
Electron. Commun. Probab. 23 (2018), no. 65, 1–8.
https://doi.org/10.1214/18-ECP167
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

On the maximum of the discretely sampled fractional

Brownian motion with small Hurst parameter*

Konstantin Borovkov† Mikhail Zhitlukhin‡

Abstract

We show that the distribution of the maximum of the fractional Brownian motion BH

with Hurst parameter H → 0 over an n-point set τ ⊂ [0, 1] can be approximated by the
normal law with mean

√
lnn and variance 1/2 provided that n → ∞ slowly enough

and the points in τ are not too close to each other.
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1 Introduction

Let BH :={BH
t }t≥0 be the fractional Brownian motion (fBm) with the Hurst index

H ∈ (0, 1]. Recall that the fBm is a zero-mean continuous Gaussian process with the
covariance function

EBH
s BH

t =
1

2

(
s2H + t2H − |t− s|2H

)
, s, t ≥ 0.

Alternatively, BH can be defined as a continuous Gaussian process with stationary
increments such that BH

t has zero mean and variance t2H . In particular, W := B1/2 is
the standard Brownian motion that has independent increments. The increments of BH

are positively correlated if H > 1/2 and negatively correlated if H < 1/2.
The fBm has found use in many models in a number of applied fields, including

hydrology, teletraffic, climate and weather modelling, finance and statistical inference,
among the key reasons for that being its self-similarity, Gaussianity and “long memory”
properties (see, e.g., the survey in the preface to the monograph [7]). In particular, the
processes BH with small H (the case we are focussing on in this paper) have recently
been used to model stock price volatility [1, 5]. An important functional of the fBm is its
maximum

BH
T := max

0≤t≤T
BH

t

on a finite time interval [0, T ], T > 0, and, as in the case of the usual Brownian motion,
it would be interesting to know its distribution (or a suitable approximation thereof).
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Maximum of the fractional Brownian motion

Unfortunately, apart from the case of the standard Brownian motion (H = 1/2) and the
degenerate case H = 1 (where B1

t = ζt, t ≥ 0, for a standard normal random variable ζ),

there is no known closed form expression for the distribution of BH
T . As in practice one

usually deals with discretely sampled data, what would be of real practical interest
is actually the behavior of the distribution of the maximum of the fBm sampled on a
discrete time grid on [0, T ].

In this paper, we consider the case when H vanishes and deal with the maxima of the
fBm BH sampled on a (generally speaking, non-uniform) discrete time grid. Recall that
in that case the finite-dimensional distributions of BH converge to those of an “anchored”
(by “pinning” its time t = 0 value at zero by the respective random translation) family of
i.i.d. standard normal variables (see, e.g., [2]):

{BH
t }t≥0

f.d.d.−→ {ξt}t≥0 as H → 0, (1.1)

where ξt := (ζt − ζ0)/
√
2, {ζt}t≥0 is a family of independent standard normal random

variables. It is clear from (1.1) that BH
T

P−→ ∞ as H → 0.
However, taking an arbitrary fixed finite subset

τ = {ti}ni=1 ⊂ [0, T ], where t1 < t2 < · · · < tn, (1.2)

and using the generic notation

x := max
1≤i≤n

xi for a vector x ∈ Rn,

one has from relation (1.1) that, for the random vector

BH,τ := (BH
t1 , B

H
t2 , . . . , B

H
tn) ∈ R

n,

holds the following convergence in distribution:

BH,τ d−→ (ζn − ζ0)/
√
2 as H → 0, (1.3)

where ζn := (ζ1, . . . , ζn) follows the standard normal distribution in Rn. One can easily
see that the distribution function Fn(x) of the random variable on the RHS of (1.3) is
given by the convolution Fn(x) = (Φn ∗ Φ)(

√
2x), x ∈ R, where Φ is the standard normal

distribution function.
Now what can be said about the behavior of BH,τ when simultaneously H → 0 and

the number n of points in the partition τ tends to infinity? One can conjecture that, if
n → ∞ slowly enough (so that the dependence between the components of the vector
BH,τ decays sufficiently quickly), then the distribution of BH,τ would still be close to
that of the RHS of (1.3). The behavior of the distribution of ζn as n → ∞ has been known
since the work of Fisher and Tippett [3] who demonstrated that, taking an :=

√
2 lnn and

bn :=
√
2 lnn− (ln lnn+ ln(4π))/(2

√
2 lnn), one has

an(ζn − bn)
d−→ G as n → ∞, (1.4)

where the limiting random variable G follows the Gumbel distribution Λ(x) = e−e−x

,

x ∈ R. In fact, the uniform distance between the distribution functions of the LHS
of (1.4) and Λ was shown to be of the order of 1/ lnn [6]. Choosing slightly different
sequences

bn := Φ−1(1− 1/n), an := bn + 1/bn, (1.5)

one can show that that distance admits an asymptotic upper bound of the form 1/(3 lnn)

(see [4]).

