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Abstract. In the data analysis from multiple repairable systems, it is usual to
observe both different truncation times and heterogeneity among the systems.
Among other reasons, the latter is caused by different manufacturing lines
and maintenance teams of the systems. In this paper, a hierarchical model
is proposed for the statistical analysis of multiple repairable systems under
different truncation times. A reparameterization of the power law process is
proposed in order to obtain a quasi-conjugate bayesian analysis. An empirical
Bayes approach is used to estimate model hyperparameters. The uncertainty
in the estimate of these quantities are corrected by using a parametric boot-
strap approach. The results are illustrated in a real data set of failure times of
power transformers from an electric company in Brazil.

1 Introduction

An issue of interest to statisticians and engineers in the analysis of repairable sys-
tems data is how to model the changes in the performance of the system caused
by the failure and/or maintenance process. This involves usually a stochastic point
process (Andersen et al., 1993, Cook and Lawless, 2007) and statistical analysis
(Rigdon and Basu, 2000, Lindqvist, 2006). In the data from multiple repairable
systems one observes usually different truncation times and heterogeneity among
them. The latter is due to causes such as different locations, manufacturing lines
and maintenance teams of the systems, among others. An interesting example of
the joint presence of heterogeneity and different truncation times is provided by
the power transformers of the electric company of Minas Gerais state in Brazil.
These data were first reported and analyzed by Gilardoni and Colosimo (2007).
Table 1 contains failure times from forty power transformers, recorded between
January 1999 and July 2001. The data consist of the number of failures and failure
and truncation times for the forty systems.

Power transformers are complex systems with a large number of components.
These devices usually fail because of just one of these components. After this

Key words and phrases. Bootstrap correction, maximum a posterior density, minimal repair, mul-
tiple repairable systems, rejection sampling, reliability.

Received July 2015; accepted January 2018.

374

http://imstat.org/bjps/
https://doi.org/10.1214/18-BJPS393
http://www.redeabe.org.br/


Hierarchical modelling of power law processes 375

Table 1 Power transformers data

System Number of
failures

Failure times
(hours)

Trucation
times

System Number of
failures

Failure times
(hours)

Trucation
times

1 2 8839 17,057 21,887 17 1 15,524 21,886
2 2 9280 16,442 21,887 18 0 21,440
3 1 10,445 13,533 19 0 369
4 0 7902 20 2 11,664 17,031 21,857
5 0 8414 21 0 7544
6 0 13,331 22 0 6039
7 1 17,156 21,887 23 1 2168 6698
8 1 16,305 21,887 24 1 18,840 21,879
9 1 16,802 21,887 25 0 2288

10 0 4881 26 0 2499
11 0 16,625 27 1 10,668 16,838
12 2 7396 7541 19,590 28 1 15,550 21,887
13 0 2121 29 0 1616
14 2 15,821 19,746 19,877 30 1 14,041 20,004
15 0 1927 31–40 0 21,888
16 1 15,813 21,886

component is repaired, it is expected that the reliability of the transformer does not
change. This type of repair is known as minimal repair. A failure process that un-
dergoes minimal repair actions is modeled by a nonhomogeneous Poisson process
(NHPP) (Baker, 1996). Succinctly, define N(t) to be the number of failures in the
interval (0, t]. A process {N(t) : t ≥ 0} having independent increments and start-
ing at N(0) = 0 is said to be a Poisson process with intensity λ(·) if, for any t , the
random variable N(t) follows a Poisson distribution with mean �(t) = ∫ t

0 λ(u)du.
The NHPP is a Poisson process with a nonconstant intensity function λ(·). In the
repairable system literature, the most popular parametric form for λ is the power
law process (PLP),

λ(t) = β

θ

(
t

θ

)β−1
, (1.1)

where β and θ are respectively, shape and scale parameters. The corresponding
mean function is

�(t) = E
[
N(t)

] =
∫ t

0
λ(u)du =

(
t

θ

)β

. (1.2)

The popularity of the PLP model stems from both its mathematical simplicity and
its flexibility, in the sense that (1.1) can accommodate situations where the systems
either deteriorates (β > 1) or improves (β < 1) with time.

When observing data from a single system truncated at τ , the joint likelihood
of the number of failures n = N(τ) and the failure times 0 < t1 < · · · < tn < τ
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is obtained after noting that N(τ) follows a Poisson distribution with mean �(τ)

and, conditional on N(τ) = n, the failure times have the same distribution as the
order statistics of a sample of size n from the pdf g(t) = [λ(t)/�(τ)]I (0 < t < τ),
which in the PLP case becomes g(t) = (β/t)(t/τ )βI (0 < t < τ) (see, for instance,
Rigdon and Basu, 2000). Therefore,

p(n; t1, . . . , tn|β, θ) = exp
{−(τ/θ)β

} βn

θnβ

n∏
j=1

t
β−1
j . (1.3)

(As usual, we assume here and throughout that empty sums and products are equal
respectively to zero and one, so that (1.3) becomes exp{−(τ/θ)β} when n = 0.) If
we reparametrize the model in terms of β and η = E[N(τ)] = (τ/θ)β , the likeli-
hood (1.3) becomes

p(n; t1, . . . , tn|β,η) ∝ γ (η|n + 1,1) × γ (β|n + 1,w), (1.4)

where w = ∑n
j=1 log(τ/tj ) and γ (x|a, b) = baxa−1e−bx/	(a) is the density of

the gamma distribution with mean a/b and variance a/b2. The fact that β and η

are orthogonal and the striking simplicity of (1.4) makes the (β, η) parameteriza-
tion quite convenient. It has been used previously by Oliveira, Colosimo and Gi-
lardoni (2012) in nonhierarchical modelling and Ryan, Hamada and Reese (2011)
in the context of hierarchical models when all the truncation times are equal. Us-
ing either (1.3) or (1.4), it is easy to show then that the maximum likelihood es-
timates (MLEs) are η̂ = n and, provided that n > 0, β̂ = n/

∑n
j=1 log(τ/tj ) =

n/w and θ̂ = τ/n1/β̂ (the MLEs of β and θ do not exist when n = 0). We
note that, in the sequel, we will denote (1.3) by writing that (n; t1, . . . , tn) ∼
PLPτ (n; t1, . . . , tn|β, θ).

