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The phase transition in the ultrametric ensemble and
local stability of Dyson Brownian motion
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Abstract

We study the ultrametric random matrix ensemble, whose independent entries have
variances decaying exponentially in the metric induced by the tree topology on N, and
map out the entire localization regime in terms of eigenfunction localization and Pois-
son statistics. Our results complement existing works on complete delocalization and
random matrix universality, thereby proving the existence of a phase transition in this
model. In the simpler case of the Rosenzweig-Porter model, the analysis yields a com-
plete characterization of the transition in the local statistics. The proofs are based on
the flow of the resolvents of matrices with a random diagonal component under Dyson
Brownian motion, for which we establish submicroscopic stability results for short
times. These results go beyond norm-based continuity arguments for Dyson Brownian
motion and complement the existing analysis after the local equilibration time.

Keywords: Dyson Brownian motion; localization transition; local statistics; ultrametric ensem-
ble.
AMS MSC 2010: 15A52; 47B80.
Submitted to EJP on January 18, 2018, final version accepted on July 10, 2018.
Supersedes arXiv:1705.00923.

1 Introduction

One-dimensional lattice Hamiltonians with random long-range hopping provide a
useful and simplified testing ground for the Anderson metal-insulator transition in more
complicated systems. Two prominent examples of such models are the random band
matrices [7, 19], whose entries Hij are zero outside some band |i − j| ≤ W , and the
power-law random band matrices (PRBM) [17, 32], whose entries Hij have variances
decaying according to some power of the Euclidean distance |i − j|. Even for these
models, the mathematically rigorous understanding is far from complete, although there
has been some progress; see [36, 13, 5, 9, 15, 35] and references therein. This article is
concerned with a further simplification, the ultrametric ensemble of Fyodorov, Ossipov
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Phase transition in the ultrametric ensemble

and Rodriguez [20], which is essentially obtained by replacing the Euclidean distance in
the definition of the PRBM with the metric induced by the tree topology.

The index space of the ultrametric ensemble is Bn = {1, 2, . . . , 2n} endowed with the
metric

d(x, y) = min {r ≥ 0 |x and y lie in a common member of Pr} ,

where {Pr} is the nested sequence of partitions defined by

Bn = {1, . . . , 2r} ∪ {2r + 1, . . . , 2 · 2r} ∪ · · · ∪ {2n−r−12r + 1, . . . , 2n}.

The basic building blocks of the ultrametric ensemble are the matrices Φn,r : `2(Bn) →
`2(Bn) whose entries are independent (up to the symmetry constraint) centered real
Gaussian random variables with variance

E |〈δy,Φn,rδx〉|2 = 2−r


2 if d(x, y) = 0

1 if 1 ≤ d(x, y) ≤ r

0 otherwise.

(1.1)

Here and throughout this paper, δx ∈ `2 denotes the canonical basis element defined by

δx(u) =

{
1 if u = x

0 if u 6= x

and δxy = 〈δy, δx〉. Thus Φn,r is a direct sum of 2n−r random matrices drawn inde-
pendently from the Gaussian Orthogonal Ensemble (GOE) of size 2r. The ultrametric
ensemble with parameter c ∈ R refers to the random matrix

Hn =
1

Zn,c

n∑
r=0

2−
(1+c)

2 rΦn,r (1.2)

where Φn,r and Φn,s are independent for r 6= s. We choose the normalizing constant Zn,c

such that ∑
y∈Bn

E |〈δy,Hnδx〉|2 = 1,

making the variance matrix Σn of Hn doubly stochastic. The original definition in [20]
contains an additional parameter governing the relative strengths of the diagonal and
off-diagonal disorder, but this parameter does not significantly alter our analysis and so
we omit it altogether. Moreover, the authors of [20] constructed the block matrices Φn,r

from the Gaussian Unitary Ensemble (GUE) and our results apply to both GOE and GUE
blocks with only slight changes.

The ultrametric ensemble is a hierarchical analogue of the PRBM in a sense which
was first introduced for the Ising model by Dyson [12] and studied rigorously in the
context of quantum hopping systems with only diagonal disorder in [6, 24, 26, 27, 33, 38].
In particular, the definition (1.2) shows that the variance matrix Σn is a rescaled and
shifted version of the hierarchical Laplacian, for which one can easily show that Σn ≥ 0

by explicit diagonalization as in [25]. The normalizing factor Zn,c can also be calculated

Z2
n,c =

∑
y∈Bn

E

∣∣∣∣∣〈δy,
(

n∑
r=0

2−
(1+c)

2 rΦn,r

)
δx〉

∣∣∣∣∣
2

=
(
1− 2−(1+c)(n+1)

) 1 +O(1)

1− 2−(1+c)

=

{
O(1) if c > −1

O
(
2−(1+c)n

)
if c < −1
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Phase transition in the ultrametric ensemble

so that Zn,c grows exponentially in n in case c < −1 and Zn,c is asymptotically constant
in case c > −1. Finally, the spread

Mn :=

(
max

x,y∈Bn

E |〈δy,Hnδx〉|2
)−1

=

{
Z2
n,c 2

−o(n) if c ≥ −2

2(1+o(1))n if c < −2
(1.3)

also grows like a positive power of the system size 2n when c < −1.
Because of the successful track record of hierarchical approximations in statistical

physics, one might expect the core features of the PRBM phase transition to be present
in the ultrametric ensemble as well. Indeed, the authors of [20] present arguments
at a theoretical physics level of rigor as well as numerical evidence for a localization-
delocalization transition in the eigenfunctions of Hn as the parameter changes from
c > 0 to c < 0. In this paper, we pursue the point of view that the effect of the
Gaussian perturbations Φn,r on the spectrum of Hn can be described dynamically by
Dyson Brownian motion [11] and, in this sense, the critical point c = 0 is natural because
it governs whether the evolution passes the local equilibration time of this system or
not. In particular, we establish the localized phase by proving that the eigenfunctions
remain localized and the level statistics converge to a Poisson point process if c > 0. In
comparison to both the random band matrices and the PRBM, the hierarchical structure
therefore significantly facilitates the analysis. We are not aware of any rigorous results on
the localized phase of the PRBM, whereas for random band matrices the only localization
result is due to Schenker [35] and no proof of Poisson statistics is known.

For the first result we recall the Wegner estimate [39], which asserts that the infinite-
volume density of states measure defined by

ν(f) = lim
n→∞

2−n
∑

λj∈σ(Hn)

f(λj) (1.4)

has a bounded Radon-Nikodym derivative whose values we denote by ν(E).

Theorem 1.1 (Poisson statistics). Suppose c > 0 and let E ∈ R be a Lebesgue point of ν.
Then, the random measure

µn(f) =
∑

λ∈σ(Hn)

f(2n(λ− E))

converges in distribution to a Poisson point process with intensity ν(E) as n→ ∞.

