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On the ladder heights of random walks attracted to stable
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Abstract

Let Z be the first ladder height of a one dimensional random walk S,, = X; +---+ X,
with i.i.d. increments X; which are in the domain of attraction of a stable law of
exponent «, 0 < a < 1. We show that P[Z > z] is slowly varying at infinity if and
only if limy oo n~ ' 37 P[Sk, > 0] = 0. By a known result this provides a criterion for
Stry/R L4 00 as R — oo, where T(R) is the time when S,, crosses over the level R
for the first time. The proof mostly concerns the case a = 1.
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1 Introduction

This paper concerns the one dimensional random walk S,, with i.i.d. increments which
are in the domain of attraction of a stable law. When the limiting law is strictly stable,
quite fine results are established for fundamental questions [17]1,[13],[3], [5], [6], [4] etc.
(and references in them), while some of them have remained unsatisfactorily answered
in case it is not strictly stable (which may occur only if the exponent of the stable law
is one). In the very recent work [1] Q. Berger has addressed some of such questions
and obtained natural results on the large deviations, the first ladder epoch, recurrence-
transience criteria and the Green function (in transient case). In this paper we address a
problem concerning the first ladder height of S,,, which we denote by Z. It is known or
readily derived by known results that under the existence of r = limn ! >"] P[S), > 0], if
r > 0 then the integrated tail fOI P[Z > y|dy varies regularly and vice versa, whereas in
case r = (0 the corresponding result, which one might well expect to be likely, has been
missing. We prove that P[Z > z| varies slowly if and only if n=! >"}'_, P[S,, > 0] — 0,
and thus fill the gap in the literature.

Let S, = X; +--- + X,, be a random walk on the real line R with i.i.d. increments
Xk, k=1,2,... and denote by F' the common distribution function of Xj. Let P be the
probability law for X and E the expectation by P. We need the condition

(H) (1) EX =0if E|X]| < o0, and
(2) F belongs to the domain of attraction of a stable law.
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On the ladder heights of random walks

Here X is a random variable having the distribution F. Under (H1), for the condition
(H2) to hold, namely for the law of the normalized sum

(Sn_Tn)/an (11)

to converge to a stable law of exponent « for some 0 < o < 2 and non-stochastic
sequences (a,), (7,,), it is necessary and sufficient that as z — oo

{ [F y*dF(y) ~ L(z) if a=2

(1.2)
F(—x)~(1—p)z~*L(z) and 1-— F(z) ~ px~*L(x) if 0<a<2

where L(x) is positive and slowly varying at infinity (in the sense of Karamata) (cf. [10],
[3]), ~ means that the ratio of two sides of it approaches one and 0 < p < 1. In the
sequel we suppose (H) as well as (1.2) to hold unless the contrary is stated.

Let Z be the first (strictly ascending) ladder height of the walk: Z = S where
T =inf{n >1: S, > 0}. For P[S,, > 0 i.0.] =1 to hold so that Z is defined as a proper
random variable, it is necessary and sufficient that

> n7'PS, > 0] = oo (1.3)

(cf. [10, Section XII,7]). This is valid if EX = 0, while under the condition E|X| = oo

(1.3) holds if and only if
/°° xdF(x)
) —
0 1+ fo F(_y>dy

—in general, i.e., without assuming (H)— according to [8]; it is then readily seen that
(1.3) possibly fails to hold only if & < 1, p = 0 and E|X| = co (under (H)).

Suppose that if a # 1 then 7,, = 0 in (1.1) (as is standard), let Y be a random variable
with the limiting stable law and put p = P[Y > 0]. The following results are mostly
obtained by Rogozin [17].

(i) If @ =2, then [ P[Z > u]du is slowly varying.

(ii) Let 1 <a< 2. Then0 < pa < lifp>0and pa=1ifp=0, andfoxP[Z>u]duis
regularly varying with index —pa + 1 in either case.