An important aspect to consider regarding the power transformers data in Ta-
ble 1 is the fact that these systems are located in different places along the Brazil-
ian state of Minas Gerais. Thus, due to climate changes along this state, it is ex-
pected that they are exposed to different operating conditions. Therefore, rather
than assuming that all 40 systems have the same (β, θ) parameters as in Oliveira,
Colosimo and Gilardoni (2012), an individual analysis of each system may be ad-
equate. In other words, one may compute estimates (β̂i, θ̂i) for each of the 16
systems having ni > 0. Figure 1 shows estimates for the intensity and mean func-
tions (1.1) and (1.2) obtained by substituting the parameters by its MLEs. One can
observe that the estimated intensities show quite different behavior (decreasing,
concave increasing and convex increasing). While this may be because each sys-
tem has its unique characteristics, it is more likely the consequence of the fact that
the individual estimates are highly inaccurate because the number of observed fail-
ures for each system is very small. On the other hand, most of the systems seems to
be ageing, but each one in its own way. A hierarchical model which considers this
similarity between systems may be more realistic and, at the same time, it would
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Figure 1 Maximum likelihood estimates of the intensity (a) and mean (b) functions for the sixteen
transformers with ni > 0.

allow to borrowing information across systems (Arab, Rigdon and Basu, 2012,
Rigdon and Basu, 2000). In other words, the choice by a hierarchical model is a
balance between the assumption that the intensity is the same for all power trans-
formers and the one that each transformer has its own intensity.

The objective of this paper is to discuss a hierarchical model to analyze sev-
eral repairable systems truncated at possible different times. More precisely, the
first stage specifies a distribution for the failure times data conditional on the pa-
rameters of the PLP, while the second stage specifies a prior distribution for these
parameters. Therefore, the specific features of each transformer are modeled in
the first stage, while characteristics that are common to all transformers are taken
into consideration in the second one. Although there has been some recent inter-
est in the area of hierarchical modeling of repairable systems (see, for instance,
Bhattacharjee, Arjas and Pulkkinen, 2003, Pan and Rigdon, 2009, Ryan, Hamada
and Reese, 2011), statistical modeling and inference procedures for the case of
multiple repairable systems with different truncation times are still under consid-
eration in the literature. Lindqvist, Elvebakk and Heggland (2003) have considered
the issue of unobserved heterogeneity between systems. A counting process, rep-
resenting the unity, is assumed to be the same for the systems, but their intensity
is taken to be different for each one by introducing a frailty term in the model.
Frailty affects only the scale parameter of the PLP intensity (see Lawless, 1987).
Our model allows both the scale and shape parameters to vary among systems.
Following Guida and Pulcini (2005), Giorgio, Guida and Pulcini (2014) used a
generalization of the prior proposed by Huang (2001) to model shape and scale
parameter of the PLP intensity. The resulting prior depends upon five hyperpa-
rameters, one more than our prior model. Furthermore, their approach differs from
ours in the sense that they estimate the five hyperparameters using the actual data
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to elicit an informative prior for a future analysis. It was adopted an empirical
Bayes approach to estimate model parameters and hyperparameters. This approach
has some advantages in comparison of the fully Bayesian and maximum likehood
ones. Empirical Bayes is an approximation to a fully Bayesian approach that pro-
vides significant simplifications in computational terms and it allows estimates for
the parameters of a system without failures, while there is no maximum likelihood
estimate in such case.

The rest of the paper is organized as follows. Section 2 describes the hierar-
chical model with special focus on the second stage distribution. More precisely,
we argue that the (β, η) parameterization together with different truncation times
implies that one cannot assume exchangeability and suggest a way to overcome
this difficulty. Section 3 discusses an empirical Bayes strategy based on maximum
posterior density or, equivalently, penalized likelihood estimation for the hyper-
parameters and, once that the hyperparameters have been estimated, an efficient
rejection sampling strategy to obtain i.i.d. samples from the posterior distribution
of the system-specific parameters. Section 3 also presents an implementation of a
bootstrap procedure, suggested by Laird and Louis (1987), to correct for the un-
derestimation of uncertainty inherent to the empirical Bayes approach. Section 4
contains an analysis of the power transformers data set, including estimation of the
optimal maintenance period under a block maintenance policy. Finally, some con-
clusions are given in Section 5 and Appendix A describes how to obtain starting
values for the penalized likelihood maximization used to estimate the hyperparam-
eters.

2 A hierarchical PLP model

We follow Guida, Calabria and Pulcini (1989), Oliveira, Colosimo and Gilardoni
(2012) and Ryan, Hamada and Reese (2011) and parametrize the PLPs in terms
of βi and ηi = �i(τi) = (τi/θi)

βi , mainly in view of the simplifications that re-
sult from (1.4) and the consequent orthogonality. Of course, it is possible to go
from one parameterization to the other provided that one multiplies both prior and
posteriors by the appropriate jacobian.