The proof of Theorem 1.1 is contained in Section 5.
The second main result says that if an eigenfunction ofHn in some mesoscopic energy

interval has any mass at some x ∈ Bn, then actually all but an exponentially small amount
of the total mass is carried in an exponentially vanishing fraction of the volume near x
with high probability. We make this precise in terms of the eigenfunction correlator

Qn(x, y;W ) =
∑

λ∈σ(Hn)∩W

|ψλ(x)ψλ(y)|,

which in completely delocalized regimes is typically given by
∑

y 6=xQn(x, y;W ) ≈ 2n|W |.
Thus, since 2n|W | grows very large for mesoscopic spectral windows, it is a signature
of localization if the eigenfunction correlator asymptotically vanishes for small enough
mesoscopic intervals W , as is proved in the following theorem.

Theorem 1.2 (Eigenfunction localization). Suppose c > 0 and let E ∈ R. Then, there
exist w, µ, κ > 0, C <∞, and a sequencemn with n−mn → ∞ such that for every x ∈ Bn

the `2-normalized eigenfunctions satisfy

P

 ∑
y∈Bn\Bmn (x)

Qn(x, y;W ) > 2−µn

 ≤ C 2−κn
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Phase transition in the ultrametric ensemble

with
W =

[
E − 2−(1−w)n, E + 2−(1−w)n

]
.

The proof of Theorem 1.2 in Section 6 makes use of a new relation (Theorem 6.1)
between the eigenfunction correlator and the imaginary part of the Green function at
complex energies.

The above results gain additional interest upon noting that, when c < −1, the
ultrametric ensemble has an essential mean field character and techniques originally
developed for Wigner matrices show that the energy levels agree asymptotically with
those of the GOE and that the eigenfunctions are completely delocalized. We will
now roughly sketch how to apply these results in the present situation and state the
corresponding theorems. The results of [16] show that the semicircle law ρsc(E) =√
(4− E2)+/(2π) is valid on scales of orderM−1

n (c.f. (1.3)) also for the matrices

H̃n =
1

Zn,c

n−1∑
r=0

2−
(1+c)

2 rΦn,r +
1−

√
Tn

Zn,c
2−

(1+c)
2 nΦn,n

with a small part of the final O(1) Gaussian component removed. We set Tn = M−1+δ
n

with δ ∈ (0, 1). The validity of the local semicircle law already implies the complete
delocalization of the eigenfunctions in mesoscopic windows in the bulk of the spectrum
using the results of [13, Thm. 2.21]. The assumption of [13] that the spectrum of the
variance matrix is well-separated from −1 follows simply from Σn ≥ 0.

Theorem 1.3 (Eigenfunction delocalization; cf. [13, 16]). Let c < −1. For any compact
interval I ⊂ (−2, 2) there exist κ, ε > 0 such that for all E ∈ I the `2-normalized
eigenfunctions of Hn in [E −M−1

n , E +M−1
n ] satisfy

‖ψλ‖∞ = O(M−1/2+ε
n )

with probability 1−O(N−κ).

Random matrix universality of the local statistics may be expressed by saying that
the k-point correlation functions

ρ
(k)
Hn

(λ1, ..λk) =

∫
R2n−k

ρHn
(λ1, . . . , λ2n) dλk+1 . . . dλ2n ,

the k-th marginals of the symmetrized eigenvalue density ρHn , locally agree with the cor-
responding objects for the GOE asymptotically. For this, we employ the work of Landon,
Sosoe and Yau [28, Thm. 2.2] concerning the universality of Gaussian perturbations for

Hn = H̃n +

√
Tn

Zn,c
2−

(1+c)
2 nΦn,n.

For the statement of the theorem, let

Ψ
(k)
n,E(α1, . . . , αk) = ρ

(k)
Hn

(
E + 2−n α1

ρsc(E)
, . . . , E + 2−n αk

ρsc(E)

)
− ρ

(k)
GOE

(
E + 2−n α1

ρsc(E)
, . . . , E + 2−n αk

ρsc(E)

)
,

where ρ(k)GOE is the k-point correlation function of the 2n × 2n GOE and ρsc is the density
of the semicircle law.

Theorem 1.4 (WDM statistics; cf. [28, 16]). Suppose c < −1, E ∈ (−2, 2) and k ≥ 1.
Then,

lim
n→∞

∫
Rk

O(α)Ψ
(k)
n,E(α) dα = 0

for every O ∈ C∞
c (Rk).
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Phase transition in the ultrametric ensemble

Summing up, these results rigorously prove the existence of a metal-insulator tran-
sition in the ensemble of ultrametric random matrices. In particular, our results allow
an approach all the way to the critical point from the localized side c > 0. The previous
arguments do not cover the regime c ∈ [−1, 0). In this case, the eigenfunctions are
still conjectured to be completely delocalized and the local eigenvalue statistics are
conjectured to remain in the Wigner-Dyson-Mehta universality class as in the case c < −1

[20].
The Rosenzweig-Porter model is the N ×N random matrix

Ht = V +
√
tΦn,n

with N = 2n, interpolation parameter t = N−(1+c), and independent random potential

V =
∑
x

V (x)|δx〉〈δx| (1.5)

whose entries are drawn independently from some density % ∈ L∞. It provides a standard
interpolation between integrability and chaos and more recently has also been suggested
as a toy model for many-body localization with three distinct phases [18, 23]. As a
by-product of our analysis, we completely characterize the localized phase c > 0 of this
model, which may be thought of as a hierarchical model with the “intermediate layers”
removed.

Theorem 1.5 (Rosenzweig-Porter model). Suppose t ≤ N−(1+c) with c > 0 and let E ∈ R.
Then:

1. As N → ∞, the random measure defined by

µN (f) =
∑

λ∈σ(Ht)

f(N(λ− E))

converges in distribution to a Poisson point process with intensity %(E) provided E
is a Lebesgue point of %.

2. There exist w, µ, κ > 0 and C < ∞ such that for every x ∈ {1, . . . , N} the
`2-normalized eigenfunctions satisfy

P

 ∑
λ∈σ(Ht)∩W

∑
y 6=x

|ψλ(x)ψλ(y)| > N−µ

 ≤ CN−κ

with
W =

[
E −N−(1−w), E +N−(1−w)

]
.

A proof of this result, which is similar to but simpler than those of Theorems 1.1
and 1.2, is included in Appendix A.

If t = N−(1+c) with c < 0 the prerequisites of [28, Thm. 2.2] may be verified for the
Rosenzweig-Porter model by an exponential moment calculation similar to Cramér’s
theorem. This proves the emergence of Wigner-Dyson-Mehta statistics in the fixed-
energy sense. The first point of Theorem 1.5 thus optimally complements these results
and completes the mathematical understanding of the phase transition in the Rosenzweig-
Porter model in terms of the local statistical behavior of the energy levels. The second
point proves localization in the same sense as Theorem 1.2, and also yields an explicit
relation between w, µ, κ and c, which shows that w, µ, κ may increase if c increases as
well. If c ≤ −1, the complete delocalization of the eigenfunctions was proved by Lee
and Schnelli [30] as a corollary to a local law. In terms of the eigenvalue statistics, the
non-ergodic delocalized phase established in [37, 3] can presumably only be detected
by mesoscopic Poissonian fluctuations around the microscopic Wigner-Dyson-Mehta
statistics (see also [10, 21]).
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Phase transition in the ultrametric ensemble

2 Local stability of Dyson Brownian motion

In the technical core of this paper, we consider a general N ×N random matrix flow

