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A Jackson network under general regime

Yair Y. Shaki
The Jerusalem College of Technology

Abstract. We consider a Jackson network in a general heavy traffic diffu-
sion regime with the α-parametrization. We also assume that each customer
may abandon the system while waiting. We show that in this regime the
queue-length process converges to a multi-dimensional regulated Ornstein–
Uhlenbeck process.

1 Introduction

The literature on diffusion approximation of queueing systems in heavy traffic fo-
cuses on two regimes. In the first one, named the conventional regime (see Chen
and Yao (2001)), the arrival and the service rates grow in the same proportion,
while the number of the servers does not change. In contrast, the regime intro-
duced by Halfin and Whitt (in short the HW regime) considers systems with a
large number of servers, while the individual service rates do not change (Halfin
and Whitt (1981)).

Whitt (2003), Theorem 2.2, and Mandelbaum (2003) considered an M/M/N
queue with an arrival rate that scales as N and with all the individual service rates
being equal, while maintaining a critically loaded system. They showed that the
scaled queue-length process,

N−1QN(Nt), (1)

converges to a reflected Brownian motion (RBM) as N → ∞. Gurvich (2004),
Proposition 5.1.1, extended that result to a more general scaled queue-length pro-
cess.

Atar (2012) argues that these limit theorems correspond to a diffusion regime
that is different from the conventional and the HW regimes. In particular, he gen-
eralized these results to a system with multiple, heterogeneous servers working in
parallel and obtained limit processes that do not appear in the other two regimes.

Atar (2012) introduces the α-parametrization. To describe it, he discussed a
single-class queueing model M/M/N with parameters λn, μn and Nn depend-
ing on some scaling parameter n. Let the external arrival rate increase as O(n).
Given some α ∈ [0,1], assume that the number of servers is O(nα), while each of
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the individual service rates scales as n1−α . In addition, let a suitable critical load
condition hold. Then the extremal cases α = 0 and α = 1 correspond to the con-
ventional and HW regimes, respectively. Atar (2012) considered a wide range of
work-conserving policies. The model also allowed for abandonment of customers
waiting to be served.

The importance of the α-parametrization (see Atar (2012)) is surprisingly sup-
ported by a new study on optimal service capacity allocation in a loss system
(Hassin, Shaki and Yovel (2015)). The research considers a loss system with a fixed
budget for servers. The system owner decides the optimal number of the servers in
order to maximize his profits. In the heavy traffic case, the optimal regime differs
from the two common regimes (i.e., the HW regime (Halfin and Whitt (1981)) and
the conventional regime) and belongs to an α-parametrization with α = 2/3.

In both of the common heavy traffic regimes (α = 0 and α = 1), there have been
studies on control problems. Atar and Solomon (2011) studied the control problem
in an NDS regime (α = 1/2) for the first time and considered minimizing the
‘running cost’ random variables under policies that allow for service interruption.
They construct a sequence of policies that asymptotically achieve this goal.

In recent years, much research has been devoted to considering the Jackson net-
work in two heavy traffic regimes. Reiman (1984) analyzed the Jackson network in
the conventional heavy traffic regime, see also Chen and Yao (2001). In this case,
the limit of the queue-length process is a regulated multidimensional Brownian
motion. A version for a model with abandonment is presented by Reed and Ward
(2004), where the limiting process is shown to be a regulated multidimensional
Ornstein–Uhlenbeck process. Mandelbaum, Massey and Reiman (1998) proved
various results on many-server limits, including extensions about approximations
for Markovian service networks in the framework of HW regime. Their work cov-
ers the Jackson network case as well.

The current paper applies for the first time a Jackson network under the α-
parametrization with any α ∈ [0,1). To describe it, we discussed a Jackson net-
work with J interconnected queues where the external arrival process Ai to sta-
tion i is a renewal process with rate λn

i . Let the external arrival rate λn
i increase

as O(n). Given some α ∈ [0,1), assume that the number of servers Nn
i in the

station i is O(nα), while each of the individual service rates scales as n1−α . In
addition, let a suitable critical load condition hold. Our analysis discusses a gen-
eral class of work-conserving policies and allows also for customer abandonment.
We prove that the multi-dimensional queue-length process converges to a regu-
lated Ornstein–Uhlenbeck process by using a general multidimensional Skorohod
equation (Dupuis and Ishii (1991)).

