
The Annals of Probability
2019, Vol. 47, No. 5, 3003–3054
https://doi.org/10.1214/18-AOP1330
© Institute of Mathematical Statistics, 2019

ON THE TRANSIENT (T) CONDITION FOR RANDOM WALK IN
MIXING ENVIRONMENT

BY ENRIQUE GUERRA AGUILAR1

Pontificia Universidad Católica de Chile

We prove a ballistic strong law of large numbers and an invariance prin-
ciple for random walks in strong mixing environments, under condition (T )

of Sznitman (cf. Ann. Probab. 29 (2001) 724–765). This weakens for the first
time Kalikow’s ballisticity assumption on mixing environments and proves
the existence of arbitrary finite order moments for the approximate regenera-
tion time of F. Comets and O. Zeitouni (Israel J. Math. 148 (2005) 87–113).
The main technical tool in the proof is the introduction of renormalization
schemes, which had only been considered for i.i.d. environments.
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1. Introduction. Random walk in a random environment (RWRE) is a well-
known stochastic model for random motion in random media, which presents a
wide range of applications going from DNA replication models [3] up to for in-
stance, a prototype for the study of turbulent behavior in fluids [21]. The model
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describes the stochastic evolution of a particle on the lattice Zd , where its transi-
tion probabilities are in turn random. Within this framework, it is a fundamental
and challenging question to find the minimal local assumption that provides a given
asymptotic behavior for the walk. For technical issues, the local assumption is usu-
ally strengthened to an assumption of ballistic-type, the target therefore is to prove
a given behavior from one condition on the environment and one ballisticity condi-
tion. In this work, assuming a mixing condition on the environment and condition
(T ) of Sznitman (cf. [23, 24]), we shall prove ballistic regime complemented with
a diffusive scaling limit for the walk.

In the one-dimensional setting one can find almost complete descriptions about
RWRE asymptotic laws, scaling limits and connections between different large
scale concepts (see [28], Chapter 2 for a comprehensive review for d = 1).
Throughout this article we focus on the higher dimensional case, that is, when
the underlying dimension d of the walk is greater than 1. A key role to prove our
results will be played by renormalization methods for mixing environments. The
strategy of renormalization for RWRE was introduced by Alain-Sol Sznitman in
[22], and further developments can be found in subsequent articles as [23, 24]
and [2], among others. In this article, renormalization for RWRE is related to the
theoretical construction of strategies that allow the walker to escape from traps
(typically we are concerned with traps which are slabs or large boxes) by the ap-
propriate boundary side, with high probability. Overall, the construction of these
strategies involves the use of smaller traps to be considered therein, which turns out
a recursive procedure of renormalization nature. For i.i.d. random environments,
estimates for exit probabilities from traps are established with the help of the re-
newal structure of A.-S. Sznitman and M. Zerner [26], a higher dimensional ana-
logue of the one previously introduced by H. Kesten in [15] for one-dimensional
RWRE.

On the other hand, a kind of renewal structure for mixing environments was
introduced by F. Comets and O. Zeitouni in [4]. This is an approximate renewal
structure for general mixing random environments. Indeed, the authors studied a
quit weak mixing assumption, the so-called cone mixing condition. They proved a
law of large numbers for a class of strong ballistic RWRE, where the hypotheses
are: a strengthened form of Kalikow’s condition (cf. (6.1)), integrability condi-
tions for the approximate regeneration time and the cone mixing assumption on
the environment (cf. [4], Theorem 3.4). As the present work shows, the integra-
bility conditions can be disposed provided we assume stronger mixing conditions
on the environment. Alongside, a stronger mixing condition on the environment
has been investigated by F. Rassoul-Agha [18], which appears in the context of
spin-glass systems at high temperature and was introduced by R. Dobrushin and
S. Shlosman (cf. [6], see also [17] as a further reference). Under Kalikow’s con-
dition, F. Rassoul-Agha proved a ballistic strong law of large numbers by virtue
of an appropriate extension of Kozlov’s theorem (see [16]). The approach to prove
such extension appears when one sees the stochastic evolution of the system from
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the point of view of the particle. As a matter of fact, Rassoul-Agha’s proof does
not need to assume a stronger version of Kalikow’s condition, as was done in the
aforementioned result of [4]. The point of view of the particle relies on building
an invariant measure and use ergodic devices, making hard to visualize how to get
conditions which provide a functional central limit. Nevertheless, let us mention
that at least in the i.i.d. random environment framework, under conditions as the
one we will obtain here (cf. Proposition 5.5), the final quenched invariance princi-
ple work of Rassoul-Agha and Seppäläinen [19] has established the point of view
of the particle as a powerful strategy.

In this article, we shall see that assuming condition (T ) along with renormaliza-
tion type of arguments, one has a Brownian scaling limit under the natural scaling
of a ballistic walk. Indeed, we shall reconstruct or give meaning to part of Sznit-
man’s work [22–25] for i.i.d. environments, in a mixing setting. Thus the present
article is fully connected with the spirit of Feynman’s phrase: “There is pleasure in
recognising old things from a new viewpoint.” As a result of that recognition we
will be able to weaken the ballisticity assumption from Kalikow’s to Sznitman’s
(T ) condition, proving ballistic behavior and a central limit theorem. Remarkably,
we obtain analogously to the i.i.d. case the spirit of a RWRE result: ballistic be-
havior from one environment and one ballisticity assumptions. We also open a
path for the investigation of ballistic behavior under weaker assumptions than Ka-
likow’s condition, and we provide a partial answer to an open problem formulated
in [4] about the meaning of Sznitman transient conditions in a mixing setting (cf.
[4], pages 912–913, 6. Concluding remarks, item 3).

It is convenient at this point to fix some notation. We only consider what is
called in the RWRE literature as a uniform elliptic random environment, which
means that the walk has strictly uniform positive jump probabilities to each nearest
neighbour sites. More precisely, we pick an integer d > 1 along with a positive real
number κ ∈ (0,1/(4d)] and denote by Pκ the 2d−dimensional simplex:

(1.1) Pκ := {
z ∈R2d : �1≤i≤2dzi = 1, zi ≥ 2κ ∀i ∈ [1,2d]}.

We consider the product space � = (Pκ)Z
d

which is tacitly endowed with its cano-
nical product σ -algebra denoted by F� and, for the time being, fix a probability law
P on F�. Next, for a given random element ω := (ω(y, e)){y∈Zd ,e∈Zd :|e|=1} ∈ �,
and x ∈ Zd , we define the quenched law Px,ω as the law of the canonical Markov
chain (Xn)n≥0 with state space Zd and stationary transition probabilities satisfying

Px,ω[X0 = x] = 1,

Px,ω[Xn+1 = Xn + e|Xn] = ω(Xn, e), |e| = 1.

One then defines the annealed law Px of the random walk via the semidirect prod-
uct P ⊗ Px,ω on the product σ−algebra of the space � × (Zd)N. It will be con-
venient to denote by | · |1, | · |2 and | · |∞, the �1, �2 and �∞ norms, respectively.
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Furthermore, in this article we will deal with distances between sets, and for in-
stance for A,B ⊂ Zd , the symbol d1(A,B) stands for the �1-distance between
sets A and B , that is, d1(A,B) := inf{|x − y|1, x ∈ A,y ∈ B}. Following X. Guo
in [12], we now introduce the type of randomness on the environment of interest
for us. For this end, let us first recall the definition of r−Markovian field.

DEFINITION 1.1. For r > 1, let ∂rV = {z ∈ Z \ V : ∃y ∈ V, |z − y|1 ≤ r} be
the r-boundary of the set V ⊂ Z. A random environment (P,F�) on Zd is called
r-Markovian if for any finite V ⊂ Zd ,

P
[
(ωx)x∈V ∈ ·|FV c

]= P
[
(ωx)x∈V ∈ ·|F∂rV

]
, P-a.s.,

where F	 = σ(ωx, x ∈ 	).

