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In memory of Lawrence D. Brown

We propose a general semi-supervised inference framework focused on
the estimation of the population mean. As usual in semi-supervised settings,
there exists an unlabeled sample of covariate vectors and a labeled sample
consisting of covariate vectors along with real-valued responses (“labels”).
Otherwise, the formulation is “assumption-lean” in that no major conditions
are imposed on the statistical or functional form of the data. We consider both
the ideal semi-supervised setting where infinitely many unlabeled samples
are available, as well as the ordinary semi-supervised setting in which only a
finite number of unlabeled samples is available.

Estimators are proposed along with corresponding confidence intervals
for the population mean. Theoretical analysis on both the asymptotic distri-
bution and �2-risk for the proposed procedures are given. Surprisingly, the
proposed estimators, based on a simple form of the least squares method,
outperform the ordinary sample mean. The simple, transparent form of the
estimator lends confidence to the perception that its asymptotic improvement
over the ordinary sample mean also nearly holds even for moderate size sam-
ples. The method is further extended to a nonparametric setting, in which
the oracle rate can be achieved asymptotically. The proposed estimators are
further illustrated by simulation studies and a real data example involving
estimation of the homeless population.

1. Introduction. Semi-supervised learning arises naturally in statistics and
machine learning when the labels are more difficult or more expensive to acquire
than the unlabeled data. While numerous algorithms have been proposed for semi-
supervised learning, they are mostly focused on classification, where the labels
are discrete values representing the classes to which the samples belong [see,
e.g., Ando and Zhang (2005, 2007), Blum and Mitchell (1998), Vapnik (2013),
Wang and Shen (2007), Wang, Shen and Liu (2008), Wang, Shen and Pan (2009),
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Zhu (2008), Zhu and Goldberg (2009)]. The setting with continuous valued y has
also been discussed in the literature; see, for example, Johnson and Zhang (2008),
Lafferty and Wasserman (2008) and Chakrabortty and Cai (2018). For a survey of
recent development in semi-supervised learning, readers are referred to Zhu and
Goldberg (2009) and the references therein.

The general semi-supervised model can be formulated as follows. Let (Y,X1,

X2, . . . ,Xp) be a (p + 1)-dimensional random vector following an unknown joint
distribution P = P(dy, dx1, . . . , dxp). Denote by PX the marginal distribution of
X = (X1,X2, . . . ,Xp). Suppose one observes n “labeled” samples from P ,

(1.1) [Y,X] = {Yk,Xk1,Xk2, . . . ,Xkp}nk=1,

and, in addition, m “unlabeled” samples from the marginal distribution PX

(1.2) Xadd = {Xk1,Xk2, . . . ,Xkp}n+m
k=n+1.

In this paper, we focus on estimation and statistical inference for one of the sim-
plest features, namely the population mean θ = EY . No specific distributional or
marginal assumptions relating X and Y are made.

This inference of population mean under a general semi-supervised learning
framework has a variety of applications. We discuss the estimation of treatment
effect (ATE) in Section 5.1 and a prototypical example involving survey data in
Section 5.2. It is noteworthy that for some other problems that do not at first look
like mean estimation, one can recast them as mean estimation, possibly after an
appropriate transformation. Examples include estimation of the variance of Y or
covariance between Y and a given Xi . In work that builds on a portion of the
present paper, Azriel et al. (2016) considers construction of linear predictors in
semi-supervised learning settings.

To estimate θ = EY , the most straightforward estimator is the sample average
Ȳ := 1

n

∑n
k=1 Yk . Surprisingly, as we show later, in the semi-supervised setting, a

simple adjusted-least-squares estimator, which exploits the unknown association
of Y and X, outperforms Ȳ. We first consider an ideal setting where there are
infinitely many unlabeled samples, that is, m = ∞. This is equivalent to the case
of known marginal distribution PX . We refer to this case as ideal semi-supervised
inference. In this case, our proposed estimator is

(1.3) θ̂ = Ȳ − β̂�
(2)(X̄ − μ),

where X̄ ∈ R
p such that X̄i = 1

n

∑n
k=1 Xki , β̂(2) is the p-dimensional least squares

estimator for the regression slopes, and μ = EX is the population mean of X. We
emphasize again that although the estimator (1.3) has a linear structure we are not
assuming that E(Y |X) is linearly related to X. This estimator is analyzed in detail
in Section 2.2.

We then consider the more realistic setting where there are a finite number of
unlabeled samples, that is, m < ∞. Here, one has only partial information about
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PX . We call this case ordinary semi-supervised inference. In this setting, we pro-
pose to estimate θ by

(1.4) θ̂ = Ȳ − β̂�
(2)(X̄ − μ̂),

where μ̂ denotes the sample average of both the labeled and unlabeled X’s. The
detailed analysis of this estimator is given in Section 2.3.

We will investigate the properties of these estimators and in particular establish
their asymptotic distributions and the �2 risk bounds. The limiting distribution re-
sults allow us to construct an asymptotically valid confidence interval based on the
proposed estimators that is shorter than the traditional sample-mean-based confi-
dence interval. Both the case of a fixed number of covariates and the case of a
growing number of covariates are considered. The basic asymptotic theory in Sec-
tion 2 begins with a setting in which the dimension, p, of X, is fixed and n → ∞
(see Theorem 1). For ordinary semi-supervised learning, the asymptotic results
are of nontrivial interest whenever lim infn→∞(mn/n) > 0 [see Theorem 3(i)]. We
then formulate and prove asymptotic results in the setting where p also grows
with n. In general, these results require the assumption that p = o(

√
n) [see The-

orems 2 and 3(ii)].
In Section 3, we propose a methodology for improving the results of Section 2

by introducing additional covariates as functions of those given in the original
problem. We show the proposed estimator achieves an oracle rate asymptotically.
This can be viewed as a nonparametric regression estimation procedure.

There are results in the sample-survey literature that are qualitatively related to
what we propose. The earliest citation we are aware of is Cochran (1953), Chap-
ter 7, for sample survey. See also Deng and Wu (1987) and more recently Lohr
(2009), Chapter 3.2. In these references, one collects a finite sample, without re-
placement, from a (large) finite population. There is a response Y and a single,
real covariate, X. The distribution of X within the finite population is known. The
sample-survey target of estimation is the mean of Y within the full population. In
the case in which the size of this population is infinitely large, sampling without
replacement and sampling with replacement are indistinguishable. In that case, the
results from this sampling theory literature coincide with our results for the ideal
semi-supervised scenario with p = 1, both in terms of the proposed estimator and
its asymptotic variance. Our work also relates to the control variates in Monte
Carlo simulation [Bratley, Fox and Schrage (1987), Fishman (1996), Hickernell,
Lemieux and Owen (2005)]. Suppose one is interested in evaluating the integral∫
� f (x) dx, where f is a integrable function and � is a subset in the Euclidean

space. The regular Monte Carlo estimator is 1
n

∑n
k=1 f (Xi), if X1, . . . ,Xn are i.i.d.

uniform samples from �. One can further sharpen the estimator if one or more con-
trol variates {h1(x), . . . , hp(x)} and their integrals {∫� h1(x) dx, . . . ,

∫
� hp(x) dx}

are available a priori. From this perspective, the results from control variates Monte
Carlo can be viewed as a special case in the ideal semi-supervised and noiseless
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response setting, that is, EX is known and Var(Y |X) = 0. Otherwise, the sample-
survey and Monte Carlo theory results differ from those within our formulation,
although there is a conceptual relationship. In particular, the theoretical population
mean that is our target is different from the finite population mean that is the tar-
get of the sample-survey methods. In addition, we allow both the noisy response
and p > 1, and as noted above, we also have asymptotic results for p growing
with n. Most notably, our formulation includes the possibility of semi-supervised
learning. We believe it should be possible, and sometimes of practical interest,
to include semi-supervised sampling within a sampling survey and Monte Carlo
simulation framework, but we do not do so in the present treatment.

Remarks at the end of Section 3 discuss in some detail the relation of our pro-
posal to results in the semiparametric efficiency literature. In brief, it is known that
Ȳ is not asymptotically semiparametric efficient; see Hasminskii and Ibragimov
(1983) and Bickel, Ritov and Wellner (1991) for an asymptotically efficient esti-
mator in the case of ideal semi-supervision. Chakrabortty and Cai (2018) deal with
ideal semi-supervision and situations that are asymptotically equivalent to the ideal
situation. They propose an estimator that is asymptotically efficient in this setting
under mild regularity conditions. For situations in which there are many covari-
ates, their estimator may not perform well in practice, and they propose a number
of alternative estimators.