Ht = T + V +Φt, (2.1)

where Φt is a Brownian motion in the space of symmetric matrices whose entries are
given by

〈δy,Φtδx〉 =
√

1 + δxy
N

Bxy(t) (2.2)

with independent standard Brownian motions Bxy(t) = Byx(t). The random potential V
is given by (1.5) in terms of random variables {V (x)} which are independent of the Brow-
nian motions and whose conditional distributions are uniformly Lipschitz continuous,
i.e.,

P (V (x) ∈ I | {V (y)}y 6=x) ≤ CV |I|, (2.3)

for all Borel sets I ⊂ R and x ∈ {1, . . . , N} with a constant CV < ∞ independent of N .
Finally, T is some real symmetric N ×N matrix, which may also be random provided T ,
V , and Φt remain independent. Dyson derived the equations

dλj(t) =

√
2

N
dBj(t) +

1

N

∑
i6=j

dt

λj(t)− λi(t)

for the evolution of the eigenvalues λ1(t) ≤ · · · ≤ λN (t) and conjectured t = N−1 as the
local equilibration time of this system. Thus, one expects that the local statistics of the
eigenvalues agree asymptotically as N → ∞ with those of the GOE if t� N−1. This was
first proved by Erdős, Schlein, and Yau [14] when H0 is an independent Wigner matrix
and recently for some very general, even deterministic, initial conditions by Landon,
Sosoe, and Yau [28, 29]. In particular, the result [28], which establishes fixed-energy
universality in the bulk of the spectrum for t � N−1, covers the case T = 0 with
asymptotically full probability. The eigenfunctions of Ht also follow a highly singular
stochastic differential equation, which has been studied for Wigner initial conditions by
Bourgade and Yau [4].

All of the aforementioned works rely on powerful rigidity estimates for the eigenvalues
in the regime t � N−1, which are not available for t � N−1, where the spectral
characteristics of H0 = T + V are expected to remain dominant. In this article, we study
the stability of the spectral measures in the regime t� N−1 by deriving a more tractable
stochastic differential equation for the resolvent

Rt(z) = (Ht − z)−1,

which is significantly more amenable to analysis but still carries the relevant spectral
information in its entries. In place of the rigidity estimates, the enabling tool for the
analysis of the resolvent flow is the smoothing of spectral quantities with the external
potential via spectral averaging (see Section 4 for details).

Our first result for Ht is about the normalized trace

St(z) =
1

N
TrRt(z) =

∫
1

λ− z
νt(dλ),

which we have written as the Stieltjes transform of the empirical eigenvalue measure

νt =
1

N

∑
λ∈σ(Ht)

δλ.
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Thus St(z) contains detailed local information about the eigenvalues of Ht as z ap-
proaches the real axis. In particular, since the mean eigenvalue spacing of Ht is typically
of order N−1, knowledge of St(z) with Im z ≈ N−1 makes it possible to track individual
eigenvalues near Re z along the flow (2.1). The following theorem shows that St(z)

remains stable even when Im z � N−1 provided that also t� N−1.

Theorem 2.1. For every c > 0, there exists C <∞, depending only on c and CV , such
that

E |St (E + iη)− S0 (E + iη)| ≤ CN−c/2

(
1 +

1

Nη
+

1

(Nη)3

)
for all t ≤ N−(1+c) and E ∈ R.

In essence, Theorem 2.1 asserts that for any spectral scale much larger than t� N−1

the empirical eigenvalue measure is unaffected by the flow (2.1). This bound is much
stronger than the one obtained from the crude norm estimate

‖Rt(z)−R0(z)‖ ≤ ‖Rt(z)ΦtR0(z)‖ ≈
√
t

(Im z)2
(2.4)

and potential improvements on this theme obtained by running the Brownian motions
〈δy,Φtδx〉 one after the other. The example H0 = 0 shows that at least some regularity of
the initial condition is needed for Theorem 2.1 to remain true. However, Theorem 2.1 can
be proved for slightly more general H0 under the weaker assumption that Ht satisfies
the Wegner and Minami [31] estimates

E νt(I) ≤ C|I|, E νt(I)(νt(I)−N−1) ≤ C|I|2

with a constant C <∞ uniform in N and t. This is easily seen from the proof below. It is
also possible to present Theorem 2.1 (and Theorem 2.2) as explicit bounds for arbitrary
t > 0, but we artificially restrict to t ≤ N−(1+c) in order to keep the right hand side
simple.

The properties of the eigenfunctions of Ht are encoded in the spectral measures

µxy =
∑

λ∈σ(Ht)

ψλ(x)ψλ(y)δλ

where {ψλ} is an orthonormal basis of eigenfunctions of Ht and we have eased the
notational burden by keeping the dependence of ψλ and µxy on t implicit. Hence, the
Green functions

Gt(x, y; z) = 〈δy, Rt(z)δx〉 =
∫

1

λ− z
µxy(dλ)

at scales Im z ≈ N−1 describe the eigenfunctions of Ht locally near Re z. The stability
result analogous to Theorem 2.1 for Gt(x, y; z) is contained in the following theorem.

Theorem 2.2. For every c > 0, there exists C <∞, depending only on c and CV , such
that

1

N

∑
y

E |Gt (x, y;E + iη)−G0 (x, y;E + iη)| ≤ CN−c/2

(
1 +

1

Nη
+

1

(Nη)3

)

for all t ≤ N−(1+c), E ∈ R, and x ∈ {1, . . . , N}.
The proofs of Theorems 2.1 and 2.2, which may be found in Section 4, are based on

the fact that Rt(z) satisfies the stochastic differential equation

dRt(z) =

(
St(z)

∂

∂z
Rt(z) +

1

2N

∂2

∂z2
Rt(z)

)
dt+ dM̃t, (2.5)
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Phase transition in the ultrametric ensemble

where M̃t is a matrix-valued martingale whose entries can be given explicitly in terms of
Rt(z). The details of this equation, as well as its derivation, are contained in Section 4.
The proofs rely on bounds controlling the regularized singularities of the terms in the
right-hand side of (2.5) down to the scale η = O(N−1). In the same vein as remarked
below (2.4), we stress that Theorems 2.1 and 2.2 cannot be obtained from the trivial
estimate ‖ ∂n

∂znRt(z)‖ ≤ (Im z)−(n+1). Instead, we use the smoothing of singularities
through the external random potential V as detailed in Section 3. Since we are interested
in times scales t � N−1, the potential is in fact the only possible source for this
smoothing.

Let us conclude by noting that the analogue of (2.1) for perturbations drawn from
the GUE,

〈δy, Φ̃tδx〉 =
√

1

N

{
1√
2
(Bxy(t) + iB̃xy(t)) if x < y

Bxx(t) if x = y

with B̃xy independent of Bxy, has also been widely studied. The analysis of this model is
usually simpler because the additional symmetry enables explicit integration formulas
(see [13] and references therein for a summary) and all the results and methods of this
paper require only minor modifications to treat also the GUE flow.