This paper is organized as follows. Section 2 contains the setting and notations
as well as the result concerning the limiting queue-length process in a general
regime for any parameter α ∈ [0,1). Section 3 presents the proof of this result.
Section 4 provides some directions for future research.
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2 Main result

Let (�,F,P) be a complete probability space, i.e., a probability space such that
every subset of a set of probability 0 is measurable. This probability space will
support all random variables and stochastic processes defined below. For each pos-
itive integer d , let Dd be the space of all right-continuous functions with left limits
(RCLL) x : [0,∞) → R

d . We endow Dd with the usual Skorohod J1-topology
(Billingsley (1999)). Let ⇒ denote convergence in distribution.

2.1 Multi-dimensional queue-length process

We consider a Jackson network with J interconnected queues where the external
arrival process Ai to station i is a renewal process with rate λi . We assume that
λi is strictly positive for at least one 1 ≤ i ≤ J . Station i has several servers, and
each arrival to station i is routed to a particular server. The service discipline at all
queues is the first-in-first-out rule (FIFO). We suppose a work-conserving routing
policy, so that no server may be idle when at least one customer is in its buffer.
A customer completing service at station i will either move to some new queue
j with probability pij or leave the system with probability 1 − ∑J

j=1 pij , which

is non-zero for some subset of the queues. We denote by Ri(m) the vector with
components Ri

j (m) that denote the number of the first m jobs completing service
at station i that are routed to station j . The routing matrix P = (pij ) thus has
spectral radius less than one so that each customer leaves the network after serving
a finite number of stations. In other words, this network is open.

There are N servers, arranged in J stations, so that the number of servers in
station i is Ni , for 1 ≤ i ≤ J . The servers are labeled 1, . . . ,N , and the set of k’s for
which server k is in station i is denoted by Ki . We write K = {1, . . . ,N} = ⋃

i Ki ,
and |Ki | = Ni , 1 ≤ i ≤ J .

For 1 ≤ q ≤ N and t ≥ 0, let I(q)(t) take the value 1 if server q is idle at time t ,
and let it be 0 otherwise.

Denote by Ii(t) the number of idle servers from station i at time t , for 1 ≤ i ≤ J

(see (2)). Then Ii is stochastic process taking values in [0,Ni], and

Ii = ∑
q∈Ki

I(q), 1 ≤ i ≤ J. (2)

The modeling of service completions will require usage of standard Poisson pro-
cesses S(q) with rate μ(q) per server, 1 ≤ q ≤ N . The number of service comple-
tions by server q until time t is S(q)(T(q)(t)), where T(q) is defined as

T(q)(t) = μ(q)

∫ t

0

(
1 − I(q)(s)

)
ds, 1 ≤ i ≤ J, t ≥ 0. (3)

We consider a sequence of systems, with counter n, where the number of
servers in the nth system is Nn

i . We assume that Nn
i → ∞ as n → ∞, and that
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infn Nn
i ≥ 1. The counter n of almost all processes and system parameters is de-

noted as a superscript. However, we do not need to count the standard Poisson
processes as they do not depend on the system number, and they will be denoted
by S(q).

Recall that the process of arrivals to a queue j is modeled as a renewal process.
Let λn

j ≥ 0, n ∈ N, be parameters and consider sequences of positive i.i.d. random
variables {IAj (l), l ∈ N} (‘inter-arrival times’), with mean E[IAj (1)] = 1 and vari-
ance aj = Var(IAj (1)) ∈ [0,∞). For λn

j > 0, the number of arrivals up to time t

for the nth system is given by

An
j (t) = sup

{
l ≥ 0 :

l∑
l=1

IAj (l) ≤ λn
j t

}
, t ≥ 0.

If λn
j ≡ 0, then An

j (t) = 0 for all t > 0.
The arrival rate λn

i is assumed to satisfy

λn
i /n → λ̄i ∈ (0,∞). (4)

The parameters are assumed to satisfy

min
q∈Kn

μn
(q) → ∞. (5)

In addition, it is assumed that the following limits exist:

μ̄n
j := 1

n
μn

j = 1

n

∑
q∈Kn

j

μn
(q) → μ̄j > 0. (6)

Recall that Nn
i → ∞ as n → ∞. From equations (4)–(6), there exists α ∈ [0,1)

such that the number of servers is O(nα), while each of the individual service rates
scales as n1−α . Hence, our model is under the α-parametrization.

The ‘heavy traffic’ assumption makes the system critically loaded by relating
the arrival and service rates as

1√
n

[
λn − (

I − P T )
μn] → β, (7)

where λn,μn,β ∈ R
J and P T is the transpose matrix of the routing matrix.