(iii) If « < 1 and p > 0, then 0 < pa < 1 and P[Z > z] is regularly varying with index
—pa (o1, equivalently, fom P[Z > u]du is regularly varying with index —pa + 1 in view of
Karamata’s theorem).

(iv) Let a = 1. In case p = 1/2 suppose that Spitzer’s condition holds, namely, there
exists

1 n
lim — =7 .
1ngP[Sk>O] r (1.4)
k=1
Then fom P[Z > yl]dy is slowly varying in each of the following cases
(a) EX=0andp<1/2; (b) E|X|=0ccandp>1/2; (c) p=1/2withr=1.
Ifp=1/2and 0 < r < 1, then P[Z > z] is regularly varying with index —ra.
(Cf. [17] except for the case » = 1 of (iv) where a result from [15] is employed;for more
detais see [19] in which £ X = 0 is assumed but the arguments apply also to the case
E|X|=00.)
From the above list the following case is excluded:
p>1/2orp=1/2withr=0,if EX =0,
p<1/2orp=1/2withr =0, if E|X| = oc;
or a <1 and p=0.

) either o =1 and {
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In [17] it is shown that if X itself is subject to the stable law of exponent 1 with skewness
parameter in (—1,0) (that corresponds to 0 < p < 1/2), then P[Z > z] is slowly varying.
The following theorem, the main result of the present work, asserts that the same
consequence holds in and only in the above exceptional case, provided Z is proper. Note
that (1.4) follows from (H) with » = p unless a = 1, and hence the condition (f) may be
rephrased as (1.4) being valid with » = 0 (without assuming the existence of the limit in
(1.4) in advance), and also that (1.4) implies P[S,, > 0] — r according to [2].

Theorem Let «a =1 and the condition (1.3) be satisfied. Then P[Z > x] is slowly
varying at infinity if and only if
lim P[S,, > 0] =0,

and if this is the case,

log P[Z >a]=— ) lP[Sn > 0] + o(1). (1.5)
1<n<z/L(x)

In [1]1 Q. Berger obtains an asymptotic form of P[S,, > 0] expressed in terms of L
and 7, (see (2.11)). The sum on the RHS of (1.5) accordingly has the corresponding
expression; if p # 1/2 in (1.5) in particular, this leads to a simple explicit expression of
P[Z > z], which we state as a corollary below. (Its proof is given in Section 3.4 in which
we also give a brief discussion for the case p = 1/2 with » =0.)

Let L* be the slowly varying function defined by

[y L(y)dy if EX=0,

L*(z) = { g . (1.6)
Ji v L(y)dy if EX = oo.

Corollary Under the assumption of Theorem, if P[S,, > 0] — 0 and p # 1/2, then

P|Z > a] = [L*(x)]P/(2p= Do), 1.7)

The behaviour of the tail of the distribution of Z is related to that of the overshoots
in crossing high levels. Let T'(R) be the first time when S,, enters a half line (R, co) after
time 0: T(R) = inf{n > 1: S, > R} and put

Z(R) = St(r) — R,

the overshoot of the walk in crossing over the level R for the first time. (Note that
T(0) =T and Z(0) = Z.) It is then known that [ P[Z > u]du is regularly varying with
index —s+1, 0 < s <1 (for 0 < s < 1, this implies the regular variation of P[Z > z]) if
and only if as R — oo

0 if s=1,

oo if s=0,

zm) [ 1

R
= (¢ if 0<s<1,

where = denotes the convergence in law and ¢(*) a random variable having the proba-
bility law with density (7~ !sinms)/z*(1+ x), z > 0 (cf. [17]; see also [7], [10, Theorem
XIV.3] for the convergence to ¢ (s)), Under the conditions (1.3) and (1.4) the following
table summarizes the asymptotic behaviour of Z(R) as well as the results that are men-
tioned in (i) through (iv) above or given by Theorem (our Theorem deals with the second
column of the table). In the table 0z (x) stands for P[Z > z] and f € R, means that f
varies regularly at infinity with index v.
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Z(R)/R 5 00 | Z(R)/R=> ¢ | Z(R)/R 50
07 € Ry 07 € R_yq f, 0z(u)du € Ry
ra=0 O<ra<l ra=1
a=2 * * nggl,p:%
l<a<?2 * p>0,0<pa<l1 p=0, pa=1
a=1 p>3or p<3or
EX=0 |p=+1withr=0 0<r<l1 p=3withr =1
a=1 p<ior (necessarily p = 1) p>3or
E|X|=o00 |p=3withr =0 p=1withr=1
0<axl1 p=0,p=0 p>0,0<p<1 *