Let C and g be positive real numbers. We will say that an r-Markovian field
(P,F�) satisfies strong mixing condition (SM)C,g if for all finite subsets 
 ⊂
V ⊂ Zd with d1(
,V c) ≥ r , and A ⊂ V c,

(1.2)
dP[(ωx)x∈
 ∈ ·|η]
dP[(ωx)x∈
 ∈ ·|η′] ≤ exp

(
C

∑
x∈∂r
,y∈∂rA

e−g|x−y|1
)

for P-almost all pairs of configurations η,η′ ∈ � which agree over the set V c\A.
Here we have used the notation

P
[
(ωx)x∈
 ∈ ·|η]= P

[
(ωx)x∈
 ∈ ·|FV c

]|(ωx)x∈V c=η.

We will also need a condition which is somehow weaker than the previous one.
We say an r-Markovian field (P,F�) satisfies Guo’s strong mixing condition
(SMG)C,g if for all finite subsets 
 ⊂ V ⊂ Zd with d1(
,V c) ≥ r , and A ⊂ V c,

(1.3)
dP[(ωx)x∈
 ∈ ·|η]
dP[(ωx)x∈
 ∈ ·|η′] ≤ exp

(
C

∑
x∈
,y∈A

e−g|x−y|1
)

with the same notation as above.
Throughout this article, condition (SM)C,g will be the main assumption on the

environment and we will use condition (SMG)C,g only with the purpose of us-
ing an asymptotic more general assumption. Strictly speaking, (SMG)C,g is not
implied by condition (SM)C,g , but in asymptotic terms it is harder to work with
(SMG)C,g . The so-called Dobrushin–Sloshman condition implies (SM)C,g , for
some constants C and g (cf. Lemma 9 of [18]). We will not define Dobrushin–
Sloshman condition and we refer to [6] for the original reference about this mixing
assumption, and also to [18] for a discussion more suitable for our purposes.

We will now introduce condition (T)�, where � is an element of the d-
dimensional unit sphere Sd−1 (cf. [23, 24]). As a result of Lemma 2.2, for � ∈ Sd−1
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we can and do say that condition (T)l is satisfied, if there exists a neighborhood
U ⊂ Sd−1 of �, so that for some b, b̃ > 0 one has that

lim sup
L→∞

L−1 log
(
P0
[
T̃ l′−bL < T l′

b̃L

])
< 0

holds, for all l′ ∈ U , where we have used the standard notation: if a ∈ R and u ∈
R \ {0}, T u

a and T̃ u
a denote stopping times defined as

T u
a := inf{n ≥ 0 : Xn · u ≥ a} and T̃ u

a := T −u−a .(1.4)

We will point out that the exponential moment version of this condition (which
is the original definition of [23], page 726) does not make sense since we do not
have planar regeneration times in mixing. Rather, we have approximate cone re-
generation times (cf. Section 2). The exponential moment and slab definitions are
equivalent for i.i.d environments (cf. [24], Theorem 1.1).

Our main result rests on a further assumption.

DEFINITION 1.2. We say that assumption (R)g,κ is satisfied if

(1.5) g > 18 log
(

1

κ

)
.

For i.i.d. environments one can take g arbitrarily large in either: (1.2) or (1.3).
On the other hand, one can construct nondegenerate r-Markovian fields with prop-
erties (1.2) or (1.3) for any given intensity parameter g > 0 (cf. [6–17]).

We obtain an annealed functional central limit for the natural scaling of a bal-
listic walk under the a priori transient (T)� condition.

THEOREM 1.3. Let C,g > 0 and � ∈ Sd−1. Suppose that the RWRE satisfies
conditions (T)�, either: (SM)C,g or (SMG)C,g and (1.5). Then there exist a de-
terministic nondegenerate covariance matrix R and a deterministic vector v with
v · � > 0, such that under P0; with

Sn(t) := X[nt] − vt√
n

,

the path Sn(t) taking values in the space of right continuous functions possess-
ing left limits equipped with the supremum norm, converges in law to a standard
Brownian motion with covariance matrix R.

It is not our subject finite dependent environments, however let us mention that
we can avoid the use of assumption (1.5) in that case. We refer to Remark 4.6 for
a sketch of proof.

Theorem 1.3 is the first result in the direction of weakening Kalikow’s condition
for a class of ballistic random walks in mixing environments. It is also for mixing
environments the first time that an invariance principle is established from only one
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ballisticity condition. Denoting Kalikow’s condition in direction � ∈ Sd−1 by (K)�
(cf. (6.1)), we will prove in Section 6 the implication: (K)� → (T)�. In general, the
converse implication fails and we refer to Section 6 for further details.

We will now describe in some detail the contents and structure of this arti-
cle. Section 2 gives equivalent formulations for condition (T) and introduces the
asymptotic renewal structure of Comets and Zeitouni [4]. The random variable
τ1 introduced there produces an almost regeneration property. The term almost is
made precise in Section 3, Proposition 3.1 and Corollary 3.3. The crucial Section 4
is mostly concerned with Proposition 4.1 and 4.5. These propositions show finite-
ness of some exponential moments for the random variable |Xτ1 |2 and a stretched
exponential control on the probability of large fluctuation along the orthogonal
space to the approximate asymptotic direction. Section 5 proves Theorem 1.3 using
the stretched exponential controls of Proposition 4.5 together with renormalization
to bound the tails of τ1. The last section will be devoted to prove that Kalikow’s
condition is stronger than (T). We shall also see under Kalikow’s condition that a
strong law of large numbers of ballistic nature holds without the use of assump-
tion (1.5), recovering by others methods F. Rassoul-Agha’s theorem [18] under
a slightly weaker mixing hypothesis. Nevertheless, since the main assumption to
construct the invariant measure P̂∞ 
 P in [18] appeals to a ballistic estimate
which is provided by Kalikow’s condition (cf. (6.19)) and the mixing condition
is comparable to ours (cf. Lemma 7 in [18]), it is possible that Rassoul-Agha’s
approach would apply under our assumptions as well.

2. The transient (T) condition and the approximate renewal structure.
We shall introduce the condition (T) and recall the approximate regeneration time
introduced in [4] by F. Comets and O. Zeitouni.

2.1. On the (T) condition. We begin with recalling the definition of directed
system of slabs as in [24].

DEFINITION 2.1. We say that l0, l1, . . . , lk ∈ Sd−1, a0 = 1, a1, . . . , ak > 0,
b0, . . . , bk > 0 generate an l0-directed systems of slabs of order 1, when:

• l0, l1 . . . , lk generate Rd ;
• D = {x ∈ Rd : x · l0 ∈ [−b0,1], li · x ≥ −bi, i ∈ [1, k]} ⊂ {x ∈ Rd : li · x <

ai,∀i ∈ [1, k]};
• lim supM→∞ M−1 logP0[T̃ li−biM

< T
li
aiM

] < 0, for i ∈ [0, k], with the conven-
tion a0 = 1.

For positives real numbers L, L′ and l ∈ Sd−1, we introduce the box BL,L′,l(x)

as

(2.1) BL,L′,l(x) := x + R
(
(−L,L) × (−L′,L′)d−1)∩Zd,
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where R is a rotation of Rd with R(e1) = l (the specific form of such a rotation is
immaterial for our purposes) and x ∈ Zd . For V ⊂ Zd , we set ∂V = ∂1V . Then for
a given box BL,L′,l(x) we define its positive boundary ∂+BL,L′,l(x) by

∂+BL,L′,l(x) := ∂BL,L′,l(x) ∩ {
y ∈ Zd : (y − x) · l ≥ L

}
.