We include the concept of customer impatience in the Jackson network. The
abandonment rate per unit time, per customer waiting in the queue, is given by
constants γ n

j ≥ 0, assumed to satisfy

γ n
j → γj ∈ [0,∞), 1 ≤ j ≤ J. (8)

Let S̃j be standard Poisson processes and let Qn
j (s) represents the number of cus-

tomers in the queue j . The number of customers abandoning a queue j , until time
t , will be given by

S̃n
j (t) := S̃j

(
T̃ n

j (t)
)
, (9)
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where

T̃ n
j (t) = γ n

j

∫ t

0

(
Qn

j − Nn
j

)+
(s) ds, (10)

and φ+(s) = max(φ(s),0). Note that if γ n
j = 0 for all n, then there is no possibility

of abandonment in the model.
The processes An

j , S(q), Rj , In
(q) and Qn

j are all assumed to have RCLL sample

paths. Furthermore, we assume that the primitive processes An
j , S(q), Rj and S̃j

and the initial values ({
I(q)(0), q ∈ K

}
,
{
Qj(0),1 ≤ j ≤ J

})
,

are mutually independent.
The following equation expresses the above verbal description:

Qn
j (t) = Qn

j (0) + An
j (t) +

J∑
k=1

Rk
j

(
Sk

(
T n

k (t)
)) − Sj

(
T n

j (t)
) − S̃n

j

(
T̃ n

j (t)
)
.

2.2 Convergence of queue-length process

We suppose that the routing policies do not use information from the future. For
this, we assume identical assumptions to those of Atar (2012).

Assumption 2.1. For each n there exists a filtration Fn = {Fn(t), t ≥ 0} that is
right-continuous and P-complete, such that the following holds:

1. The processes An
i , Qn

i , In
(q), T n

(q), Sn
(q)(T

n
(q)), S̃n

j (T̃ n
j ) are adapted to the filtra-

tion.
2. For each q ∈ Kn, j ∈ J

S(q)

(
T n

(q)(t)
) − T n

(q)(t),R
i
j

(
Si

(
T n

i (t)
)) − pijSi

(
T n

i (t)
)

are Fn-martingales.

3. Given any a.s-finite Fn-stopping time τ , the conditional joint law of the Nn

processes {
S(q)

(
T n

(q)(τ ) + s
) − S(q)

(
T n

(q)(τ )
)
, s ≥ 0, q ∈ Kn}

conditional on Fn(t), is that of Nn i.i.d. standard Poisson processes.
4. For any t ≥ 0 and any event En ∈ Fn(t), the Nn-dimensional process{

S(q)

(
T n

(q)(t) + s
) − S(q)

(
T n

(q)(t)
)
, s ≥ 0, q ∈ Kn

}
,

the processes {
An

j

(
σn

j (t) + s
) − An

j

(
σn

j (t)
)
, s ≥ 0

}
,

and the event En are mutually independent where σn
j (t) is a first jump time

after a time t .
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5. The routing policy is work conserving, in the sense that for all t ≥ 0,

In
j (t) = (

Nn
j − Qn

j (t)
)+

. (11)

We define processes at diffusion scale, as follows. We denote centered, normal-
ized versions of the processes, for j ∈ J and t ≥ 0, by

R̂i
j (t) = Ri

j (
nt�) − npij t√
n

, Î n(t) = In(t)√
n

, Q̂n
j (t) = Qn

j (t) − Nn
j√

n
, (12)

Ân
j (t) = An

j (t) − λn
j t√

n
, Ŝn

j (t) = Sn
j (nt) − nt√

n
. (13)

In addition, we denote

Ln
j (t) = n− 1

2
∑

q∈Kj

μ(q)

∫ t

0

(
I(q)(s)

)
ds. (14)

The initial number of customers in the system is assumed to satisfy

Q̂n(0) ⇒ Q̂(0), as n → ∞, (15)

where Q̂(0) is a J -dimensional random variable satisfying Q̂(0) ≥ 0 with proba-
bility one.

Let w be a driftless J -dimensional Brownian motion having covariance matrix
C with (k, l)th element

λ̄kakδkl +
J∑

j=1

μ̄jpjk(δkl − pjl) + μ̄j (pjk − δjk)(pjl − δjl),

independent of Q̂(0), and let Ft be the P-completion of the smallest σ -field with
respect to which w(s),0 ≤ s ≤ t and Q̂(0) are measurable, and � is a J × J

diagonal matrix with �ii = γi . A pair (Q̂, l) in D2J will be said to be a solution to
the J -dimensional Skorohod equation

Q̂(t) = Q̂(0) + βt + w(t) −
∫ t

0
�Q̂(s) ds + (

I − P T )
l(t) (16)

with data (Q̂(0),w), if Q̂ and l are RCLL functions, {Ft }-adapted processes sat-
isfying the following conditions P-a.s.:

• equation (16) holds;
• Q̂(t) ≥ 0, t ≥ 0;
• li is non-decreasing, for all i ∈ J ;
• ∫

[0,∞) Q̂i(t) dli(t) = 0 a.s.
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Dupuis and Ishii (1991), Theorem 3.3, show that there exists a unique solution to
the general J -dimensional Skorohod equation, which includes cases as equation
(16) (Dupuis and Ishii (1991), Section 5.1).