Our current primary objective is rather different. We describe simply expressed,
easily implemented, effective improvements on Ȳ. Our basic estimator asymptot-
ically improves on Ȳ, but is not asymptotically efficient. Virtually no regularity
conditions are imposed for the asymptotic improvement in distribution. (Asymp-
totic improvement in quadratic risk requires a little more care.) Because of their
simple form as well as the nature of our proofs it is heuristically clear that with fi-
nite samples our estimators usually improve on Ȳ even for quite moderate sample
sizes. This is seen in the simulations reported in Tables 1 and 2. The series estima-
tor we propose in Section 3 is semiparametric efficient under regularity conditions.
(See Remarks 5 and 6.) But this is not a primary focus of our paper, so we do not
concentrate on stating that asymptotic efficiency under the weakest possible con-
ditions.

The rest of the paper is organized as follows. We introduce the fixed covari-
ate procedures in Section 2. Specifically, ideal semi-supervised learning and ordi-
nary semi-supervised learning are considered respectively in Sections 2.2 and 2.3,
where we analyze the asymptotic properties for both estimators. We further give
the �2-risk upper bounds for the two proposed estimators in Section 2.4. We ex-
tend the analysis in Section 3 to the regression model, where we show the proposed
procedure achieves an oracle rate asymptotically. Simulation results are reported
in Section 4. Applications to the estimation of average treatment effect is discussed
in Section 5.1, and Section 5.2 describes a real data illustration involving estima-
tion of the homeless population in a geographical region. The proofs of the main
theorems are given in Section 6 and additional technical results are proved in the
Supplementary Material [Zhang, Brown and Cai (2019)].
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2. Procedures. We propose in this section a least squares estimator for the
population mean in the semi-supervised inference framework. To better character-
ize the problem, we begin with a brief introduction of the random design regression
model. More details of the model can be found in, for example, Buja et al. (2014,
2016).

2.1. A random design regression model. Let (Y,X) ∼ P represent the pop-
ulation response and predictors. Assume all second moments are finite. Denote
	X = (1,X�)� ∈ R

p+1 as the predictor with intercept. The following is a linear
analysis, even though no corresponding linearity assumption is made about the
true distribution P of (X,Y ).

Some notation and definitions are needed. Let

β = arg min
γ∈Rp+1

E
(
Y − 	X�γ

)2
be the population slopes, and δ = Y − β� 	X is called the total deviation. We also
denote

τ 2 := Eδ2, μ := EX ∈R
p, 	μ := E 	X = (

1,μ�)�,

	Ξ := E 	X 	X�, 
 := E(X − μ)(X − μ)�.
(2.1)

It should be noted that under our general model, there is no independence assump-
tion between X and δ, and E(δ|X) is not necessarily zero. This is different from
classical regression literature.

For sample of observations (Yk,Xk1,Xk2, . . . ,Xkp)
i.i.d.∼ P , k = 1, . . . , n, let

	Xi = (1, 	X�
i )� and denote the design matrix 	X ∈ R

n×(p+1) as follows:

	X :=

⎡
⎢⎢⎢⎣

	X�
1· · ·

· · ·
	X�

n

⎤
⎥⎥⎥⎦ :=

⎡
⎢⎣

1 X11 X12 · · · X1p

...
...

...
...

1 Xn1 Xn2 · · · Xnp

⎤
⎥⎦ .

In our notation, 	· means that the vector/matrix contains the intercept term; bold-
face indicates that the symbol is related to a multiple sample of observations.
Meanwhile, denote the sample response and deviation as Y = (Y1, . . . , Yn)

� and
δ = (δ1, . . . , δn)

�. Now Y and X are connected by a regression model:

(2.2) Y = 	Xβ + δ, and Yk = 	X�
k β + δk, k = 1, . . . , n.

Let β̂ = (β̂1, . . . , β̂p+1)
� be the usual least squares estimator, that is, β̂ =

(	X� 	X)−1 	X�Y. β and β̂ can be further split into two parts,

(2.3) β =
[

β1

β(2)

]
, β̂ =

[
β̂1

β̂(2)

]
, β1, β̂1 ∈ R, β(2), β̂(2) ∈ R

p.
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β1, β̂1 and β(2), β̂(2) play different roles in the analysis as we will see later. The �2

risk of the sample average Ȳ about the population mean θ = EY has the following
decomposition.

PROPOSITION 1. Ȳ is an unbiased estimator of θ and

(2.4) nE(Ȳ − θ)2 = nVar(Ȳ) = τ 2 + β�
(2)
β(2).

From (2.4), we can see that as long as β(2) 
= 0, that is, there is a significant
linear relationship between Y and X, then the risk of Ȳ will be significantly greater
than τ 2.

In the next two subsections, we discuss separately under the ideal semi-
supervised setting and the ordinary semi-supervised setting.

2.2. Improved estimator under the ideal semi-supervised setting. We first con-
sider the ideal setting where there are infinitely many unlabeled samples, or equiv-
alently PX is known. To improve Ȳ, we propose the least squares estimator,

(2.5) θ̂LS := 	μ�β̂ = β̂1 + μ�β̂(2) = Ȳ − β̂�
(2)(X̄ − μ),

where β̂ = (β̂1, β̂
�
(2))

� is the usual least square estimator.

When (Yi,Xi)
i.i.d.∼ P with no specific assumptions imposed on the relationship

between Yi and Xi , the following theorem provides the asymptotic distribution of
the least squares estimator under the minimal conditions that [Y,X] have finite
second moments, 	Ξ = E 	X 	X� be nonsingular and τ 2 = Eδ2 > 0. In addition, a
Berry–Esseen bound is given under the finite fourth moment condition.

THEOREM 1 (Asymptotic distribution of θ̂LS, fixed p). Let (Y1,X1), . . . ,

(Yn,Xn) be i.i.d. copies from P , and assume that [Y,X] has finite second mo-
ments, 	Ξ is nonsingular and τ 2 > 0. Then, under the setting that P is fixed and
n → ∞,

(2.6)
θ̂LS − θ

τ/
√

n

d→ N(0,1),

and

(2.7) MSE/τ 2 d→ 1 where MSE :=
∑n

i=1(Yi − 	X�
i β̂)2

n − p − 1
.

Denote the cumulative distribution functions of θ̂LS−θ

τ/
√

n
and the standard normal

variable by Fn and �, respectively. If P has finite fourth moment, then we further
have ∣∣Fn(x) − �(x)

∣∣≤ Cn−1/4,

where C is a constant not depending on n.
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In the more general setting where P = Pn,p varies and p = pn grows, we need
stronger conditions to analyze the asymptotic behavior of θ̂LS. Recall EX = μ,
E(X − μ)(X − μ)� = 
, we consider the standardization of X as

(2.8) Z ∈ R
p, Z = 
−1/2(X − μ).

Clearly, EZ = 0, EZZ� = Ip . For this setting, we assume that Z, δ satisfy the
following moment conditions for constants M1, M2, M3:

for some κ > 0,
Eδ2+2κ

(Eδ2)1+κ
≤ M1;(2.9)

∀v ∈ R
p, E

∣∣〈v,Z〉∣∣2+κ ≤ M2;(2.10)

E(‖Z‖2
2δ

2)

(E‖Z‖2
2) · (Eδ2)

≤ M3.(2.11)

THEOREM 2 (Asymptotic result, growing p). Let (Y1,X1), . . . , (Yn,Xn) be
i.i.d. copies from P = Pn,p , p = pn = o(

√
n). Assume that the matrix of the second

moments of X exists and is nonsingular and the standardized random variable Z

given in (2.8) satisfies (2.9), (2.10) and (2.11), then the asymptotic behavior results
(2.6) and (2.7) still hold.

Based on Theorems 1 and 2, we can construct the asymptotic (1 − α)-level
confidence interval for θ as

(2.12)
[
θ̂LS − z1−α/2

√
MSE

n
, θ̂LS + z1−α/2

√
MSE

n

]
.

REMARK 1. It is not difficult to see that, under the setting in Theorem 2,

MSE
d→ τ 2, σ̂ 2

Y

d→ Var(Y ) = τ 2 + β�
(2)
β(2).

Then the traditional z-interval for the mean of Y ,

(2.13)
[
Ȳ − z1−α/2

√
σ̂ 2

Y

n
, Ȳ + z1−α/2

√
σ̂ 2

Y

n

]
,

is asymptotically longer than (2.12), which implies that the proposed least squares
estimator is asymptotically more accurate than the sample mean.

