−t) |Zs|2 ds

∣∣∣∣∣Ft
)
6

1

8γ2

(
1−

√
1− 32γ2A2

)
.

and so we deduce that

‖Y ‖S∞ 6
1

4γ

(
1−

√
1− 32γ2A2

)
+

√
2A2 +

1

16γ2

(
1−

√
1− 32γ2A2

)2

.

�
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Remark 5.3. What about the BMO norm of ZM ? — we can slice [0, T ] with a uniform
sequence (Ti)

N
i=1 such that 0 = T0 6 T1 6 ... 6 TN = T and for all i, h = |Ti+1 − Ti| = T

N .
The last inequality can be used for each started and stopped process Ti

∣∣ZM ∣∣ ? W cTi+1 :

esssup sup
Ti6t6Ti+1

E

(∫ Ti+1

t

∣∣ZMs ∣∣2 ds

∣∣∣∣∣Ft
)

6 eµh
(

esssup sup
Ti6t6Ti+1

E

(∫ Ti+1

t

e−µ(s−t) ∣∣ZMs ∣∣2 ds

∣∣∣∣∣Ft
))

6 eµh
(

esssup sup
Ti6t6Ti+1

E

(∫ T

t

e−µ(s−t) ∣∣ZMs ∣∣2 ds

∣∣∣∣∣Ft
))

6
eµh

8γ2

(
1−

√
1− 32γ2A2

)
.

We are now in position to prove Theorem 2.6.

Proof. [of Theorem 2.6] The previous Theorem 5.3 shows that for all M ∈ R+ and all
h > 0, the process

∣∣ZM ∣∣ ? W is(
e

1
2µh

2
√

2γ

(
1−

√
1− 32γ2A2

)1/2
)
− scliceable.

We just have to apply an adaptation of Theorem 2.3 given by Theorem 4.10. �

5.3 Proof of Theorem 2.7

We consider the diagonal framework introduced in section 2 and subsection 4.3.
We assume that the generator satisfies (Hdiag), so the generator f can be written as
f = fdiag(t, z) + g(t, y, z) where fdiag is diagonal with respect to z. If we want to apply
Theorem 2.2, we have to obtain a uniform estimate on

∥∥∣∣ZM ∣∣ ? W∥∥
BMO

where (YM , ZM )

is the unique solution of the Lipschitz localized BSDE (1.7). This is the purpose of the
following lemma.

Proposition 5.4. Let us assume that there exist nonnegative constants Gd and G such
that

(i) for all (t, y, z) ∈ [0, T ]×Rd ×Rd×k, |fdiag(t, z)| 6 Gd |z|2 , |g(t, y, z)| 6 G |z|2 .

(ii)

4
∑d
i=1 e

2Gd‖ξi‖
L∞

Gd
G 6 1. (5.3)

Then,
∣∣ZM ∣∣ ? W ∈ BMO, YM ∈ S∞ and we have following estimates:

∥∥∣∣ZM ∣∣ ? W∥∥
BMO

6 (4GdG)−1/2,
∥∥YM∥∥S∞ 6 ‖ξ‖L∞ +

√
d log 2

2Gd
.

Proof. To simplify notations in the proof, we skip once again the superscript M on(
YM , ZM

)
and fM . The unique solution (Y, Z) ∈ S2

(
Rd
)
× H2

(
Rd×k) of (1.7) can be

constructed with a Picard principle slightly different than the one used in the seminal
paper of Pardoux and Peng (see [PP90]). We consider a sequence (Y n, Zn)n∈N defined
by

Y n+1
t = ξ+

∫ T

t

fdiag(s, Zn+1
s )+g (s, Y ns , Z

n
s ) ds−

∫ T

t

Zn+1
s dWs, 0 6 t 6 T, (Y 0, Z0) = (0, 0).
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Obviously, we can easily show that (Y n, Zn ? W )n∈N tends to (Y,Z ? W ) in S2
(
Rd
)
×