The following theorem argues that the multi-dimensional queue-length process
converges to a multi-dimensional regulated Ornstein–Uhlenbeck process.

Theorem 2.2. Let {An,Qn, In, T n} be any sequence of J -dimensional processes
satisfying all assumptions stated above. Then, (Q̂n,Ln, Î n) converges in distribu-
tion, uniformly on compacts, to (Q̂, l,0) where (Q̂, l) denotes the unique solution
to the Skorohod equation (16) with data (Q̂(0),w).

3 Proof

3.1 Setting and notation

Fix u ∈ [1,∞), � ∈ (0,1/2). Let

τn = min
j

inf
{
t ≥ 0 : Ln

j (t) ≥ n�} ∧ u. (17)

In addition, we denote

V n
j (t) = n−1/2(

Sn
j

(
T n

j (t)
) − T n

j (t)
)
, (18)

Ṽ n
j (t) =

J∑
i=1

R̂
i,n
j

(
S̄n

i

(
T n

i (t)
))

. (19)

In the sequel, we will use in fact that

γj

∫ t

0
Q̂n

j (s)
+ ds+Fn

j (t) = n−1/2S̃j

(
γ n
j n1/2

∫ t

0
Q̂n

j (s)
+ ds

)
= n−1/2S̃n

j (t) (20)

is nondecreasing in t .
For x ∈ Dd and u > 0, let

‖x‖u ≡ sup
0≤t≤u

max
j∈{1,...,d}

∣∣xj (t)
∣∣,

and

|xj |∗u ≡ sup
0≤t≤u

∣∣xj (t)
∣∣.

Finally, an operator f : Dd → Dd is called Lipschitz continuous if for any u >

0, there exists a constant κu such that for x1, x2 ∈Dd∥∥f (x1) − f (x2)
∥∥
u ≤ κu‖x1 − x2‖u.

A random variable X is tight if for each ε > 0 there exists a compact set K such
that

P(X /∈ K) < ε.
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We denote (see Billingsley (1999), page 80)

w̄u(x, δ) = sup
s,t∈[0,u];|s−t |≤δ

∣∣x(t) − x(s)
∣∣,

for x : [0, u] → R, δ > 0.
A sequence of processes defined on [0, u], with sample paths in the Skorohod

space, is said to be C-tight if it is tight, and every subsequential limit has con-
tinuous sample paths with probability one. C-tightness of, say {Un}, implies the
convergence in probability of w̄u(Un, δ) → 0, for every δ.

In the sequel, we will use the Burkholder-Davis-Gundy inequality (see Protter
(2004), page 58 and page 175). For any local martingale X and p ≥ 1,

E
{(|X|∗t

)p} ≤ cpE
{[X,X]p/2

t

}
, t ∈ [0,∞), (21)

where the constant cp depends only on p, and [X,X] is defined by [X,X] = X2 −
2

∫
X− dX. By Theorem 22(ii) in Protter (2004), if X has piecewise smooth sample

paths, null at zero, then [X,X]t is given by
∑

s≤t �X(s)2.

3.2 Some lemmas and proof of main result

First, we note that the number of service completions by station-i servers until
time t is

Dn
i (t) = ∑

q∈Ki

S(q)

(
T(q)(t)

)
. (22)

We denote

T n
i (t) = ∑

q∈Kn
i

μn
(q)

∫ t

0

(
1 − In

(q)(s)
)
ds, 1 ≤ i ≤ J, t ≥ 0. (23)

The following proposition states that a station which servers are ruled by Poisson
processes is ruled itself by a Poisson process.

Proposition 3.1. Fix n. Then, there are independent standard Poisson processes
{Sn

1 , . . . , Sn
J } such that

Dn
i (t) = Sn

i

(
T n

i (t)
)
.

Proof. By Assumption 2.1,

Dn
i (t) − T n

i (t) is an Fn-martingale. (24)

Theorem T9 in Bremaud (1981) shows∑
q∈Kn

i

μn
(q)I

n
(q)(t) is the Fn-intensity. (25)
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Since our system is critically loaded,

Dn
i (∞) = ∞.

For all t , define the Fn-stopping time τn(t) by τn(t) = inf{a|T n
i (a) = t}.