3 Smoothing effects of the potential

Throughout this section we will let H be a general N ×N random matrix of the form

H = T + V,

where V is a potential satisfying the assumption (2.3) and T is some Hermitian random
matrix independent of V , which should be thought of as T +Φt from (2.1). Our goal is to
use the smoothing effects of V on the spectral measures µxy of δx and δy for H and the
empirical eigenvalue measure

ν(f) =
1

N

∑
λ∈σ(H)

f(λ)

to control the resolvent flow (2.5). We start by recalling two staples of the theory of
random Schrödinger operators, the spectral averaging principle [22] and the closely
related Wegner estimate, whose proofs may be found in [1]. The former asserts that for
any Borel set I ⊂ R and any x ∈ {1, . . . , N} we have

Ex [µx(I)] ≤ CV |I|, (3.1)

where Ex denotes the conditional expectation with respect to the random variables
{V (k) : k 6= x}. By averaging this bound over all x ∈ {1, . . . , N}, we immediately obtain
the latter result, namely that

E ν(I) ≤ CV |I| (3.2)

for all Borel sets I ⊂ R. The following lemma is a simple extension of these results based
on the proof of Minami’s estimate by Combes, Germinet, and Klein [8]. We write |µ| for
the total variation measure of µ.

Lemma 3.1. There exists C <∞, depending only on CV , such that

1. E |µxy|(I) ≤ C|I| and
2. E [ν(I)|µxy|(J)] ≤ C

(
|I|+ 2

N

)
|J |

for all Borel sets I, J ⊂ R and x, y ∈ {1, . . . , N}.
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Proof. Notice that
|µxy|(I) =

∑
λ∈σ(H)∩I

|ψλ(x)ψλ(y)| ,

so the Cauchy-Schwarz inequality implies

|µxy|(I) ≤
√
µx(I)µy(I).

Applying the Cauchy-Schwarz inequality to the expectation Exy conditioned on {V (k) :

k 6= x, y} and using (3.1) then yield

Exy |µxy|(I) ≤ Exy

√
µx(I)µy(I) ≤

√
Exy µx(I)Exy µy(I) ≤ C|I|, (3.3)

which implies the first assertion of the Lemma.
For the second claim, notice that for fixed values {V (k) : k 6= x, y} of the potential

away from x and y, the number of eigenvalues in I can change by at most two as V (x)

and V (y) vary in R. Hence

E [ν(I)|µxy|(J)] ≤ E
[(
ν(I) +

2

N

)
Exy |µxy|(J)

]
≤ C|J |E

[
ν(I) +

2

N

]
≤ C

(
|I|+ 2

N

)
|J |,

by (3.2) and (3.3).

Intuitively, Lemma 3.1 asserts that the joint measure E [ν × |µxy|] is continuous down
to scales of order N−1, which clearly has consequences for the integrals of test functions
in terms of their variations on scales of order N−1. The next results are a quantitative
manifestation of this idea for the Stieltjes transforms

G(x, y; z) =

∫
1

λ− z
µxy(dλ)

and

S(z) =

∫
1

λ− z
ν(dλ),

which occur naturally in our study of the resolvent flow. In particular, the following
theorem gives bounds for the drift.

Theorem 3.2. There exists C <∞, depending only on CV , such that

E
∣∣∣∣ 1

2N

∂2

∂z2
G(x, y; z)

∣∣∣∣ ≤ C

N(Im z)2

and

E
∣∣∣∣S(z) ∂∂zG(x, y; z)

∣∣∣∣ ≤ CN

(
logN +

1

N Im z

)(
1 +

1

(N Im z)2

)
+

C

Im z

for all x, y ∈ {1, . . . , N} and z ∈ C+.

Proof. The first point of Lemma 3.1 implies that

E
∣∣∣∣ 1

2N

∂2

∂z2
G(x, y; z)

∣∣∣∣ ≤ 1

N Im z
E
∫

1

|λ− z|2
|µx,y|(dλ)

≤ C

N Im z

∫
1

|λ− z|2
dλ

≤ C

N(Im z)2
, (3.4)
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Phase transition in the ultrametric ensemble

which is the first assertion of the theorem.
Next, let us introduce

f(λ) =
1|λ−Re z|≤1

|λ− z|
, f̃(λ) =

1|λ−Re z|>1

|λ− z|
, g(λ) =

1

|λ− z|2

so that

E
∣∣∣∣S(z) ∂∂zG(x, y; z)

∣∣∣∣ ≤ E
∫∫ (

f(λ1) + f̃(λ1)
)
g(λ2) ν(dλ1)|µxy|(dλ2).

Setting Iα = Re z + [α/N, (α+ 1)/N),

E
∫∫

f(λ1)g(λ2) ν(dλ1)|µxy|(dλ2)

≤
∑

α,β∈Z

(
sup
λ∈Iα

f(λ)

)(
sup
λ∈Iβ

g(λ)

)
E [ν(Iα)|µxy|(Iβ)]

≤ C

N2

∑
α,β∈Z

(
sup
λ∈Iα

f(λ)

)(
sup
λ∈Iβ

g(λ)

)
,

where we used the second part of Lemma 3.1 to bound the expectations. Since f and g
are symmetric about Re z and monotone decreasing in |λ−Re z|, the previous chain of
inequalities continues

≤ 4C

N2

∑
α,β∈N0

f
(
Re z +

α

N

)
g

(
Re z +

β

N

)

= CN

N∑
α=0

1√
α2 + (N Im z)2

∑
β∈N0

1

β2 + (N Im z)2

≤ CN

(
logN +

1

N Im z

)(
1 +

1

(N Im z)2

)
.

Finally, because |f̃ | ≤ 1, the remaining summands satisfy

E
∫∫

f̃(λ1)g(λ2) ν(dλ1)|µxy|(dλ2) ≤ E
∫

1

|λ− z|2
|µxy|(dλ) ≤

C

Im z
,

arguing as in (3.4).

Evaluating the trace defining S(z) in the site basis,

S(z) =
1

N

∑
y

G(y, y; z),

we may average the bounds furnished by Theorem 3.2 to obtain the following corollary,
which gives the corresponding bounds for the drift of diffusion of the trace of the
resolvent.

Corollary 3.3. There exists C <∞, depending only on CV , such that

E
∣∣∣∣ 1

2N

∂2

∂z2
S(z)

∣∣∣∣ ≤ C

N(Im z)2

and

E
∣∣∣∣S(z) ∂∂zS(z)

∣∣∣∣ ≤ CN

(
logN +

1

N Im z

)(
1 +

1

(N Im z)2

)
+

C

Im z

for all z ∈ C+.
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Phase transition in the ultrametric ensemble

We conclude this section with a bound in the same spirit as the previous results for a
term which does not explicitly occur in the resolvent flow, but which will nevertheless
prove useful in controlling the diffusion of (2.5).

Theorem 3.4. There exists C <∞, depending only on CV , such that

E [ImG(x, x; z) ImS(z)] ≤ C

(
1 +

1

N Im z

)2

for all x ∈ {1, . . . , N} and z ∈ C+.

Proof. The proof follows along the same lines as that of Theorem 3.2. Setting Iα =

Re z + [α/N, (α+ 1)/N), letting

Pz(λ) = Im
1

λ− z
=

Im z

(λ− Re z)2 + (Im z)2
(3.5)

denote the rescaled Poisson kernel, and using Lemma 3.1, we see that

E [ImG(x, x; z) ImS(z)] = E
∫∫

Pz(λ1)Pz(λ2) ν(dλ1)µx(dλ2)

≤
∑

α,β∈Z

(
sup
λ∈Iα

Pz(λ)

)(
sup
λ∈Iβ

Pz(λ)

)
E [ν(Iα)µx(Iβ)]

≤ C

N2

∑
α,β∈Z

(
sup
λ∈Iα

Pz(λ)

)(
sup
λ∈Iβ

Pz(λ)

)
.