Let Di = (ni; ti1, . . . , ti,ni
), i = 1, . . . ,K , where K is the number of observed

systems, D = (D1, . . . ,DK), β = (β1, . . . , βK) and η = (η1, . . . , ηK). Assuming
all throughout conditional independence across systems, the data level of the hier-
archical model states that

p(D|β,η) ∝
K∏

i=1

γ (ηi |ni + 1,1) × γ (βi |ni + 1,wi), (2.1)

where wi = ∑ni

j=1 log(τi/tij ). In other words, data from the ith system comes

from a PLP with parameters βi and θi = τiη
−1/βi

i observed up to time τi [cf.
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equations (1.3) and (1.4)]. To specify the prior level of the model we denote by
φ = (aβ,β0, aη, θ0) the set of hyperparameters and let

p(β,η|φ) =
K∏

i=1

γ (βi |aβ, aβ/β0) × γ
(
ηi |aη, aη(θ0/τi)

βi
)
. (2.2)

More specifically, we set βi to follow a gamma distribution with mean β0 and
coefficient of variation 1/

√
aβ and, conditional on βi , ηi follows also a gamma

distribution with mean (τi/θ0)
βi and coefficient of variation 1/

√
aη, so that β0 and

θ0 can be thought off as prior guesses for the βi ’s and the θi’s and aβ and aη are
hyperparameters that control the precision of those prior guesses.

The rationale behind the prior distribution (2.2) can be explained as follows.
We begin by noting that it follows from (1.4) that, in the case of a single sys-
tem, the natural prior for the pair (β, η) is a product of gamma distributions of
the form γ (β|aβ, aβ/β0) × γ (η|aη, aη/η0) (cf. Oliveira, Colosimo and Gilardoni,
2012). Following this idea, Ryan, Hamada and Reese (2011) consider a hierar-
chical model for several PLPs all truncated at the same time τ1 = · · · = τK = τ

and specify the prior level distribution also as a product of gamma distributions
of the form

∏K
i=1 γ (βi |aβ, aβ/β0) × γ (ηi |aη, aη/η0). However, this possibility

does not seem appropriate when the systems have different truncation times, in the
sense that it would imply that the pairs (βi, ηi) (i = 1, . . . ,K) are exchangeable,
while one would expect larger values of ηi = E[Ni(τi)] for those systems which
are observed longer (i.e., which have large τi ). Although assuming the ηi’s to be
exchangeable is not reasonable because their definition involves the τi’s, which
are different, it makes sense to assume that the θi ’s are exchangeable irrespective
of the truncation times, because their definition (namely, θi is the time such that
E[Ni(θi)] = 1) does not involve the τi’s. Therefore, we want the prior level dis-
tribution p(β,η|φ) to be such that the pairs (βi, θi = τiη

−1/βi

i ) are exchangeable.
Now, it is straightforward to check that (2.2) implies that

p(β, θ |φ) =
K∏

i=1

γ (βi |aβ, aβ/β0) × a
aη
η

	(aη)

βi

θi

(
θ0

θi

)aηβi

exp
{−aη(θ0/θi)

βi
}
,

where θ = (θ1, . . . , θK). Since the truncation times τi do not appear in the right-
hand side of this last expression, this implies that the pairs (βi, θi) are indeed
exchangeable.

An alternative derivation of (2.2) is as follows. Write p(βi, ηi |φ) = p(βi |φ) ×
p(ηi |βi,φ) and suppose that one wants to set βi |φ ∼ Gamma(aβ, aβ/β0) and
ηi |βi,φ ∼ Gamma(aη, bη), where aη and bη could possibly depend on βi and τi .
Then the βi ’s are exchangeable and a necessary condition for the pairs (βi, θi) to
be exchangeable is that E[θ−βi

i |φ] does not depend on the system i. Now, since

θ
−βi

i = τ
−βi

i ηi ,

E
[
θ

−βi

i |φ] = E
[
E

[
τ

−βi

i ηi |βi,φ
]] = E

[
τ

−βi

i (aη/bη)|φ]
.
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It is easy to see that for this not to depend on τi , it is necessary that there exists a
function h such that E[τ−βi

i (aη/bη)|φ] = h(βi). The prior p(β,η|φ) given in (2.2)

corresponds to the choice h(βi) = θ
−βi

0 . In other words, the previous argument

shows that for the prior (2.2) one has that E[θ−βi

i |φ] = E[θ−βi

0 |φ], showing again
why θ0 can be thought of as a prior guess for the θi ’s.

To complete the specification of the hierarchical model, we assume an indepen-
dent prior distribution for the hyperparameters of the form

p(φ) = p(aβ) × p(β0) × p(aη) × p(θ0) ∝ exp{−ξ1aβ} exp{−ξ2aη}, (2.3)

that is, we set both p(β0) ∝ 1 and p(θ0) ∝ 1 and exponential densities with means
ξ−1

1 and ξ−1
2 respectively for aβ and aη. The exponential distribution is a common

choice for the shape parameter of the Gamma-Poisson hierarchical model (see, for
example, George, Makov and Smith, 1993, and related applications Pérez, Martín
and Rufo, 2006, Pesaran, Pettenuzzo and Timmermann, 2006, Perkins et al., 2012),
that can be thought as a prototype for the PLP hierarchical model. In Section 3, we
discuss the specification of ξ1 and ξ2.

