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Nonreversible Markov chain Monte Carlo schemes based on piecewise
deterministic Markov processes have been recently introduced in applied
probability, automatic control, physics and statistics. Although these algo-
rithms demonstrate experimentally good performance and are accordingly in-
creasingly used in a wide range of applications, geometric ergodicity results
for such schemes have only been established so far under very restrictive as-
sumptions. We give here verifiable conditions on the target distribution under
which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85
(2012) 026703, 1671–1691] is geometrically ergodic and we provide a cen-
tral limit theorem for the associated ergodic averages. This holds essentially
whenever the target satisfies a curvature condition and the growth of the neg-
ative logarithm of the target is at least linear and at most quadratic. For target
distributions with thinner tails, we propose an original modification of this
scheme that is geometrically ergodic. For targets with thicker tails, we extend
the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk
Metropolis context. We establish geometric ergodicity of the Bouncy Particle
Sampler with respect to an appropriate transformation of the target. Mapping
the resulting process back to the original parameterization, we obtain a geo-
metrically ergodic piecewise deterministic Markov process.

1. Introduction. Let π̄(dx) be a Borel probability measure on Rd admitting
a density π̄(x) = exp{−U(x)}/ζ with respect to the Lebesgue measure dx where
U : Rd �→ [0,∞) is a potential function with locally Lipschitz second deriva-
tives. We assume that this potential function can be evaluated pointwise while ζ

is intractable. In this context, one can sample approximately from π̄(dx) and esti-
mate expectations with respect to this measure using Markov chain Monte Carlo
(MCMC) algorithms. A wide range of MCMC schemes have been proposed over
the past 60 years since the introduction of the Metropolis algorithm.
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In particular, nonreversible MCMC algorithms based on piecewise determinis-
tic Markov processes [10, 11] have recently emerged in applied probability [4, 12,
18, 32], Chapter 13, automatic control [28, 29], physics [26, 31, 36] and statistics
[3, 6, 16, 35, 40–42]. These algorithms perform well empirically so they have al-
ready found many applications; see, for example, [12, 21, 26, 34]. However, to the
best of our knowledge, geometric convergence rates for this class of MCMC al-
gorithms have only been established under stringent assumptions: [28] establishes
geometric ergodicity of such a scheme but only for targets with exponentially de-
caying tails, [32] obtains sharp results but requires the state-space to be compact,
while [2, 4, 18] consider targets on the real line. Similar restrictions apply to limit
theorems for ergodic averages, where for example in [2], a Central Limit Theorem
(CLT) has been obtained but this result is restricted to targets on the real line. Es-
tablishing exponential ergodicity and a CLT under weaker conditions is of interest
theoretically but also practically as it lays the theoretical foundations justifying
calibrated confidence intervals around Monte Carlo estimates (for a review see,
e.g., [25]).

We focus here on the Bouncy Particle Sampler algorithm (BPS), a piecewise de-
terministic MCMC scheme proposed in [36] and subsequently studied in [6] and
[32], as it has been observed to perform empirically very well when compared to
other state-of-the-art MCMC algorithms. In addition, it has recently been shown
in [41] that BPS is the scaling limit of the (discrete-time) reflective slice sam-
pling algorithm introduced in [33]. In this paper, we give conditions on the target
distribution π̄ under which BPS is geometrically ergodic. These conditions hold
whenever the target satisfies a curvature condition and has “regular” tails, in the
sense that the potential U grows at least linearly and at most quadratically.

When the target has thin tails, that is U grows faster than a quadratic, we show
that a simple modification of the original BPS algorithm provides a geometrically
ergodic scheme. This modified BPS algorithm uses a position-dependent rate of
refreshment and is easy to implement.

In the presence of thick tails, that is U grows sublinearly, we follow the ap-
proach adopted in [24] for the random walk Metropolis algorithm. We change
variables to obtain a transformed target satisfying our conditions and use BPS to
sample this transformed target. Mapping this process back to the original parame-
terization, we obtain a geometrically ergodic algorithm.

All results in the present paper are of a qualitative nature. It would be of interest
from a practitioner’s point of view to obtain explicit convergence rates to guide the
design of efficient algorithms. This is possible by keeping track of the constants in
our proofs and applying, for example, [37], Corollary 4. However, we expect any
rates thus obtained to not be sharp.

We henceforth restrict our attention to dimensions d ≥ 2; for d = 1 BPS coin-
cides with the Zig-Zag process and this one-dimensional process has been shown
to be geometrically ergodic under reasonable assumptions in [4]. After submission
of this manuscript, two preprints have appeared establishing geometric ergodicity,
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when d ≥ 2, of the Zig-Zag process [5] and of a related process modelling the
motion of a bacterium [17].

The rest of the paper is structured as follows. Section 2 contains background in-
formation on continuous-time Markov processes, exponential ergodicity and BPS.
The main results are stated in Section 3. Section 4 establishes several useful er-
godic properties of BPS and of its novel variants proposed here. The proofs of the
main results can be found in Section 5, whereas lengthy and technical proofs of
auxiliary results are provided in the Supplementary Material [13].