Since Pz is symmetric about Re z and monotone decreasing in |λ− Re z|, the last term is
in turn bounded by

≤ 4C

N2

∑
α,β∈N0

Pz

(
Re z +

α

N

)
Pz

(
Re z +

β

N

)
= C

∑
α∈N0

N Im z

α2 + (N Im z)2

∑
β∈N0

N Im z

β2 + (N Im z)2

≤ C

(
1 +

1

N Im z

)2

.

4 Proof of stability

In this section, we turn to the proofs of Theorems 2.1 and 2.2. We start by deriving
the stochastic differential equations (2.5) for the resolvent Rt(z) in terms of the Green
functions and the normalized trace. For this, we define the martingales

dMt(x, y; z) = − 1√
N

∑
u≤v

〈δy, Rt(z)PuvRt(z)δx〉 dBuv(t),

where

Puv =
1√

1 + δuv
(|δu〉〈δv|+ |δv〉〈δu|) =

√
N

∂

∂Buv
Ht

denotes the symmetric matrix element corresponding to {δu, δv}.
Theorem 4.1. The Green function satisfies

dGt(x, y; z) =

(
St(z)

∂

∂z
Gt(x, y; z) +

1

2N

∂2

∂z2
Gt(x, y; z)

)
dt+ dMt(x, y; z)

for all x, y ∈ {1, . . . , N} and z ∈ C+.
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Phase transition in the ultrametric ensemble

Proof. By the resolvent equation,

∂

∂Buv
Rt(z) = − 1√

N
Rt(z)PuvRt(z),

so using Itô’s Lemma shows that

dGt(x, y; z) =
1

N

∑
u≤v

〈δy, Rt(z)PuvRt(z)PuvRt(z)δx〉 dt

− 1√
N

∑
u≤v

〈δy, Rt(z)PuvRt(z)δx〉 dBuv(t)

=
1

N

∑
u≤v

〈δy, Rt(z)PuvRt(z)PuvRt(z)δx〉 dt+ dMt(x, y; z).

We expand the drift term as

1

N

∑
u<v

〈δy, Rt(z)δv〉〈δu, Rt(z)δu〉〈δv, Rt(z)δx〉+ 〈δy, Rt(z)δu〉〈δv, Rt(z)δv〉〈δu, Rt(z)δx〉

+
1

N

∑
u<v

〈δy, Rt(z)δv〉〈δu, Rt(z)δv〉〈δu, Rt(z)δx〉+ 〈δy, Rt(z)δu〉〈δv, Rt(z)δu〉〈δv, Rt(z)δx〉

+
2

N

∑
u

〈δy, Rt(z)δu〉〈δu, Rt(z)δu〉〈δu, Rt(z)δx〉

and exploit that the second term in each sum is the same as the first term with u and v
interchanged to rewrite these sums as

=
1

N

∑
u,v

〈δy, Rt(z)δv〉〈δu, Rt(z)δu〉〈δv, Rt(z)δx〉

+
1

N

∑
u,v

〈δy, Rt(z)δv〉〈δu, Rt(z)δv〉〈δu, Rt(z)δx〉.

In the second sum, we use that the spectral measures µvu are real to replace 〈δu, Rt(z)δv〉
with 〈δv, Rt(z)δu〉, which yields

= 〈δy, Rt(z)
2δx〉

1

N
TrRt(z) +

1

N
〈δy, Rt(z)

3δx〉

= St(z)
∂

∂z
Gt(x, y; z) +

1

2N

∂2

∂z2
Gt(x, y; z).

We remark that the applicability of the arguments in this paper to GUE perturbations
in place of GOE perturbations is not affected by the last part of the proof, which made
use of the fact that the spectral measures are real in the GOE case. This is because the
additional unitary symmetry ensures that the third order term involving 〈δy, Rt(z)

3δx〉
vanishes completely for the GUE flow.

By averaging the evolution of Gt(x, x; z) over x ∈ {1, . . . , N}, we obtain an equation
with a diffusion given by

Mt(z) =
1

N

∑
x

Mt(x, x; z),

which is the familiar complex Burgers equation for St(z) [2].

Corollary 4.2. The normalized trace satisfies

dSt(z) =

(
St(z)

∂

∂z
St(z) +

1

2N

∂2

∂z2
St(z)

)
dt+ dMt(z)

for all z ∈ C+.
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Phase transition in the ultrametric ensemble

We will now employ the results of Section 3 to smooth the resolvent flow of Theorem
4.1. Theorem 3.2 and Corollary 3.3 already accomplish this for the drift, but some further
analysis based on spatial averaging is required to control the diffusion and this is the
content of the next two theorems.

Theorem 4.3. There exists a constant C <∞, depending only on CV , such that

1

N

∑
y

E |Mt(x, y; z)| ≤ C

√
t

N(Im z)2

(
1 +

1

N Im z

)
for all x ∈ {1, . . . , N}, z ∈ C+ and t ≥ 0.

Proof. The quadratic variation ofMt(x, y; z) satisfies

〈Mt(x, y; z)〉 =
1

N

∫ t

0

∑
u≤v

|〈δy, Rs(z)PuvRs(z)δx〉|2 ds

≤ 2

N

∫ t

0

∑
u,v

|〈δy, Rs(z)δu〉〈δv, Rs(z)δx〉|2 ds

=
2

N

∫ t

0

(∑
u

|〈δy, Rs(z)δu〉|2
)(∑

v

|〈δv, Rs(z)δx〉|2
)
ds

=
2

N(Im z)2

∫ t

0

ImGs(x, x; z) ImGs(y, y; z) ds,

where we combined the symmetrization argument of Theorem 4.1 with the inequality
(a+ b)2 ≤ 2(a2 + b2). Hence

1

N

∑
y

E |〈Mt(x, y; z)〉| ≤
2

N(Im z)2

∫ t

0

E [ImGs(x, x; z) ImSs(z)] ds

≤ Ct

N(Im z)2

(
1 +

1

N Im z

)2

by Theorem 3.4. Combining the Burkholder-Davis-Gundy inequality with Jensen’s in-
equality for 1

N

∑
y E shows that

1

N

∑
y

E |Mt(x, y; z)| ≤C

(
1

N

∑
y

E 〈Mt(x, y; z)〉

)1/2

≤ C

√
t

N(Im z)2

(
1 +

1

N Im z

)
.

Next, we state the corresponding result for the averaged martingale

Mt(z) =
1

N

∑
x

Mt(x, x; z)

occuring in Corollary 4.2.