In the rest of the paper, we discuss an empirical Bayes procedure which esti-
mates φ from data by maximizing the posterior density p(φ|D) or, equivalently,
by maximizing a penalized likelihood (see Section 3 and Appendix A). Once that
an estimate φ̂ has been obtained, inferences about quantities specific to each sys-
tem proceeds straightforward after noting from (2.1) and (2.2) that

p(β,η|D,φ) =
K∏

i=1

p(ηi |βi,Di,φ) × p(βi |Di,φ), (2.4)

where

p(ηi |βi,Di,φ) = γ
(
ηi |aη + ni, aη(θ0/τi)

βi + 1
)
, (2.5)

and

p(βi |Di,φ) ∝ γ (βi |aβ + ni, aβ/β0 + wi) × [aη(θ0/τi)
βi ]aη

[aη(θ0/τi)βi + 1]aη+ni
. (2.6)

3 Empirical Bayes inference for the hierarchical PLP model

To make inferences for the hierarchical PLP model, we adopt a parametric em-
pirical Bayes (PEB) approach. The PEB approach uses the observed data to es-
timate, usually by the maximum likelihood method, the hyperparameters φ =
(aβ,β0, aη, θ0). Then, one replaces φ by its estimate φ̂ in the conditional pos-
terior (2.4)–(2.6) to make inferences with respect to (β,η). However, this ap-
proach ignores the uncertainty in the estimation of φ, and hence tends to un-
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derestimate variances and produce too narrow intervals (Carlin and Gelfand,
1990). Kass and Steffey (1989) proposed first and second order approximations
to Var[h(βi, ηi)|D] which requires computation of higher order derivatives of the
marginal log-likelihood. Computation of these derivatives becomes too complex
for the hierarchical PLP case. Hence, we followed the proposal of Laird and Louis
(1987) and use a parametric bootstrap to approximate the marginal posterior distri-
bution of φ. For details about the PEB approach see, for instance, Morris (1983),
Casella (1985) or, in the reliability literature, Gaver and O’Muircheartaigh (1987).

This section is divided into three subsections which discuss respectively (i) the
maximum posterior density estimate for φ, (ii) a rejection sampling algorithm
to sample from the conditional posterior p(β,η|D,φ) and (iii) the parametric
bootstrap strategy used to approximate the posterior marginal distribution p(φ|D)

which is then used to correct both standard errors of point estimates and credibility
intervals for the system specific parameters.

3.1 Maximum posterior density estimate

From (2.1) and (2.2), the marginal likelihood for φ is given by

p(D|φ) =
∫
R

K+

∫
R

K+
p

(
D|β,η

) × p
(
β,η|φ)

dη dβ

=
K∏

i=1

(
ni∏

j=1

1

tij

)
	(aη + ni)

	(aη)	(aβ)

(
aβ

β0

)aβ

×
∫ ∞

0

[
aη(θ0/τi)

βi

aη(θ0/τi)βi + 1

]aη
[

1

aη(θ0/τi)βi + 1

]ni

× β
aβ+ni−1
i e−βi(aβ/β0+wi) dβi.

(3.1)

Note that the last integral in (3.1) has no closed form and it should have to be
computed numerically in the maximization algorithm. Hence, the marginal poste-
rior distribution of φ is

p
(
φ|D) ∝ p

(
D|φ) × p(φ), (3.2)

where p(φ) is given in (2.3). Note that maximizing (3.2) is equivalent to maximiz-
ing

�(φ) = logp(D|φ) − (ξ1aβ + ξ2aη), (3.3)

showing that one could think of the maximum posterior estimate of φ as a penal-
ized likelihood approach. Maximization of (3.3) is carried out numerically. Initial
values to start the algorithm are discussed in Appendix A.

In order to evaluate the behavior of the estimators obtained from the maximiza-
tion of (3.3), we conducted a Monte Carlo simulation study. The Monte Carlo sce-
narios were designed to generate data similar to the transformers example. Hence,



382 R. C. P. dos Reis, E. A. Colosimo and G. L. Gilardoni

we set the hyperparameters β0 = 2, θ0 = 10,000, aβ = 2,10, aη = 2,10, trunca-
tion times varying from 2000 to 20,000 hours and K = 10,40,70 and 100 systems.
We compared the mean and standard errors of the estimates (âβ, β̂0, âη, θ̂0) of 500
Monte Carlo replicates using (i) maximization of the marginal likelihood, (ii) max-
imization of the marginal posterior of φ with ξ1 = ξ2 = 1 and (iii) same as (ii) but
with ξ1 = ξ2 = 0.1. All the results were obtained using the software R, version
3.0.1 (R Core Team, 2013).

The results are summarized in Figures 2–5. Briefly, the estimates for β0 and θ0
behave similar for the three methods. In other words, the introduction of a penalty
of the form ξ1aβ + ξ2aη does not impact much the estimates of β0 and θ0. On the
other hand, the estimates of aβ and aη obtained maximizing the marginal posterior
performed better than the ones obtained by maximizing the marginal likelihood,

Figure 2 Mean value of the estimates of β0. Point sizes are proportional to the standard error of
the estimates.

Figure 3 Mean value of the estimates of θ0. Point sizes are proportional to the standard error of
the estimates.
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Figure 4 Mean value of the estimates of aβ . Point sizes are proportional to the standard error of
the estimates.

Figure 5 Mean value of the estimates of aη . Point sizes are proportional to the standard error of
the estimates.

in the sense that they have smaller bias and standard errors for small K . Of the
two options ξ1 = ξ2 = 1 and ξ1 = ξ2 = 0.1, the latter seems to be slightly better.
In terms of the prior distribution (2.3) for φ, this amounts to setting (improper)
uniform priors for both β0 and θ0 and exponential distributions with mean and
standard deviation 1/0.1 = 10 for both aβ and aη. We finally note that, as expected,
as the amount of information grows (i.e., K grows), the three estimators seem to
converge to the true values of φ.