% In case o = 1 the second (fourth) column is simply represented by r = 0 (r = 1).
% The value of p depends on the choice of 7,,. If @ # 1, we can take 7, = 0 and then
r agrees with p. In case a = 1, r is related to p quite differently (cf. Section 2.1).

Recalling the well-known result that if 6(¢) := P[T > t] then 7 € R_, for 0 <r < 1 and

fo. Or(s)ds € Ry for r = 1 under (1.3) and (1.4) (without assuming (H); cf. [17], [3]), one
reads off the (expected) parallel between the distributions of Z and 7" from the table.

2 Preliminaries

Throughout this section, consisting of three subsections, we suppose that o = 1 and
(1.2) holds, namely

F(—z)~(1—=p)L(z)/r and 1-— F(x)~ pL(z)/x (2.1)

(0 < p < 1). In the first subsection we review fundamental properties of norming and
centering constants a,, and 7,, and give elementary facts concerning them. We show
that nb,, is essentially slowly varying in the second one. In the third we briefly discuss
on large deviation estimates for S5,,. We shall apply fundamental results concerning
regularly varying functions as given in Section VIII, 8 of [10] or Sections 1.5-7 of [3]
usually without specifying them.

2.1. Relations of a,, and b,, to L(x)
Let a,, be any sequence satisfying

nE[X?|X| < ay]
az,

-1 (2.2)

and put
b, = Elsin(X/ay)].

Then the normalized walk S,,/a,, — nb,, converges in law to a stable variable Y whose
characteristic function Ee®Y = ¢~ Y is given by

U(t) = [t|{57 +i(sgnt)Blog |t}

where § = 2p—1and sgnt = t/|¢| (cf. [10, (XVIL.3.18-19)]). Spitzer’s condition (1.4) holds
if and only if there exists m := limnb,, € RU{—00, 400}, and in this case r = P[Y +m > 0];
in particular » = 0 or 1 according as m = —co or +o0.
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Let L* be the slowly varying function given in (1.6). By integrating by parts

[ee]

Elsin Xt] = t/ [1— F(y) — F(—y)] costy dy, (2.3)

— 00

and if 5 # 0,

ElsinXt] [ —BL*(1/H){14+0(1)} if EX =0,
t {5Lmuoﬂ+oan if E|X|=o0:

see [16, Theorem?7], [3, Theorems 4.3.1-2] (the direct verification is not hard (cf. (2.7));
in [16] a precise expression of the error term is given). Substitution of 1/a,, for ¢ in the
relation above yields

L*(an)
L(a,)

where + or — prevails according as E|X| = oo or EX = 0. This entails that if 5 # 0,
|nby,| is slowly varying and tends to infinity (since L(z)/L*(z) — 0 for the latter). In the
next subsection we shall see that nb, is slowly varying also in case g = 0 as far as it is
bounded away from zero.

It is easy to see F[X?;|X| < a] ~ aL(a), so that a,, is determined by

anby, = £BL"(an){1+0(1)} orequivalently nb, = +4

1+o01)},  (2.4)

an/L(ay) ~ n,

which entails that if a(¢) is an asymptotic inverse of ©:/L(z) ~ 1/[1 — F(z) + F(—x)], then
an ~ a(n). Since a(st)/a(t) — s, it follows that a,+x/a, — 1 if k/n — 0. The function a(t)
is uniquely determined by F' within asymptotic equivalence. (Cf. [3, Section 1.5.7].)