2.3. Improved estimator under the ordinary semi-supervised inference setting.
In the last section, we discussed the estimation of θ based on n full obser-
vations Yk , Xk , k = 1, . . . , n with infinitely many unlabeled samples {Xk, k =
n + 1, . . .} (or equivalently with known marginal distribution PX). However, hav-
ing PX known is rare in practice. A more realistic practical setting would assume
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that distribution PX is unknown and we only have finitely many i.i.d. samples
(Xi+1,Xi+2, . . . ,Xi+m) without corresponding Y . This problem relates to the one
in previous section since we are able to obtain partial information of PX from the
additional unlabeled samples.

When μ or 	μ is unknown, we estimate by

(2.14) μ̂ = 1

n + m

n+m∑
k=1

Xk, 	̂μ = (
1, μ̂�)�.

Recall that β̂ = (β̂1, β
�
(2))

� is the ordinary least squares estimator. Now, we pro-

pose the semi-supervised least squares estimator θ̂SSLS,

(2.15) θ̂SSLS = 	̂μ�β̂ = Ȳ − β̂�
(2)

(∑n
i=1 Xi

n
−
∑n+m

i=1 Xi

n + m

)
.

θ̂SSLS has the following properties:

• when m = ∞, 	̂μ = 	μ. Then θ̂SSLS exactly equals θ̂LS in (2.5);
• when m = 0, θ̂SSLS exactly equals Ȳ. As there are no additional samples of X so

that no extra information for PX is available, it is natural to use Ȳ to estimate θ .
• In the last term of (2.15), it is important to use 1

n+m

∑n+m
i=1 Xi rather than

1
m

∑m
i=1 Xi , in spite of the fact that the latter might seem more natural because

it is independent of the term
∑n

i=1 Xi

n
that precedes it.

Under the same conditions as Theorems 1, 2, we can show the following asymp-
totic results for θ̂SSLS, which relates to the ordinary semi-supervised setting de-
scribed in the Introduction. The labeled sample size n → ∞, the unlabeled sample
size is m = mn ≥ 0 and the distribution P is fixed (but unknown) which, in partic-
ular, implies that p is a fixed dimension, not dependent on n. Let

ν2 =
√

τ 2 + n

n + m
β�

(2)
β(2).

THEOREM 3 (Asymptotic distribution of θ̂SSLS, fixed p). Let (Y1,X1), . . . ,

(Yn,Xn) be i.i.d. labeled samples from P , and let Xn+1, . . . ,Xn+m be m additional
unlabeled independent samples from PX . Suppose 	Ξ is nonsingular and τ 2 > 0. If
P is fixed and n → ∞, then

(2.16)

√
n(θ̂SSLS − θ)

ν

d→ N(0,1),

and

(2.17)
ν̂2

ν2
d→ 1,

where ν̂2 = m
m+n

MSE + n
m+n

σ̂ 2
Y with MSE = 1

n−p−1
∑n

k=1(Yi − 	X�
k β̂)2 and σ̂ 2

Y =
1

n−1
∑n

k=1(Yi − Ȳ)2.
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The following statement refers to a setting in which P = Pn and p = pn may
depend on n as n → ∞. Consequently, 	Ξ = 	Ξn, 
 = 
n and Z = Zn [defined at
(2.8)] may also depend on n.

THEOREM 4 (Asymptotic distribution of θ̂SSLS, growing p). Let n → ∞, P =
Pn, and p = pn = o(

√
n). Suppose 	Ξn is nonsingular, τ 2

n > 0 and the standardized
random variable Z satisfies (2.9), (2.10) and (2.11). Then (2.16) and (2.17) hold.

We can obtain asymptotic confidence interval for θ based on Theorems 3 or 4.

COROLLARY 1. The (1−α)-level asymptotic confidence interval for θ can be
written as

(2.18)
[
θ̂SSLS − z1−α/2

ν̂√
n
, θ̂SSLS + z1−α/2

ν̂√
n

]
.

Since MSE ≤ σ̂ 2
Y asymptotically (with equality only when β(2) = 0), it follows that

when β(2) 
= 0 the asymptotic CI in (2.18) is shorter than the traditional sample-
mean-based CI (2.13).

2.4. �2 risk for the proposed estimators. In this subsection, we analyze the
�2 risk for both θ̂LS and θ̂SSLS. Since the calculation of the proposed estimators
involves the unstable process of inverting the Gram matrix 	X� 	X, for the merely
theoretical purpose of obtaining the �2 risks we again consider the refinement

(2.19) θ̂1
LS := TrunY(θ̂LS), and θ̂1

SSLS := TrunY(θ̂SSLS),

where

(2.20) TrunY(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(n + 1)ymax − nymin if x > (n + 1)ymax − nymin,

x if
∣∣∣∣x − ymax + ymin

2

∣∣∣∣
≤
(
n + 1

2

)
(ymax − ymin),

(n + 1)ymin − nymax if x < (n + 1)ymin − nymax,

ymax = max1≤k≤n Yk , ymin = min1≤k≤n Yk . We emphasize that this refinement is
mainly for theoretical reasons and is often not necessary in practice.

The regularization assumptions we need for analyzing the �2 risk are formally
stated as below.

1. (Moment conditions on δ.) There exists constant M4 > 0 such that

(2.21) Eδ4 = Eδ4
n ≤ M4.
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2. (Sub-Gaussian condition.) Let Z = Zn be the standardization of X = Xn,

Zn ∈ R
p, Zn = 
−1/2

n (Xn − μn), 
n = E(Xn − μn)(Xn − μn)
�.

Assume Zn satisfies

(2.22) ∀u ∈ {u ∈ R
p+1 : ‖u‖2 = 1

}
,

∥∥u�Zn

∥∥
ψ2

≤ M5

for constant Mt > 0. Here ‖ · ‖ψ2 is defined as ‖x‖ψ2 = supq≥1 q−1/2(E|x|q)1/q

for any random variable x.
2′. (Bounded condition.) The standardization Zn satisfies

(2.23) ‖Zn‖∞ ≤ M5 almost surely.

[If the dimension p remains bounded as n → ∞, then (2.23) implies (2.22). How-
ever, if p increases without bound, as in Section 3, then there are rather unusual
examples in which (2.23) holds but (2.22) does not.]

We also note 
δ1 = E(X −μ)δ(X −μ)�, 
δ2 = E(X −μ)δ2(X −μ)�. Under
the regularization assumptions above, we provide the �2 risks for θ̂1

LS and θ̂1
SSLS,

respectively, in the next two theorems.

THEOREM 5 (�2 risk of θ̂1
LS). Let (Y1,X1), . . . , (Yn,Xn) be i.i.d. copies from

Pn. Assume Assumption 1 holds. In addition, either Assumptions 2 or 2′ hold,
p = pn = o(

√
n). Recall τ 2 = τ 2

n = E(Y − 	Xβ)2 depends on n. Then we have the
following estimate for the risk of θ̂1

LS:

(2.24) nE
(
θ̂1

LS − θ
)2 = τ 2

n + sn,

where

(2.25) sn = p2

n
An,p + p2

n5/4 Bn,p, max
(|An,p|, |Bn,p|)≤ C

for a constant C that depends on M0, M1 and M2. The formula for An,p is

An,p = 1

p2

([
tr
(

−1
δ1

)]2 + 3
∥∥
−1
δ1

∥∥2
F − tr

(

−1
δ2

)
+ 2E

(
δ2(X − μ)�

)
×E

(

−1(X − μ)(X − μ)�
−1(X − μ)

)+ 2pτ 2).
(2.26)

THEOREM 6 (�2 risk of θ̂1
SSLS). Let (Y1,X1), . . . , (Yn,Xn) be i.i.d. labeled

samples from P , and let Xn+1, . . . ,Xn+m be additional m unlabeled independent
samples from PX . Assume Assumption 1 holds. In addition, either Assumptions 2
or 2′ hold, p = o(

√
n). We have the following estimate of the risk for θ̂1

SSLS:

(2.27) nE
(
θ̂1

SSLS − θ
)2 = τ 2

n + n

n + m
β�

(2),n
nβ(2),n + sn,m,
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where

(2.28) |sn,m| ≤ Cp2

n
,

for constant C only depends on M0, M1 and M2 in Assumptions (2.21)–(2.23).

REMARK 2. Comparing Proposition 1, Theorems 5 and 6, we can see as long
as

β�
(2),n
nβ(2),n > 0,

that is, E(Y |X) has nonzero correlation with X, θ̂1
LS and θ̂1

SSLS outperform Ȳ
asymptotically in �2-risk. We can also see the risk of θ̂SSLS is approximately a
linear combination of Ȳ and θ̂LS with weight based on m and n,

E
(
θ̂1

SSLS − θ
)2 ≈ n

n + m
E(Ȳ − θ)2 + m

m + n
E
(
θ̂1

LS − θ
)2

.