2. Background and notation. Let {Zt : t ≥ 0} denote a time-homogeneous,
continuous-time Markov process on a topological space (Z,B(Z)), where B(Z)

is the Borel σ -field of Z , and denote its transition semigroup by {P t : t ≥ 0}. For
every initial condition Z0 := z ∈ Z , the process {Zt : t ≥ 0} is defined on a filtered
probability space (�,F, {Ft},Pz), with {Ft } the natural filtration, such that for
any n > 0, times 0 < t1 < t2 < · · · < tn and B1, . . . ,Bn ∈ B(Z) we have

Pz{Zt1 ∈ B1} =
∫
B1

P t1(z,dz1),

Pz{Zt1 ∈ B1,Zt2 ∈ B2} =
∫
B1

∫
B2

P t2−t1(z1,dz2)P
t1(z,dz1),

Pz{Zt1 ∈ B1, . . . ,Ztn ∈ Bn} =
∫
B1

· · ·
∫
Bn

P tn−tn−1(zn−1,dzn)

× · · · × P t2−t1(z1,dz2)P
t1(z,dz1).

We write Ez to denote expectation with respect to Pz.
Let B(Z) denote the space of bounded measurable functions on Z , which is

a Banach space with respect to the norm ‖f ‖∞ := supz∈Z |f (z)|. We also write
M(Z) for the space of σ -finite, signed measures on (Z,B(Z)). Given a measur-
able function V : Z → [1,∞), we define a norm on M(Z) through

‖μ‖V := sup
|f |≤V

∣∣μ(f )
∣∣.

For any transition kernel K : Z × B(Z) → [0,1], we define an operator
K : B(Z) → B(Z) through Kf (z) = ∫

K(z,dw)f (w). We will slightly abuse
notation by letting K also denote the dual operator acting on M(Z) through
μK(A) = ∫

Z μ(dz)K(z,A) for A ∈ B(Z). With this notation, a σ -finite measure
π on B(Z) is called invariant for {P t : t ≥ 0} if πP t = π for all t ≥ 0.

2.1. Exponential ergodicity of continuous-time processes. Suppose that a
Borel probability measure π is invariant for {P t : t ≥ 0}. We are interested in the
exponential convergence of the process in the sense of V -uniform ergodicity: that
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is, there exists a measurable function V : Z → [1,∞) and constants D < ∞ and
ρ < 1 such that

(2.1)
∥∥P t(z, ·) − π(·)∥∥V ≤ V (z)Dρt , t ≥ 0.

The proof of V -uniform ergodicity usually proceeds through the verification of an
appropriate drift condition which is often expressed in terms of the strong gener-
ator (see, e.g., [11], page 28). However, in this paper, it will prove useful to focus
on the extended generator of the Markov process {Zt : t ≥ 0} which is defined as
follows. Let D(L̃) denote the set of measurable functions f : Z → R for which
there exists a measurable function h : Z → R such that t �→ h(Zt) is integrable
Pz-almost surely for each z ∈Z and the process

f (Zt) − f (z) −
∫ t

0
h(Zs)ds, t ≥ 0,

is a local Ft -martingale. Then we write h = L̃f and we say that (L̃,D(L̃)) is
the extended generator of the process {Zt : t ≥ 0}. This is an extension of the
usual strong generator associated with a Markov process; for more details, see
[11], Sections 14 and 26, and references therein. We will also need the concepts of
aperiodicity (see [15], page 1675), irreducibility, small sets and petite sets ([15],
page 1674).

2.2. The bouncy particle sampler. We begin with some additional notation.
We will consider x ∈ Rd as a column vector and we will write | · | and 〈·, ·〉
to denote the Euclidean norm and scalar product in Rd , respectively, whereas
‖A‖ = sup{|Ax| : |x| = 1} will denote the operator norm of the matrix A ∈ Rd×d .
Let B(x, δ) := {y ∈ Rd : |x − y| < δ}. For a function U : Rd → [0,∞), we write
∇U(x) and �U(x) for the gradient and the Hessian of U(·) evaluated at x and
we adopt the convention of treating ∇U(x) as a column vector. For a differen-
tiable map h : Rd → Rd . we will write ∇h for the Jacobian of h; that is, letting
h = (h1, . . . , hd)T , we have (∇h)i,j = ∂xi

hj . Let us write ψ for the uniform mea-
sure on Sd−1 := {v ∈ Rd : |v| = 1}, pϑ(·) for the density of the angle between a
fixed unit length vector and a random vector sampled from ψ(·), which is given by

(2.2) pϑ(θ) := κd(sin θ)d−2, κd =
(∫ π

0
(sin θ)d−2 dθ

)−1
, θ ∈ [0, π],

and let Z := Rd × Sd−1 and π(dx,dv) := π̄(dx)ψ(dv). For (x, v) ∈ Z , we also
define

(2.3) R(x)v := v − 2
〈∇U(x), v〉
|∇U(x)|2 ∇U(x).

The vector R(x)v can be interpreted as a Newtonian collision on the hyperplane
orthogonal to the gradient of the potential U , hence the interpretation of x as a
position, and v, as a velocity.
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BPS defines a π -invariant, nonreversible, piecewise deterministic Markov pro-
cess {Zt : t ≥ 0} = {(Xt ,Vt ) : t ≥ 0} taking values in Z . Since π admits π̄ as a
marginal, we can use this scheme to approximate expectations with respect to π̄ .
We introduce here a slightly more general version of BPS than the one discussed
in [1, 6, 32, 36]. Let

(2.4)
λ̄(x, v) := �ref(x) + λ(x, v),

λ(x, v) := max
{
0,

〈∇U(x), v
〉} =: 〈∇U(x), v

〉
+,

where the refreshment rate �ref(·) : Rd �→ (0,∞) is allowed to depend on the
location x. Previous versions of BPS restrict attention to the case �ref(x) = λref;
the generalisation considered here will prove useful in establishing the geometric
ergodicity of this scheme for thin-tailed targets.