We also introduce for A ⊂ Zd the exit time TA and the entrance time HA via

TA := inf{n ≥ 0 : Xn /∈ A} and
(2.2)

HA := inf{n ≥ 0 : Xn ∈ A}.
We can then prove the following lemma.

LEMMA 2.2. The following assertions are equivalents:

(i) There exist data l0, l1, . . . , lk ∈ Sd−1, a0 = 1, a1, a2, . . . , ak > 0, b0, b1, . . .,
bk > 0 generating an l0-directed systems of slabs of order 1.

(ii) For some positive constants b and r̂ , and large M , there are finite subsets

M ⊂ Zd , with 0 ∈ 
M ⊂ {x ∈ Zd : x · l0 ≥ −bM} ∩ {x ∈ Rd : |x|2 ≤ r̂M} and

lim sup
M→∞

M−1 logP0
[
XT
M

/∈ ∂+
M

]
< 0,

where ∂+
M = ∂
 ∩ {x ∈ Rd : x · l0 ≥ M}.
(iii) For some r > 0, one has

lim sup
M→∞

M−1 logP0
[
XTBM,r,l0

(0)
/∈ ∂+BM,rM,l0(0)

]
< 0.

Furthermore, in case of any of them holds, we say that (T)l0 (to be read as condition
T in direction l0) holds.

PROOF. The proof of (i) ⇒ (ii) can be found in [24], pages 516–517. There-
fore, we turn to prove (ii) ⇒ (iii). By (ii), there exist b, r̂ > 0, so that for large M

there are finite subsets 
M with 0 ∈ 
M ⊂ {x ∈ Zd : x · l0 ≥ −bM} ∩ {x ∈ Rd :
|x|2 ≤ r̂M} and

lim sup
M→∞

M−1 logP0
[
XT
M

/∈ ∂+
M

]
< 0.

Therefore, one can find a constant c̃ so that for all large M ,

P0
[
XT
M

/∈ ∂+
M

]
< e−c̃M .

Furthermore, by taking the intersection of the set 
M with {x ∈ Zd : x · l0 < M},
without loss of generality we can and do assume that 
M ⊂ {x ∈ Zd : x · l0 < M}.
Consider the box B̃M,r̂,b,l0(0) defined by

B̃M,r,b,l0(0) = R̃
(
(−bM,M) × (−r̂M, r̂M)d−1),
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where R̃ is a rotation on Rd with R̃(l0) = e1. We have 
M ⊂ B̃M,r̂,b,l0(0), and
consequently for large M ,

(2.3) P0
[
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0)

]≥ P0
[
XT
M

∈ ∂+
M

]
> 1 − e−c̃M .

Notice that if b ≤ 1, we choose r in (iii) as r , and we finish the proof. Otherwise, we
can proceed as follows: we take N = bM and consider the box BN,r̂([b]+1)N,l0(0).
We introduce for integer i ∈ [1, [b]], a sequence (Ti)1≤i≤[b] of (Fn)n≥0−stopping
times via

T1 = TB̃M,r̂,b,l0
(0), and for i > 1

(2.4)
Ti = TB̃M,r̂,b,l0

(0) ◦ θTi−1 + Ti−1.

As a result we have

P0
[
XTBN,r̂([b]+1)N,l0

(0)
∈ ∂+BN,r̂([b]+1)N,l0(0)

]
≥ P0

[
XTB̃M,r̂,b,l0

(0)

∈ ∂+B̃M,r̂,b,l0(0), . . . ,
(
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0)

) ◦ θT[b]
]
.(2.5)

It is convenient at this point to introduce boundary sets Fi , i ∈ [1, [b]] as follows:

F1 =∂+BM,r̂,b,l0(0) and for i > 1

Fi = ⋃
y∈Fi−1

∂+BM,r̂,b,l0(y),

where BM,r̂,b,l0(y) := y +BM,r̂,b,l0(0). We also introduce for i ∈ [1, [b]], environ-
ment events Gi via

Gi = {
ω ∈ � : Py,ω

[
XTBM,r̂,b,l0

(y)
∈ ∂+BM,r̂,b,l0(y)

]≥ 1 − e− c̃
2 M,∀y ∈ Fi

}
.

Observe that the right-hand side of inequality (2.5) is greater than

P0
[
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0),

(
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0)

) ◦ θT1,

. . . ,
(
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0)

) ◦ θT[b]1G[b]
]

= ∑
y∈F[b]

E
[
P0,ω

[
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0), . . .

. . . ,XT[b] = y
]
Py,ω

[
XTB̃M,r̂,b,l0

(y)
∈ ∂+B̃M,r̂,b,l0(y)

]
1G[b]

]
≥ (

1 − e− c̃
2 M)(

P0
[
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0), . . .

. . . ,
(
XTB̃M,r̂,b,l0

(0)
∈ ∂+B̃M,r̂,b,l0(0)

) ◦ θT[b]−1

]− P
[
(G[b])c

])
,
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where we have made use of the Markov property. Iterate this argument recursively
to obtain

P0
[
XTBN,r̂([b]+1)N,l0

(0)
∈ ∂+BN,r̂([b]+1)N,l0(0)

]
≥ (

1 − e− c̃M
2
)[b]+1 −

[b]∑
i=1

(
1 − e− c̃M

2
)[b]−i

P
[
(Gi)

c].(2.6)

Notice that using (2.3) along with Chebysev’s inequality, we have for i ∈ [1, [b]]
and large M ,

P
[
(Gi)

c]≤ ∑
y∈Fi

P
[
Py,ω

[
XTBM,r̂,b,l0

(y)
/∈ ∂+BM,r̂,b,l0(y)

]
> e− c̃M

2
]

≤ e− c̃M
4 .(2.7)

From (2.6), the fact that b is finite and independent of M and the estimate (2.7);
there exists a constant w > 0, so that for large N

P0
[
XTBN,r̂([b]+1)N,l0

(0)
∈ ∂+BN,r̂([b]+1)N,l0(0)

]≥ 1 − e−wN

and this ends the proof of the implication (ii) implies (iii) by taking r = r̂([b]+ 1).
To prove the implication (iii) ⇒ (i), we fix a rotation R on Rd , with R(e1) = l0

and such that R is the underlying rotation of hypothesis in (iii). For small α, we
define 2(d − 1)-directions l+i and l−i , i ∈ [2, d]

l+i = l0 + αR(ei)

|l0 + αR(ei)|2 and l−i = l0 − αR(ei)

|l0 − αR(ei)|2 .

Following the same type of argument as in [10], Proposition 4.2, pp 13–15; but
using exponential decay instead of polynomial one; we conclude that there exists
a small and positive α, so that for each i ∈ [2, d] there are some ri > 0, with

(2.8) lim sup
M→∞

M−1 logP0
[
XTBM,riM,l±i

(0)
/∈ ∂+BM,riM,l±i

(0)
]
< 0.

Thus, (2.8) finishes the proof by taking

a0 = 1, a1 = a2 = · · · = a2(d−1) = 1

2
,

b0 = b1 = · · · = b2(d−1) = 1,

l0, l1 = l+1, l2 = l−1, . . . , l2(d−1)−1 = l+(d−1), l2(d−1) = l−(d−1),

and then observing that for integer i ∈ [0,2(d − 1)]
P0
[
T̃ l−biM

< T l
aiM

]≤ P0
[
XTBM,riM,li

(0)
/∈ ∂+BM,riM,li (0)

]
. �
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2.2. Approximate renewal structure. Throughout this section, we assume that
condition (T)� holds, where � ∈ Sd−1. We observe that one can and does assume
� so that there exists h ∈ (0,∞) with h� =: l ∈ Zd . This is not a further restriction
since by item i) of Lemma 2.2, the set B ⊂ Sd−1 of directions � ∈ B such that (T)�
holds contains an open set, thus writing

A = {
u ∈ Sd−1 : ∃t ∈ (0,∞) with tu ∈ Zd}

one has that A is dense in Sd−1. Therefore we assume condition (T)�, where � is
as above and choose a fixed h > 0 with

(2.9) l := h� ∈ Zd .