H2
(
Rd×k) since we are in the Lipschitz framework. We will prove by induction that: for

all n ∈ N, Y n ∈ S∞, |Zn| ? W ∈ BMO and

‖|Zn| ? W‖BMO 6 (4GdG)−1/2, ‖Y n‖S∞ 6 ‖ξ‖L∞ +

√
d log 2

2Gd
. (5.4)

The result is obvious for n = 0. Let us assume that for a given n ∈ N we have
Y n ∈ S∞

(
Rd
)
, |Zn| ? W ∈ BMO and (5.4) is true. The Lipschitz regularity of f gives

us that (Y n+1,
∣∣Zn+1

∣∣ ? W ) ∈ S∞
(
Rd
)
× BMO. By following the idea of [BH06], we

introduce the C2 function ϕ : R 7−→ (0,+∞) defined by

ϕ : x 7→ e2Gd|x| − 1− 2Gd |x|
|2Gd|2

, so that ϕ′′(.)− 2Gd |ϕ′(.)| = 1.

We pick a stopping time τ and applying Itô’s formula to the regular function ϕ, we
compute, for all components i ∈ {1, ..., d},

ϕ
(
Y n+1,i
τ

)
=ϕ

(
ξi
)

+

∫ T

τ

(
ϕ′
(
Y n+1,i
s

) (
fdiag(s, Zn+1,i

s ) + g(s, Y n,is , Zn,is )
)

−
ϕ′′
(
Y n+1,i
s

) ∣∣Zn+1,i
s

∣∣2
2

)
ds−

∫ T

τ

ϕ′
(
Y n+1,i
s

)
Zn+1,i
s dWs

6ϕ
(∥∥ξi∥∥

L∞

)
+

∫ T

τ

(
2Gd

∣∣ϕ′ (Y n+1,i
s

)∣∣− ϕ′′ (Y n+1,i
s

)
2

∣∣Zn+1,i
s

∣∣2
+G

∣∣ϕ′(Y n+1,i
s )

∣∣ |Zns |2
)

ds−
∫ T

τ

ϕ′(Y n+1,i
s )Zn+1,i

s dWs.

Since ϕ′′(.) − 2Gd |ϕ′(.)| = 1, ϕ > 0 and |ϕ′(x)| 6 (2Gd)
−1e2Gd‖Y n+1,i‖S∞ whenever

|x| 6
∥∥Y n+1,i

∥∥
S∞ , taking the conditional expectation with respect to Fτ , we compute

1

2
E

(∫ T

τ

∣∣Zn+1,i
s

∣∣2 ds

∣∣∣∣∣Fτ
)
6 ϕ(

∥∥ξi∥∥
L∞

) +G(2Gd)
−1e2Gd‖Y n+1,i‖S∞ ‖|Zn| ? W‖2BMO .

Thus, we get the estimate

1

2

∥∥∣∣Zn+1,i
∣∣ ? W∥∥2

BMO
6 ϕ(

∥∥ξi∥∥
L∞

) +G(2Gd)
−1e2Gd‖Y n+1,i‖S∞ ‖|Zn| ? W‖2BMO . (5.5)

By using the a priori estimate given by Proposition 1 in [BH06] we also have, for all
stopping time τ and i ∈ {1, ..., d},

e2Gd|Y n+1,i
τ | 6 e2Gd‖ξi‖

L∞E
(
e2GdG

∫ T
τ
|Zns |

2 ds
∣∣∣Fτ) .

Then, the John-Nirenberg inequality (1.4) coupled with the induction assumption on Zn

gives us

e2Gd‖Y n+1,i‖S∞ 6 e2Gd‖ξi‖
L∞

1− 2GdG ‖|Zn| ? W‖2BMO

.

We put this last inequality into (5.5) to obtain
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∥∥∣∣Zn+1
∣∣ ? W∥∥2

BMO
6

∑d
i=1 e

2Gd‖ξi‖
L∞

2G2
d

1

1− 2GdG ‖|Zn| ? W‖2BMO

.