By Theorem T16 in Bremaud (1981), Sn
i (u) := Dn

i (τn(u)) is a Poisson process
with rate 1. To show that Dn

i (t) = Sn
i (T n

i (t)), put u = T n
i (t) and then we obtain,

Sn
i (T n

i (t)) = Dn
i (t ′) where t ′ = inf{a|T n

i (a) = T n
i (t)}, (22) yields Sn

i (T n
i (t)) =

Dn
i (t).
Now, we prove that Sn

i (u) are independent random variables (1 ≤ i ≤ J ). By
the definition,

Sn
i (u) = Dn

i

(
τn(u)

) = ∑
q∈Ki

S(q)

(
T(q)

(
τn(u)

))
,

where
∑

q∈Kn
i
T(q)(τ

n(u)) = T n
i (τn(u)) = u. Assumption 2.1 completes the

proof. �

To prove Theorem 2.2, we need the following lemmas.

Lemma 3.2. Define

Wn(t) = Ân(t) +
J∑

k=1

R̂k,n(
S̄n

k

(
T n

k (t)
)) − (

I − P T )
Ŝn(

T̄ n(t)
)
, (26)

W̃n(t) = Wn(t) + 1√
n

[
λn − (

I − P T )
μn]

t, (27)

S̃
∗,n
j (t) = n−1/2S̃j

(
n1/2t

) − t, t ≥ 0, (28)

Fn
j (t) = S̃∗,n

(
γ n
j

∫ t

0
Q̂n

j (s)
+ ds

)
+ (

γ n
j − γj

) ∫ t

0
Q̂n

j (s)
+ ds.

One has

Q̂n(t) = Q̂n(0) + W̃n(t) − Fn(t) + (
I − P T )

Ln(t) −
∫ t

0
�Q̂n(s)+ ds. (29)

Proof. Let Qn
j (t) be the queue-length process at station j , then

Qn
j (t) = Qn

j (0) + An
j (t) +

J∑
k=1

Rk
j

(
Sn

k

(
T n

k (t)
)) − Sn

j

(
T n

j (t)
) − S̃j

(
T̃ n

j (t)
)
,

Qn
j (t) − Nn

j = Qn
j (0) − Nn

j + (
An

j (t) − λn
j t

) + λn
j t

+
J∑

k=1

[
Rk

j

(
Sn

k

(
T n

k (t)
)) − pkjS

n
k

(
T n

k (t)
)]
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+
J∑

k=1

pkjS
n
k

(
T n

k (t)
) − Sn

j

(
T n

j (t)
) − [

S̃j

(
T̃ n

j (t)
) − T̃ n

j (t)
] − T̃ n

j (t),

Qn
j (t) − Nn

j = Qn
j (0) − Nn

j + (
An

j (t) − λn
j t

) + λn
j t

+
J∑

k=1

[
Rk

j

(
Sn

k

(
T n

k (t)
)) − pkjS

n
k

(
T n

k (t)
)]

+
J∑

k=1

pkj

[
Sn

k

(
T n

k (t)
) − T n

k (t)
]

+
J∑

k=1

pkjT
n
k (t) − [

Sn
j

(
T n

j (t)
) − T n

j (t)
] − T n

j (t)

− [
S̃j

(
T̃ n

j (t)
) − T̃ n

j (t)
] − T̃ n

j (t)

and dividing by
√

n

Q̂n
j (t) = Q̂n

j (0) + Ân
j (t) +

J∑
k=1

R̂k
j

(
S̄n

k

(
T n

k (t)
)) +

J∑
k=1

pkj Ŝ
n
k

(
T̄ n

k (t)
) − Ŝn

j

(
T̄ n

j (t)
)

+ 1√
n

(
J∑

k=1

pkjT
n
k (t) − T n

j (t) + λn
j t

)
− γj

∫ t

0
Q̂n

j (s)
+ ds − Fn

j (t).

By (23)

T n
j (t) = ∑

q∈Kj

μ(q)

∫ t

0

(
1 − I(q)(s)

)
ds = μn

j t − ∑
q∈Kj

μ(q)

∫ t

0

(
I(q)(s)

)
ds,

Q̂n
j (t) = Q̂n

j (0) + Ân
j (t) +

J∑
k=1

R̂k
j

(
S̄n

k

(
T n

k (t)
)) +

J∑
k=1

pkj Ŝ
n
k

(
T̄ n

k (t)
) − Ŝn

j

(
T̄ n

j (t)
)

+ 1√
n

[
λn

j +
J∑

k=1

pkjμ
n
k − μn

j

]
t − γj

∫ t

0
Q̂n

j (s)
+ ds − Fn

j (t)

− n− 1
2

J∑
i=1

pij

∑
q∈Ki

μ(q)

∫ t

0

(
I(q)(s)

)
ds + n− 1

2
∑

q∈Kj

μ(q)

∫ t

0

(
I(q)(s)

)
ds.