We will denote the canonical orthonormal basis by ei, i ∈ [1, d] and consider the
probability measure P 0 given by

P 0 := P⊗ Q ⊗ P 0
ω,ε on � × (W)N × (

Zd)N,

where W = {z : z = ±ei, for some i ∈ [1, d]} ∪ {0}, which is defined as follows:
Q is a product probability measure such that with each sequence ε = (ε1, ε2, . . .) ∈
(W)N, for i ∈ [1, d] we have Q[ε1 = ±ei] = κ and Q[ε1 = 0] = 1 − 2dκ . Then
for fixed random elements ε ∈ (W)N and ω ∈ �, we define P 0

ω,ε as the law of the
Markov chain (Xn)n≥0 with state space in Zd , starting from 0 ∈ Rd and transition
probabilities

P 0
ω,ε[Xn+1 = Xn + e|Xn] = 1{εn+1=e} + 1{εn+1=0}

1 − 2dκ

(
ω(Xn, e) − κ

)
,

where e is an element of the set {y ∈ Zd : |y|2 = 1}. The importance of this aux-
iliary probability space stems from the easy to verify fact that the law of (Xn)n≥0
under Q ⊗ P 0

ω,ε coincides with the law under P0,ω, while the law under P⊗ P 0
ω,ε

coincides with P0.
Define now the sequence ε̄ of length |l|1 in the following way: ε̄1 = ε̄2 = · · · =

ε̄|l1| = sign(l1)e1, ε̄|l1|+1 = ε̄|l1|+2 = · · · = ε̄|l1|+|l2| = sign(l2)e2, . . . , ε̄|l|1−|ld |+1 =
· · · = ε̄|l|1 = sign(ld)ed . Define for ζ > 0 small, x ∈ Zd , the cone C(x, l, ζ ) by

(2.10) C(x, l, ζ ) := {
y ∈ Zd : (y − x) · l ≥ ζ |l|2|y − x|2}.

We will assume that ζ is small enough in order to satisfy the following require-
ment:

ε̄1, ε̄1 + ε̄2, . . . , ε̄1 + ε̄2 + · · · + ε̄|l|1 ∈ C(0, l, ζ ).

For L ∈ |l|1N we will denote by ε̄(L) the vector

ε̄(L) =
L/|l|1- times︷ ︸︸ ︷

(ε̄, ε̄, . . . , ε̄, ε̄)

of length equal to L. Setting

D′ := inf
{
n ≥ 0 : Xn /∈ C(X0, l, ζ )

}
,

we have:
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LEMMA 2.3. Assume condition (T)�, and fix r and a rotation R as in item (iii)
of Lemma 2.2. Then there exists c1 > 0 such that if ζ < min{ 1

9d
, 1

3dr
}, then

P0
[
D′ = ∞]≥ c1.

PROOF. For x ∈ Zd and α > 0, we define the flat cone C(x,α, �) by

C(x,α, �) =
{
y ∈ Zd : (y − x) · � + αR(ei)

|� + αR(ei)|2 ≥ 0,

(y − x) · � − αR(ei)

|� − αR(ei)|2 ≥ 0,∀i ∈ [2, d]
}
.(2.11)

It is clear when y ∈ C(x,α, �), using the fact that for i ∈ [2, d], |� ± αR(ei)|2 > 0
(since R(e1) = �), if α < 1 one has for all i ∈ [2, d]

(y − x) · l ≥ α
∣∣(y − x) · R(ei)

∣∣
(y − x) · l ≥ α

d

d∑
i=1

∣∣(y − x) · R(ei)
∣∣≥ α

d
|y − x|2.

As a result C(x,α, �) ⊂ C(x, �, α
d
) = C(x, l, α

d
). On the other hand, the polynomial

condition (WP) of [10], page 11, is obviously implied by (iii) of Lemma 2.2. We
finish the proof by applying Proposition 5.1 of [10]. �

We choose ζ > 0 satisfying the hypotheses of Lemma 2.3. For each L ∈ |l|1N,
we define S0 = 0, and denoting by θ the canonical time shift, we set

S1 = inf
{
n ≥ L : Xn−L · l > max

0≤j<n−L
{Xj · l}, (εn−L, . . . , εn−1) = ε̄(L)

}
,

R1 = D′ ◦ θS1 + S1

and for n > 1,

Sn = inf
{
n > Rn−1 : Xn−L · l > max

0≤j<n−L
{Xj · l}, (εn−L, . . . , εn−1) = ε̄(L)

}
,

Rn = D′ ◦ θSn + Sn,

where we define Sn = ∞ or Rn = ∞ whenever the respective previous random
variable is ∞. For given L as above, these random variables are stopping times
for the canonical underlying filtration of the pair (Xn, εn)n≥0. Notice also that the
chain of inequalities

S0 = 0 < S1 ≤ R1 ≤ · · · ≤ Sn ≤ Rn . . . ≤ ∞
is satisfied, with strict inequality if the left member is finite. Indeed, we shall see
in brief that under assumption (T)� all of them are strict inequalities. Setting

K := inf{n ≥ 1 : Sn < ∞,Rn = ∞},
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one defines the first time of asymptotic regeneration τ1 := SK ≤ ∞ (we shall drop
L from the notation when there is not risk of confusion). A qualitative characteri-
zation of the time τ1 = n is as follows: the first time n that the walk takes a strict
record level in direction l at time n − L, after which the walk is pushing through
direction l by unit steps on the lattice Zd just owed to the action of ε̄(L) sequence
in the probability space (Q, (W)N), independently on the environment, and finally
for any future j > n the walk remains forever inside the cone C(Xn, l, ζ ).

The next lemma shows that the previous construction is significant and its proof
can be derived from Lemma 2.3 in conjunction with the argument given in [24],
page 517.

LEMMA 2.4. Assume (T)�. Then P0-a.s. (see (2.9))

(2.12) lim
n→∞Xn · l = ∞.

and there exists a deterministic L0 > 0, so that for each L ≥ L0, with L ∈ |l|1N,
one has P 0-a.s.

(2.13) τ
(L)
1 < ∞.

Choosing L and ζ as prescribed by Lemmas 2.3–2.4, one has that P 0-a.s. {Rk <

∞} = {Sk+1 < ∞} and S1 < ∞ by (2.12).
Let us now define the iterates regeneration times of τ1 via

τn = τ1 ◦ θτn−1 + τn−1

for n > 1. It is easy to verify that for any k ∈ N, P 0-a.s. τk < ∞.
The main technical objective of this article will be to obtain upper bounds for

the L dependent probabilities

P 0[τ1 > u],
where u is large and independent on a fixed L.

2.2.1. General proof strategy. From the fact that the proof of our main result
Theorem 1.3 is a bit involved, we shall explain the general strategy to follow.
Roughly speaking, we will try to recover all of the Sznitman’s results of [22] to
bound the probability of the asymptotic regeneration time tails and then, applying
a version of the central limit theorem in [5], we will obtain the proof. However,
extending these results to the strong mixing case will prove to be technically more
challenging.
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3. On the almost renewal structure for random walks in strong mixing en-
vironments. Our mixing assumptions provide an approximate renewal structure
when one considers the increments of the τ1 iterates. More precisely, we let xZd

and L ∈ |l|1N and define the σ -algebra,

G1 := σ

(
ω(y, ·) : y · l < Xτ1 · l − L|l|2

|l|1 , (εi)0≤i≤τ1, (Xi)0≤i≤τ1

)
,

along with the random environment σ -algebra

(3.1) Fx,L := σ

(
ω(y, ·) : (y − x) · l ≤ −L|l|2

|l|1
)
.