Given any initial condition z ∈ Z , a construction of a path of BPS is given in
Algorithm 1. Step 4 of this algorithm corresponds to the simulation of the first
arrival time of an inhomogeneous Poisson process. Simulating such arrival times
is a well-studied problem and various exact simulation techniques can be found in
[14], Chapter 6. In the specific BPS context, these techniques have been detailed
in [6, 36]. Equivalently, BPS can be defined as the Markov process on Z with
extended generator given by

(2.5) L̃f (x, v) = Vf (x, v) + λ̄(x, v)
[
Kf (x, v) − f (x, v)

]
,

Algorithm 1 Bouncy Particle Sampler algorithm
1: (X0,V0) ← (x, v)

2: t0 ← 0
3: for k = 1,2,3, . . . do
4: sample inter-event time τk , where τk is a positive random variable such

that

P[τk ≥ t] = exp
{
−

∫ t

0
λ̄(Xtk−1 + rVtk−1,Vtk−1)dr

}
5: for r ∈ (0, τk) set (Xtk−1+r , Vtk−1+r ) ← (Xtk−1 + rVtk−1,Vtk−1)

6: tk ← tk−1 + τk � Time of kth event
7: Xtk ← Xtk−1 + τkVtk−1

8: if Uk < λ(Xtk ,Vtk−1)/λ̄(Xtk ,Vtk−1), where Uk ∼ Uniform(0,1) then
9: Vtk ← R(Xtk )Vtk−1 � Newtonian collision on the gradient (“bounce”)

10: else
11: Vtk ∼ ψ � Refreshment of the velocity
12: end if
13: end for
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for f ∈ D(L̃), the domain of L̃ (see Section 5.1), where

(2.6) Vf (x, v) := d

dt
f (x + tv, v)

∣∣∣∣
t=0+

,

and the transition kernel K : Z ×B(Z) �→ [0,1] is defined through

(2.7) K
(
(x, v), (dy,dw)

) = �ref(x)

λ̄(x, v)
δx(dy)ψ(dw) + λ(x, v)

λ̄(x, v)
δx(dy)δR(x)v(dw).

For a continuously differentiable f ∈ D(L̃), the expression (2.5) reduces to

(2.8) L̃f (x, v) = 〈∇xf (x, v), v
〉 + λ̄(x, v)

[
Kf (x, v) − f (x, v)

]
.

For �ref(x) = λref > 0, it has been shown in [6] that BPS is ergodic, provided
U is continuously differentiable, when the velocities are distributed according to
a normal distribution rather than uniformly on the sphere Sd−1 as assumed here.
Restricting velocities to Sd−1 makes our calculations more tractable without sig-
nificantly altering the properties of the process. In this context, [32] considers only
compact state spaces but the arguments therein can be adapted to prove ergodicity
in the general case.

3. Main results. In this paper, we provide sufficient conditions on the target
measure π̄ and the refreshment rate for BPS to be V -uniformly ergodic for the
following Lyapunov function:3

(3.1) V (x, v) := eU(x)/2

λ̄(x,−v)1/2
.

Throughout this section, we refer the reader to Table 1 for examples of target
distributions with various tail behaviours where each of our theorems is used to
establish exponential ergodicity. All proofs are given in Section 5 and the Supple-
mentary Material [13]. Before stating our results, we make a few working assump-
tions.

ASSUMPTIONS. Let U : Rd → [0,∞) be such that

∂2U(x)

∂xi ∂xj

is locally Lipschitz continuous for all i, j ,(A0) ∫
Rd

π̄(dx)
∣∣∇U(x)

∣∣ < ∞,(A1)

lim
|x|→∞

eU(x)/2
√|∇U(x)| > 0,(A2)

V ≥ c for some c > 0.(A3)

3In [28], the Lyapunov function eU(x)/2λ̄(x, v)1/2 is used to establish the geometric ergodicity of
a different piecewise deterministic MCMC scheme for targets with exponential tails but we found
this function did not apply to BPS.
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TABLE 1
Summary of geometric ergodicity (or proven lack thereof) for various sampling methods on targets with tails decreasing as exp{−|x|β } for β ∈ (0,∞)

and t-distributions. These models cover two important challenging situations: essentially, cases where the gradient of the potential becomes negligible in
the tails (two leftmost columns) and cases where both the gradient and the Hessian are unbounded (rightmost column). See references for precise

conditions

Target distributions

π(x) ∝ exp{−(1 + |x|2)β/2}
β ∈ (0,1) β = 1 β ∈ (1,2) β = 2 β > 2

Sampling methods t-distributions Thick tails Exponential Gaussian Thin tails

BPS Yes Yes Yes
Thm. 3.1(b) Thm. 3.1(a) Thm. 3.1(a)

BPS with Yes
position-dependent refreshment Thm. 3.2

BPS with Yes Yes
transformation of the target Thm. 3.3(a) Thm. 3.3(b)

Random walk Metropolis No No Yes Yes
[23] [23] [22, 39] [22, 39]

Random walk Metropolis Yes Yes Yes
with transformation of the target [24] [24] [24]