Since we have assumed that ‖|Zn| ? W‖2BMO 6 (4GdG)−1 and (5.3) is fulfilled, we get∥∥∣∣Zn+1
∣∣ ? W∥∥2

BMO
6 (4GdG)−1

and, by using previous calculations,

∥∥Y n+1,i
∥∥
S∞ 6

∥∥ξi∥∥
L∞

+
log 2

2Gd
, and so

∥∥Y n+1
∥∥
S∞ 6 ‖ξ‖L∞ +

√
d log 2

2Gd
,

which concludes the induction. Finally, we just have to use the fact that (Y n, Zn ? W )n∈N
tends to (Y,Z ? W ) in S2

(
Rd
)
× H2

(
Rd×k) and Theorem 1.4 to obtain the desired

result. �

Then the proof of Theorem 2.7 is direct: we just have to apply Theorem 2.2 by using
Theorem 5.4.

Remark 5.5. As explained in Theorem 4.11, it is possible to extend Theorem 2.7 to more
general terminal conditions and generators.

5.4 Proof of Theorem 2.11

Proof. [of Theorem 2.11] Let us consider for all M ∈ R+ a smooth map hM : Rd×k → R

satisfying:

hM (z) =

0 if |z| 6M,(
|z|
M+1

)2

− 1 if |z| >M + 1,

and let us define a localisation ρM : Rd×k → Rd×k given by

ρM (z) =
z√

1 + hM (z)
.

As usual we denote by (YM , ZM ) the solution obtained by replacing f by fM . This choice
of ρM will be useful in the following computations. For F ∈ C2(M,R), the Itô formula
with F seen as a function on Rd gives for all stopping time τ :

E
(
F (ξ)− F (YMτ )

∣∣Fτ)
= E

(∫ T

τ

(
1

2

k∑
l=1

HessF (YMs )
(
ZM,(:,l)
s , ZM,(:,l)

s

)
− dF

(
YMs

)
fM

(
YMs , ZMs

))
ds

∣∣∣∣∣Fτ
)
,

since the local martingale part is a martingale because F has bounded first derivative.
By using the definition of f , its formulation in the local chart and the link between ZM

and ρM (ZM ), we get

E
(
F (ξ)− F (YMτ )

∣∣Fτ)
=

1

2
E

(∫ T

τ

k∑
l=1

(
hM (ZMs ) HessF (YMs )

(
ρM (ZMs )(:,l), ρM (ZMs )(:,l)

)
(5.6)

+∇dF
(
YMs

) (
ρM (ZMs )(:,l), ρM (ZMs )(:,l)

))
ds

∣∣∣∣ Fτ
)
. (5.7)
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By using same arguments as Darling in [Dar95] we can show that YM is in G almost
surely. Indeed, we know with (5.6) applied to F = F dc, integrating between τ and σ

together with (ii), that for all σ > τ a.s,

E
(
F dc(YMσ )

∣∣Fτ) > F dc(YMτ ) a.s.

Let us consider for all n ∈ N the following sequence of stopping times:

σn = inf

{
u > τ

∣∣∣∣ F dc(YMu ) 6
1

n
a.s

}
.

Each σn is finite almost surely since ξ ∈ G. Continuity of YM gives for all n ∈ N,
F dc

(
YMσn

)
6 1

n a.s. So we get for all stopping time τ :

F dc
(
YMτ

)
6 E

(
F dc

(
YMσn

)∣∣Fτ) 6 1

n
a.s.

and, consequently, P(Yt ∈ G) = 1 for all t ∈ [0, T ]. Moreover the α-strictly doubly
convexity on G gives us

E
(
F dc(ξ)− F dc(YMτ )

∣∣Fτ)
>
α

2
E

(∫ T

τ

k∑
l=1

(
hM (ZMs )

∣∣∣ρM (ZMs )(:,l)
∣∣∣2 +

∣∣∣ρM (ZMs )(:,l)
∣∣∣2)ds

∣∣∣∣∣Fτ
)

=
α

2
E

(∫ T

τ

∣∣ZMs ∣∣2 ds

∣∣∣∣∣Fτ
)
. (5.8)

And finally, continuity of F dc on G yields

∥∥∣∣ZM ∣∣ ? W∥∥
BMO

6

√√√√ 2

α
×

(
sup

(x,y)∈G×G
{F dc(x)− F dc(y)}

)
.