An important technical fact comes in the next proposition.

PROPOSITION 3.1 (Under either (SM)C,g or (SMG)C,g). For L ∈ |l|1N
we let μ := μ(L) = exp(e−gtL). Then for each t ∈ (0,1) there exists L0 =
L0(C,g, κ, l, d, r) ∈ |l|1N such that P 0-a.s.,

μ−1(L)P 0
[
(Xn − X0)n≥0 ∈ ·|D′ = ∞]

≤ P 0
[
(Xτ1+n − Xτ1)n≥0 ∈ ·|G1

]
≤ μ(L)P 0

[
(Xn − X0)n≥0 ∈ ·|D′ = ∞]

(3.2)

holds, for all L ≥ L0, L ∈ |l|1N.

PROOF. We fix t as in the statement of the proposition and consider nonnega-
tive bounded functions f and h which are σ((Xn)n≥0) and G1 measurable, respec-
tively. Denoting by ϑ and θ the space and time shifts, from the very definition of
the renewal structure one has

E0
[
f (Xτ1+· − Xτ1)h

]
= ∑

k≥1

E0
[
f (XSk+· − XSk

)h,Sk < ∞,Rk = ∞]
= ∑

k≥1,j≥1,x∈Zd

E0
[
f (XSk+· − x)h,XSk

= x,Sk = j,D′ ◦ θn = ∞]
.

Observe that over the event {XSk
= x,Sk = j,D′ ◦θj = ∞} one can find a bounded

function hx,k,j , which is σ((ω(y, ·), y · l < x · l − (L|l|2)/(|l|1)) ⊗ (Xn)0≤n≤j )-
measurable and equal to h. As a result, the rightmost term in the previous display
equals∑

k,j≥1,x∈Zd

E
[
EQ⊗P 0

ε,ω

[
f (XSk+· − x)hx,k,j ,XSk

= x,Sk = j,D′ ◦ θn = ∞]]
.
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Applying now the strong Markov property at time Sk and using the product struc-
ture of Q one sees in turn that equals∑

k,j≥1,x∈Zd

E
[
EQ⊗P 0

ε,ω
[hx,k,j ,XSk

= x,Sk = j ]

× EQ⊗P 0
ϑnε,θxω

[
f (X· − x),D′ = ∞]]

.(3.3)

Use notation (3.1) to obtain that (3.3) equals∑
k,j≥1,x∈Zd

E
[
EQ⊗P 0

ε,ω
[hx,k,j ,XSk

= x,Sk = j ]

×E
[
EQ⊗P 0

ϑnε,θxω

[
f (X· − X0),D

′ = ∞]|Fx,L

]]
.(3.4)

Fix x ∈ Zd , n ∈ N and consider the conditional probability distribution

P̂[·|Fx,L] :=
E[PQ⊗P 0

ϑnε,θxω
[(Xi − X0)i≥0 ∈ ·,D′ = ∞]|Fx,L]

E[PQ⊗P 0
ϑnε,θxω

[D′ = ∞]|Fx,L] .

It will be proven below that there exists a positive constant L0 > 0 so that, for each
L ∈ |l|1N, L ≥ L0, we have P 0-a.s.

exp
(−e−gtL)P 0

[
(Xi − X0)i≥0 ∈ ·|D′ = ∞]

≤ P̂[·|Fx,L]
≤ exp

(
e−gtL)P 0

[
(Xi − X0)i≥0 ∈ ·|D′ = ∞]

.(3.5)

Thus using (3.5) and (2.13), writing (3.4) as

A = ∑
k,j≥1,x∈Zd

E

[
EQ⊗P 0

ε,ω
[hx,k,j ,XSk

= x,Sk = j ]

×E
[
PQ⊗P 0

ϑnε,θxω

[
D′ = ∞]|Fx,L

]
×

E[EQ⊗P 0
ϑnε,θxω

[f (X· − X0),D
′ = ∞]|Fx,L]

E[PQ⊗P 0
ϑnε,θxω

[D′ = ∞]|Fx,L]
]
,

one has

exp
(−e−gtL)E0[h]E0

[
f |D′ = ∞]≤ A ≤ exp

(
e−gtL)E0[h]E0

[
f |D′ = ∞]

which finishes the proof. �

Let us now prove the claim (3.5). Our proof shares some similarities with the
proofs of X. Guo in Lemma 5 and Proposition 7 of [12].
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LEMMA 3.2. Under the assumptions and notation of Proposition 3.1. Let x0 ∈
Zd and n ∈ N, then there exists L0 = L0(C,g, κ, l, d, r) ∈ |l|1N such that

exp
(−e−gtL)P 0

[
(Xi − X0)i≥0 ∈ ·|D′ = ∞]

≤ P̂[·|Fx0,L]
≤ exp

(
e−gtL)P 0

[
(Xi − X0)i≥0 ∈ ·|D′ = ∞]

,

for all L ≥ L0, with L ∈ |l|1N.

PROOF. We split the proof into three steps.
Step 1. The first step is the following claim:
Let A ⊂ 	 ⊂ Zd . Suppose S �= ∅ is a countable set of finite paths x. = (xi)

N
i=0,

N < ∞ starting at x0 that satisfy d1(x.,	) ≥ r and

(3.6)
∑

y∈A,0≤i≤N

e−g|y−xi |1 ≤ a,

uniformly on N . Then P-a.s. (cf. [12], page 381, for a proof)

exp(−Ca)

≤ E[EQ[Pω◦θx0 ,ε◦ϑn[
⋃

N≥0{(Xi − X0)0≤i≤N ∈ S}]]|ωy, y ∈ 	]
E[EQ[Pω◦θx0 ,ε◦ϑn[

⋃
N≥0{(Xi − X0)0≤i≤N ∈ S}]]|ωy, y ∈ 	\A]

≤ exp(Ca).

Step 2. Consider the hyperplane HL,l defined by

HL,l := {
z ∈ Zd : z · l ≤ −(L|l|2)/|l|1}.

In this step, we will first estimate the series∑
y∈∂rHL,l ,

z∈∂rC(0,l,ζ )

exp
(−g|y − z|1) and(3.7)

∑
y∈HL,l,

z∈C(0,l,ζ )

exp
(−g|y − z|1)(3.8)

in terms of g, for some large but fixed L. Notice that for given L > 0, both series
in (3.7) converge because ζ > 0, as follows from the next argument. Choose t̂ ∈
(t,1) and consider the first series in (3.7). We take L large enough so that L >

(1 − t̂ )−12r (thus L − 2r > t̂L) and applying condition (SM)C,g ,∑
n≥0

∑
(y,z)∈HCL,n,y,z

e−g|y−z|1,
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where we have written

HCL,n,y,z := {
(y, z) : y ∈ ∂rHL,l, z ∈ ∂rC(0, l, ζ ),

t̂L + n ≤ |y − z|1 ≤ t̂L + (n + 1)
}
.

Above was used the fact that the minimal | · |1-distance between any two points
y ∈ ∂rHL,l , z ∈ ∂rC(0, l, ζ ) is at least L − 2r .

Therefore we obtain the following upper bound for series (3.7):∑
n≥0

|HL,n,y,z|e−g(t̂L+n).