Sometimes it is convenient to choose L(z) so that it is given in the form e/i e(#)du/u
with a measurable function £(u) tending to zero as u — oo so that L is continuous and
a(t), t > 0 can be the exact inverse of z/L(z), i.e.,

a(t) = tL(a(t)) (2.5)

for all sufficiently large z, x/L(x) being ultimately increasing. According to the unique-
ness of a(t), nb, is determined uniquely apart from an additive error of magnitude
o(nby,).

2.2. Slow variation of nb,,

Put R
T = napb, and S, =5, — 1,

so that Sn /a, converges in law to Y.
For the proof of the converse half of Theorem we need the following

Lemma 2.1. mb,, = nb,{1+0(1)} +0(1) (n — o0) uniformly for n <m < 2n

The proof is given after showing two preparatory lemmas. In the first one L may be
any positive function that is right-continuous and slowly varying at infinity.

Lemma 2.2. Let n(x) be a positive function such that n(x)/x is ultimately non-increasing
and tends to zero as x — 0. Put fora >0

o(a) = /000 Mcos%da:.

T

Ifn(z)/L(xz) — 0, then uniformly for 0 < h < q,
ola+h) —o¢(a) =0(L(a)) as a— oo, (2.6)

and if n(x) < CL(x) for some constant C, then (2.6) holds whenever h/a — 0.
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Proof. Put

Ia(u,v;n):/ @cos%dm

(0 < u < v). Then by the assumed monotonicity of n(x)/z we have for any a,a’, M > 0

Ma+ma’ d
6(a) — L (0, Ma; )| < / n(w)dy.
Ma Yy

(2.7)

Observing that for 0 < h < a,

h Ma
aen(0, Masn) — L,(0, Mas )] < — / n(x)dz, and
0

< [ ( )} 2T
< sup  n(z)| =
Ma<z<Ma+2ma M

/Ma+77(a+h) n(y)dy
Ma Yy

and then applying the inequality (2.7) with ¢’ = a and a’ = a + h, we see that

otath) —o@l < % [n@aes | s @)

4
a2 0 Ma<x<Ma+2ma

M

Since fOMa L(z)dx ~ MaL(Ma), we readily deduce the assertions of the lemma. O

Lemma 2.3. Put fora > 0,
Li(a) = aE[sin(X/a)].

Then forp =1/2, L(a + h) — Lt(a) = o(L(a)) (a — o) uniformly for 0 < h < a.

Proof. Put n(x) =x(1 — F(z)), n—(z) = 2F(—z) and

o+(a) = /000 e (2) cos g dz,

T

so that LT (a) = ¢, (a) — ¢_(a) in view of (2.3). Let I, (u, v;7n+) be defined as in the proof of
the preceding lemma and put = 1 —7_. Although 7(z)/x is not necessarily decreasing,
the inequalities of (2.7) with 74 or _ in place of n are valid. Since I,(u, v;n) is linear in
n, namely I, (u,v;ny) — Lo (u,v;n-) = I.(u,v;n), we have

2w

L (a+h) = LH@)] < [Losn(0, Masn) = LO,Maim) + Y | sup  ne(a)| 77
i Ma<x<Ma+2ma

If p=1/2, then |n(z)| = o(L(x)), so that the first term on the RHS is dominated by

Ma Ma
ha~ /0 [n(x)|de = a™ /0 L(z)dz x o(1) = o(L(a)).