REMARK 3. The proposed θ̂SSLS is a direct and simple estimator that achieves
good finite sample performance for both estimation and confidence interval. An
improved semi-supervised least square estimator that achieves semiparametric ef-
ficiency will be further introduced and discussed later in Section 3.2.

REMARK 4 (Gaussian design). Theorems 5 and 6 only provide upper bound
of the �2 risks since only moment conditions on the distribution of Y , X are as-
sumed. In fact, under Gaussian design of Y , X, we can obtain an exact expression
for the �2-risk of both θ̂LS and θ̂SSLS. It is noteworthy that the truncation refine-
ment is not necessary for both estimators under Gaussian design. All results are
nonasymptotic.

PROPOSITION 2. Assume X ∼ Np(μ,
) and Y |X ∼ Np(Xβ, τ 2I ), where 


is nonsingular. If {Yk,Xk}nk=1 are n i.i.d. copies, then

(2.29) nE(θ̂LS − θ)2 = τ 2 + pτ 2

(n − p − 2)
.

If we further have m additional unlabeled samples {Xk}n+m
k=n+1, we also have

nE(θ̂SSLS − θ)2 = τ 2 + m

n + m

pτ 2

n − p − 2
+ n

n + m
β�

(2)
β(2).(2.30)

The result in Proposition 2 matches with the general expression of (2.24) and

(2.26) as pτ 2

(n−p−2)
= pτ 2

n
+ O(

p2

n2 ) if p = o(
√

n). By comparing (2.29), (2.30), we
can also see

nE(θ̂SSLS − θ)2 = n

n + m
nE(Ȳ − θ)2 + m

n + m
nE(θ̂LS − θ)2.
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3. Further improvements—oracle optimality. In the previous sections, we
proposed and analyzed θ̂LS and θ̂SSLS under the semi-supervised learning settings.
These estimators are based on linear regression and best linear approximation of Y

by X. We consider further improvement in this section. Before we illustrate how
the improved estimator works, it is helpful to take a look at the oracle risk for
estimating the mean θ = EY , which can serve as a benchmark for the performance
of the improved estimator.

3.1. Oracle estimator and risk. Define ξ(X) = EP (Y |X) as the response sur-
face and suppose

ξ(x) = ξ0(x) + c + o(1/
√

n)

for some unknown constant c. Here, the o(1/
√

n) term is uniform in X and ξ0(x)

represents any approximately “location-free shape” of ξ0(x) in the sense that
ξ(x) − ξ0(x) is nearly a constant: |ξ(x) − ξ0(x) − c| ≤ o(1/

√
n). Given samples

{(Yk,Xk)}nk=1, our goal is to estimate EY = θ . Now assume an oracle has knowl-
edge of ξ0(x), but not of θ = E(Y ), c, nor the distribution of Y − ξ0(X). In this
case, the model can be written as

Yk − ξ0(Xk) = c + εk, k = 1, . . . , n where Eεk = o(1/
√

n);
θ = Eξ0(X) + c + o(1/

√
n).

(3.1)

Under the ideal semi-supervised setting, PX , ξ0 and Eξ0(X) are known. To esti-
mate θ , the natural idea is to use the following estimator:

(3.2) θ̂∗ = Ȳ − ξ̄0 +Eξ0(X) = 1

n

n∑
k=1

(
Yk − ξ0(Xk)

)+Eξ0(X).

Consider a sample {Yi : i = 1, . . . , n} with no covariates. It is known that Ȳ is
an asymptotically efficient estimator of E(Y ), locally on a neighborhood of the
true distribution of Y . In much the same way, Ȳ − ξ0(X) is an asymptotically
efficient estimator of E(Y − ξ0(X)), even when the ancillary statistics, {Xi}, are
also observed. For details, see the proof of Proposition 3 in the Supplementary
Material [Zhang, Brown and Cai (2019)]. Thus, θ̂∗ is an asymptotically efficient
estimator of E(Y ) = E(Y − ξ0(X)) + E(ξ0(X)), and

nE
(
θ̂∗ − θ

)2 = nVar

(
1

n

n∑
i=1

(
Yi − ξ0(Xi)

))= Var
(
Yi − ξ(Xi)

)

= EX

(
EY

(
Y − ξ(X)|X)2) := σ 2.

(3.3)

This defines the oracle risk for population mean estimation under the ideal semi-
supervised setting as σ 2 = EX(EY (Y −E(Y |X))2).
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For the ordinary semi-supervised setting, where PX is unknown but m addi-
tional unlabeled samples {Xk}n+m

k=n+1 are available, we propose the semi-supervised
oracle estimator as

θ̂∗
ss = Ȳ − 1

n

n∑
k=1

ξ0(Xk) + 1

n + m

n+m∑
k=1

ξ0(Xk).

Then one can calculate that

nE
(
θ̂∗
ss − θ

)2 = σ 2 + n

n + m
VarPX

(
ξ(X)

)
.(3.4)

The detailed calculation of (3.4) is provided in the Supplementary Material
[Zhang, Brown and Cai (2019)].

The preceding motivation for σ 2 and σ 2 + n
n+m

VarPX
(ξ(X)) as the oracle risks

are partly heuristic, but it corresponds to formal minimax statements, as in the
following Propositions 3 and 4. Particularly, Proposition 3 proposes the general
lower bounds for both ideal and semiparametric settings. Proposition 4 develops
the asymptotic lower bound on a more restrictive set, that is, the least favorable
one-dimensional family of conditional means of any specific distribution P , under
ideal semi-supervision. Proposition 4 further yields an asymptotic semiparametric
efficiency result as we will illustrate later in Remark 6.

PROPOSITION 3 (Oracle lower bound). Let σ 2 > 0, ξ0 : Rp → R be a mea-
surable function, and PX be a p-dimensional distribution of X. Suppose

Pξ0(·),PX,σ 2 = {
P : PX is the marginal distribution of P ,

EP (Y |X = x) = ξ0(x) + c, σ 2 = EX

(
EY

(
Y −E(Y |X)

)2)}
.

Then based on observations {Yi,Xi}ni=1 and known marginal distribution PX ,

(3.5) inf
θ̃

sup
P∈P

PX,ξ0,σ2

[
EP

(
n(θ̃ − θ)2)]≥ σ 2.

Let σ 2, σ 2
ξ > 0, ξ0(X) :Rp →R be a linear function,

Pss
ξ0,σ

2
ξ ,σ 2 = {

P : ξ0(x) = E(Y |X = x) − c, σ 2
ξ = Var

(
ξ(X)

)
,

σ 2 = EX

(
EY

(
Y −E(Y |X)

)2)}
,

based on observations {Yi,Xi}ni=1 and {Xi}n+m
i=n+1,

(3.6) inf
θ̃

sup
P∈Pss

ξ0,σ2
ξ

,σ2

[
EP

(
n(θ̃ − θ)2)]≥ σ 2 + n

n + m
σ 2

ξ .
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PROPOSITION 4 (Asymptotic oracle lower bound for ideal semi-supervised set-
ting). Let σ 2 = EP [(Y − ξ(X))2] > 0 and

PK = {
P : PX = P 0

X,
∣∣EP (Y |X) − ξ0(X)

∣∣≤ Kσ 2(X)/σ 2 + 1/(K
√

n),∣∣EP

[(
Y − ξ(X)

)2]− σ 2∣∣< 1/K, |c| < K
}
.

Then

(3.7) lim
K→∞ lim inf

n→∞ inf
θ̂

sup
P∈Pk

nE
(
θ̂ −EP (Y )

)2 ≥ σ 2.

3.2. Improved procedure. In order to approach oracle optimality, we pro-
pose to augment the set of covariates X1, . . . ,Xp with additional covariates
g1(X), . . . , gq(X). (Of course, these additional covariates need to be chosen with-
out knowledge of ξ0. We will discuss their choice later in this section.) In all, there
are now p• = p + q covariates, say

X• = (
X•

1, . . . ,X
•
p,X•

p+1, . . . ,X
•
p+q

)= (
X1, . . . ,Xp, g1(X), . . . , gq(X)

)
.