On the other hand, the estimate

|HL,n,y,z| ≤ c̃(d)r2(n + 1)2(d−1)

holds, for a suitable c̃ > 0 depending on d and ζ . Notice also that∑
n≥0

(n + 1)2(d−1)e−gn

converges, thus combining both last estimates we conclude: there exists C1 =
C1(C, d, g, r, ζ, l) > 0 such that if L ≥ C1 one can bound from above series (3.7)
by

exp(−gt̃L),

where t̃ ∈ (t, t̂).
Performing the same type of argument, one sees that from the fact that the inner

angle of the cone is positive there exists C2 > 0, so that

(3.9)
∑

y∈HL,l,z∈C(0,l,ζ )

exp
(−g|y − z|1)≤ exp(−gtL)

holds, for all L ∈ N|l|1, L ≥ L0, provided that L0 ≥ C2.
Consequently, for a given finite path starting from x0 of the form

x. = (Xi)
N
i=0, N < ∞, x. ⊂ C(x0, l, ζ )

one has that uniformly on N , there exists a positive constant C3 such that if L ≥ C3∑
y∈∂rHL,l,x0 ,z∈∂rGx

exp
(−g

∣∣y − (z − x0)
∣∣
1

)≤ e−gt̃L,

provided that we define

HL,l,x0 := {
z ∈ Zd : (z − x0) · l ≤ −(L|l|2/(|l|1))}

and

Gx := {
y ∈ Zd : y = Xi, for some i ∈ [0,N]}.
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Likewise using the second estimate in (3.9), we obtain a suitable constant C4 such
that L0 ≥ C4 implies that∑

y∈HL,l,x0 ,0≤i≤N

exp
(−g

∣∣y − (Xi − x0)
∣∣
1

)≤ e−gt̃L

holds, for L ≥ L0, uniformly on N ∈ N, where the notation is as above.
We then consider, instead of a fixed path x·, a countable collection S of finite

paths starting from a common point x0 ∈ Zd with all of them contained in a cone
C(x0, l, ζ ). Therefore, choosing t̂ ∈ (t, t̃) we find that there exists C5 so that when-
ever L ≥ C5, Step 1 gives

exp
(−e−gt̂L)
≤ E[EQ[Pω◦θx0 ,ε◦ϑn[

⋃
N≥0{(Xi − X0)0≤i≤N ∈ S}]]|ωy, y ∈ 	]

E[EQ[Pω◦θx0 ,ε◦ϑn[
⋃

N≥0{(Xi − X0)0≤i≤N ∈ S}]]|ωy, y ∈ 	\A]
≤ exp

(
e−gt̂L),

where 	 = HL,l,x0 , and A is an arbitrary subset of 	.
Step 3. We prove here the assertion of the lemma. For j ∈ N, we set S0,j the set

of paths of length j − 1 starting from 0. Then by definition one has{
(Xi − X0)i≥0 ∈ ·,D′ = ∞}

= ⋂
n≥0

⋃
N≥0

N⋃
j=0

{
(Xi − X0)

j
i=0 ∈ S0,j ,D

′ > n
}
.

For any n ∈ N, an application of Step 1 and Step 2 lead us to

exp
(−e−gt̂L)
≤ E[EQ[Pω◦θx0 ,ε◦ϑn[(Xi − X0)i≥0 ∈ ·,D′ > n]]|ωy, y ∈ 	]

E[EQ[Pω◦θx0 ,ε◦ϑn[(Xi − X0)i≥0 ∈ ·,D′ > n]]|ωy, y ∈ 	\A]
≤ exp

(
e−gt̂L),

where 	 and A are as in Step 2 (recall that A is an arbitrary subset of 	). Letting
n → ∞ and then using the result for A = 	, one gets

exp
(−e−gt̂L)
≤ E[EQ[Pω◦θx0 ,ε◦ϑn[(Xi − X0)i≥0 ∈ ·,D′ = ∞]]|ωy, y ∈ 	]

P0[(Xi − X0)i≥0 ∈ ·,D′ = ∞]
≤ exp

(
e−gt̂L)
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and

exp
(−e−gt̂L)
≤ E[EQ[Pω◦θx0 ,ε◦ϑn[D′ = ∞]]|ωy, y ∈ 	]

P0[D′ = ∞] ≤ exp
(
e−gt̂L).

By choosing L0 large enough such that for L ≥ L0

2e−gt̂L ≤ e−gtL,

we finish the proof. �

We close this section with a straightforward consequence of the previous propo-
sition which will be stated in the next corollary, for reference purposes. As a natural
extension to G1, we define the sigma-algebra Gi , where i ∈ N, by

Gi = σ
(
ω(y, ·) : y · l < Xτi

· l − (
L|l|2)/(|l|1), (εi)0≤j≤τi

, (Xj )0≤j≤τi

)
.

Let μ be as in the statement of Proposition 3.1, then an induction argument makes
us conclude.

COROLLARY 3.3. Assume either: (SM)C,g or (SMG)C,g and let j ∈ N, t ∈
(0,1). Then there exists L0 = L0(C,g, κ, l, d, r) ∈ |l|1N such that P-a.s.

μ−1(L)P 0
[
(Xn − X0)n≥0 ∈ ·|D′ = ∞]

≤ P 0
[
(Xτj+n − Xτj

)n≥0 ∈ ·|Gj

]
≤ μ(L)P 0

[
(Xn − X0)n≥0 ∈ ·|D′ = ∞]

holds, for all L ≥ L0 with L ∈ |l|1N.

4. Preliminary estimates: The regeneration position has some exponential
moments. It is the purpose of this section to prove that the random variable
Xτ1 · l has some finite exponential moments under condition (T)� (recall (2.9)).
We will derive after that proof two further consequences. On the one hand it will
be showed the finiteness of some exponential moments for the random variable
sup0≤n≤τ1

|Xn|2; and on the other hand, an upper bound of stretched exponential-
type for the probability of large orthogonal oscillations along the approximate
asymptotic direction of the walk. Throughout the rest of the paper we assume
condition (T)�, and we pick h ∈ (0,∞) so that (2.9) is satisfied. Then we choose
a constant r > 0 as in the item (iii) of Lemma 2.2 and the cone angle ζ will be any
fixed positive number satisfying the following requirement:

(4.1) ζ < min
{

1

9d
,

1

3dr
, cos

(
π

2
− arctan(3r)

)}
.
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PROPOSITION 4.1. Assume that (T)� and either (SM)C,g or (SMG)C,g hold.
Then there exist positive constants c2, c3 and L0, such that for all L ≥ L0, with
L ∈ |l|1N,

(4.2) E0
[
exp

(
c2κ

LXτ1 · l)]< c3

holds.

PROOF. By virtue of the renewal structure definitions, for c > 0 and L ∈ |l|1N,
one has that

E0
[
exp

(
cκLXτ1 · l)]

= ∑
k≥1

E0
[
exp

(
cκLXSk

· l), Sk < ∞,D′ ◦ θSk
= ∞]

= ∑
x∈Zd ,n∈N,k∈N

E
[
EQ×P 0

ε,ω

[
ecκLx·l ,XSk

= x,Sk = n
]
P 0

θnε,θxω

[
D′ = ∞]]

.