ECP 23 (2018), paper 65.
Page 2/8

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP167
http://www.imstat.org/ecp/


Maximum of the fractional Brownian motion

So one can expect a first order approximation of the form
√
lnn + ζ0/

√
2 to hold

true for the maximum BH,τ as n → ∞, provided that H → 0 fast enough for the given
decay rate of the distance between the points ti. Our main result below confirms that
conjecture and specifies conditions under which it holds. Without loss of generality, we
consider the case T = 1 only, since the case of arbitrary T can be easily reduced to the
former using the self-similarity property of the fBm (recall that, for any fixed α > 0, the
processes {BH

t }t≥0 and {α−HBH
αt}t≥0 have the same distribution; see, e.g., Section 1.2

in [7]).

2 The main result

Denote by
st
≤ the stochastic order relation for random variables: we write ξ

st
≤ η iff

P(ξ ≤ x) ≥ P(η ≤ x), x ∈ R, and ξ
st
≥ η iff η

st
≤ ξ. By

δ(τ) := min
1≤i≤n

(ti − ti−1), where t0 := 0,

we denote the minimal distance between the points of the finite subset τ (cf. (1.2)). As
usual, oP (1) denotes a sequence of random variables converging to zero in probability.
Recall that {ζt}t≥0 denotes a family of independent standard normal random variables.

Theorem. Let Hk ∈ (0, 1] be such that Hk → 0 as k → ∞, and τk = {tk,i}nk
i=1 be a

sequence of subsets of (0, 1], tk,1 < · · · < tk,nk
, such that nk → ∞, δk := δ(τk).

(i) If Hk(lnnk)
1/2 → 0 and Hk ln(nkδk) → 0 as k → ∞ then

BHk,τk
st
≤

√
lnnk + ζ0/

√
2 + oP (1). (2.1)

(ii) If Hk(lnnk)
2 → 0 and Hk ln δk → 0 as k → ∞, then

BHk,τk
st
≥

√
lnnk + ζ0/

√
2 + oP (1).

Thus, under the assumptions from part (ii), one has

BHk,τk −
√
lnnk

d−→ ζ0/
√
2 as k → ∞.

Note also that the conditions Hk ln(nkδk) → 0 and Hk ln δk → 0 from parts (i) and (ii),
respectively, are automatically met in the case of “uniform grids” τk (when δ(τk) = 1/nk).

Simulations indicate that in fact, in accordance with (1.4), a better approximation
to the law of BHk,τk is given by the distribution function Dn(x) := (Λn ∗ Φ)(

√
2x), the

convolution being that of the scaled version of the Gumbel law Λn(x) = Λ(an(x − bn))

with the standard normal distribution. The curves in Fig. 1 are the fitting normal density
(dashed lines) and the density of Dn (solid lines), where an, bn were chosen according
to (1.5), overlayed upon the histograms constructed from the respective simulations.
However, as one see from the proof below, the analysis in the present note can provide
bounds for the desired maxima only up to the terms of the form oP (1) (see, e.g., (3.5),
(3.11) etc.). Establishing the validity of the conjectured second order approximation
analytically appears to be a much harder task and may require more refined techniques.

3 The proof of the theorem

Let W be a standard Brownian motion process independent of the family of random
variables {ζt}t≥0. Set sk,i := (tk,i)

2Hk , i = 1, . . . , nk, and introduce auxiliary random
vectors Xk, Y k ∈ Rnk with the respective components

Xk
i := (s

1/2
k,i ζi −Wsk,i

)/
√
2, Y k

i := (ζi −Wsk,i
)/
√
2, i = 1, 2, . . . nk.
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Maximum of the fractional Brownian motion

Figure 1: The histograms show the empirical distributions of BH,τ for 105 simulated paths
of the fBm BH with the uniform partition τ = {i/n}1≤i≤n and H = (lnn)−2. The dashed
lines show the approximating normal densities, and the solid lines the approximations
by the convolutions of the scaled Gumbel and normal densities.

To establish the upper bound stated in the theorem, we will first show that the maximum
BHk,τk is stochastically dominated by Xk, while the latter is “almost dominated” by Y k.

Next we will demonstrate that the maximum of Y k
i ’s is most likely attained at a value

of i such that the respective sk,i is close to 1. As the trajectories of W are continuous,
that would mean that the respective value Wsk,i

would be quite close to the standard
normal variable W1 (independent of the ζt’s). Finally, appealing to (1.4) will complete
the derivation of the upper bound.

To get the lower bound, we show that the maximum of the components of the “per-
turbed” vector BH,τ + q

1/2
k ζnk (with a properly chosen qk such that qk lnnk → 0) “almost

dominates” Xk. The proof is then completed by constructing a lower bound for the
latter maximum showing that, with probability tending to one, it “almost stochastically
dominates” ζk + ζ0 and again appealing to (1.4).