Theorem 4.4. There exists a constant C <∞, depending only on CV , such that

E |Mt(z)| ≤

√
Ct

N2(Im z)3

for all z ∈ C+ and t ≥ 0.
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Phase transition in the ultrametric ensemble

Proof. By symmetrization,

Mt(z) =
1

N

∑
x

Mt(x, x; z)

= − 1

N3/2

∑
u,v

1√
1 + δuv

∫ t

0

∑
x

〈δv, Rs(z)δx〉〈δx, Rs(z)δu〉 dBuv(s)

= − 1

N3/2

∑
u,v

1√
1 + δuv

∫ t

0

∂

∂z
〈δv, Rs(z)δu〉 dBuv(s),

so the quadratic variation may be expressed as

〈Mt(z)〉 =
1

N3

∫ t

0

∑
u,v

1

1 + δuv

∣∣∣∣ ∂∂z 〈δv, Rs(z)δu〉
∣∣∣∣2 ds

≤ 1

N3(Im z)2

∫ t

0

∑
u,v

|〈δv, Rs(z)δu〉|2 ds

=
1

N2(Im z)3

∫ t

0

ImSs(z) ds.

Using, in order, the Burkholder-Davis-Gundy inequality, Jensen’s inequality, and the
Wegner estimate (3.2) yields

E |Mt(z)| ≤ C (E 〈Mt(z)〉)1/2

≤ C

(
1

N2(Im z)3

∫ t

0

E ImSs(z) ds

)1/2

≤

√
Ct

N2(Im z)3
.

The proofs of Theorems 2.1 and 2.2 now reduce to plugging the various previous
estimates into the integrated forms of Theorem 4.1 and Corollary 4.2. For the sake of
completeness, we illustrate this with the proof of Theorem 2.2, but omit the very similar
proof of Theorem 2.1.

Proof of Theorem 2.2. By Theorem 4.1,

1

N

∑
y

E |Gt (x, y;E + iη)−G0 (x, y;E + iη)|

≤ 1

N

∑
y

∫ t

0

E
∣∣∣∣Ss(z)

∂

∂z
Gs(x, y; z) +

1

2N

∂2

∂z2
Gs(x, y; z)

∣∣∣∣ ds
+

1

N

∑
y

E |Mt(x, y; z)|,

which by Theorems 3.2 and 4.3 is bounded by

≤ CtN

(
logN +

1

Nη

)(
1 +

1

(Nη)2

)
+
Ct

η
+

Ct

Nη2

+ C

√
t

Nη2

(
1 +

1

Nη

)
.

After taking a factor N−c/2 from t ≤ N−(1+c) to control the logN term, each term is
dominated by either 1 + (Nη)−1 or 1 + (Nη)−3, which proves the theorem.
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Phase transition in the ultrametric ensemble

5 Proof of Poisson statistics

In the remainder of this paper, we will show how to apply Theorems 2.1 and 2.2 to
the ultrametric ensemble Hn defined in (1.2), thereby obtaining Theorems 1.1 and 1.2.
When c > 0, the limit limn→∞ Zn,c ∈ (0,∞) exists, and thus we may drop the normalizing
constant Zn,c from the definition of Hn without any loss of generality. Similarly to our

approach in [38], we will prove Theorem 1.1 by approximating Hn ≡
∑n

r=0 2
− 1+c

2 rΦn,r

with the truncated Hamiltonian

Hn,m =

m∑
r=0

2−
1+c
2 rΦn,r, (5.1)

which has the property that, for any m ≤ k ≤ n,

Hn,m =

2n−k⊕
j=1

H
(j)
k,m, (5.2)

where each H(j)
k,m is an independent copy of Hk. Therefore

µn,m(f) =
∑

λ∈σ(Hn,m)

f(2n(λ− E))

consists of 2n−m independent components, a fact whose relevance to Theorem 1.1 is
contained in the following characterization of Poisson point processes.

Proposition 5.1. Let {µn,j | j = 1, . . . , Nn} be a collection of point processes such that:

1. The point processes {µn,1, . . . , µn,Nn} are independent for all n ≥ 1.

2. If B ⊂ R is a bounded Borel set, then

lim
n→∞

sup
j≤Nn

P(µn,j(B) ≥ 1) = 0.

3. There exists some c ≥ 0 such that if B ⊂ R is a bounded Borel set with |∂B| = 0,
then

lim
n→∞

Nn∑
j=1

P(µn,j(B) ≥ 1) = c|B|

and

lim
n→∞

Nn∑
j=1

P(µn,j(B) ≥ 2) = 0.

Then, µn =
∑

j µn,j converges in distribution to a Poisson point process with intensity c.

We recall [1] that a sequence of point processes µn converges in distribution to µ
whenever

lim
n→∞

E e−µn(Pz) = E e−µ(Pz)

for all z ∈ C+, where Pz is the rescaled Poisson kernel

Pz(λ) = Im
1

λ− z
=

Im z

(λ− Re z)2 + (Im z)2
. (5.3)

Hence, Theorem 1.1 follows by furnishing a sequence mn such that Proposition 5.1
applies to µn,mn

and
lim

n→∞
E e−µn,mn (Pz) = lim

n→∞
E e−µn(Pz) (5.4)

for all z ∈ C+.
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The difference Hn−Hn,n−1 =
√
tΦn,n is a Gaussian perturbation with time parameter

t = 2−(1+c)n. Therefore, Theorem 2.1 shows that there exists Cz < ∞ such that for all
` ≥ n we have

1

2n
E
∣∣Tr (Hn − z`)

−1 − Tr (Hn,n−1 − z`)
−1
∣∣ ≤ Cz 2

− c
2n−1

(
1 + 23(`−n)

)
≤ Cz 2

− c
2n 23(`−n) (5.5)

with z` = E + 2−`z. Our strategy in achieving (5.4) thus consists of applying (5.5) to the
finite-volume density of states measures

νn(f) = 2−nTr f (Hn) , νn,m(f) = 2−nTr f (Hn,m)

in an iterative fashion.

Theorem 5.2. There exist Cz <∞ and δ > 0 such that

E |νn (Pz`)− νn,m (Pz`)| ≤ Cz 2
3(`−(1+δ)m)

for all ` ≥ n.

Proof. The estimate (5.5) proves that

E |νk (Pz`)− νk,k−1 (Pz`)| ≤ Cz 2
3(`−(1+δ)k) (5.6)

with δ = c/6 when ` ≥ k. Since νn − νn,m is given by a telescopic sum,

νn(Pz`)− νn,m(Pz`) =

n∑
k=m+1

(νn,k(Pz`)− νn,k−1(Pz`)) ,

the decomposition (5.2) implies that

νn,k(Pz`)− νn,k−1(Pz`) = 2−(n−k)
2n−k∑
j=1

(νk(Pz`)− νk,k−1(Pz`)) . (5.7)

Applying (5.6) to each term in (5.7) yields

E |νn (Pz`)− νn,m (Pz`)| ≤
n∑

k=m+1

Cz 2
3(`−(1+δ)k) ≤ Cz 2

3(`−(1+δ)m).

Theorem 5.2 has two important implications for the measures µn and µn,m which are
based on the identities µn(Pz) = νn (Pzn) and µn,m(Pz) = νn,m (Pzn). The first of these
enables us to find a suitable sequence µn,mn

satisfying (5.4).

Corollary 5.3. There exists a sequence mn with mn → ∞ and n−mn → ∞ such that

lim
n→∞

E |µn(Pz)− µn,mn(Pz)| = 0

for all z ∈ C+.