3.2 Simulations for the conditional posterior distribution

For given φ (e.g., φ̂ obtained by maximizing (3.3)), i.i.d. simulation from the
conditional posterior distribution (2.4)–(2.6) is straightforward using the rejection
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sampling algorithm (see, for instance, Devroye, 1986, Gelman et al., 2003). Note
first that (i) the pairs (βi, ηi) are conditionally independent and (ii) given βi , ηi

follows a Gamma distribution. Hence, the only difficulty in order to sample from
p(β,η|D,φ) is how to sample from (2.6).

Let F(βi) be the last factor in the right-hand side of (2.6), that is,

F(βi) = [aη(θ0/τi)
βi ]aη

[aη(θ0/τi)βi + 1]aη+ni
.

Simple algebra shows that F(βi) is maximized when βi = β∗
i = max{0,

− logni/ log(θ0/τi)}. Therefore, we can generate a random variable having the
pdf (2.6) by

1. Generate β
(cand)
i ∼ Gamma (βi |aβ + ni, aβ/β0 + wi) and u ∼ Uniform(0,1).

2. Define Ci = F(β∗
i ). If uCi ≤ F(β

(cand)
i ), accept βi = β

(cand)
i . Otherwise, repeat

step 1 until the acceptance condition is met.

Using the structure of the model we can then generate an observation from
p(β,η|D,φ) by running the previous algorithm K times to obtain β1, . . . , βK and
then sampling η1, . . . , ηK from the Gamma distributions (2.5). We then repeat this
procedure M times to obtain an i.i.d. sample (β(1),η(1)), . . . , (β(M),η(M)) from
p(β,η|D,φ).

3.3 Parametric bootstrap correction

From a Bayesian point of view, the PEB distribution p(β,η|D, φ̂) is an approxi-
mation to the marginal posterior distribution

p(β,η|D) =
∫
R

4+
p

(
β,η|D,φ

)
p

(
φ|D)

dφ, (3.4)

where p(β,η|D,φ) is given by (2.4) and p(φ|D) by (3.1)–(3.2). In other words,
the PEB approach replaces p(φ|D) by the Dirac measure (see Schilling, 2005,
p. 26) δ

φ̂
to get

p̃naive(β,η|D) =
∫
R

4+
p(β,η|D,φ)δ

φ̂
(dφ) = p(β,η|D, φ̂), (3.5)

where φ̂ is the maximum posterior density estimate of φ. This approximation is
naive since it fails to take into account the uncertainty with respect to the estimation
of φ. Consequently, posterior variances tend to be underestimated and credible in-
tervals too narrow. Laird and Louis (1987) suggested that a more satisfactory solu-
tion would be to replace the posterior p(φ|D) in (3.4) by the sampling distribution
f

φ̂
(φ) of φ̂. When f

φ̂
(φ) is not known or difficult to obtain, they propose to use a

parametric bootstrap method to get a proxy for f
φ̂
(φ). The bootstrap algorithm ob-

tains bootstrap replications φ̂
(b)

(b = 1 . . . ,B) on which to base the approximation
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to f
φ̂
(φ). Given φ̂, the maximum posterior density estimate of φ using the original

data, we generate first (β(b),η(b)) from the prior distribution p(β,η|φ̂) and then

D(b) from p(D|β(b),η(b)). Let φ̂
(b)

be the maximum posterior density estimate
of φ using the simulated data D(b), and f̂B(φ) be the discrete probability function

that puts mass 1/B on φ̂
(b)

. The bootstrap corrected approximation to p(β,η|D)

is

p̃boot(β,η|D) =
∫
R

4+
p(β,η|D,φ)f̂B(φ) dφ = 1

B

B∑
b=1

p
(
β,η|D, φ̂

(b))
. (3.6)

An i.i.d. sample from the bootstrap corrected distribution p̃boot(β,η|D) is ob-

tained by (i) drawing at random one of the bootstrap replications φ̂
(b)

(b =
1 . . . ,B) and (ii) generate a pair (β,η) from the conditional posterior p(β,η|D,

φ̂
(b)

) using the drawed value of φ̂
(b)

and the algorithm described in Section 3.2.

4 Application: Power transformers data set

We return now to the power transformers data in Table 1. Interest centers in es-
timation of some quantities associated to the reliability of each system. Among
these we mention the βi ’s, specifically to assess whether the systems are degrading
(βi > 1) or improving (βi < 1), the scale parameters θi = τi/η

1/βi

i , the probabil-
ity that no failure occur in a period of time of length l0 starting at s, called the
reliability function of the system (Hamada et al., 2008),

Ri(s, l0) = Pr
(
Ni(s, s + l0) = 0|βi, θi

) = exp
{(

s

θi

)βi −
(

s + l0

θi

)βi
}
,

where Ni(s, l0) is the number of failures in the interval (s, l0) for the ith system,
for given values of s and l0 (e.g., l0 = 4380 and 8760 hours, corresponding respec-
tively to 6 months and one year), and, finally, the optimal maintenance checkpoint
t
∗(i)
PM under a block policy (cf. Mazzuchi and Soyer, 1996), which we explain below.