For both ideal and ordinary semi-supervision we propose to let q = qn as n → ∞,
and to use the estimator θ̂•

LS and θ̂•
SSLS. For merely theoretical purpose of �2 risks,

we consider the refinement again

θ̂•1
LS = TrunY

(
θ̂•

LS
)

and θ̂•1
SSLS = TrunY

(
θ̂•

SSLS
)
,

where TrunY(·) is defined as (2.20). Apply previous theorems for asymptotic distri-
butions and moments. For convenience of statement and proof, we assume that the
support of X is compact, ξ(X) is bounded and Y is sub-Gaussian. These assump-
tions can each be somewhat relaxed at the cost of additional technical assumptions
and complications. Here is a formal statement of the result.

THEOREM 7. Assume the support of X is compact, ξ(X) = E(Y |X) is
bounded, and Y is sub-Gaussian. Consider asymptotics as n → ∞ for the case of
both ideal and ordinary semi-supervision. Assume also that either (i) ξ(X) is con-
tinuous or (ii) that PX is absolutely continuous with respect to Lebesgue measure
on {X}. Let {gk(x) : k = 1, . . .} be a bounded basis for the continuous functions on
{X} in case (i) and be a bounded basis for the ordinary �2 Hilbert space on {X} in
case (ii). Suppose qn → ∞ satisfying qn = o(

√
n), Assumption 1 holds, and either

Assumptions 2 or 2′ are satisfied, then:

• The estimator θ̂•1
LS for the problem with observations {Yi,X

•
p+qn

: i = 1, . . . , n}
asymptotically achieves the ideal oracle risk, that is,

(3.8) lim
n→∞nE

(
θ̂•1

LS − θ
)2 = σ 2.
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• Now we suppose limn→∞ n
n+mn

= ρ for some fixed value 0 ≤ ρ ≤ 1. Applying

the estimator θ̂•
SSLS for the problem with observations {Yi,X

•
p+qn

: i = 1, . . . , n}
and {X•

i }n+mn

i=n+1. Then

(3.9) lim
n→∞nE

(
θ̂•1

SSLS − θ
)2 = σ 2 + ρ VarPX

(
ξ(X)

)
.

Finally, θ̂•
LS and θ̂•

SSLS are asymptotically unbiased and normal with the corre-
sponding variances.

Equations (3.8) and (3.9) show that the proposed estimators asymptotically
achieve the oracle values in (3.5) and (3.6). On the other hand, one could use the
simpler ordinary estimators θ̂•

LS and θ̂•
SSLS in place of θ̂•1

LS and θ̂•1
SSLS in practice,

since θ̂•
LS and θ̂•

SSLS converge in distribution with asymptotic variance as in (3.5)
and (3.6).

REMARK 5. There are several results in the semiparametric regression liter-
ature [Bickel, Ritov and Wellner (1991), Bickel et al. (1998), Chakrabortty and
Cai (2018), Hansen (2017), Hasminskii and Ibragimov (1983), Peng and Schick
(2002), van der Vaart (2002)] that show similar aspects to our results. For ex-
ample, Bickel, Ritov and Wellner (1991) discusses semiparametric inference for
the joint distribution of bivariate (Y,X) ∈ R

2 given known marginal distributions
PX and/or PY . With PX known and PY unknown, this corresponds to our ideal
semi-supervised setting. Their estimator is built from a suitable, binned nonpara-
metric regression estimator of ξ(x). It can be shown using comments in Section 4
of their article that their procedure will yield a semiparametric efficient estimator
of EY for our ideal semi-supervised problem when X is real. (Generalization to
multivariate X is relatively straightforward.) Chakrabortty and Cai (2018) develop
several different semiparametric efficient estimators for the population regression
slopes in ideal semi-supervised semiparametric regression, or when m/n → ∞. It
can be shown with a little extra work that these also yield semiparametric efficient
estimators of the mean of Y for such a setting. Though it shares some common
features with each of these approaches our series estimator also shows some fun-
damental differences to any of these proposals. We remark below that our series
estimator is also semiparametric efficient under suitable regularity conditions. But
our emphasis remains on its directness, simplicity and the implications of this for
good finite sample performance (including confidence intervals) relative to Ȳ.

REMARK 6. The oracle optimality in Proposition 4 involves an asymptot-
ically least favorable one-dimensional family of conditional means under ideal
semi-supervised setting. It also places no special restriction on the conditional dis-
tribution of Y − ξ0(X). Consequently, the conditional sample mean (if a large con-
ditional sample were available) would be the asymptotically efficient estimator of
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ξ0(X). It follows that the oracle optimal rates in (3.3) is equal to the asymptotic
semiparametric efficiency bound. Hence the series estimator θ̂•

LS of Section 3.2
is asymptotically efficient under the regularity conditions of Theorem 7. We be-
lieve Proposition 4 can be further extended to a version applying to ordinary semi-
supervision and yields the corresponding semiparametric efficiency bound.

Although the preceding argument is informal, it can be made precise. Bickel,
Ritov and Wellner (1991) and Chakrabortty and Cai (2018) contain more de-
tailed, conventional arguments for estimating regression slopes in the ideal semi-
supervised case, and the result for estimating EY can be drawn from there via
standard reasoning. Some remarks in the latter paper about MAR data can be used
to extend the treatment to ordinary semi-supervision, as can a specialization of the
MAR results in Graham (2011). A detailed argument for all cases can be found in
Kuchibhotla (2017).

REMARK 7. Theorem 7 suggests that the number of terms in the series should
be qn = o(

√
n). As a crude rule of thumb, we could suggest choosing qn ≈ n1/3.

Hence, if n = 100, one could choose qn = 5. Our estimator in a problem having
such n and q is not optimal in any sense, but one can be fairly confident that it will
at least be noticeably better than Ȳ.

4. Simulation results. In this section, we investigate the numerical perfor-
mance of the proposed estimators in various settings in terms of estimation errors
and coverage probability as well as length of confidence intervals. All the simula-
tions are repeated for 1000 times.

We analyze the linear least squares estimators θ̂LS and θ̂SSLS proposed in Sec-
tion 2 in the following three settings:

1. (Gaussian X and quadratic ξ .) We generate the design and parameters as
follows, μ ∼ N(0, Ip), 
 ∈ R

p×p , 
ij = I {i = j}+ 1
2p

I {i 
= j}, β ∼ N(0, Ip+1).
Then we draw i.i.d. samples Y, X as

Xk ∼ N(μ,
), Yk = ξ(Xk) + εk,

where

ξ(Xk) = (‖Xk‖2
2 − p

)+ 	X�β, εk ∼ N
(
0,2‖Xk‖2

2/p
)
.

It is easy to calculate that θ = EY = β1 in this setting.
2. (Heavy tailed X and Y .) We randomly generate

{Xki}1≤k≤n,1≤i≤p
i.i.d.∼ P3, Yk =

p∑
i=1

(
sin(Xki)+Xki

)+0.5 ·εk, εk
i.i.d.∼ P3,

where P3 has density fP3(x) = 1
1+|x|3 , −∞ < x < ∞. Here, the distribution P3

has no third or higher moments. In this case, μ = EX = 0, θ = EY = 0.
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3. (Poisson X and Y .) Then we also consider a setting where

{Xki}1≤k≤n,1≤i≤p
i.i.d.∼ Poisson(10), Yk|Xk

i.i.d.∼ Poisson(10Xk1).

In this case, μ = EX = (10, . . . ,10)� ∈ R
p , θ = EY = 100.

We compare the average �2-loss of Ȳ, θ̂LS and θ̂SSLS for various choices of n,
p and m. The results are summarized in Table 1. The primary message to notice is
that in every case, our estimator is preferable to Y-bar. An interesting aspect is even
when p grows faster than n1/2, θ̂LS and θ̂SSLS are still preferable estimators to Ȳ.
It is also noteworthy that although our theoretical analysis for the �2-risk focused
on the refined estimators θ̂1

LS and θ̂1
SSLS with bounded or sub-Gaussian designs, the

refinement and assumptions are for technical asymptotic needs, which might not
be necessary in practice as we can see from these examples.