Section 3.3 Thm. 2 and 4 Cor. 1 and 2

Metropolis Adjusted No No Yes Yes Yes No
Langevin Algorithm (1D) [38] [38] [30] [38] [38] [38]

Thm. 4.3 Thm. 4.3 Section 16.1.3 Thm. 4.1 Thm. 4.1 Thm. 4.2

Hamiltonian Monte Carlo No Yes Yes Yes No
[27] [27] [27] [27] [27]

Cor. 2.3(ii) Cor. 2.3(i) Cor. 2.3(i) Cor. 2.3(i) Cor. 2.3(ii)
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REMARK 1. Assumption (A3) is not restrictive as in view of Assumption
(A2), V ≥ c may only fail locally near the origin. Therefore, if V ≥ c fails inside
the ball B(0,M), we can always replace V with Ṽ = V +1B(0,M) ≥ 1. This modi-
fied Lyapunov function still belongs to the domain D(L̃) of the extended generator
L̃ as explained in Section 5.1.

REMARK 2. From the proofs, it is clear that Theorems 3.1 and 3.2 detailed
below remain true if we replace Assumption (A0) by the following slightly weaker
assumption:

(A0′)
t �→ 〈∇U(x + tv), v

〉
is locally Lipshitz for all (x, v) ∈ Z , and

(A0) holds for all |x| > R, for some R > 0.

Although cumbersome, this alternative formulation is useful in the proof of Theo-
rem 3.3 which relies on Theorems 3.1 and 3.2.

Rather than requiring that U ≥ 0, we could equivalently require that U is
bounded below. This guarantees that the density π̄ is bounded above. Assump-
tions (A0) to (A3) are technical conditions and it may be possible to relax
them. For example, Assumption (A1) allows us to use the approach of [8] to
establish the invariance of the process. Other approaches exist, for example [6].
When the refreshment rate depends on the location, we assume in addition that∫

�ref(x)π̄(dx) < ∞. Under these conditions, the embedded discrete-time Markov
chain {�k : k ≥ 0} := {(Xτk

,Vτk
) : k ≥ 0} admits an invariant probability measure;

see [8] and Lemma 1. The Lyapunov function (3.1) is proportional to the inverse of
the square root of the invariant distribution of this embedded discrete-time Markov
chain. There may exist other Lyapunov functions allowing different set of condi-
tions compared to (A2) and (A3).

3.1. “Regular” tails. We now state our first main result.

THEOREM 3.1. Suppose that Assumptions (A0)–(A3) hold. Let �ref(·) =
λref > 0 and suppose that one of the following sets of conditions holds:

(a) lim|x|→∞ |∇U(x)| = ∞, lim|x|→∞ ‖�U(x)‖ ≤ α1 < ∞ and λref >

(2α1 + 1)2,
(b) lim|x|→∞ |∇U(x)| = 2α2 > 0, lim|x|→∞ ‖�U(x)‖ ≤ C < ∞ and λref ≤

α2/cd , with cd := 16
√

d .

Then BPS is V -uniformly ergodic.

In summary, BPS with an appropriately chosen constant refreshment rate
�ref(·) = λref > 0 is exponentially ergodic for targets with tails that decay at least
as fast as an exponential and at most as fast as a Gaussian. In addition, the uniform
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bound on the Hessian imposes some regularity on the curvature of the target. The
proof of Theorem 3.1 is provided in Section 5, building on the auxiliary results of
Section 4. The conditions imposed on the refreshment rate are sufficient but not
sharp.

We provide here an example of a common Bayesian model which yields a pos-
terior density satisfying the assumptions of Theorem 3.1.

EXAMPLE 1 (Bayesian logistic regression). Consider binary observations
(y1, . . . , yn) ∈ {0,1}n and associated Rd -valued predictors c1, . . . , cn. We assume
the observations are conditionally independent given the predictors and regression
coefficients x ∈Rd and satisfy

P(Yi = 1|x, ci) = 1/
(
1 + e−〈x,ci〉) = ρi(x).

We assign a prior distribution to x of negative log density
∑d

k=1 g(xk) where g is
twice differentiable. Hence the potential associated to the posterior density of x

given the observations satisfies

(3.2) U(x) =
d∑

i=1

g(xk) +
n∑

i=1

{−yi〈ci, x〉 + log
(
1 + e〈x,ci〉)}.

Its gradient with respect to x is given by

(3.3) ∇U(x) = ∇g(x) +
n∑

i=1

{−yi + ρi(x)
}
ci,

where ∇g(x) := (g′(x1), . . . , g
′(xd))T while its Hessian satisfies

(3.4) �U(x) := �g(x) +
n∑

i=1

ρi(x)
{
1 − ρi(x)

}
cic

T
i ,

with �g(x) := diag(g′′(x1), . . . , g
′′(xd)). Hence for an isotropic Gaussian prior of

covariance σ 2Id , we have g(v) = v2/(2σ 2) and U satisfies condition 3.1(a). For
a smoothed Laplace prior, that is, g(v) = (1 + v2/σ 2)1/2, U satisfies condition
3.1(b).