�

Now, we prove some elementary estimates of expressions have been defined
above.

Lemma 3.3. With T̄ n
j (t) := 1

n
T n

j (t), T̄j (t) := μ̄j t , t ∈ [0, u], one has

T̄ n
j → T̄j in probability, uniformly on [0, u], (30)
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sup
n

E
[(∥∥Ṽ n

∥∥
u

)2]
< ∞, (31)

sup
n

E
[(∥∥V n

∥∥
u

)2]
< ∞, (32)

the random variables
∥∥Q̂n,+∥∥

u are tight, (33)

Fn → 0 in probability, uniformly on [0, u], (34)

and

P(τn < u) → 0, as n → ∞. (35)

Proof. First, the proof of the following limit is similar to Lemma A.2 in Atar
(2012).

sup
{∣∣T̄ n

j (t) − μ̄j t
∣∣ : t ≤ τn

} → 0 in probability, as n → ∞. (36)

We continue to show (31) by using the Burkholder–Davis–Gundy inequality
(see (21)). From the Assumption 2.1 it follows that Ṽn is an Fn-martingale. Since
each of its jumps are of size n−1/2 and the number of jumps until time t is∑J

i=1 R
i,n
j (Sn

i (T n
i (t))), it follows that

E
[(∣∣Ṽ n

j

∣∣∗
u

)2] ≤ c2

n
E

[
J∑

i=1

R
i,n
j

(
Sn

i

(
T n

i (u)
))] =

J∑
i=1

c2

n
E

[
pij

(
Sn

i

(
T n

i (u)
))]

=
J∑

i=1

c2pij

n
E

[(
T n

i (u)
)] =

J∑
i=1

c2pij

n
E

[ ∑
q∈Kj

μ(q)

∫ u

0

(
1 − In

(q)(s)
)
ds

]

≤
J∑

i=1

c2pijuμ̄n
j ,

and by (6) follows (31).
(32) is immediately obtained in the same way.
We now prove

the random variables
∥∥Q̂n,+∥∥

τn
are tight. (37)

Let r > 0 be given. Consider the event {‖Q̂n,+‖τn > 2r}. On this event there exists
j ∈ J , 0 ≤ αn ≤ θn ≤ τn such that Q̂n

j (αn) ≤ r , Q̂n
j (θn) ≥ 2r , while Q̂n

j (t) > 0
for t ∈ [αn, θn]. Hence by (11), (12) and (14), Ln

j (θn) = Ln
j (αn). Recall that,∑J

i=1 pijL
n
i (t) and the process (20) are nondecreasing in t . Using this in the j th

component of Lemma 3.2, shows

P
(∥∥Q̂n,+∥∥

τn
> 2r

)
≤ P

(
there exist 0 ≤ αn ≤ θn ≤ τn such that W̃n

j

(
θn) − W̃n

j

(
αn) ≥ r

)
, (38)
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and since Ân converge and (7), (32) and (31) hold, it follows that ‖W̃n‖u are tight
random variables. This shows that the r.h.s. of (38) tends to zero as r → ∞, whence
follows (37).

It is easy to see that S̃∗,n converges to zero in distribution, uniformly on com-
pacts. By using (37), γ n

j → γj ,∣∣Fn
∣∣∗
τn

→ 0, in probability. (39)

By the assumptions on the matrix P , there is a diagonal matrix � having pos-
itive diagonal elements such that the matrix P ∗ = �P�−1 has maximal row sum
less than one (Veinott, see Harrison and Rieman (1981), page 304). Hence (see
Harrison and Reiman (1981)), the equation in Lemma 3.2 may be replaced by the
equation

�Q̂n(t) = �

(
Q̂n(0) + W̃n(t) − Fn(t) −

∫ t

0
�Q̂n(s)+ ds

)
+ (

I − P ∗T )
�Ln(t). (40)

We observe the sum of all j th components of (40). Let {τn < u} be an event. On
this event there exists k such that Ln

k(τ
n) = n�. By the property of P ∗,

J∑
j=1

{
λjL

n
j (t) −

J∑
i=1

p∗
ij λiL

n
i (t)

}
is positive (41)

and ∣∣∣∣∣
J∑

j=1

{
λjL

n
j (t) −

J∑
i=1

p∗
ij λiL

n
i (t)

}∣∣∣∣∣
∗

τn

≥
(

1 −
J∑

i=1

p∗
ki

)
λkn

�. (42)

Using (41) and (42), show

P(τn < u) ≤ P

(∣∣∣∣∣
[

J∑
j=1

λjQ̂
n
j (·) − λj Q̂

n
j (0)

]+∣∣∣∣∣
∗

τn

≥
(

1 −
J∑

i=1

p∗
ki

)
λkn

�/4

)

+ P

(∣∣∣∣∣
J∑

j=1

λjW̃
n
j

∣∣∣∣∣
∗

τn

≥
(

1 −
J∑

i=1

p∗
ki

)
λkn

�/4

)

+ P

(
J∑

j=1

γj

∫ τn

0
λj Q̂

n
j (s)

+ ds ≥
(

1 −
J∑

i=1

p∗
ki

)
λkn

�/4

)
.