We also have 74 () +n_(z) ~ L(x), hence the second term is at most a constant multiple
of L(Ma)/M. Since M may be arbitrarily large we conclude the asserted relation of the
lemma. =

Proof of Lemma 2.1. We have seen in (2.4) that nb,, is slowly varying if p # 1/2.
So let p = 1/2. We first note that by Lemma 2.3 this implies that uniformly for for
n<m<?2n,
LY (an) — L (a,) = o(L(a,)) as n — oco.
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We may suppose that a,, = nL(a(n)) (cf. (2.5) and a remark given right after it) so that
nb, =nL'(a,)/an = L (an)/L(ay), an = a(n). (2.8)

One then deduces that

Lf(an) Lt(an) L(am) — L (a,) 1 1
bn - b7 = UL i = U e - LT n
om0 = ) Tlan) Yo+ (Za ~ )V
L(an) - L(GM)
1 _ = 1
o(1) + Llam) nby, = o(nby,) + o(1)
(for the third equality use the relations noted above). This concludes the proof. O

2.3. Large deviations

For the proof of Theorem we need an upper bound of P[S, > y] as y An — oo in
case a < 1 with p = 0 as well as in case a = 1 with nb,, - —0co. When o # 1 and p > 0
the exact asymptotic order is known. Here we consider the case a = 1; the case a < 1
with p = 0 will be dealt with in Section 3.2. Let 7,, = na,b,, and S, =S, — 1, as in the
preceding subsection.

Let a = 1. According to [1, Theorem 2.1]Jas x A n — oo

P[S, > zay) ~ pnL(zay,)/za, (2.9)

with the obvious interpretation if p = 0. Since P[S, > y] = P[S, > y — 7,] and
P[|X| > z] ~ z/L(z), it plainly follows that if nb,, — —oco (or, equivalently, P[S,, > 0] — 0),
then for y > 0,

P[S,, > y] < CinP[|X]| > |ma| + v]. (2.10)

This is sufficient for our proof of Theorem, and could have been relatively easy to
prove (the method used by Heyde [14] may apply). By (2.4) and (2.8) we get that
|Tn| ~ |BInL*(ay,) if p # 1/2 and |7,,| ~ nL(a,) if p = 1/2. It therefore follows from (2.9)
that if nb,, — —oo,

P[S,, > 0] ~

M N { 4‘2p{1\L<nL*(an))/L*(an) if p# %7 2.11)

|7 SL(nL'(a,))/L(an) if p=1.

We will use (2.11) to obtain the expression of P[Z > z] given in (1.7) (see Section 3.4).

3 Proof of Theorem and Corollary

Put
f(A\) =1—E[e 7],

Let (1.3) holds. Then f(A\) = A fo *MP Z > z]dx, A > 0 and by Tauberian theorem (cf.
[10], [3]) the slow Varlatlon of P[Z > z] at infinity is equivalent to that of f()\) at zero.
We are going to prove the latter. The proof is based on the representation

(N exp{ Z ASn;5n>0]} (3.1)

due to Spitzer [18, Proposition 17.5] (cf. [10, Section XVIII,3]). Put

=Z% 0<Sy<a and OO = [ e (0> 0)
— 0
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so that f(A) = U™ It is shown by Greenwood et al [12] that for 0 < v < 1, P[Z > ]
is regularly varying with index —v if and only if for any s > 1, U(sz) — U(z) — vlogs as
x — oo (called Sinai’s condition) [3, Theorem 8.9.17]. Here we are concerned only with
the case v = 0 for which this is a consequence of the equivalence

Vs> 1, Iim[U(sA) —U\)] =0 <= Vs>1, lim [U(sz) — U(x)] = 0;
A—=0 T—00

moreover if this is the case,

U\ =U(1/X) +o(1) (3.2)
(cf. [3, Theorem 3.9.1]). Although we apply this polished result below (to bypass the
standard arguments for subsidiary results), we could avoid their use and derive the
result directly from (3.1) with the essential part of the proof unaltered.

The rest of this section is divided into four subsections. The sufficiency of the
condition lim P[S,, > 0] = 0 for the slow variation of f()) is shown in the first subsection
in case a = 1. The necessity part and the case a < 1 are dealt with in the second and
third ones, respectively. In the last one Corollary is proved. The conditions (1.2) and
(1.3) are supposed to hold throughout.