Theorem 3.1 does not apply to targets with tails thinner than Gaussian or thicker
than exponential distributions. As summarised in Table 1, it is also known that
Metropolis-adjusted Langevin algorithm (MALA) (see [38], Theorems 4.2 and
4.3) and Hamiltonian Monte Carlo (HMC) (see [27], Theorems 5.13 and 5.17)
are not geometrically ergodic for such targets. We now turn our attention to these
cases.
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3.2. Thin-tailed targets. When the target is thin-tailed, in the sense that the
gradient of its potential U grows super-linearly in the tails, any constant refresh-
ment rate will eventually be negligible. It has been shown in [6] that BPS without
refreshment is not ergodic as the process can remain forever outside a ball of pos-
itive radius. In our case, the refreshment rate does not vanish, but refreshment in
the tails will be extremely rare. This will result in long excursions during which
the process will not explore the centre of the space.

The above discussion suggests that, for thin-tailed targets, we need to scale the
refreshment rate accordingly in order for it to remain nonnegligible in the tails.
The next result makes this intuition more precise.

THEOREM 3.2. Suppose that Assumptions (A0)–(A3) hold. Let λref > 0 and
define for some ε > 0

(3.5) �ref(x) := λref + |∇U(x)|
max{1, |x|ε} .

Suppose that

lim
|x|→∞

|∇U(x)|
|x| = ∞, lim|x|→∞

‖�U(x)‖
|∇U(x)| |x|ε = 0.

Then BPS is V -uniformly ergodic.

The proof of Theorem 3.2 is given in Section 5. It is worth noting that al-
though Langevin diffusions can be geometrically ergodic for thin-tailed targets,
they typically cannot be simulated exactly. When they are discretised, an additional
Metropolis–Hastings step is needed to sample from the correct target distribution
and the resulting MALA algorithm is not geometrically ergodic [38], Theorem 4.2.

We next provide an example of a common Bayesian model which yields a pos-
terior density satisfying the assumptions of Theorem 3.2.

EXAMPLE 2 [Bayesian logistic regression (continued)]. In the context of the
logistic regression model of Example 1, although priors whose tails decrease like a
Gaussian or an exponential are very popular in the literature, alternatives have also
been proposed, for example, [20]. In particular, if we select g(u) = (1+u2/σ 2)β/2

with β > 2 then the potential U given in (3.2) satisfies the conditions of Theo-
rem 3.2.

3.3. Thick-tailed targets. For targets with tails thicker than an exponential,
that is when the gradient of the potential U vanishes in the tails, the lack of
exponential ergodicity of gradient-based methods such as MALA and HMC, is
natural—the vanishing gradient induces random-walk like behaviour in the tails.
This seems to be the main obstruction preventing extension of Theorem 3.1 to
thick-tailed distributions.
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However, following the approach of [24], we can address this by transforming
the target to one satisfying the assumptions of either Theorem 3.1, or Theorem 3.2.
This guarantees that BPS with respect to the transformed target will be geometri-
cally ergodic. By mapping back this BPS process to the original parameterization,
we obtain a geometrically ergodic piecewise deterministic Markov process with
nonlinear dynamics.

As in [24], we define the following functions f (1), f (2) : [0,∞) → [0,∞):

(3.6) f (1)(r) =

⎧⎪⎪⎨⎪⎪⎩
ebr − e

3
, r >

1

b
,

r3 b3e

6
+ r

be

2
, r ≤ 1

b
,

and

(3.7) f (2)(r) =
{
r, r ≤ R,

r + (r − R)p, r > R,

where R,b > 0 are arbitrary constants. We also define the isotropic transforma-
tions h(i) :Rd →Rd , given by

(3.8) h(i)(x) :=
⎧⎪⎨⎪⎩

f (i)(|x|)x
|x| , for x �= 0,

0, for x = 0.

From [24], Lemma 1, it follows that for i = 1,2, h = h(i) : Rd �→ Rd defines a
C1-diffeomorphism, that is h is bijective with h,h−1 ∈ C1(Rd).

Let h = h(i) for some i ∈ {1,2}, X ∼ π̄ and Y = h−1(X). Then Y ∈ Rd is
distributed according to the Borel probability measure π̄h, with density given by
π̄h(y) = exp{−Uh(y)}/ζh, where by [24], equations (6) and (7), we have that

Uh(y) = U
(
h(y)

) − log det
(∇h(y)

)
,(3.9)

∇Uh(y) = ∇h(y)∇U
(
h(y)

) − ∇ log det
(∇h(y)

)
.(3.10)

Let {(Yt ,Vt ); t ≥ 0} denote the trajectory produced by the BPS algorithm targeting
πh(y, v) := π̄h(y)ψ(v) and let

Vh(x, v) := eUh(x)/2

[�ref(x) + 〈∇Uh(x),−v〉+]1/2 .

THEOREM 3.3. Let U satisfy Assumption (A0).

(a) If for some d> d ,

(i) lim|x|→∞ |x||∇U(x)| < ∞,
(ii) lim|x|→∞ |x|2‖�U(x)‖ < ∞ and

(iii) lim|x|→∞〈x,∇U(x)〉 = d,
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then Uh(1) , with h(1) defined via (3.6), satisfies the assumptions of Theorem 3.1(b).
If in addition �ref(·) = λref ≤ b(d− d)/32

√
d , with b as in (3.6), then the process

{(Xt ,Vt ) : t ≥ 0}, where Xt = h(1)(Yt ), is π -invariant and Ṽ -uniformly ergodic,
where Ṽ = Vh(1) ◦ H(1) with H(1)(x, v) := (h(1)(x), v).