4.1 Preventive maintenance policy

The optimal maintenance checkpoint relates to the decision of whether to perform
a perfect preventive maintenance on the system. A perfect preventive maintenance
leaves the system in as good as new condition and, hence, can also be thought of as
the action of replacing the system by a new one. One of the most common strate-
gies of planned preventive maintenance is the block policy. This strategy consists
in performing a preventive maintenance at the end of each time interval of length
tPM, regardless of the number of previous failures. Under the block policy, the cost
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per unit of time of the ith system is

Ci

(
tPM,Ni(tPM)

) = CPM + CMRNi(tPM)

tPM
,

where Ni(tPM) is the number of failures of the ith system in the time interval of
length tPM, CPM is the cost of the preventive maintenance, and CMR is the cost
of a minimal repair (unscheduled maintenance due to a failure). Since Ni(tPM) is
a random quantity, we obtain the conditional expected cost per time unit given
(βi, ηi) as

E
[
Ci

(
tPM,Ni(tPM)

)|βi, ηi

] = CPM + CMR�i(tPM)

tPM
. (4.1)

A classical approach takes the optimal maintenance time to be the time that min-
imize (4.1) and compute an estimate replacing (βi, ηi) by their estimates (see, for
instance, Barlow and Hunter, 1960, Gilardoni and Colosimo, 2007, 2011, Oliveira,
Colosimo and Gilardoni, 2012, Gilardoni, Oliveira and Colosimo, 2013). Here, in-
stead, we follow Mazzuchi and Soyer (1996) taking the optimal maintenance time
t
∗(i)
PM as the value tPM that minimizes the expected cost

E
[
Ci

(
tPM,Ni(tPM)

)] =
∫

CPM + CMRηi(tPM/τi)
βi

tPM
p(βi, ηi |Di)dβi dηi. (4.2)

In order to compute an estimate of t
∗(i)
PM we use a sample {(β(m)

i , η
(m)
i ),m =

1, . . . ,M} from the approximate posterior, either p̃naive(β,η|D) or p̃boot(β,η|D),
given in equations (3.5)–(3.6), and approximate the right-hand side of (4.2) by

M−1 ∑M
m=1[CPM +CMRη

(m)
i (tPM/τi)

β
(m)
i ]/tPM. The estimate of the optimal main-

tenance checkpoint is then obtained by a numerical minimization procedure.

4.2 Results

The maximum posterior density estimates of the hyperparameters were obtained
maximizing Equation (3.3) with ξ1 = ξ2 = 0.1. This gave φ̂ = (âβ, β̂0, âη, θ̂0) =
(7.02;2.29;4.71;23,980). Using this estimates we then generated a sample of size
M = 10,000 from both p̃naive(β,η|D) and p̃boot(β,η|D), where for the latter it
was used B = 1000. Approximations to the estimates of the quantities of interests
under squared error loss were then computed by taking the posterior sample aver-
ages of the corresponding functions. Likewise, approximate high posterior density
(HPD) intervals were computed taking the sampling quantiles, say a and (1 − b),
so that (1−a −b) gives the desired coverage (posterior probability) and the length
of the interval is minimum.

Table 2 shows the maximum likelihood and PEB estimates of the βi and ηi .
Note that, unlike the ML approach, in the hierarchical approach estimates of βi

are obtained even for the systems that have no failures. Furthermore, note that the
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Table 2 Maximum likelihood (MLE), naive and bootstrap PEB estimates of (βi , ηi) for the power
transformers data

βi ηi

Naive Bootstrap Naive Bootstrap

System i MLE Mean SD Mean SD MLE Mean SD Mean SD

1 1.73 2.08 0.69 2.14 0.92 2 1.00 0.40 1.14 0.60
2 1.75 2.09 0.70 2.16 0.94 2 1.01 0.39 1.14 0.59
3 3.86 2.16 0.75 2.29 1.07 1 0.36 0.21 0.40 0.30
4 – 2.35 0.87 2.80 1.85 0 0.10 0.10 0.10 0.13
5 – 2.36 0.87 2.84 1.96 0 0.11 0.11 0.11 0.14
6 – 2.41 0.88 2.88 1.92 0 0.26 0.17 0.23 0.22
7 4.11 2.41 0.84 2.77 1.45 1 0.83 0.35 0.86 0.50
8 3.40 2.39 0.85 2.69 1.41 1 0.83 0.36 0.86 0.50
9 3.78 2.41 0.86 2.74 1.46 1 0.84 0.36 0.86 0.49

10 – 2.33 0.85 2.77 1.84 0 0.05 0.07 0.05 0.09
11 – 2.39 0.87 2.91 2.12 0 0.40 0.22 0.35 0.28
12 1.04 1.73 0.58 1.65 0.68 2 0.88 0.35 1.03 0.55
13 – 2.31 0.87 2.74 1.85 0 0.02 0.03 0.02 0.06
14 8.52 2.55 0.85 2.99 1.43 2 0.79 0.32 0.89 0.51
15 – 2.30 0.87 2.73 1.87 0 0.01 0.03 0.02 0.06
16 3.08 2.35 0.83 2.64 1.35 1 0.83 0.35 0.86 0.50
17 2.91 2.36 0.82 2.63 1.36 1 0.84 0.36 0.87 0.50
18 – 2.34 0.88 2.82 1.97 0 0.66 0.31 0.59 0.41
19 – 2.28 0.86 2.74 1.90 0 0.00 0.01 0.00 0.03
20 2.28 2.24 0.75 2.38 1.02 2 0.99 0.39 1.12 0.60
21 – 2.36 0.87 2.79 1.87 0 0.09 0.09 0.09 0.13
22 – 2.33 0.84 2.78 1.82 0 0.07 0.08 0.07 0.11
23 0.89 1.52 0.52 1.41 0.60 1 0.20 0.15 0.27 0.24
24 6.69 2.49 0.87 2.97 1.69 1 0.83 0.35 0.86 0.50
25 – 2.31 0.85 2.72 1.83 0 0.02 0.03 0.02 0.06
26 – 2.33 0.87 2.74 1.84 0 0.02 0.04 0.03 0.06
27 2.19 2.17 0.76 2.30 1.09 1 0.53 0.26 0.56 0.36
28 2.93 2.35 0.82 2.61 1.32 1 0.83 0.36 0.86 0.50
29 – 2.31 0.86 2.76 2.03 0 0.01 0.02 0.02 0.05
30 2.83 2.31 0.82 2.56 1.28 1 0.71 0.31 0.74 0.44
31–40 – 2.34 0.88 2.79 2.03 0 0.69 0.32 0.62 0.42

PEB estimates of βi are a compromise between the ML estimates, which use only
data from the ith system, and the estimated prior mean of βi , β̂0, which uses data
from all systems. For the systems with ni = 0, β̂i is close to β̂0, since the individual
likelihood has little or no information about βi .