We showed that the random variables ‖W̃n‖τn are tight. The tightness of
‖Q̂n(0)‖, ‖Q̂n,+‖τn (see (15) and (37)) implies (35).

Finally, in view of (35), (36) implies (30), (37) implies (33) and (39) implies
(34). �
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Lemma 3.4. Let W̃n be defined as in (27). Then W̃n ⇒ w̃ where w̃ is a J -
dimensional Brownian motion with drift β having covariance matrix C with
(k, l)th element

λ̄kakδkl +
J∑

j=1

μ̄jpjk(δkl − pjl) + μ̄j (pjk − δjk)(pjl − δjl).

Proof. We note that the J -dimensional processes

Ân, Ŝn, R̂n converge in distribution to wA,wS,wR, (43)

respectively (see Chen and Yao (2001), Theorem 5.11), where wA, wS , wR are
independent J -dimensional driftless Brownian motions having covariance matri-
ces CA, CS , CR,i , such that (k, l)th element is defined as (Chen and Yao (2001),
Section 7.5)

CA
kl = λ̄kakδkl, CS

kl = δkl, C
R,i
kl = pik(δkl − pil).

We use (43), the random time change theorem (Billingsley (1999), Section 14).
By (30)

Ŝn(
T̄ n(t)

) ⇒ wS(μ̄t).

By Chen and Yao (2001), Theorem 5.10, 1
n
Sn

j (nT̄ n
j ) → μ̄j t a.s. Hence,

R̂j,n(
S̄n

j

(
T n

j (t)
)) ⇒ wR,j (μ̄j t).

Using (7), completes the proof. �

Proof of Theorem 2.2. We observe again the sum of all j th components of (40).
Recall that (41) holds. Hence, the tightness of the random variables |∑J

j=1 Q̂
n,+
j |∗u

and |∑J
j=1 W̃n

j |∗u shows that (41), and, in turn, |Ln
i |∗u are tight random variables for

all i.
Now, the tightness of ‖Ln‖u, |Q̂n,+

j |∗u and |W̃n
j |∗u implies that |Q̂n

j |∗u, and, in

turn, |Î n
j |∗u are tight random variables.

We show that ∥∥Î n
∥∥
u → 0 in probability. (44)

Given ε > 0, consider the event

�ε
n = {

Î n
j (0) ≥ ε,

∣∣Î n
j

∣∣∗
u > 3ε

}
.

On this event, there exists 0 ≤ αn < θn ≤ u such that Î n
j (αn) ≤ 2ε, Î n

j (θn) ≥ 3ε,

and Î n
j (t) ≥ ε for t ∈ [αn, θn] (by tightness of Î n

j , the jumps of Î n
j are a.s. bounded

by cn−1/2). Hence by (5) and (14),

Ln
j (θn) − Ln

j (αn) ≥ μn
minε(θn − αn).
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Since Q̂n
j is negative on this event for t ∈ [αn, θn], the last term on the r.h.s. of

Lemma 3.2 does not vary between the times αn and θn. Also, the process Ln
j is

nondecreasing, and so

−ε ≥ Q̂n
j (θn) − Q̂n

j (αn) ≥ W̃n
j (θn) − W̃n

j (αn) −
J∑

i=1

pijL
n
i (θn) +

J∑
i=1

pijL
n
i (αn)

:= WLn(θn) − WLn(αn).

We obtain, for each ε and n,

P
(
�ε

n

) ≤ P
(
there exists δ > 0 such that w̄u

(
WLn, δ

) ≥ ε, εδμn
min ≤ ∣∣Ln

j

∣∣∗
u

)
.

By tightness of |Ln
j |∗u, there is a function g such that limr→∞ g(r) = 0, and, for

every r > 0,

P
(
�ε

n

) ≤ g(r) + P

(
w̄u

(
WLn,

r

εμmin
n

)
≥ ε

)
. (45)

We assumed that μn
min → ∞ (5). Since Li is continuous and W̃n converges to

a Brownian motion,
∑J

i=1 pijL
n
i , W̃n are C-tight. Hence, the last term on (45)

converges to zero as n → ∞. In fact, r is arbitrary, so that limn P(�ε
n) = 0. Fi-

nally, since the weak limit Îj (0) of Î n
j (0) is nonnegative (15), it follows that

limn P(|Î n
j |∗u > 3ε) = 0. This shows (44).