Proof. Since δ > 0, there exists a sequence mn with mn → ∞, n − mn → ∞ and
n− (1 + δ)mn → −∞. By applying Theorem 5.2 with ` = n, we obtain

E |µn(Pz)− µn,mn(Pz)| ≤ Cz2
3(n−(1+δ)mn) → 0.
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Phase transition in the ultrametric ensemble

To finish the proof of Theorem 1.1, we need to show that µn,mn
satisfies the hypothesis

of Proposition 5.1. By (5.2), µn,mn
is a sum of point processes

µn,mn
=

2n−mn∑
j=1

µmn,j

with independent µmn,j . If B ⊂ R is a bounded Borel set, the theorem of Combes-

Germinet-Klein [8] asserts that P(Tr 1B(Hm) ≥ `) ≤ (C 2m|B|)` /`! and hence for any
` ≥ 0:

P(µmn,j(B) ≥ `) ≤ (C|B| 2mn−n)`

`!
. (5.8)

Since n−mn → ∞, the first hypothesis of Proposition 5.1 follows. Writing

X(n, `) =

2n−m∑
j=1

P(µmn,j(B) ≥ `),

(5.8) implies

X(n, `) ≤ 2n−mn
(C|B| 2mn−n)`

`!
→ 0

when ` ≥ 2. In particular, X(n, 2) → 0 and the last hypothesis of Proposition 5.1 is
satisfied. It remains to prove the remaining hypothesis of Proposition 5.1, which is
the second important consequence of Theorem 5.2 and is contained in the following
theorem.

Theorem 5.4. Let B ⊂ R be a bounded Borel set. Then,

lim
n→∞

X(n, 1) = ν(E)|B|.

Proof. By (5.2) we have E νp,n = E νn for any p ≥ n, and so we conclude from Theorem 5.2
with ` = n that

lim
n→∞

|E [νn(Pzn)− ν(Pzn)]| = lim
n→∞

lim
p→∞

|E [νn(Pzn)− νp(Pzn)]|

= lim
n→∞

lim
p→∞

|E [νp,n(Pzn)− νp(Pzn)]|

≤ lim
n→∞

Cz 2
−3δn = 0.

This shows that the measures λn(B) = 2nν(2−nB + E) satisfy

lim
n→∞

(Eµn(Pz)− λn(Pz)) = 0

and Corollary 5.3 implies that also

lim
n→∞

(Eµmn
(Pz)− λn(Pz)) = 0. (5.9)

For any bounded Borel set B ⊂ R, the indicator 1B is in the L1-closure of the finite
linear combinations from the set {Pz | z ∈ C+} and the measures Eµn are absolutely
continuous with uniformly bounded densities by the Wegner estimate. Together, these
two observations yield that (5.9) is valid for any bounded Borel set B ⊂ R. Moreover,
since E is a Lebesgue point of ν,

lim
n→∞

λn(B) = lim
n→∞

2nν(2−nB + E) = ν(E)|B|,
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and hence we have shown that

lim
n→∞

Eµmn
(B) = ν(E)|B|. (5.10)

Since µnm,j(B) takes values in the non-negative integers

lim
n→∞

X(n, 1) = lim
n→∞

2n−m∑
j=1

Eµnm,j(B)− lim
n→∞

∑
`≥2

X(n, `)

so (5.8), (5.10) and the dominated convergence theorem give

lim
n→∞

X(n, 1) = lim
n→∞

2n−m∑
j=1

Eµnm,j(B) = ν(E)|B|.

6 Proof of eigenfunction localization

In this section, we prove Theorem 1.2 by comparing the eigenfunctions of Hn with the
obviously localized eigenfunctions of Hn,m. Nevertheless, we again start by considering
a more general N ×N random matrix H = T + V with a potential satisfying (2.3) and
proving an implication of local resolvent bounds for the eigenfunction correlator

Q(x, y;W ) =
∑

λ∈σ(H)∩W

|ψλ(x)ψλ(y)|

in some mesoscopic spectral window

W =
[
E0 −N−(1−w), E0 +N−(1−w)

]
with w > 0.

Theorem 6.1. Let η = N−(1+`) with ` > w > 0 and let Y ⊂ {1, . . . , N}. Then, there exists
a constant C <∞, depending only on CV , such that

P

∑
y∈Y

Q(x, y;W ) >
2

π

∑
y∈Y

∫
W

|ImG(x, y;E + iη)| dE +
logN

Nw

 ≤ CNw−`

for all x ∈ {1, . . . , N}.
The proof of Theorem 6.1 is based on the following two lemmas, the first of which is

formulated in terms of the the Poisson kernel Pz defined in (3.5).

Lemma 6.2. There exists a constant C <∞, depending only on CV , such that

E
∑
y

|µxy| (1W c(1W ∗ Piη)) ≤ CNη
(
1 + log

√
1 + η−2|W |2

)
for all intervals W ⊂ R and η > 0.

Proof. By spectral averaging (Lemma 3.1),∑
y

E |µxy|(1W c(1W ∗ Piη)) ≤ CN

∫
W c

(1W ∗ Piη)(λ) dλ

= CN

∫
W c

∫
W

η

(u− v)2 + η2
du dv

= CNη

∫
η−1W c

∫
η−1W

1

1 + (u− v)2
du dv.
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Without loss of generality, we may assume that η−1W = [−a, a], so∫
η−1W c

∫
η−1W

1

1 + (u− v)2
du dv =

∫
η−1W c

arctan(a− v)− arctan(v + a) dv

= 2

∫ ∞

a

arctan(v + a)− arctan(v − a) dv

since arctan v is an odd function of v. After the appropriate translations, this last integral
is

= 2 lim
R→∞

∫ R+a

R−a

arctan v dv − 2

∫ 2a

0

arctan v dv

= 2

(
2πa

2
−
∫ 2a

0

arctan v dv

)
= 2a

(π
2
− arctan(2a)

)
+ log

√
1 + 4a2.

The proof is completed by noting | arctan(x)−π/2| ≤ 1/x and inserting a = η−1|W |/2.

The second lemma needed for the proof of Theorem 6.1 controls the generic spacing
between the eigenvalues of H in the interval W .

Lemma 6.3. Let W ⊂ R be an interval and |W | ≥ S > 0. Then, there exists a constant
C <∞, depending only on CV , such that the event

E =

{
min

λ∈σ(H)∩W
d (λ, ∂W ∪ σ(H) \ {λ}) > 2S

}
satisfies

P(Ec) ≤ CSN(1 + |W |N).

Proof. We split W into a disjoint union of adjacent intervals

W = I1 ∪ · · · ∪ Ip

with |Ik| = 2S for 1 ≤ k ≤ p − 1 and |Ip| ≤ 2S, and let Ĩk denote the fattened interval
Ik + [−2S, 2S]. Then Ec can only occur if

1. Ĩk contains at least two eigenvalues of H for some 1 ≤ k ≤ p, or

2. ∂W + [−2S, 2S] contains an eigenvalue of H.