We also compute the 95% confidence interval for each setting above and list the
average length and coverage probability in Table 2. It can be seen that under the

TABLE 1
Average squared loss of sample mean estimator Ȳ, the least squares estimator θ̂LS and the

semi-supervised least squares estimators θ̂SSLS under different values of (p,n) and various settings

(θ̂SSLS − θ)2

(p,n) (Ȳ − θ)2 m = 100 m = 1000 m = 10,000 (θ̂LS − θ)2

Setting 1: Gaussian X and Quadratic ξ

(1, 100) 0.304 0.184 0.075 0.063 0.056
(10, 100) 2.73 1.529 0.518 0.313 0.296
(50, 100) 13.397 7.961 3.967 2.988 2.868
(10, 500) 0.526 0.464 0.211 0.067 0.045
(50, 500) 2.668 2.278 1.089 0.373 0.273
(200, 500) 10.743 9.135 4.615 2.345 1.949

Setting 2: Heavy tailed X and Y

(1, 100) 0.732 0.410 0.244 0.196 0.188
(10, 100) 7.791 5.428 2.505 1.959 1.831
(50, 100) 107.363 47.036 17.754 14.201 13.435
(10, 500) 2.575 2.097 0.988 0.354 0.261
(50, 500) 12.569 10.481 5.619 2.342 1.780
(200, 500) 43.997 36.123 30.856 13.175 9.642

Setting 3: Poisson X and Y

(1, 100) 97.912 50.510 10.168 2.036 1.015
(10, 100) 98.337 50.772 10.535 2.085 1.061
(50, 100) 94.475 52.166 10.951 3.146 2.100
(10, 500) 20.062 16.765 6.890 1.104 0.186
(50, 500) 19.915 15.793 6.541 1.165 0.225
(200, 500) 20.933 17.639 7.159 1.300 0.333
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TABLE 2
Average length and coverage probability (in the parenthesis) 95%-CI based on Ȳ, θ̂LS and θ̂SSLS

under different values of (p,n) and various settings

θ̂SSLS

(p,n) Ȳ m = 100 m = 1000 m = 10,000 θ̂LS

Setting 1: Gaussian X and Quadratic ξ

(1, 100) 1.902 (0.945) 1.521 (0.954) 1.074 (0.951) 0.940 (0.939) 0.921 (0.936)

(5, 100) 4.430 (0.942) 3.301 (0.930) 1.911 (0.945) 1.467 (0.941) 1.400 (0.931)

(10, 100) 6.318 (0.952) 4.678 (0.942) 2.655 (0.937) 2.010 (0.924) 1.913 (0.916)

(1, 500) 0.845 (0.959) 0.793 (0.958) 0.608 (0.959) 0.451 (0.958) 0.413 (0.954)

(10, 500) 2.818 (0.955) 2.596 (0.959) 1.768 (0.952) 1.023 (0.949) 0.832 (0.936)

(25, 500) 4.558 (0.949) 4.194 (0.961) 2.837 (0.946) 1.606 (0.942) 1.288 (0.922)

Setting 2: Heavy tailed X and Y

(1, 100) 3.349 (0.961) 2.069 (0.941) 1.596 (0.939) 1.446 (0.956) 1.420 (0.962)

(5, 100) 7.332 (0.950) 4.885 (0.918) 3.384 (0.933) 2.920 (0.937) 2.847 (0.952)

(10, 100) 11.292 (0.956) 7.436 (0.921) 5.073 (0.922) 4.343 (0.943) 4.225 (0.956)

(1, 500) 1.573 (0.954) 1.205 (0.945) 0.970 (0.923) 0.773 (0.937) 0.723 (0.942)

(10, 500) 5.947 (0.957) 4.427 (0.939) 3.217 (0.916) 2.180 (0.931) 1.904 (0.953)

(25, 500) 8.582 (0.960) 7.079 (0.945) 5.197 (0.928) 3.617 (0.931) 3.229 (0.953)

Setting 3: Poisson X and Y

(1, 100) 39.164 (0.937) 27.831 (0.939) 12.386 (0.944) 5.506 (0.953) 3.895 (0.925)

(5, 100) 39.396 (0.947) 28.003 (0.957) 12.485 (0.933) 5.600 (0.938) 4.004 (0.930)

(10, 100) 39.143 (0.935) 27.832 (0.946) 12.443 (0.936) 5.655 (0.942) 4.105 (0.937)

(1, 500) 17.548 (0.946) 16.035 (0.946) 10.232 (0.950) 4.195 (0.957) 1.753 (0.946)

(10, 500) 17.621 (0.947) 16.102 (0.938) 10.276 (0.952) 4.216 (0.950) 1.768 (0.957)

(25, 500) 17.632 (0.947) 16.113 (0.948) 10.285 (0.949) 4.229 (0.955) 1.795 (0.939)

condition p = o(n1/2), the proposed confidence intervals based on θ̂LS and θ̂SSLS
are close to valid and shorter on average than the traditional z-confidence interval
centered at Ȳ.

5. Applications. In this section, we apply the proposed procedures to the av-
erage treatment effect estimation and a real data example on homeless population.

5.1. Application to average treatment effect estimation. We first discuss an
application of the proposed least squares estimator to Average Treatment Effect
(ATE) estimation. Suppose YT and YC are the responses for the treatment popula-
tion and control population, respectively, then ATE is then defined as

(5.1) d = EYT −EYC.

Under Neyman’s paradigm [Rubin (1990), Spłlawa-Neyman (1990)], a total num-
ber of (nt + nc) subjects are randomly assigned to the treatment group and
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control group. Suppose Yt,1, . . . , Yt,nt are the responses under treatment, while
Yt,1, . . . , Yt,nc are the responses of the control group. The straight forward idea for
estimating ATE is the sample average treatment effect (SATE), which simply takes
the difference of average effects between the two groups. In addition, the covari-
ates associated with the responses are often available and helpful to improve the
estimation of ATE.

In the estimation of ATE, we follow the model setting of Pitkin et al. (2013).
Suppose nt , nc people are from treatment group and control group respectively,
where their response and predictor satisfies

(Yt ,Xt)
i.i.d.∼ P t , (Yc,Xc)

i.i.d.∼ P c.

Here, due to the randomization setting, it is reasonable to assume P t and P c share
the same marginal distribution of X: P t

X = P c
X = PX . There are also m additional

samples possibly coming from drop-outs or any other subjects that also represent
the population PX . In summary, the available samples include

(5.2)
{
(Yt,k,Xt,k)

}nt

k=1,
{
(Yc,k,Xc,k)

}nc

k=1,
{
(Xa,k)

}m
k=1.

We again introduce the population slope for both treatment and control group to
measure the relationship between Yt , Xt and Yc, Xc, respectively,

(5.3) βt = arg min
γ∈Rp+1

E
(
Yt − 	X�

t γ
)2

, βc = arg min
γ∈Rp+1

E
(
Yc − 	X�

c γ
)2

.

Based on Lemma 1 in the Supplementary Material [Zhang, Brown and Cai (2019)],
βt , βc has the following closed form when Pt , Pc have nondegenerate second
moment:

(5.4) βt = (
E 	Xt

	X�
t

)−1
(E 	XtYt ), βc = (

E 	Xc
	X�

c

)−1
(E 	XcYc).

Our target, the population ATE, is defined as d = EYc − EYt . We propose the
corresponding semi-supervised least squares estimator

(5.5) d̂SSLS = μ̂�(β̂t − β̂c).

Here, β̂t , β̂c ∈ R
p+1 are the least squares estimators for treatment and control

group, respectively; 	̂μ is the mean of all available predictors,

(5.6) β̂t = (	X�
t

	Xt

)−1 	X�
t Yt , β̂c = (	X�

c
	Xc

)−1 	X�
c Yc,

where

(5.7) 	̂μ =
(

1
μ̂

)
, μ̂ = 1

nt + nc + m

(
nt∑

k=1

Xt,k +
nc∑

k=1

Xc,k +
m∑

k=1

Xa,k

)
.

Based on the analysis, we have in the previous section, the proposed d̂SSLS has
the following asymptotic distribution with a fixed p, P t and P c.
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THEOREM 8 (Asymptotic behavior of d̂SSLS). Suppose P t , P c are fixed distri-
bution with finite and nondegenerate second moments, then we have the following
asymptotic distribution if the sample size nt , tc grow to infinity:

(5.8)
d̂SSLS − d

V

d→ N(0,1),
V̂ 2

V 2
d→ 1.

Here,

V 2 = τ 2
t

nt

+ τ 2
c

nc

+ 1

nt + nc + m
(βt,(2) − βc,(2))

�

(5.9)
×E(X − μ)(X − μ)�(βt,(2) − βc,(2)),

V̂ 2 = MSEt

nt

+ MSEc

nc

+ 1

nt + nc + m
(β̂t − β̂c)

��̂X(β̂t − β̂c),(5.10)

MSEt = 1

nt − p − 1

nt∑
k=1

(
Yt,k − 	X�

t,kβ̂t

)2
,

MSEc = 1

nc − p − 1

nc∑
k=1

(
Yc,k − 	X�

c,kβ̂c

)2
,

�̂X = 1

nt + nc + m

(
nt∑

k=1

(Xt,k − μ̂)(Xt,k − μ̂)�

+
nc∑

k=1

(Xk − μ̂)(Xk − μ̂)� +
m∑

k=1

(Xk − μ̂)(Xk − μ̂)�
)
.