Thus, assumption (ii) ensures assumption (BMO,m). Since the terminal value is bounded
(in G), Theorem 2.3 together with Theorem 4.8 gives the result. �

5.5 Proofs of Theorem 2.15 and Theorem 2.16

Proof. [of Theorem 2.15 and Theorem 2.16]

Uniqueness We start by proving Theorem 2.15. Let us consider two continuous
Markovian solutions (v, w) and (ṽ, w̃) such that v and ṽ are bounded. We set (t, x) ∈
[0, T ]×Rk and we denote (Y t,x, Zt,x) (resp. (Ỹ t,x, Z̃t,x)) the solution of the BSDE (2.7)
associated to (v, w) (resp. (ṽ, w̃)). The idea of the proof is to compare the two solutions
by using the stability result given by Remark 4.5. In order to do that, we must show

that |Zt,x| ? W and
∣∣∣Z̃t,x∣∣∣ ? W are ε-sliceable BMO martingales. By Remark 2.6 part (2)

in [XŽ16], we know that there exist b0 ∈ Rd and (αn) ∈ (0, 1]N such that v, ṽ ∈ C(αn),loc
b0

.
Moreover, by following same arguments than in the proof of Theorem 2.9 in [XŽ16] we
can show that v, ṽ ∈ C(αn),loc. Finally, we just have to apply Theorem 1.1 to conclude that
there exists κ′ ∈ (0, 1] such that v, ṽ ∈ Cκ′ .

Now, let us apply the Itô formula to F (Y t,x): we consider two stopping times τ and σ
such that τ 6 σ a.s and we take the conditional expectation
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E
(
F
(
v(σ,Xt,x

σ )
)
− F

(
v(τ,Xt,x

τ )
)∣∣Fτ)

= E

(
−
∫ σ

τ

dF (v(u,Xt,x
u )f(u,Xt,x

u , Y t,xu , Zt,xu ) du

+
1

2

k∑
l=1

∫ σ

τ

HessF
(
v(u,Xt,x

u )
) ((

Zt,xu
)(:,l)

,
(
Zt,xu

)(:,l))
du

∣∣∣∣ Fτ
)

> E

(∫ σ

τ

∣∣Zt,xu ∣∣2 du

∣∣∣∣Fτ) .
The map F is a Lipschitz function on the centred Euclidean ball of radius

‖v‖L∞([0,T ]×Rk) ∨ ‖ṽ‖L∞([0,T ]×Rk). Denoting by L its Lipschitz constant, we obtain for all
n ∈ N,

E

(∫ σ

τ

∣∣Zt,xu ∣∣2 du

∣∣∣∣Fτ) 6 L×E
(∣∣v(σ,Xt,x

σ )− v(τ,Xt,x
τ )
∣∣∣∣Fτ)

6 L×E
(
|σ − τ |κ

′/2
+
∣∣Xt,x

σ −Xt,x
τ

∣∣κ′ ∣∣∣Fτ)
6 C |σ − τ |κ

′/2
,

where we have used in the last inequality a classical estimate for SDEs when b and σ
are bounded. For N ∈ N∗ we set Ti = iT