Notice that for k ≥ 1, the Markov property implies that

E0
[
exp

(
cκLXSk

· l), Sk < ∞,D′ ◦ θSk
= ∞]

= ∑
x∈Zd ,n∈N

E
[
EQ

[
EP 0

ε,ω

[
exp

(
cκLx · l),XSk

= x,Sk = n
]

× P 0
θnε,θxω

[
D′ = ∞]]]

.(4.3)

Observe now that the random variables

EP 0
ε,ω

[
exp

(
cκLx · l),XSk

= x,Sk = n
]

and P 0
θnε,θxω[D′ = ∞] are: σ(εi, i < n) ⊗ σ(ω(y, ·), (y − x) · l ≤ L|l|2/|l|1) and

σ(εi, i ≥ n) ⊗ σ(ω(y, ·), y ∈ C(x, l, ζ )) measurable, respectively.
Therefore for x ∈ Zd , using the previously introduced notation Fx,L (cf. (3.1)),

the mixing condition (SM)C,g and the construction of the probability measure P 0
we find an L0 > 0 such that for all L ≥ L0, with L ∈ |l|1N, the rightmost term of
(4.3) is less than

E
[
EQ⊗P 0

θnε,θxω
[1D′=∞]|Fx,L

]]
≤ E0

[
exp

(
cκLXSk

· l), Sk < ∞]
× exp

(
C

∑
x∈∂r (Hc),y∈∂r (	c)

e−g|x−y|2
)
P0
[
D′ = ∞]

,(4.4)

where H and 	 denote the sets {z ∈ Zd : z · l ≤ −L|l|2/|l|1} and C(0, l, ζ ) re-
spectively. Since ζ > 0, the proof of Proposition 3.1 provides the existence of a
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constant ĉ > 0 so that

exp
(
C

∑
x∈∂r (Hc),y∈∂r (	c)

e−g|x−y|2
)

≤ exp
(
e−ĉL),

with a similar upper bound under (SMG)C,g . Going back to (4.3), we have

E0
[
exp

(
cκLXSk

· l), Sk < ∞,D′ ◦ θSk
= ∞]

≤ 2E0
[
exp

(
cκLXSk

· l), Sk < ∞]
P0
[
D′ = ∞]].

We now proceed with the same type of argument of [10], Section 6.2; so as to
obtain a recursion for k ≥ 0 of the expression

(4.5) E0
[
exp

(
cκLXSk+1 · l), Sk+1 < ∞]

.

To this end, it will be convenient to introduce the random variable

Mk := sup
0≤n≤Rk

Xn · l,

for k ≥ 0 (with the convention M0 = 0). We also introduce the sets parametrized
by k,n ∈ N:

An,k = {
ε ∈ WN : (ε

t
(n)
k

, ε
t
(n)
k +1

, . . . , ε
t
(n)
k +L−1

) = ε(L)}
and

Bn,k = {
ε ∈ WN : (ε

t
(j)
k

, ε
t
(j)
k +1

, . . . , ε
t
(j)
k +L−1

) �= ε(L) ∀j ∈ [0, n − 1]}.
As was mentioned in [10], pages 25–26, denoting by T

l

a where a ∈ R the first time
that the walk goes on strictly over level a in direction l, that is,

T
l

a = inf{n ≥ 0 : Xn · l > a},
and by (t

(n)
k )n≥0 the time sequence of successive maxima in direction l, defined

recursively via

t
(0)
k = T

l

Mk
and for n ≥ 1 : t (n)

k = T
l

X
t
(n−1)
k

·l ,

one has the inclusion

{Sk+1 < ∞} ⊆ ⋃
n≥0

{
t
(n)
k < ∞,Bn,k,An,k

}
.

Furthermore, P 0-a.s. on the event Bn,k ∩ An,k the identity

Sk+1 = t
(n)
k + L
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holds. As a result, we have for k ≥ 0 the inequality

E0
[
exp

(
cκLXSk+1 · l), Sk+1 < ∞]

≤ ∑
0≤n≤L2−1

E0
[
exp

(
cκLXSk+1 · l), tnk < ∞,Bn,k,An,k

]
+ ∑

n≥L2

E0
[
exp

(
cκLXSk+1 · l), tnk < ∞,Bn,k,An,k

]
≤ 2

∑
n≥L2

E0
[
exp

(
cκLXSk+1 · l), tnk < ∞,Bn,k,An,k

]
,(4.6)

where the last inequality in (4.6) can be verified by inspecting the orders of L in
both sums. Moreover, one can find a positive constant c such that P 0-a.s. on the
event {t (n)

k < ∞,Bn,k,An,k}
(4.7) XSk+1 · l ≤ Mk + n|l|∞ + cL,

holds. Using the product structure of the measure Q and inequality (4.7), it follows
that for n ≥ L2,

E0
[
exp

(
cκLXSk+1 · l), t (n)

k < ∞,Bn,k,An,k

]
≤ κLE0

[
exp

(
cκL(Mk + n|l|∞ + cL

))
, t

(n)
k < ∞,Bn,k

]
.

We now apply the Markov property at times t
(0)
k and t

(n)
k (recall that n ≥ L2),

together with Lemma 6.6 of [10] to see that for some positive constant c̃, the in-
equality

κLE0
[
exp

(
cκL(Mk + n|l|∞ + cL

))
, tnk < ∞,Bn,k

]
≤ 2κL(exp

(
c|l|∞κLL2)(1 − c̃L2κL))[ n

L2 ]
E0

[
exp

(
cκLMk

)
, t

(0)
k < ∞]

holds. Performing summation on n one has that there exists c > 0 so that

2
∑

n≥L2

E0
[
exp

(
cκLXSk+1 · l), t (n)

k < ∞,Bn,k,An,k

]

≤ cκLL2 1

exp(−c|l|∞κLL2) − (1 − c̃L2κL)

× E0
[
exp

(
cκLMk

)
, t

(0)
k < ∞]

.(4.8)

It follows that for some small enough constant c > 0, there exists c > 0 such that∑
n≥L2

E0
[
exp

(
cκLXSk+1 · l), t (n)

k < ∞,Bn,k,An,k

]
≤ cE0

[
exp

(
cκLMk

)
, t0

k < ∞]≤ cE0
[
exp

(
cκLMk

)
,Rk < ∞]

= cE
[
exp

(
cκLXSk

· l), Sk < ∞, exp
(
κL(Mk − l · XSk

)
)
,D′ ◦ θSk

< ∞]
.
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Using the Markov property and the product structure of the probability measure
Q, we have

E0
[
exp

(
cκLXSk

)
, Sk < ∞, exp

(
κL(Mk − l · XSk

)
)
,D′ ◦ θSk

< ∞]
= ∑

x∈Zd ,n∈N
E
[
EQ⊗P 0

ε,ω

[
exp

(
cκLx · l), Sk = n,Xn = x

]
× EQ⊗Pθnε,θxω

[
exp

(
cκLM

)
,D′ < ∞]]

,(4.9)

provided we define

(4.10) M = sup
0≤n≤D′

{
(Xn − X0) · l}.

At this point we can apply the same sort of procedure as the one developed to
get the rightmost expression in (4.4). More precisely, the last expression in (4.9)
can be bounded from above by means of the following sequence of steps (recall
definition (3.1), together with sets H and 	, introduced after (4.4)):∑

x∈Zd ,n∈N
E
[
EQ⊗P 0

ε,ω

[
exp

(
cκLx · l), Sk = n,Xn = x

]
× EQ⊗Pθnε,θxω

[
exp

(
cκLM

)
,D′ < ∞]]

= ∑
x∈Zd ,n∈N

E
[
EQ⊗P 0

ε,ω

[
exp

(
cκLx · l), Sk = n,Xn = x

]
×E

[
EQ⊗Pθnε,θxω

[
exp

(
cκLM

)
,D′ < ∞]|Fx,L

]]
≤ ∑

x∈Zd ,n∈N
E

[
EQ⊗P 0

ε,ω

[
exp

(
cκLx · l), Sk = n,Xn = x

]
× exp

(
C

∑
x∈∂r (Hc),y∈∂r (	c)

e−g|x−y|1
)

× E0
[
exp

(
cκLM

)
,D′ < ∞]]

≤ 2E0
[
exp

(
cκLXSk

· l), Sk < ∞]× E0
[
exp

(
cκLM

)
,D′ < ∞]

.