REMARK 8. Similar to the procedure in Proposition 1, we can calculate that
for the sample average treatment effect, that is,

d̂ =
nt∑

k=1

Yt,k

nt

−
nc∑

k=1

Yt,c

nc

,

Var(d̂) = τ 2
t + β�

t,(2)E(X − μ)(X − μ)�βt,(2)

nt

+ τ 2
c + β�

c,(2)E(X − μ)(X − μ)�βt,(2)

nc

.

We can check that asymptotically V 2 ≤ Var(d̂), which also shows the merit of the
proposed semi-supervised least squares estimator.

REMARK 9. The asymptotic behavior of d̂SSLS and the �2 risk for a refined
d̂SSLS for growing p can be elaborated similar to the previous sections.
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5.2. Real data example: Estimating homeless in Los Angeles County. We now
consider an application to estimate the number of homeless people in Los Ange-
les County. Homelessness has been a significant public issue for the United States
since nearly a century ago [Rossi (1991)]. A natural question for the demographers
is to estimate the number of homeless in a certain region. Estimating the number of
homeless in metropolitan area is an important but difficult task due to the follow-
ing reasons. In a typical design of U.S. Census, demographers visit people through
their place of residence. In this case, most of the homeless will not be contacted
[Rossi (1991)] through this process. Visiting homeless shelters or homeless ser-
vice centers may collect some information of the homeless, but a large number
of homeless still cannot be found since they may use the service anonymously or
simply not use the service.

Los Angeles County includes land of 2000 square miles, total population of 10
million and 2054 census tracts. In 2004–2005, the Los Angeles Homeless Services
Authority (LAHSA) conducted a study of the homeless population. Due to the cost
of performing street visits for all census tracts, LAHSA used a stratified sampling
plan. First, 244 tracts that were believed to have large amount of homeless were
preselected and visited. Next, for the rest of the tracts, 265 of them were randomly
selected and visited. This design leaves 1545 tracts unvisited. Besides the num-
ber of homeless, some predictors were available for all 2054 tracts. In our anal-
ysis, 7 of them were included, Perc.Industrial, Perc.Residential,
Perc.Vacant, Perc.Commercial, Perc.OwnerOcc, Perc.Minority,
MedianHouseholdIncome. These predictors have been used and were known
to have a useful correlation with the response [Kriegler and Berk (2010)].

Suppose Ttotal is the total number of homeless in Los Angeles, Tpre is the number
of homeless in 244 pre-selected tracts, θran is average number of homeless per tract
in all 1810 nonpreselected tracts. Clearly,

(5.11) Ttotal = Tpre + 1810 · θran.

The proposed semi-supervised inference framework fit into the 1810 samples
with 265 labeled and 1545 unlabeled samples. We can apply the proposed semi-
supervised least squares estimator θ̂1

SSLS to estimate θran and use (5.11) to calculate
the estimate and 95% confidence interval for Ttotal. In contrast, the estimate via
sample-mean estimator was also calculated. The results are shown in Table 3. It is
easy to see that the estimate via θ̂1

SSLS is slightly larger than the one via Ȳ.

TABLE 3
Estimated total number of homeless in Los Angeles County

via θ̂SSLS 95%-CI via Ȳ 95%-CI
53,824 [47,120, 60,529] 52,527 [45,485, 59,570]
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TABLE 4
Diagnostic table for Los Angeles data example

β̂ X̄full − X̄ X̄ X̄full

Intercept 21.963
Perc.Industrial 0.027 0.143 61.293 61.149
Perc.Residential −0.087 −0.075 4.066 4.141
Perc.Vacant 1.404 −0.075 4.066 4.141
Perc.Commercial 0.338 −0.542 15.130 15.672
Perc.OwnerOcc −0.233 2.489 54.039 51.550
Perc.Minority 0.058 0.833 50.890 50.057
MedianInc (in $K) 0.074 0.638 48.805 48.167

Adjustment: β̂�
(2)

(X̄full − X̄) = −0.768

To further investigate and diagnose, we calculated the least squares estimator
β̂ , the average predictor values across all 1810 nonpreselected tracts X̄full and the
average predictor values across 265 randomly selected tracts X̄. These values are
listed in Table 4.

We can see from Table 4 that due to insufficiency of sampling, there is difference
between X̄ and X̄full, especially for the predictor Perc.OwnerOcc. When there
is association between these predictors and response, it is more reasonable to adjust
for this discrepancy from taking the mean. Recall the proposed estimator

θ̂SSLS = Ȳ + β̂�
(2)(X̄full − X̄) where X̄full = 1

n + m

n+m∑
k=1

Xk, X̄ = 1

n

n∑
k=1

Xk.

The difference between two estimates exactly originated from the adjustment term
β̂�

(2)(X̄full − X̄), which has been justified in both theoretical analysis and simulation
studies in the previous sections.

6. Proofs of the main results. We prove the main results in this section.
The proofs of other technical results are provided in the Supplementary Material
[Zhang, Brown and Cai (2019)].

6.1. Proofs for ideal semi-supervised inference estimator θ̂LS. PROOF OF

THEOREM 1. We first show that θ̂LS is invariant under simultaneous affine trans-
lation on both X and μ. Specifically, suppose Xk = U · Zk + α, (k = 1, . . . , n) for
any fixed invertible matrix U ∈ R

p×p and vector α ∈ R
p . Then one has

	Xk =
[

1 0
α U

]
	Zk, 	X = 	Z

[
1 α�
0 U�

]
,

θ̂LS = 	μ�(	X� 	X)−1 	X�Y
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= (
1,μ�)([1 0

α U

]
	Z� 	Z

[
1 α�
0 U�

])−1 [
1 0
α U

]
	Z�Y

= (
1,μ�)[1 α�

0 U�

]−1 (	Z� 	Z)−1 	Z�Y

= (
1,
(
U−1(μ − α)

)�)(	Z� 	Z)−1 	Z�Y.

Since EZk = U−1(μ − α), we know θ̂LS is invariant under simultaneous affine
translation on X and μ.

Based on the affine transformation invariant property, we only need to consider
the situation when EX = μ = 0, Cov(X) = Ip , where Ip is the p-by-p identity
matrix. Next, we discuss the asymptotic behavior for θ̂LS. For simplicity, we note

1n = (

n︷ ︸︸ ︷
1, . . . ,1)�, P 	X = 	X(	X� 	X)−1 	X� ∈ R

(p+1)×(p+1) as the projection matrix

onto the column space of 	X. X̄ = 1
n

∑n
k=1 Xk . Clearly, 1n lies in the column space

of 	X, which means P 	X1n = 1n. Then

θ̂LS − θ = 	μ�β̂ − θ = 	μ�(	X� 	X)−1 	X�Y − θ

= 	μ�(	X� 	X)−1 	X�(	Xβ + δ) − θ = 	μ�(	X� 	X)−1 	X�δ

= 1�
n

n
	X(	X� 	X)−1 	X�δ − 1�

n

n

(	X − 1n 	μ�)( 	X� 	X)−1 	X�δ

(6.1)

= 1�
n P 	X
n

δ −
(

0,
1�
n

n
X
)(	X� 	X)−1 	X�δ

= 1�
n

n
δ −

(
0,

1�
n

n
X
)(

1

n
	X� 	X

)−1(1

n
	X�δ

)

= δ̄ − (
0, X̄�)(1

n
	X� 	X

)−1(1

n
	X�δ

)
,

n − p − 1

n
MSE

= 1

n
‖Y − 	Xβ̂‖2

2 = 1

n

∥∥δ + 	Xβ − 	X(	X� 	X)−1 	X�(Xβ + δ)
∥∥2

2

(6.2)

= 1

n

∥∥δ − 	X( 	X� 	X)−1 	X�δ
∥∥2

2 = 1

n

(
δ�δ − δ� 	X( 	X� 	X)−1 	X�δ

)

=
(

1

n
δ�δ −

(
1

n
	X�δ

)�(1

n
	X� 	X

)−1(1

n
	X�δ

))
.



SEMI-SUPERVISED INFERENCE 2561

Since P is fixed and has finite second moment, by the law of large numbers, one
can show as n → ∞,

1

n
δ�δ = 1

n

n∑
k=1

δ2
k

d→ Eδ2 = τ 2,

∥∥∥∥ 	X�δ

n

∥∥∥∥2

2

d→ ‖E 	Xδ‖2
2 = 0,(6.3)

1

n
	X� 	X d→ E 	X 	X� =

[
1 0
0 Cov(X)

]
.