(b) If for some β ∈ (0,1), we have

(i) lim|x|→∞ |x|1−β |∇U(x)| < ∞,
(ii) lim|x|→∞ |x|−β〈x,∇U(x)〉 > 0 and

(iii) lim|x|→∞ |x|2−β‖�U(x)‖ < ∞,

then Uh(2) , with h(2) defined via (3.7) and p such that βp > 2, satisfies the assump-
tions of Theorem 3.2. If in addition �ref(·) is given by (3.5) with U := Uh(2) , then
the process {(Xt ,Vt ) : t ≥ 0}, where Xt = h(2)(Yt ), is π -invariant and Ṽ -uniformly
ergodic, where Ṽ = Vh(2) ◦ H(2) with H(2)(x, v) := (h(2)(x), v).

The proof of this theorem is given in Section 5.3.

EXAMPLE 3. Multivariate t-distribution. Suppose that x ∈ Rd , for d ≥ 2,
k > 1, and let

π̄ (x) ∝ e−U(x) =
[
1 + |x|2

k

]− k+d
2

.

It follows that

∇U(x) = (k + d)

(k + |x|2)x, �U(x) = k + d

k + |x|2 1d − 2
(k + d)xxT

(k + |x|2)2 ,

where 1d is the d × d identity matrix. Then U satisfies the conditions of Theo-
rem 3.3(a). We refer the reader to [24], Section 3.4, for a related example arising
from Bayesian inference.

Generalised Gaussian distribution. Let U(x) = (1 + |x|2)β/2 for some β ∈
(0,1). Then U satisfies the conditions of Theorem 3.3(b).

REMARK 3. In the context of Theorem 3.3(a), while geometric ergodicity
holds for all positive fixed b, tuning this parameter may be useful in practice as
pointed out by [24].

3.4. A central limit theorem. From the above results, we obtain the follow-
ing CLT, proven in Section 5.4, for the estimator T −1 ∫ T

0 g(Zs)ds of π(g). This
estimator can be computed exactly when g is a multivariate polynomial of the
components of z; see, for example, [6], Section 2.4.

THEOREM 3.4. Suppose that any of the conditions of Theorems 3.1 or 3.2
hold. Let ε > 0 such that W := V 1−ε , satisfies π(W 2) < ∞. Then for any g : Z →
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R such that g2 ≤ W and for any initial distribution, we have that

1√
T

ST

[
g − π(g)

] ⇒ N
(
0, σ 2

g

)
,

with

ST [g] :=
∫ T

0
g(Zs)ds, σ 2

g := 2
∫

ĝ(z)
[
g(z) − π(g)

]
π(dz),

where ĝ is the solution of the Poisson equation g − π(g) = −Lĝ, and satisfies
|ĝ| ≤ c0(1 + W) for some constant c0.

COROLLARY 1. Suppose that the conditions of Theorem 3.3(a) or Theo-
rem 3.3(b) hold, let h = h(1), h(2), respectively, define H(x, v) = (h(x), v), and
let Ṽ = Vh ◦ H denote the corresponding Lyapunov function. Let ε > 0 such that
W := Ṽ 1−ε , satisfies πh(W

2) < ∞. Then for any g : Z → R such that g2 ≤ W

and for any initial distribution, we have that

1√
T

∫ T

0

[
g(Xt ,Vt ) − π(g)

]
dt

= 1√
T

∫ T

0

[
g ◦ H(Yt ,Vt ) − πh(g ◦ H)

]
dt ⇒ N

(
0, σ̃ 2

g

)
,

with

σ̃ 2
g := 2

∫
ĝ ◦ H(z)

[
g ◦ H(z) − πh(g)

]
πh(dz),

where ĝ ◦ H is the solution of the Poisson equation g◦H −π(g◦H) = −Lhĝ ◦ H ,
and Lh is given in (2.5) with λ̄ defined in (2.4) with U replaced by Uh and K

defined in (2.7) using R(x)v defined in (2.3) with ∇Uh replacing ∇U .

4. Auxiliary results. To prove V -uniform ergodicity, we will use the follow-
ing result.

THEOREM A ([15], Theorem 5.2). Let {Zt : t ≥ 0} be a Borel right Markov
process taking values in a locally compact, separable metric space Z and assume
it is nonexplosive, irreducible and aperiodic. Let (L̃,D(L̃)) be its extended gen-
erator. Suppose that there exists a measurable function V : Z → [1,∞) such that
V ∈ D(L̃), and that for a petite set C ∈ B(Z) and constants b, c > 0 we have

(D) L̃V ≤ −cV + b1C.

Then {Zt : t ≥ 0} is V -uniformly ergodic.
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The BPS processes considered in this paper can be easily seen to satisfy
the standard conditions in [11], Section 24.8, and thus by [11], Theorem 27.8,
it follows that they are Borel right Markov processes. In addition, since the
process moves at unit speed, for any z = (x, v) ∈ Z the first exit time from
B(0, |x| + M) × Sd−1 is at least M , and thus, BPS is nonexplosive.

We will next show that BPS remains π -invariant when the refreshment rate is
allowed to vary with x, and that it is irreducible and aperiodic. Finally, we will
show that all compact sets are small, hence petite. To complete the proofs of The-
orems 3.1 and 3.2, it remains to establish that V satisfies (D) which is done in
Section 5.

LEMMA 1. Suppose that the map t �→ U(x + tv) is absolutely continuous for
all (x, v) ∈ Z , that Assumption (A1) holds and that

∫
�ref(x)π̄(dx) < ∞. Then

BPS with refreshment rate �ref(·) is invariant with respect to π .