By Lemma 3.2,

Q̂n(t)+ = ζ n(t) + (
I − P T )

Ln(t), (46)

where

ζ n(t) := Q̂n(0) + W̃n(t) −
∫ t

0
�Q̂n(s)+ ds + en(t) and

en := Î n(t) − Fn(t) (47)

• Q̂n(t)+ ≥ 0, ∀t ≥ 0;
• Ln

i (0) = 0, Ln
i is non-decreasing, for all i ∈ J ;

• ∫
[0,∞) Q̂

n
i (t)

+ dLn
i (t) = 0 a.s.

Dupuis and Ishii (1991), Theorem 3.3, show that there exists a unique map
Q̂n,+ = �(ζn) from DJ to DJ which is Lipschitz continuous under uniform norm
(see Dupuis and Ishii (1991), Section 5.1), such that (Q̂n,+, ζ n, Q̂n,+ − ζ n) solves
the Skorohod equation (46).

By the tightness of Q̂n(0), Q̂n,+, W̃n and Fn → 0 ((15), (33), (31), (32), (7) and
(34)), it is sufficient to show that all subsequential limits of (Q̂n,+, ζ n, Q̂n,+ − ζ n)

are equal to the solution of the Skorohod equation (16).
A Lemma 3.4, (44), (34), the continuity of � and a continuous mapping theorem

complete the proof. �
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4 Discussion and future research

The research on networks of queues has important applications in computer sci-
ence, telecommunications, and large manufacturing systems. Since exact analysis
proves impossible in most cases, a large part of the research has focused on ap-
proximate models. When the service rates are roughly balanced with the arrival
rates, one can approximate such systems by suitable diffusion processes.

This paper presents a wide range of possible approximations of such sys-
tems. As we mentioned in the introduction, the research of the general α-
parameterization has advanced considerably in recent years, thus giving rise to
a considerably larger collection of possible regime models to provide better ap-
proximations. It is reasonable to suppose that optimization problems concerning
heavy traffic, with the decision variable being the number of servers, can be solved
by an α-parameterization model with α �= 0,1 (for example, see Hassin, Shaki and
Yovel (2015)).

Now, we present the discussion and some possibilities for future studies.

1. In this paper, we considered a Jackson network under heavy traffic with any
parameter α ∈ [0,1). We showed that the sequence of normalized queue length
processes of the Jackson network converge weakly to a multi-dimensional reg-
ulated Ornstein–Uhlenbeck process in the orthant, (or regulated Brownian mo-
tion, if we omit from the model the abandonment of customers) as the traffic
intensity approaches unity. However, it is not known whether the stationary
distribution of regulated Ornstein–Uhlenbeck process provides a valid approx-
imation for the steady-state of the original network. This problem solved by
Gamarnik and Zeevi (2006) under conventional heavy traffic regime

2. Kleinrock (1964) found the optimal vector of service rates μ = (μ1, . . . ,μk) in
a Jackson network (without heavy traffic), in order to minimize the sojourn time
per customer subject to the budget constraint D = ∑

diμi , where di is the unit
cost of capacity at station k and D is the total available budget. Wein (1989)
generalized this result to general arrival and service time distributions.

The question arises whether it is possible to extend this result to a Jackson
network in any general heavy traffic model. For example, given a Jackson net-
work in a heavy traffic regime with a fixed parameter α ∈ [0,1), so that the
vectors λn, μn satisfy the assumptions (5)–(7), one can search the optimal vec-
tor of service rates μn = (μn

1, . . . ,μ
n
k), in order to minimize the sojourn time

per customer subject to the budget constraint Dn = ∑
μn

i where Dn is the total
available budget. Thereafter, one can search for the parameter α which gives
the absolutely minimal sojourn time.

3. In Jackson networks, many research has been done in regard to control prob-
lems. For example, Azaron and Ghomi (2003) considered optimal control of
service and arrival rates in a Jackson network. They studied the total waiting
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times and the total operating costs per period in Jackson networks. The ques-
tion arises whether it is possible to extend this result to a Jackson network in
any general heavy traffic model.

4. It is well-documented that in a considerable class of the aforementioned re-
search applications, the service times are not exponentially distributed (Brown
et al. (2005)). Thus arises naturally the question to know whether similar re-
sults can be obtained by dropping the assumption of exponentially distributed
serves times, whereby the main problem lies in the fact it is not known how
to determine in general the distribution of the sum of non-Poissonian server
processes.
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