Since Cov(X) = Ip is invertible, we know(
1

n
	X� 	X

)−1
d→
[

1 0
0 Cov(X)−1

]
.

Additionally, since EX = 0, and X1, . . . ,Xn are independent,

E

∥∥∥∥1�
n X√
n

∥∥∥∥2

2
= 1

n
E

(
n∑

k=1

Xk

)(
n∑

k=1

Xk

)�

= 1

n
E

n∑
k=1

X�
k Xk = E tr

(
XX�)= tr

(
Cov(X)

)
< ∞.

(6.4)

Based on the asymptotic distributions above, for any ε > 0, we have

P

(√
n
(
0, X̄�)(1

n
	X� 	X

)−1(1

n
	X�δ

)
≥ ε

)

≤ P

(∥∥∥∥1�
n X√
n

∥∥∥∥
2

∥∥∥∥ 	X�δ

n

∥∥∥∥
2
·
∥∥∥∥
(

1

n
	X� 	X

)−1∥∥∥∥≥ ε

)

≤ P

(∥∥∥∥1�
n X√
n

∥∥∥∥
2
≥ ε/εn

)
+ P

(∥∥∥∥ 	X�δ

n

∥∥∥∥
2
≥ εn/

(
2
(∥∥Cov(X)−1∥∥+ 1

)))

+ P

(∥∥∥∥
(

1

n
	X� 	X

)−1∥∥∥∥≥ 2
(∥∥Cov(X)−1∥∥+ 1

))
,

where εn grows slowly with n to ensure that P(‖ 	X�δ
n

‖2 ≥ εn/(2(‖Cov(X)−1‖ +
1))) → 0 as n → ∞. By such an argument,

∀ε > 0, lim
n→∞P

(√
n
(
0, X̄�)(1

n
	X� 	X

)−1(1

n
	X�δ

)
≥ ε

)
= 0,

which means
√

n(0, X̄�)( 1
n
	X� 	X)−1( 1

n
	X�δ)

d→ 0. Next, by the central limit theo-
rem,

√
nδ̄/τ

d→ N(0,1).
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Combining (6.1), (6.2) and the previous asymptotic arguments, we know

√
n(θ̂LS − θ)/τ = √

nδ̄/τ − √
n
(
0, X̄�)(1

n
	X� 	X

)−1(1

n
	X�δ

)
/τ → N(0,1),

n − p − 1

n
MSE

d→ τ 2,

in the case that PX fixed and n → ∞.
Next, we use C and c to denote generic constants which does not depend on

n (but may depend on the distribution P ). When P further has a finite fourth
moment, by Berry–Esseen’s CLT,

(6.5)
∣∣P(

√
nδ̄/τ ≥ x) − �(x)

∣∣≤ C√
n
.

We also have a finer estimation for ‖(X̃�δ)/n‖2
2 than the one in (6.3). Note that

E

∥∥∥∥ 	X�δ

n

∥∥∥∥2

2
= 1

n2E

(
n∑

k=1

	Xkδk

)�( n∑
k=1

	Xkδk

)
(6.6)

= 1

n2

n∑
k=1

E 	X�
k

	Xkδ
2
k ≤ C

n
,

E

∥∥∥∥1

n
	X� 	X − Ip+1

∥∥∥∥2

F

= E tr

(
1

n

n∑
k=1

( 	Xk
	X�

k −E 	X 	X�))2

= 1

n2

n∑
k=1

E tr
( 	Xk

	X�
k −E 	Xk

	X�
k

)2(6.7)

= 1

n
E tr

( 	X 	X� −E 	X 	X�)2 ≤ C

n
.

By Markov’s inequality,

P

(√
n
(
0, X̄�)(1

n
	X� 	X

)−1(1

n
	X�δ

)
≥ C

n1/4

)

= P

(∥∥∥∥1�
n X�
√

n

∥∥∥∥
2
·
∥∥∥∥
(

1

n
	X� 	X

)−1∥∥∥∥ ·
∥∥∥∥ 	X�δ

n

∥∥∥∥
2
≥ C

n1/4

)

≤ P

(∥∥∥∥1�
n X√
n

∥∥∥∥
2
≥ Cn1/8

)
+ P

(∥∥∥∥1

n
	X� 	X − Ip+1

∥∥∥∥
F

≤ 1/2
)

(6.8)

+ P

(∥∥∥∥ 	X�δ

n

∥∥∥∥
2
≥ C

n3/8

)
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≤ E‖1�
n X/

√
n‖2

2

Cn1/4 + E‖ 1
n
	X� 	X − Ip+1‖2

F

1/2
+ E‖	X�δ/n‖2

2

Cn−3/4

(6.4)(6.6)(6.7)≤ Cn−1/4.

Finally, for any x > 0,

P

(√
n(θ̂LS − θ)

τ
≤ x

)
(6.1)≤ P

(√
nδ̄

τ
≤ x + C

n1/4

)

+ P

(
−√

n
(
0, X̄�)(−1

n
	X� 	X

)−1(1

n
	X�δ

)
/τ ≤ − C

n1/4

)
(6.8)≤ �

(
x + C

n1/4

)
+ Cn−1/4 ≤ �(x) + Cn−1/4.

Here, the last inequality is due to the fact that the c.d.f. of the standard normal
distribution �(·) is a Lipschitz continuous function. Similarly,

P

(√
n(θ̂LS − θ)

τ
≤ x

)
≥ �(x) − Cn−1/4.

These together complete the proof of this theorem. �

PROOF OF THEOREM 2. First, based on the proof of Theorem 1, the affine
transformation on X would not affect the property of θ̂LS. Without loss of general-
ity, we assume that EX = 0, Var(X) = I . In other words, Z = X. Next, based on
formulas (6.1) and (6.2), we have

√
n(θ̂LS − θ)/τ =

√
nδ̄

τ
− √

n
(
0, X̄�)(1

n
	X� 	X

)−1(1

n
	X�δ

)
,

∣∣∣∣
√

n

τ

(
0, X̄�)(1

n
	X� 	X

)−1(1

n
	X�δ

)∣∣∣∣≤
∥∥∥∥1nX�

n3/4

∥∥∥∥
2
· λ−1

min

(
1

n
	X� 	X

)
·
∥∥∥∥ 	X�δ

n3/4τ

∥∥∥∥
2
,

then we only need to prove the following asymptotic properties in order to finish
the proof of Theorem 2:

√
nδ̄

τ

d→ N(0,1),(6.9)

∥∥∥∥1nX
n3/4

∥∥∥∥
2

d→ 0,

∥∥∥∥ 	X�δ

n3/4

∥∥∥∥
2
/τ

d→ 0,(6.10)

for some uniform t1 > t2 > 0,

(6.11) P

(
t1 ≥ λmax

(
1

n
	X� 	X

)
≥ λmin

(
1

n
	X� 	X

)
≥ t2

)
→ 1.
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Here, λmax, λmin(·) represent the largest and least eigenvalues of the given matrix.
Next, we will show (6.9), (6.10) and (6.11) separately.

• Based on the assumption of the theorem, δ1
τ
, . . . , δn

τ
are i.i.d. samples with mean

0, variance 1 and bounded (2+2ε)th moment, (6.9) holds by Lyapunov’s central
limit theorem.

• Since X1, . . . ,Xk are i.i.d. samples with mean 0 and covariance Ip , we can
calculate that

E

∥∥∥∥1nX�

n3/4

∥∥∥∥2

2
= 1

n3/2 · nE‖X‖2
2 = p

n1/2 → 0 as n → 0.

Since X1δ1, . . . ,Xnδn are i.i.d. samples with mean 0 and satisfying (2.11), we
have

E

∥∥∥∥ 	X�δ

n3/4

∥∥∥∥2

2
= 1

n3/2 · nE‖ 	Xδ‖2
2 ≤ M3

n1/2E‖X‖2
2 ·Eδ2 = p

n1/2 M3τ
2.

Thus, E‖ 	X�δ
n3/4 ‖2

2/τ
2 → 0 as n → ∞. Thus, we have (6.10).

• For (6.11), since EX = 0, Cov(X) = Ip and Assumption (2.10) holds, (6.11) is
directly implied by Theorem 2 in Yaskov (2014). �
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SUPPLEMENTARY MATERIAL

Supplement to “Semi-supervised inference: General theory and estimation
of means” (DOI: 10.1214/18-AOS1756SUPP; .pdf). The supplement contains ad-
ditional proofs for the main results of the paper.
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