The proof of Lemma 1 is based on [8] (see also [9]), where the authors provide
a link between the invariant measures of {Zt : t ≥ 0} and those of the embedded
discrete-time Markov chain {�k : k ≥ 0} := {(Xτk

,Vτk
) : k ≥ 0} which tracks the

process just after events. The details are given in the Supplementary Material [13].
Notice that when �ref(·) is given by (3.5), the condition

∫
�ref(x)π̄(dx) < ∞

is implied by (A1).

REMARK 4. The Markov chain {�k : k ≥ 0} admits an invariant probability
measure proportional to λ̄(x,−v)π(dx,dv). It follows from a simple change of
measure argument that under ergodicity and integrability conditions one has

(4.1)

∑n
k=1 g(Xτk

,Vτk
)/λ̄(Xτk

,−Vτk
)∑n

k=1 1/λ̄(Xτk
,−Vτk

)
→ π(g) a.s. as n → ∞.

This is an alternative estimator of π(g) compared to T −1 ∫ T
0 g(Zs)ds.

The next result establishes the existence of small sets as well as the irreducibility
of the process.

LEMMA 2. Suppose that �ref(·) > λref > 0. For all T > 0, z := (x0, v0) ∈
B(0, T /6) × Sd−1, and Borel set A ⊆ B(0, T

6 ) × Sd−1,

Pz(ZT ∈ A) ≥ C(T , d,λref)

∫∫
A

ψ(dv)dx,

for some constant C(T , d,λref) > 0 depending only on T ,d,λref. Hence, all com-
pact sets are small. Moreover, the process {Zt : t ≥ 0} is irreducible.

The proof of Lemma 2 leverages the refreshment events to construct paths con-
necting arbitrary points. The details are provided in the Supplementary Material
[13].
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LEMMA 3. The process {Zt : t ≥ 0} is aperiodic.

PROOF. We show that for some small set A′, there exists a T such that
P t(z,A′) > 0 for all t ≥ T and z ∈ A′.

Let A′ := B(0,1) × Sd−1, T = 6, and suppose that t > T . By Lemma 2, for all
z ∈ B(0, t/6) × Sd−1 and Borel set A ⊂ B(0, t/6) × Sd−1, we have

Pz(Zt ∈ A) ≥ C(t, d, λref)

∫∫
A

ψ(dv)dx,

for some C(t, d, λref) > 0. Hence, by picking A = A′, we have, since B(0,1) ⊂
B(0, t/6), that for all z ∈ A′,

Pz(Zt ∈ A′) ≥ C(t, d, λref)

∫∫
A′

ψ(dv)dx > 0. �

5. Proofs of main results. To complete the proofs of Theorems 3.1 and 3.2, it
remains to show that V :Z → [0,∞), defined in (3.1), satisfies the drift condition
(D).

5.1. Extended generator of BPS. We first need show that V belongs to D(L̃),
the domain of the extended generator L̃ (see [11], Section 26), which suffices for
Theorem A to apply. By Assumption (A0′), or the stronger Assumption (A0), it
easily follows that for all (x, v) the function t �→ V (x + tv, v) is locally Lipschitz
and thus absolutely continuous [11], Proposition 11.8. Therefore, by [11], Theo-
rem 26.14, since there is no boundary (see [11], Section 24), V is bounded as a
function of v and the jump rate λ̄ is locally bounded, it follows that V ∈ D(L̃).

The fact that L̃ is given by (2.5) follows from the proof of [11], Theorem 26.14,
bottom of page 71. Indeed, for any fixed z = (x, v) ∈ Z , let {Ti}i≥1 denote the
event times of BPS started from (x, v), the paths of which we denote with {Zt :
t ≥ 0}, where Zt = (Xt ,Vt ). Since t �→ V (x + tv, v) is absolutely continuous, its
left and right derivatives of V (x + tv, v) coincide almost everywhere, and thus we
can write

V (ZT −
i

) − V (ZTi−1) =
∫ Ti−Ti−1

0

d

ds
V (XTi−1 + sVTi−1,VTi−1)ds

=
∫ Ti−Ti−1

0
VV (XTi−1 + sVTi−1,VTi−1)ds,

where V is defined in (2.6). From this and the proof of the first part of [11], Theo-
rem 26.14, it follows that

V (Zt) − V (z) −
∫ t

0
VV (Zs)ds

is a local martingale and, therefore, L̃ defined in (2.5) coincides with the extended
generator given in [11], equation (26.15).
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From the discussion in [11], page 32, it is also clear that for f ∈ D(L̃), the
function L̃f : Z → R is uniquely defined everywhere except possibly on a set A

of zero potential, that is,∫ ∞
0

1A(Zs)ds = 0, Pz a.s. for all z ∈ Z .

For the proof of Theorem 3.2, ∇xV (x, v) will not be well defined for the set
A := {(x, v) ∈ Z : |x| = 1} which has zero potential, since the linear trajectories
of BPS and the countable number of jumps imply it can intersect this set at most a
countable number of times. The same argument also justifies Remark 1.

Finally, at points (x, v) where 〈∇U(x), v〉 �= 0, the gradient ∇xV (x, v) exists
and, therefore, we can use the more convenient expression (2.8), whereas we will
use the original expression (2.5) whenever 〈∇U(x), v〉 = 0.