Table 3 presents PEB estimates for the quantities Pr(βi > 1|φ̂) and t
∗(i)
PM . If we

look at the probability that a system is degrading, namely P̃r(βi > 1|Di, φ̂), the
smallest values are 0.742 and 0.845, respectively for systems 23 and 12, while
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Table 3 PEB estimates for probability that a system is degrading (P̃r(βi > 1|Di, φ̂)) and optimal

maintenance checkpoints (t∗(i)
PM ) for the power transformers data

System P̃r(βi > 1|Di, φ̂) t
∗(i)
PM System P̃r(βi > 1|Di, φ̂) t

∗(i)
PM

1 0.930 6687 17 0.953 7642
2 0.933 6686 18 0.932 9202
3 0.930 7019 19 0.931 8224
4 0.941 8218 20 0.957 6592
5 0.947 8233 21 0.944 8165
6 0.942 8508 22 0.942 8124
7 0.960 7689 23 0.742 9348
8 0.952 7755 24 0.965 7825
9 0.958 7743 25 0.933 8141

10 0.942 8133 26 0.933 8138
11 0.938 8804 27 0.931 7303
12 0.845 7291 28 0.955 7695
13 0.936 8148 29 0.935 8168
14 0.981 6795 30 0.951 7489
15 0.933 8181 31–40 0.931 9295
16 0.956 7678

Figure 6 Posterior means of the reliability function of the forty power transformers when l0 = 4380
hours (6 months) (a) and l0 = 8760 hours (one year) (b). The dashed red line and dotted blue line
represent respectively, systems 12 and 23. Vertical lines represent s = 4380 hours (a), and s = 8760
hours (b).

all others are greater than 0.93, indicating strong evidence in the sense that the
intensities are increasing and the transformers are degrading with time. This can
be seen also in Figure 6, which shows the posterior means of the reliability func-
tion for the forty systems. Figure 6(a) shows, for instance, that a system that was
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followed-up for six months has probability of having no failure in the next six
months varying from 0.832 to 0.942. Similarly, Figure 6(b) shows that if a system
was followed-up to one year, the probability of observing no failures in the next
year vary from 0.604 to 0.783. Note the distinct behavior of the reliability functions
of systems 12 and 23. These two systems are the power transformers that presented
the earliest failure times. The columns t

∗(i)
PM of Table 3 also show the optimal main-

tenance check points for each system. To compute this we followed Gilardoni and
Colosimo (2007) and Oliveira, Colosimo and Gilardoni (2012), which consider
that the cost of a minimal repair is fifteen times the cost of a preventive mainte-
nance. The estimated optimal maintenance checkpoints vary from 6592 (system
20) to 9348 hours (system 23). Using the same data, but considering that the forty
power transformers are a sample of the same power law process (i.e., same β and
θ for all systems), Gilardoni and Colosimo (2007) and Oliveira, Colosimo and
Gilardoni (2012), using respectively, ML and a Bayesian approach, arrived at an
optimal time of about 6420 hours. The hierarchical approach has the advantage that
each power transformer can be subject to its own optimal maintenance checkpoint,
allowing therefore a greater flexibility in the maintenance policy.

An insight of the bootstrap correction can be seen from the histograms of the
bootstrap sample of φ̂ (Figure 7). Note that the sampling distribution of the esti-
mates of the shape parameters aβ and aη appear to be much more dispersed than
those of β0 and θ0. The effect of the bootstrap correction can also be seen in Fig-
ure 8, which shows the HPD intervals for the βi and θi computed using both the
naive and the bootstrap corrected posterior. As expected, the bootstrap correction
accounts for wider HPD intervals, which we believe reflects better the uncertainty
in the data.

To evaluate the impact of the choice of parameters ξ1 and ξ2 on the estimates
of parameters βi and θi , we performed a sensitivity analysis. Changing the value

Figure 7 Bootstrap sample histograms of φ̂ based on B = 1000 for the power transformers data.
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Figure 8 Naive and bootstrap PEB 95% HPD credible intervals of the parameters βi (a), and θi

(b). The points are posterior expectations.

Figure 9 Sensitivity analysis. Boxplot of βi for systems 1, 4, 12 and 31-40. Prior Exp(·) means
exponential density priors for aβ and aη , and uniform priors for β0 and θ0. Prior Gamma(·);Exp(·)
means exponential density priors for aβ and aη , and gamma priors for β0 and θ0.

of the parameters ξ1 and ξ2 to 0.5 and 0.02 did not impact on the estimates of pa-
rameters of the PLP (Figures 9 and 10). We also considered independent gamma
distributions for hyperparameters β0 and θ0, with prior mean equal to the start-
ing values of β0 and θ0 and different values of prior variance (10, 100 and 1000),
instead of uniform (improper) priors. Results are similar for greater variance val-
ues.
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Figure 10 Sensitivity analysis. Boxplot of θi for systems 1, 4, 12 and 31–40. Prior Exp(·) means
exponential density priors for aβ and aη , and uniform priors for β0 and θ0. Prior Gamma(·);Exp(·)
means exponential density priors for aβ and aη , and gamma priors for β0 and θ0.