3.1. Sufficiency in Case a =1
It suffices to show that if lim P[S,, > 0] = 0, then
1
U@)= Y.  =P[Sy>0]+0(1). (3.3)
1<n<z/L(x)
Indeed (3.3) together with P[S,, > 0] — 0 implies that for each s > 1,

|U(sz) —Ulz)| < >S.1/1£)( )P[Sn > 0]log[sL(z)/L(sx)] + o(1) — 0,

and hence by (3.2)

FO) =e T = exp{ — Z lP[Sn > 0] + 0(1)},

1<n<1/AL(1/X)

which verifies the slow variation of f()\) and, by virtue of a Tauberian theorem, P[Z >
x] ~ f(1/z), hence the relation (1.5).
For the derivation of (3.3) we bring in the function M = M (x) defined by

M = z/L(z)

(we shall usually drop = from the notation). For the present purpose we may suppose
that a(t) is given as in (2.5) and a,, = a(n) so that ay; = M L(a,). By uniqueness of the
inverse function it follows that

apr = & (34)

for x large enough. (3.3) is derived by showing the following two lemmas, where we
assume P[S,, > 0] — 0 or, what amounts to the same, nb,, - —oo (hence —7,, = |73,|).

Lemma 3.1. .
> SP0<S,<a] =0 (z—o00). (3.5)
n>M (x) "

Proof. The proof rests on the local limit theorem, of which here we need only the
following one-sided estimate

anPlz < S, < z+1] < Kg(z/an —nb,) + o(1) (3.6)
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(n — o0) valid uniformly for z € R, where g(y) = P[Y € dy]/dy and K is a constant
depending only on F'. Since nb,, — —oo so that g(—nb,, + y) — 0 uniformly for y > 0, this
implies that

P[0 < S, < z] = o(x/ay).

We accordingly deduce that

1 1 1
ZfP[0<Sn§x]:meo():mxo():o(n, (3.7)
n nap anr
n>M n>M
where the second equality is due to the regular variation of a,, with index 1. O
Lemma 3.2. )
Z —PI[S, > x] = 0.
n<M(x) "
Proof. For each ¢ > 0, for z large enough
1
> —P[S,>a]<C1 Y P[X|> || +2] < CeMP[|X| > 2] < 2Ce, (3.8)

n
n<eM n<eM

where the first inequality follows from (2.10) and the third from P[|X| > x| ~ L(z)/x. By
P[S, > 0] — 01it follows that for each e >0, >_,,_,. <), LP[S, > 0] — 0, which combined
with (3.8) shows the lemma, for € can be chosen arbitrarily small in (3.8). O

Obviously Lemmas 3.1 and 3.2 together show (3.3) as required.
3.2. Necessity in Case a =1
It suffices to show that if +* :=limsup,,_,., P[Sn, > 0] >0, then

=1
lim sup Z ﬁP[w <S8, < 2z] > 0. (3.9)
n=1

T—00

If r, := liminf P[S,, > 0] = 1, we know that [ P[Z > y|dy varies slowly. Hence our
present task reduces to showing that if »* > 0 and r, < 1, then (3.9) holds.
Suppose 7* > 0 and r, < 1. Put B,, = nb,. Since then Y, := S, /a, = S,/a, — B,
converges in law to Y and
P[S,, > 0] = P[Y,, > —B,], (3.10)

and since B, 41 = B,{1+ o(1)} 4+ o(1) in view of Lemma 2.1, the increment of P[S,, > 0]
tends to zero. This shows that there exists an increasing sequence (n(k)) of integers
such that n(k) — oo (k — oo) and

0< (re +7°)/4 < P[Spy > 0] < (r + 1" +2)/4 < 1,
which combined with (3.10) implies that B, ) is bounded. Put
Tk = Qp(k)-
Then, for n(k) < n < 2n(k), we have on the one hand

P[l’k <S5, < 2(Ek] = P[.Tk < Sn +an B, < 2(Ek]
= Plapw)/an < Yo + By < 2ank)/an), (3.11)

and on the other hand, by virtue of Lemma 2.1 again and by the regularity of a,,,