Therefore, the Wegner and Minami estimates show that

P(Ec) ≤ P (|(∂W + [−2S, 2S]) ∩ σ(H)| ≥ 1) +

p∑
k=1

P
(∣∣∣Ĩk ∩ σ(H)

∣∣∣ ≥ 2
)

≤ CSN + Cp (SN)
2
,

and since p ≤ 2|W |/S, this proves the lemma.

Proof of Theorem 6.1. Let S = 8
πη so that the event E defined in Lemma 6.3 satisfies

P(Ec) ≤ CNw−`.

Since the spectral measures µxy are real, we can construct the function

f(E) =
∑

λ∈σ(H)∩W

sgn [ψλ(x)ψλ(y)] Iλ(E),
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where Iλ denotes the indicator function of the interval [λ− S, λ+ S]. We will prove that
on the event E we have ‖f‖∞ ≤ 1 and∑

y∈Y

|µxy|(W ) ≤ 2

π

∑
y∈Y

µxy(f ∗ Piη) +
∑
y

|µxy| (1W c(1W ∗ Piη)) , (6.1)

so, since

µxy(f ∗ Piη) =

∫∫
f(E)Pλ+iη(E) dE µxy(dλ)

=

∫
f(E)

∫
PE+iη(λ)µxy(dλ) dE

≤ ‖f‖∞
∫
W

|ImG(x, y;E + iη)| dE,

the theorem follows from Lemma 6.2 and Markov’s inequality.
On E , the intervals Iλ are disjoint and contained in W , so |f | ≤ 1W and, in particular,

‖f‖∞ ≤ 1. To verify (6.1), we note that

µxy(f ∗ Piη) = µxy (1W (f ∗ Piη)) + µxy (1W c(f ∗ Piη))

≥
∑

λ∈σ(H)∩W

ψλ(x)ψλ(y)(f ∗ Piη)(λ)− |µxy| (1W c(1W ∗ Piη))

on E and hence it remains only to prove that

sgn [ψλ(x)ψλ(y)] (f ∗ Piη)(λ) ≥
π

2

for all λ ∈ σ(H) ∩W . This is based on the fact that∫
(1− Iλ(E))Pλ+iη(E) dE ≤ 2η

S
=
π

4

and hence ∫
Iλ(E)Pλ+iη(E) dE ≥ π −

∫
(1− Iλ(E))Pλ+iη(E) dE ≥ 3π

4
.

If λ ∈ σ(H) ∩W with sgn [ψλ(x)ψλ(y)] = 1, it follows that

(f ∗ Piη)(λ) =

∫
f(E)Pλ+iη(E) dE

≥
∫
Iλ(E)Pλ+iη(E) dE −

∫
(1− Iλ(E))Pλ+iη(E) dE

≥ π

2
,

and similarly

(f ∗ Piη)(λ) ≤ −π
2

if sgn [ψλ(x)ψλ(y)] = −1.

The proof of the last theorem made use of the fact that the spectral measures µxy are
always real for the GOE flow. It is possible to extend this result to models with complex
off-diagonal spectral measures, such as the GUE flow, by using the fact that

〈δy, Im (H − z)−1δx〉+ 〈δx, Im (H − z)−1δy〉 = ImG(x, y; z) + ImG(y, x; z),

but we omit these complications here.
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With Theorem 6.1 in hand, we now turn to the proof of Theorem 1.2. As in Section 5,
we drop the normalizing constant Zn,c from the definition of Hn. The core of this
argument again consists of resolvent bounds for Gaussian perturbations, and thus we
consider the Green functions

Gn(x, y; z) = 〈δy, (Hn − z)−1δx〉, Gn,m(x, y; z) = 〈δy, (Hn,m − z)−1δx〉.

If η = 2−(1+`)n for some ` > 0, Theorem 2.2 proves that there exists C <∞ such that

2−k
∑

y∈Bk(x)

E |Gk (x, y;E + iη)−Gk,k−1 (x, y;E + iη)|

≤ C 2−
c
2k
(
1 + 23((1+`)n−k)

)
= C 23(1+`)n−3(1+δ)k

with δ = c/6 whenever k ≤ n. Iterating this result, we see that

2−n
∑
y∈Bn

E |Gn (x, y;E + iη)−Gn,m (x, y;E + iη)|

≤ 2−n
n∑

k=m+1

∑
y∈Bn

E |Gn,k (x, y;E + iη)−Gn,k−1 (x, y;E + iη)|

= 2−n
n∑

k=m+1

∑
y∈Bk(x)

E |Gk (x, y;E + iη)−Gk,k−1 (x, y;E + iη)|

≤ 2−n
n∑

k=m+1

2kC 23(1+`)n−3(1+δ)k ≤ C 2(3(1+`)−1)n 2−(3(1+δ)−1)m.

Since δ > 0, we can choose ` > 0, ε ∈ (0, 1), and w ∈ (0, `) such that

2µ := (1− ε)(3(1 + δ)− 1)− (3(1 + `)− 1)− w > 0.

Thus, setting mn = (1− ε)n and

W =
[
E − 2−(1−w)n, E + 2−(1−w)n

]
,

and using that Gn,m(x, y; z) = 0 if y /∈ Bm(x) show that∑
y∈Bn\Bmn (x)

E
∫
W

|ImGn (x, y;E + iη)| dE ≤ C 2−2µn.

Applying Markov’s inequality, we arrive at

P

 ∑
y∈Bn\Bmn (x)

∫
W

|ImGn (x, y;E + iη)| dE > 2−µn

 ≤ C 2−µn,

so Theorem 1.2 follows from Theorem 6.1, which says that∑
y∈Bn\Bmn (x)

Qn(x, y;W ) ≤
∑

y∈Bn\Bmn (x)

∫
W

|ImGn(x, y;E + iη)| dE +
log 2n

2wn

with probability 1−O
(
2(w−`)n

)
.
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A Proofs for the Rosenzweig-Porter model

Proof of Theorem 1.5. As N → ∞, the random measure defined by

µN,0(f) =
∑

λ∈σ(H0)

f(N(λ− E))

converges in distribution to a Poisson point process with intensity %(E). Setting zN =

E + z/N , a simple calculation yields

µN (Pz) = ImSt(zN ).

Thus, ∣∣∣E e−µN (Pz) − E e−µN,0(Pz)
∣∣∣ ≤ E |St(zN )− S0(zN )| ≤ CN−c/2,

which shows that the characteristic functionals of µN and µN,0 asymptotically agree on
the set {Pz : z ∈ C+} whose linear span is dense in C0. This proves the first point.

For the second assertion, choose ` > w > 0 and µ0 > 0 such that

3`+ w + 2µ0 ≤ c/2.

Since G0(x, y; z) = 0 for x 6= y, Theorem 2.2 shows that with η = N−(1+`) we have

E
∑
y 6=x

∫
W

|ImGt(x, y;E + iη)| dE ≤ C|W |NN−c/2(ηN)−3

≤ CNw+3`−c/2 ≤ N−2µ0 .

By Markov’s inequality,

P

∑
y 6=x

∫
W

|ImGt(x, y;E + iη)| dE ≥ N−µ0

 ≤ CN−µ0

so choosing 0 < µ < min{w, µ0} and κ = min{w − `, µ0}, Theorem 6.1 shows that

P

∑
y 6=x

QN (x, y;W ) > N−µ

 ≤ CN−κ.
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