Now we will turn to the details of the argument proving the theorem.

Proof. (i) As pointed out above, first we show that

BHk,τk
st
≤ Xk, (3.1)

then give an upper bound for Xk in terms of Y k, and finally demonstrate that that bound
is of the form of the RHS of (2.1).

Clearly, EXk = 0 and

Cov (Xk
i , X

k
j ) = 2−1

(
s
1/2
k,i s

1/2
k,j Cov (ζi, ζj) + Cov (Wsk,i

,Wsk,j
)
)

= 2−1
(
sk,iδij + sk,i ∧ sk,j

)
, 1 ≤ i, j ≤ nk,

where δij is Kronecker’s delta. Therefore,

EXk
i = EBHk,τk

i , VarXk
i = VarBHk,τk

i , 1 ≤ i ≤ nk, (3.2)

and, for 1 ≤ i < j ≤ nk, one has

Cov (Xk
i , X

k
j ) =

1
2sk,i <

1
2

(
sk.i + sk,j − sk,j(1− tk,i/tk,j)

2Hk
)

= Cov (BHk,τk
i , BHk,τk

j ).
(3.3)

Now (3.1) immediately follows from Slepian’s lemma [8].
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Maximum of the fractional Brownian motion

Next let i(k) := argmax1≤i≤nk
Xk

i , which is clearly well-defined a.s. Since sk,i ≤ 1, it
is easy to see that

Xk ≤ Y k1(ζi(k) ≥ 0)− 2−1/2Wsk,i(k)
1(ζi(k) < 0). (3.4)

We will now show that, as k → ∞,

Y k ≤
√
lnnk −W1/

√
2 + oP (1). (3.5)

The assumption that Hk(lnnk)
1/2 → 0 ensures that it is possible to choose a sequence

εk > 0 such that the following relations hold as k → ∞:

εk → 0, mk := εknk ∈ N,

| ln εk|
lnnk

→ 0,
| ln εk|√
lnnk

→ ∞, (3.6)

mk → ∞, Hk| ln εk| → 0. (3.7)

Indeed, one can set εk := e−Nk

√
lnnk with a quantity Nk → ∞ such that Nk(lnnk)

1/2 =

o
(
H−1

k ∧ lnnk

)
(for example, Nk := (Hk(lnnk)

1/2)−1/2 ∧ (lnnk)
1/4, adjusted if necessary

to ensure that mk ∈ N).
Now set Ck,1 := {i : 1 ≤ i ≤ mk}, Ck,2 := {i : mk < i ≤ nk} and let

Mk,j := max
i∈Ck,j

(
ζi −Wsk,i

)
, j = 1, 2,

so that Y k = (Mk,1 ∨Mk,2)/
√
2.

To bound Mk,1, note that

xk :=
√

2 lnmk =

√
2 lnnk

(
1 +

ln εk
lnnk

)
≤

√
2 lnnk

(
1 +

ln εk
2 lnnk

)
=

√
2 lnnk − 2hk,

where in view of (3.6) one has, as k → ∞,

hk := | ln εk|/(2
√
2 lnnk) → ∞. (3.8)

Using the standard Mills’ ratio bound for the normal distribution, we have

P(ζmk > xk) ≤ mkP(ζ1 > xk) ≤
mke

−x2
k/2

√
2πxk

=
1√

4π lnmk

→ 0 (3.9)

in view of (3.7). Setting W1 := min0≤t≤1 Wt, we obtain that

P(Mk,1 >
√
2 lnnk − hk) ≤ P

(
ζmk −W1 >

√
2 lnnk − hk

)
≤ P

(
ζmk >

√
2 lnnk − 2hk

)
+P(−W1 > hk) → 0 (3.10)

by (3.8) and (3.9).
Now we turn to the term Mk,2. As W has continuous trajectories, there exist random

times θk ∈ [sk,mk
, 1], which depend on the trajectory of W , such that, as k → ∞,

Mk,2 = max
mk<i≤nk

ζi −Wθk ≤ ζnk −W1 + oP (1)=
√
2 lnnk −W1 + oP (1), (3.11)

where the second last relation holds as Wθk → W1 because θk → 1 since

sk,mk
≥ (mkδk)

2Hk = ε2Hk

k (nkδk)
2Hk → 1 (3.12)
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due to the assumption that Hk ln(nkδk) → 0 and (3.7), while the last relation in (3.11) is
an obvious consequence of (1.4).

Next, in view of (3.10) and (3.11),

P(Mk,1 > Mk,2) ≤ P
(
Mk,1 >

√
2 lnnk − hk

)
+P

(
Mk,2 <

√
2 lnnk − hk

)
= o(1) +P(W1 + oP (1) > hk) = o(1)

since hk → ∞ as k → ∞. Hence Mk,1 ∨Mk,2 ≤
√
2 lnnk −W1 + oP (1), which proves (3.5).