N . Then, for all i ∈ {0, ..., N − 1} and stopping
time Ti 6 τ 6 Ti+1 we get

E

(∫ Ti+1

τ

∣∣Zt,xu ∣∣2 du

∣∣∣∣∣Fτ
)
6 C

(
T

N

)κ′/2
,

and finally, for N large enough, we have that∥∥∥Ti ∣∣∣Z(t,x)
∣∣∣ ? W cTi+1

∥∥∥
BMO

6 K, ∀i ∈ {0, ..., N − 1}

with 2LyK
2 + 2

√
2LzKC

′
2 < 1. Obviously, this estimate is also true for Z̃t,x which means

that Zt,x ?W and Z̃t,x ?W are in Zslic,2BMO. By using Theorem 4.5 we get that v(t, x) = ṽ(t, x)

and E
(∫ T

t
|w(s,Xt,x

s )− w′(s,Xt,x
s )|2 ds

)
= 0. Since this is true for all (t, x) ∈ [0, T ]×Rk

and, due to (HX), X0,x
s has positive density on Rk for s ∈ (0, T ], w = w̃ a.s. with respect

to the Lebesgue measure on [0, T ]×Rk. Then, (v, w) and (v′, w′) are equal.

Regularity Now we prove Theorem 2.16. We consider (v, w) a continuous Markovian
solution of (2.7) such that v is bounded. We set t, t′ ∈ [0, T ] and x, x′ ∈ Rk. Without
restriction, we can assume that t 6 t′. Then, we can write

|v(t, x)− v(t′, x′)| =
∣∣∣Y t,xt − Y t

′,x′

t′

∣∣∣ 6 ∣∣∣Y t,xt − Y t
′,x′

t

∣∣∣+
∣∣∣Y t′,x′t − Y t

′,x′

t′

∣∣∣ ,
where we have extend the definition of (Y t

′,x′

u , Zt
′,x′

u )t′6u6T to [0, t′] by setting

Y t
′,x′

s = Y t
′,x′

t′ +

∫ t′

s

f
(
u, x′, Y t

′,x′

u , 0
)

du, Zt
′,x′

s = 0, 0 6 s 6 t′,

which is equivalent to take σ(s, .) = 0 and b(s, .) = 0 for s ∈ [0, t′]. By the same token we
can extend (Y t,xu , Zt,xu )t6u6T to [0, t]. Then, a standard estimate gives us∣∣∣Y t′,x′t − Y t

′,x′

t′

∣∣∣ 6 C |t− t′| ,
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where C does not depend on (t, x) and (t′, x′). To conclude we just have to study the

remaining term
∣∣∣Y t,xt − Y t

′,x′

t

∣∣∣. Thanks to calculations done in the uniqueness part of the

proof, we know that there exist some deterministic times 0 = T0 6 T1 6 ... 6 TN = T

such that TiZt,x ? W cTi+1 ∈ Z2
BMO and TiZt

′,x′ ? W cTi+1 ∈ Z2
BMO for all i ∈ {0, ..., N − 1}.

Let us emphasize that times 0 = T0 6 T1 6 ... 6 TN = T can be chosen independently
from (t, x) and (t′, x′). Then, by using once again Theorem 4.5 and assumptions on G and
f, we obtain∣∣∣Y t,xt − Y t

′,x′

t

∣∣∣ 6 ∥∥∥Y t,x − Y t′,x′∥∥∥
S4

6 C

(
E

(∣∣∣G (Xt,x
T

)
− G

(
Xt′,x′

T

)∣∣∣4)1/4

+ E

∣∣∣∣∣
∫ T

0

∣∣∣f (s,Xt,x
s , Y t,xs , Zt,xs

)
− f
(
s,Xt′,x′

s , Y t,xs , Zt,xs

)∣∣∣ ds∣∣∣∣∣
4
1/4)

6 C

E

(∣∣∣Xt,x
T −X

t′,x′

T

∣∣∣4κ)1/4

+ E

 sup
s∈[0,T ]

∣∣∣Xt,x
s −Xt′,x′

s

∣∣∣4κ(1 +

∫ T

0

∣∣Zt,xs ∣∣2 ds

)4
1/4


6 CE

(∣∣∣Xt,x
T −X

t′,x′

T

∣∣∣4κ)1/4

+ CE

(
sup

s∈[0,T ]