B, = Byy{l +o(1)} +0o(1) and a,m)/an = [n(k)/n{1 +o(1)},
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and hence the convergence of Y,, to Y implies that the last probability in (3.11) is bounded
away from zero so that there exists a positive constant ¢ such that Pz, < S, < 2zx] > g,
and consequently

1
— > qlog2
n

Z %P[xk < Sp < 2] >q Z

n(k)<n<2n(k)
showing (3.9). The proof of necessity part is complete.
3.3.Incasea<landp=0

The following lemma is a consequence of the inequality

P[S, > y] < nP[X > 2] +exp{z ~Zlog (1+ nE[X.OZ = :4)} (3.12)

(y, z > 0) due to Fuk and Nagaev [11](Theorem 1) (valid for any real random variable X).
Lemma 3.3. Fory >0, P[S, >y <e-ny~' [J(1 — F(u))du.

Proof. Take z = y in (3.12) and omit 1 in the round parentheses. Then substitution of
the expression [ P[X > u]du — yP[X > y] for E[X;0 < X < y] yields the inequality of
the lemma. O

Now we turn to the proof of Theorem. First note that choosing a,, in (1.1) to be the
sequence satisfying
nE[X?|X]| < ay] a
_) [
a2 2—«

which is the same as imposing that
a%/L(ay) ~ n.

Then the normalized walk S,,/a,, converges in law to a stable variable Y.
Since y ! [;/(1 — F(u))du = o(F(—y)), we have in view of Lemma 3.3

%P[Sn > 1) < ;/01[1 — F(u)du = o(e—"L(x)).

Define M = M (z) analogously to the one for o = 1 so that for z large,
& =ay = (ML(ap))"* orequivalently M (z) = z*/L(x)

Then )
> =P[S, > a] <M xo(a *L(z)) > 0 (z— 00).
n
n<M

On the other hand since p = 0 entails P[Y > 0] = 0, the local limit theorem yields
P[0 < Sy <z|=o0(z/ay)

and we see

Z %P[O <S,<z]<z Z o(1/nay) =z x o(1/ap) = o(1).

n>M n>M

Thus U(z) = =3, < m(a) n~1P[S, > 0] + o(1) and we obtain the result in the same way
as discussed in the beginning of the sufficiency part.
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3.4. Proof of Corollary

Let p # 1/2 and a(t) be as given at the end of Section 2.1 so that a(t) = tL(a(t)).
Recall (d/dx)L*(x) = £L(x)/x. Here and below =+ is as in (2.4). Then, by applying
Theorems 2.3.2 and 2.3.1 of [3] in turn (with f(x) = L*(z)/L(z) and ¢ = L*) or by Lemma
4.3 of [1] we obtain

L*(xL*(x)/L(x)) ~ L™ (x). (3.13)

Put R(t) = tL*(a(t)). Substitution of a,, = nL(ay) for « then shows L*(R(n)) ~ L*(a,),
hence (2.11) gives P[S,, > 0] ~ (p/|1 — 2p|)L(R(n))/L*(R(n)). On using R'(t) ~ L*(a(t))

observe LROR(®) . LR
a8 O = 2 R ) ~ i@y (7
and we accordingly obtain that if P[S,, > 0] — 0 (entailing +(1 — 2p) > 0),

"1 R(t)) p .
Z::E [Sk > 0] ~ 1_2]9/ (R (t))dthp_llogL (R(n)).

Now the identity a(z/L(z)) = z (valid for x large enough) together with (3.13) shows
that L*(R(x/L(x))) = L*(«L*(z)/L(x)) ~ L*(x), hence (1.7) by virtue of (1.5).

In case p = 1/2 with » = 0 one may write down an expression of P[Z > x| by
substituting into (1.7) that of P[S,, > 0] given by (2.11). If L(nL(a,)) ~ L(a,), which
relation seems to hold quite generally, using a/(¢) ~ L(a(t)) we readily obtain

P[Z > a] ~ elztoMWI [T e(du/u o2y = _[(2)/L(2). (3.14)
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