Figure 11 Posterior means of βi for the power transformers data, as a function of the prior stan-
dard deviation SD(βi |φ), conditionally on âη = 5.28, θ̂0 = 18,399.20, β̂0 = 2.29 and a sequence

of aβ ∈ (1;1000). For each configuration value (â
(b)
β , β̂

(b)
0 , âη, θ̂0), a sample of size 1000 of βi was

generated and the sample mean was computed. The blue vertical line is the observed prior standard
deviation SD(βi |φ̂) = 0.87.

Finally, in order to understand the behavior of our model, Figure 11 shows the
posterior means β̃i for the parameter βi , as a function of the prior standard de-
viation. As the standard deviation of βi increases, the posterior mean of each βi
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moves away in the direction of the ML estimate. On the other hand, as the standard
deviation of βi decreases to zero, the posterior mean of the βi tend to the common
value β̂0.

5 Conclusions

A hierarchical model was proposed for the analysis of multiple repairable systems
with different truncation times. Scale and shape parameter of the power law inten-
sity function of a nonhomogeneous Poisson process are allowed to vary among the
systems. A suitable reparameterization was used to obtain a quasi-conjugate poste-
rior analysis. This reparameterization introduced a difficulty in the sense that, when
the truncation times are different, it is unreasonable to assume exchangeability in
the second stage prior distribution. A parametric empirical Bayes approach was
carried out in order to estimate the model parameters. The hyperpameter vector
φ was estimated by maximizing its posterior density, or equivalently, a marginal
penalized likelihood function. Once that the hyperparameters were estimated, ap-
proximations to the estimates of the system specific parameters were obtained us-
ing an i.i.d. Monte Carlo sample from p(β,η|D, φ̂). This Monte Carlo sample can
be obtained using a simple and efficient rejection sampling algorithm. Further-
more, a parametric bootstrap method was used to correct the standard deviations
of point estimates and the HPD intervals by taking into account the uncertainty in
the estimate of the hyperparameters. These methods were used to analyze a real
data set regarding failure times of 40 power transformers, including estimation of
the optimal preventive maintenance time considering block policy.

A fully Bayesian hierarchical model (BHM) could be viewed as an alternative
approach for estimation of the parameters of the hierarchical PLP model. How-
ever the implementation of BHM generally requires the implementation of Markov
Chain Monte Carlo methods. These methods involves the specification of fine-
tuning parameters and checking of chain convergence, which could not be trivial
for researchers in the field of reliability of repairable systems (e.g., engineers, man-
agers, economists, etc.). We believe that the suggested PEB approach avoid these
potential complicators.

Appendix A: Starting values for the maximum posterior estimation

The main idea is to use the ML estimates of βi and ηi as the true values in the
second stage prior (2.2). Let β̂ML and η̂ML be the vectors of ML estimates for those
systems with ni > 0 (the ML estimate of βi does not exist when ni > 0). Taking
logarithms in (2.2) and replacing the actual βi and ηi by their ML estimates we
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obtain

logp(β̂ML, η̂ML|φ) = ∑
i:ni>0

{
aη

[
log (aη) + β̂i log(θ0/τi)

] − log	(aη)

+ (aη − 1) log(η̂i) − η̂iaη(θ0/τi)
β̂i

+ aβ log(aβ/β0) − log	(aβ)

+ (aβ − 1) log(β̂i) − β̂i(aβ/β0)
}
.

(A.1)

Hence, we take as starting values for φ the solution of ∂ log(p(β̂ML, η̂ML|φ))/

∂φ = 0, that is

∂ log(p(β̂ML, η̂ML|φ))

∂aβ

= ∑
i:ni>0

[
log(aβ/β0) + 1 − ψ(aβ) + log(β̂i) − β̂i

β0

]
= 0,

(A.2)

∂ log(p(β̂ML, η̂ML|φ))

∂β0
= aβ

β0

∑
i:ni>0

[
β̂i

β0
− 1

]
= 0, (A.3)

∂ log(p(β̂ML, η̂ML|φ))

∂aη

= ∑
i:ni>0

[
log(aη) + 1 + β̂i log(θ0/τi)

− ψ(aη) + log(η̂i) − η̂i(θ0/τi)
β̂i

]
= 0,

(A.4)

∂ log(p(β̂ML, η̂ML|φ))

∂θ0
= aη

θ0

∑
i:ni>0

[
β̂i − β̂i η̂i

(
θ0

τi

)β̂i
]

= 0. (A.5)

Let K∗ be the number of systems with ni > 0. From Equation (A.3) we obtain that
β̃0 = K−1∗

∑
i:ni>0 β̂i and replacing β0 by β̃0 in Equation (A.2), we obtain ãβ as

the solution of

log(ãβ) − ψ(ãβ) − log(β̃0) − K−1∗
∑

i:ni>0

log(β̂i) = 0. (A.6)

From Equation (A.5), we obtain that θ̃0 is the solution of

K−1∗
∑

i:ni>0

β̂i − K−1∗
∑

i:ni>0

β̂i η̂i(θ̃0/τi)
β̂i = 0. (A.7)
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Finally, we replace θ0 by θ̃0 in Equation (A.4) to obtain ãη as the solution of

log(ãη) − ψ(ãη) − K−1∗
∑

i:ni>0

[
β̂i log(θ̃0/τi) + log(η̂i) − η̂i(θ̃0/τi)

β̂i
] = 0. (A.8)

We note that Equations (A.6) to (A.8) are all univariate and hence can be solved
by simple numerical procedures. In the real data example analyzed in Section 4,
these starting values were close to the final estimates.
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