∣∣∣Xt,x
s −Xt′,x′

s

∣∣∣8κ)1/8
1 + E

(∫ T

0

∣∣Zt,xs ∣∣2 ds

)8
1/8

 .

where C depends on N and the BMO norms of TiZt,x ? W cTi+1 (see an explicit value in
Theorem 4.5). However N stays finite in the sequel and, as already mentioned in the
Proof of Theorem 2.1 and Theorem 2.2, an uniform estimation on

∥∥TiZt,x ? W cTi+1
∥∥
BMO

and
∥∥∥TiZt′,x′ ? W cTi+1

∥∥∥
BMO

gives an uniform upper bound on C (particularly C does not

depend on (t, x) and (t′, x′)). Then an energy inequality gives us

|Y t,xt − Y t
′,x′

t | 6 CE

(
sup

s∈[0,T ]

∣∣∣Xt,x
s −Xt′,x′

s

∣∣∣8κ)1/8

.

Thus, we just have to show the following estimate on SDEs:∥∥∥Xt′,x′ −Xt,x
∥∥∥
S8
6 C

(
|x− x′|+ |t− t′|1/2

)
. (5.9)

Firstly a classical stability result on SDEs gives us∥∥∥∥∥ sup
s∈[t′,T ]

∣∣∣Xt′,x′

s −Xt,x
s

∣∣∣∥∥∥∥∥
L8

6 C
(
|x− x′|+ |t− t′|1/2

)
.

Moreover we have ∥∥∥∥∥ sup
s∈[t,t′]

∣∣Xt,x
s −X

t,x
t

∣∣∥∥∥∥∥
L8

6 C |t− t′|1/2 ,

and
∣∣∣Xt,x

t −Xt′,x′

s

∣∣∣ = |x− x′| for all s ∈ [t, t′]. Combining these two inequalities we

obtain (5.9) and finally

|Y t,xt − Y t
′,x′

t | 6 C
(
|x− x′|κ + |t− t′|κ/2

)
.

�
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6 Appendix – Technical proofs

Proof. [of Theorem 1.5] Let us show the BMO property for a started and stopped process.
Let us consider a stopping time τ ′ such that 0 6 τ ′ 6 T a.s. we have

E
(〈

τ |Z| ? W cσ
〉
T
−
〈
τ |Z| ? W cσ

〉
τ ′

∣∣∣Fτ ′)=E
((
〈τ |Z| ? W 〉σ− 〈

τ |Z| ? W 〉min(τ ′,σ)

)∣∣∣Fτ ′)
=E

(
(〈τ |Z| ? W 〉σ− 〈

τ |Z| ? W 〉τ ′)1(06τ ′6σ)

∣∣Fτ ′) .
Since τ |Z| ? W vanishes before τ and Fτ ′ ⊂ Fmax(τ ′,τ), we get:

E
(
(〈τ |Z| ? W 〉σ − 〈

τ |Z| ? W 〉τ ′)1(06τ ′6σ)

∣∣Fτ ′)
= E

((
〈|Z| ? W 〉σ − 〈|Z| ? W 〉max(τ ′,τ)

)
1(06τ ′6σ)

∣∣∣Fτ ′)
= E

(
E
((
〈|Z| ? W 〉σ − 〈|Z| ? W 〉max(τ ′,τ)

)
1(06τ ′6σ)

∣∣∣Fmax(τ,τ ′)

)∣∣∣Fτ ′)
6 esssup sup

τ̃∈T τ,σ
E(〈|Z| ? W 〉σ − 〈|Z| ? W 〉τ̃ |Fτ̃ ) .

Finally we have shown that

esssup sup
06τ ′6T

E
(〈

τ |Z| ? W cσ
〉
T
−
〈
τ |Z| ? W cσ

〉
τ ′

∣∣∣Fτ ′)
6 esssup sup

τ̃∈T τ,σ
E(〈|Z| ? W 〉σ − 〈|Z| ? W 〉τ̃ |Fτ̃ ) ,

and the inequality is obviously an equality. �

Proof. [of Theorem 3.3] We are going to use inequalities given by Lemma 1.2. Let us
suppose the existence of a solution X for the equation (3.5). We have for all m > 1,

‖X‖Sm

6 ‖X0‖Lm +

∥∥∥∥∫ .