5.2. Proof of Theorem 3.1 and Theorem 3.2. We have established that BPS
satisfies all conditions of Theorem A and that the Lyapunov function defined in
(3.1) belongs to the domain of the extended generator D(L̃). The next result estab-
lishes the drift condition (D) for a constant refreshment rate, and thus completes
the proof of Theorem 3.1.

LEMMA 4 (Lyapunov function—Constant refreshment). Let the refreshment
rate be constant, that is, �ref(·) := λref. The function V defined in (3.1) belongs to
D(L̃). If either of the conditions of Theorem 3.1 holds, V is a Lyapunov function
as it satisfies (D).

Next, we establish the drift condition (D) for a location-dependent refreshment
rate completing the proof of Theorem 3.2.

LEMMA 5 (Lyapunov function—Varying refreshment). Let the refreshment
rate �ref(·) be given by (3.5). Then the function V defined in (3.1) belongs to D(L̃).
If in addition the assumptions of Theorem 3.2 hold, V is a Lyapunov function as it
satisfies (D).

The proofs are quite lengthy and technical and are thus given in the Supplemen-
tary Material [13].

5.3. Proof of Theorem 3.3. Next, we set the stage for the proof of Theo-
rem 3.3. We will frequently use [24], equations (11), (13), which we state for the
reader’s convenience,

(5.1) ∇h(x) =
⎧⎪⎨⎪⎩

f (|x|)1d

|x| +
[
f ′(|x|) − f (|x|)

|x|
]
xxT

|x|2 , x �= 0,

f ′(0)1d, x = 0,
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and

(5.2) det
(∇h(x)

) =
⎧⎪⎨⎪⎩f ′(|x|)(f (|x|)

|x|
)d−1

, x �= 0,

f ′(0)d, x = 0.

Let {Zh,t = (Yt ,Vt ); t ≥ 0} be a Markov process whose generator is given by
(2.5) with U replaced by Uh, and write {P t

h : t ≥ 0} for its transition ker-
nels. Then letting Xt := h(Yt ) for t ≥ 0, from [7], Corollary 3, it follows that
{Zt = (Xt ,Vt ) : t ≥ 0} is also a Markov process with transition kernel given by
P t(z,A) = P t

h(H
−1(z),H−1(A)) for all A ∈ B(Z) where H(x, v) = (h(x), v). It

is also easy to see that if Zh,t is πh-invariant, then Zt will be π -invariant; see also
the discussion in [24], Theorem 6.

Suppose now that {Zh,t : t ≥ 0} is Vh-uniformly ergodic for some function Vh,
that is, ∥∥P t

h(z, ·) − πh

∥∥
Vh

≤ ChVh(z)ρ
t
h,

for some Ch > 0 and ρh ∈ (0,1) with πh admitting the density π̄h(y)ψ(v). Then
we can see that∫

f dP t(z, ·) −
∫

f dπ =
∫

f ◦ H dP t
h

(
H−1(z), ·) −

∫
f ◦ H dπh.

Therefore, it follows that

sup
|f |≤Vh◦H−1

∣∣∣∣∫ f dP t(z, ·) −
∫

f dπ

∣∣∣∣
= sup

|f |≤Vh◦H−1

∣∣∣∣∫ f ◦ H dP t
h

(
H−1(z), ·) −

∫
f ◦ H dπh

∣∣∣∣
≤ sup

|g|≤Vh

∣∣∣∣∫ g dP t
h

(
H−1(z), ·) −

∫
g dπh

∣∣∣∣
= ∥∥P t

h

(
H−1(z), ·) − πh

∥∥
Vh

≤ ChVh ◦ H−1(z)ρt
h,

whence Zt = H(Zh,t ) is Vh ◦ H−1-uniformly ergodic.
The proof of Theorem 3.3 then follows from the following two lemmas the

proofs of which are given in the Supplementary Material [13].

LEMMA 6. Under the assumptions of Theorem 3.3, the potentials Uh : Rd →
[0,∞) defined in (3.9) satisfy Assumptions (A0)–(A2), when h = h(1) or h = h(2).

LEMMA 7. The following results hold:

(a) Under the assumptions of Theorem 3.3(a), the function Uh(1) , defined
through equations (3.6), (3.8) and (3.9), satisfies the conditions of Theorem 3.1(b)
with α2 := b(d− d)/2.

(b) Under the assumptions of Theorem 3.3(b), the function Uh(2) , defined
through equations (3.7), (3.8) and (3.9), satisfies the conditions of Theorem 3.2.
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5.4. Proof of Theorem 3.4. The proof of the CLT now follows from a standard
result [19], Theorem 4.3.

PROOF OF THEOREM 3.4. Notice that if V satisfies (D) then for any ε ∈
(0,1), by Jensen’s inequality it follows that Ez[V 1−ε(Zt )] ≤ Ez[V (Zt)]1−ε . Since
Ez[V ε(Z0)] = V (z)ε , it follows that

LV 1−ε(z) = d

dt
Ez[V 1−ε(Zt )

]∣∣∣∣
t=0

≤ d

dt
Ez[V (Zt)

]1−ε
∣∣∣∣
t=0

= (1 − ε)
1

Ez[V (Zt)]ε
d

dt
Ez[V (Zt)

]∣∣∣∣
t=0

= (1 − ε)
LV (z)

V (z)ε
≤ −(1 − ε)δ

V (z)

V (z)ε
+ b1C(z)

V (z)ε
,

and thus W(z) := V (z)1−ε also satisfies (D). An application of [19], Theorem 4.3,
completes the proof. �
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