Now observe that obviously

−Wsk,i(k)
≤

√
2 lnnk −W1 + oP (1)

and W1
d
= −ζ0. That, together with (3.1), (3.4) and (3.5), completes the proof of part (i)

of the theorem.

(ii) Consider the differences

dk,ij :=
(
CovBHk,τk − CovXk

)
ij
≥ 0, 1 ≤ i, j ≤ nk

(cf. (3.2), (3.3)). Note that dk,ii = 0, 1 ≤ i ≤ nk, by (3.2), and that for i < j one has

dk,ij =
1

2

[( j

nk

)2Hk

−
(j − i

nk

)2Hk
]
≤ 1

2

[
1−

( 1

nk

)2Hk
]
≤ Hk lnnk := qk

since 1 − 1/x ≤ lnx for all x > 0. Denoting by Ik := (δij) and Jk := (1) the unit and
all-ones (nk × nk)-matrices, respectively, we conclude that

(CovBHk,τk + qkIk)ij ≤ (CovXk + qkJk)ij , 1 ≤ i, j ≤ nk, (3.13)

with equalities holding for i = j.
On the LHS of (3.13) we have got the entries of the covariance matrix of the random

vector BHk,τk + q
1/2
k ζnk (assuming that the family of random variables {ζt}t≥0 is indepen-

dent of BHk ), whereas on the RHS are those for the vector Xk + q
1/2
k ζ0 (addition with a

scalar is understood in the component-wise sense). Since the means of those random
vectors are zeros, by Slepian’s lemma one has

BHk,τk + q
1/2
k ζnk

st
≥ Xk + q

1/2
k ζ0 = Xk + q

1/2
k ζ0 = Xk + oP (1).

Using (1.4), we have

q
1/2
k ζnk = q

1/2
k

√
2 lnnk + oP (1) = oP (1)

as qk lnnk = Hk(lnnk)
2 = o(1) by assumption. Hence, by the lemma from the Appendix,

one has

BHk,τk ≥ BHk,τk + q
1/2
k ζnk − q

1/2
k ζnk

st
≥ Xk + oP (1). (3.14)

On the event Ak = {maxmk<i≤nk
ζi ≥ 0} we have

21/2Xk ≥ max
mk<i≤nk

(
s
1/2
k,i ζi −Wsk,i

)
≥ s

1/2
k,mk

max
mk<i≤nk

ζi + min
sk,mk

≤t≤1
Wt.

In view of the first two relations in (3.12), the second relation in (3.7) and the assumption
of part (ii) of the theorem, we have sk,mk

→ 1 as k → ∞. Therefore,

min
sk,mk

≤t≤1
Wt

d
= ζ0 + oP (1).
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Since clearly P(Ak) → 1, we obtain that

21/2Xk
st
≥ s

1/2
k,mk

max
mk<i≤nk

ζi + ζ0 + oP (1).

For the first term on the RHS, using (1.4), one has

max
mk<i≤nk

ζi
d
= ζ(1−εk)nk =

√
2 ln((1− εk)nk) + oP (1) =

√
2 lnnk + oP (1)

as clearly εk
√
lnnk = o(1). Thus, Xk

st
≥

√
lnnk + ζ0/

√
2 + oP (1). To complete the proof of

part (ii) of the theorem, it remains to combine the last bound with (3.14) and again use
the lemma from the Appendix.

Appendix

The following simple lemma was used in the proof of the theorem.

Lemma. Suppose X,Y are two random variables such that X has a continuous distri-

bution and X
st
≥ Y , while Z is a random variable defined on the same probability space

as X. Then there exist random variables Y ′, Z ′ such that X + Z
st
≥ Y ′ + Z ′ and Y

d
= Y ′,

Z
d
= Z ′.

In particular, if Xn

st
≥ Yn and Zn

P−→ 0 as n → ∞, then Xn + Zn

st
≥ Y ′

n + oP (1), where

Y ′
n

d
= Yn for all n. In fact, the assumption that X has a continuous distribution can be

relaxed, by that is not necessary for us.
Note that if X,Y, Z are defined on the same probability space, then the inequality

X
st
≥ Y does not necessarily imply that X + Z

st
≥ Y + Z. Here is a counterexample: let X

be a uniform random variable on [0, 1] and set Y := Z := 1−X.

Proof. The assertion of the lemma readily follows from the explicit construction Y ′ :=

F
(−1)
Y (FX(X)), Z ′ := Z, where FX , FY denote the corresponding distribution functions,

F
(−1)
Y the generalized inverse of FY . Then X,Y ′, Z are defined on the same probability

space, and X + Z ≥ Y ′ + Z ′ with probability one.
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