0

F (s,Xs) ds

∥∥∥∥
Sm

+

∥∥∥∥∥
k∑
p=1

∫ .

0

Gp(s,Xs) dW p
s

∥∥∥∥∥
Sm

6 ‖X0‖Lm + E

(
sup

06u6T

(∫ u

0

αs |Xs|ds
)m)1/m

+ C ′mE

( k∑
p=1

∫ T

0

|Gp(s,Xs)|2 ds

)m/21/m

6 ‖X0‖Lm + E

((∫ T

0

αs |Xs|ds

)m)1/m

+ C ′mE

(∫ T

0

β2
s |Xs|2 ds

)m/21/m

.

On the one hand, according to Lemma 1.2 we have

E

((∫ T

0

αs |Xs|ds

)m)1/m

=
∥∥〈√α ?W, (√α |X|) ? W〉

T

∥∥
Lm

6
√

2m
∥∥√α ?W∥∥

BMO

∥∥(
√
α |X|) ? W

∥∥
Hm

62m ‖X‖Sm
∥∥√α ?W∥∥2

BMO
.

On the other hand, we get for the last term

E

(∫ T

0

β2
s |Xs|2 ds

)m/21/m

= ‖(β|X|) ? W‖Hm = ‖|X| ? (β ? W )‖Hm

6
√

2 ‖X‖Sm ‖β ? W‖BMO .
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Hence we obtain the following inequality

‖X‖Sm
(

1− 2m
∥∥√α ?W∥∥2

BMO
−
√

2C ′m ‖β ? W‖BMO

)
6 ‖X0‖Lm . (6.1)

The constant behind ‖X‖Sm is not always positive, but we can use the sliceability
assumption in order to construct piece by piece the process X, and on each piece the
constant will be positive.

More precisely there exists a sequence of stopping times 0 = T0 6 T1 6 ... 6 TN =

T a.s such that for all i ∈ {0, ..., N − 1}:∥∥∥Ti√α ?W cTi+1

∥∥∥
BMO

6 ε1,
∥∥∥Tiβ ? W cTi+1

∥∥∥
BMO

6 ε2.

The process X is equal to

Xt =

N−1∑
i=1

X̃i
t1[Ti,Ti+1[(t)

where each X̃i is the restriction of X to the stochastic interval [Ti, Ti+1]. By convention

we extend X̃i to [0, T ] by zero outside [Ti, Ti+1]. X̃i satisfies the following SDE:

X̃i
t = X̃Ti

i−1
+

∫ t

Ti

F (s, X̃i
s)ds+

k∑
p=1

∫ t

Ti

Gp(s, X̃i
s)d

TiW cTi+1
s , t ∈ [Ti, Ti+1[, and X̃−1 = X0.

For all i ∈ {0, ..., N − 1}, by considering above computations on each [Ti, Ti+1[, (6.1)
becomes ∥∥∥X̃i

∥∥∥
Sm

(
1− 2mε2

1 − ε2

√
2C ′m

)
6
∥∥∥X̃Ti

i−1
∥∥∥
Lm

.

Denoting by Kε1,ε2 the constant

Kε1,ε2 :=
1

1− 2mε2
1 − ε2

√
2C ′m

> 0,

we have ∥∥∥X̃i
∥∥∥
Sm
6 Ki

ε1,ε2

∥∥X0
∥∥
Lm

,

and finally we obtain

‖X‖Sm 6
N−1∑
i=0

∥∥∥X̃i
∥∥∥
Sm
6

(
N−1∑
i=0

Ki
ε1,ε2

)∥∥X0
∥∥
Lm

.

The result follows by setting Km,ε1,ε2 =

N−1∑
i=0

Ki
ε1,ε2 . �
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