Thus an induction argument makes us conclude that, for a suitable constant c > 0,

E0
[
exp

(
cκLXSk+1 · l), Sk+1 < ∞]

≤ (
E0

[
c exp

(
cκLM

)
,D′ < ∞])k × E0

[
exp

(
cκLXS1 · l), S1 < ∞]

.

On the other hand, for k = 0, the inequality (4.7) is still being true. As a conse-
quence, one can obtain the same upper bound as in the rightmost expression of
(4.8) when k = 0 (which implies in turn that M0 = 0). Hence, as a result,

(4.11) E0
[
exp

(
cκLXSk

· l), Sk < ∞]≤ (
E
[
c exp

(
cκLM

)
,D′ < ∞])k

,

holds.
The following auxiliary result will finish the proof.



RANDOM WALK IN MIXING ENVIRONMENT 3025

LEMMA 4.2 (under (T)�). There exist constants c4, c5 > 0, such that

(4.12) E0
[
exp(c4M),D′ < ∞]

< c5.

PROOF. We observe that replacing c by c/|l|2 below, it will be sufficient to
prove that for some c > 0, there exists finite c′ > 0 such that

E0
[
exp

(
cM ′),D′ < ∞]

< c′,

where as a matter of definition, we have denoted by

M ′ = sup
0≤n≤D′

{
(Xn − X0) · �} (

cf. (2.9)
)
.

Notice that

E0
[
exp

(
cM ′),D′ < ∞]≤ ecP0

[
D′ < ∞]

+ ∑
m≥0

exp
(
c2m+1)P0

[
2m ≤ M ′ < 2m+1,D′ < ∞]

.

As a consequence of the previous decomposition inequality, it suffices to obtain an
appropriate upper bound for large m of the probability:

P0
[
2m ≤ M ′ < 2m+1,D′ < ∞]

.

To this end, it will be convenient to introduce the following stopping time for the
canonical filtration of the walk

(4.13) D′(0) = inf
{
n ≥ 0 : Xn /∈ C(0, l, ζ )

}
.

Plainly, using the notation of (1.4)–(2.2) one has the inequality

P0
[
2m ≤ M ′ < 2m+1,D′ < ∞]

≤ P0
[
T �

2m ≤ D′ < ∞, T �
2m+1 ◦ θT �

2m
> D′(0) ◦ θT �

2m

]
≤ P0

[
XT �

2m
/∈ ∂+B2m,r2m,�(0), T �

2m ≤ D′ < ∞]
+ P0

[
XT �

2m
∈ ∂+B2m,r2m,�(0), T �

2m+1 ◦ θT �
2m

> D′(0) ◦ θT �
2m

]
.(4.14)

Notice that on the event of the first probability on the rightmost expression in
(4.14), P0-a.s. one has

(4.15) XTB2m,r2m,�(0)
/∈ ∂+B2m,r2m,�(0).

Therefore, condition (T)� implies that, for large m,

P0
[
XT �

2m
/∈ ∂+B2m,( 2

ε
)2m,�

(0), T �
2m ≤ D′ < ∞]

≤ exp
(−c2m)(4.16)
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for some suitable positive constant c. As for the second term on the rightmost
expression of (4.14), for m ∈ N we introduce the boundary box Fm via:

Fm = ∂+B2m,r2m,�(0).

Applying the strong Markov property, we find that

P0
[
XT �

2m
∈ ∂+B2m,r2m,�(0), T �

2m+1 ◦ θT �
2m

> D′(0) ◦ θT �
2m

]
≤ ∑

y∈Fm

Py

[
T �

2m+1 > D′(0)
]
.(4.17)

In order to estimate the rightmost probability entering in (4.17), we will bound
from below the probability of its complementary event as follows. Introducing for
x ∈ Zd , the set

(4.18) Bx = B2m−1,r2m−1,�(x),

we note that under the assumption (4.1) we have

r
(
2m + 2m−1)≤ tan

(
π

2
− arccos(ζ )

)
2m−1,

which implies that the boxes By and Bz, where y ∈ Fm and z ∈ ∂+By , are both
inside of the cone C(0, l, ζ ) (see Figure 1).

Observe that for y ∈ Fm, one has the following lower bound:

Py

[
T �

2m+1 < D′(0)
]

≥ ∑
z∈∂+By

E
[
Py,ω

[
XTBy

∈ ∂+By,XTBy
= z,

(
XTBz

∈ ∂+Bz

) ◦ θTBy

]]
.(4.19)

To estimate the right-hand side of the above inequality, it will be convenient to
introduce for m ∈ N, the second boundary set F̄m as

F̄m := ∂

[ ⋃
y∈Fm

By

]
∩ R

([
2m−1 + 2m,∞)×Rd−1),

and in turn for that given set F̄m we introduce the good environment event GF̄m
by

GF̄m
:= {

ω ∈ � : Pz,ω

[
XTBz

∈ ∂+Bz

]
> 1 − exp

(−c2(m−1)), for all z ∈ F̄m

}
,

where the constant c > 0 will be chosen below. Using the strong Markov property,
we can now bound from below the right-hand side of inequality (4.19) by

(4.20)
(
1 − exp

(−c2(m−1)))(Py

[
XTBy

∈ ∂+By

]− Py

[
(GF̄m

)c
])

,

where for an event E, we denote by (E)c its complementary event.
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FIG. 1. Boxes By and Bz are inside of C(0, l, ζ ).

Furthermore, using stationarity under the probability measure P and condition
(T)�, for x ∈Rd and large m one has

Px

[
XTBx

/∈ ∂+Bx

]= P0
[
XTB0

/∈ ∂+B0
]

≤ exp
(−w2m−1),(4.21)

for a suitable w > 0.
We thus see that (4.20) is greater than

(4.22)
(
1 − exp

(−c2(m−1)))(1 − exp
(−w2m−1)− Py

[
(GF̄m

)c
])

.

Taking c = w/2, in virtue of (4.21) and Chebyshev’s inequality we find that

Py

[
(GF̄m

)c
]

≤ |F̄m| exp
(
c2(m−1)) sup

x∈F̄m

Px

[
XTBx

/∈ ∂+Bx

]≤ exp
(−t2m−2),(4.23)

for a suitable t > 0, where we have used for m ∈ N the coarse estimate

max
(|F̄m|, |Fm|)≤ (

6r2m)d−1
.
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Consequently, for large m we can find a further positive constant c̃ such that

(4.24) Py

[
T �

2m+1 ≤ D′(0)
]≥ 1 − exp

(−c̃2m)
for all y ∈ F̄m.

In view of (4.16), (4.17) and (4.24), the claim (4.12) follows. �

As it was mentioned the assertion in (4.2) follows from (4.12) and P0[D′ =
∞] > 0, with the help of estimate (4.11). �

We are now ready to spell out some consequences of the previous proposition.
We first define the random variable Y as

(4.25) Y = sup
0≤n≤τ1

|Xn|2.

We can prove the following reinforcement to Theorem 4.1.

COROLLARY 4.3 (under (T)�). Assume either: (SM)C,g or (SMG)C,g . Then
there exist positive constants c6, c7 and L0 such that

(4.26) E0
[
ec6κ

LY ]≤ c7

provided that L ≥ L0, L ∈ |l|1N.

PROOF. Using item (ii) of Lemma 2.2, notice that for large u,

P̄0[Y ≥ u] = P̄0

[
sup

0≤n≤τ1

|Xn|2 ≥ u
]

≤ P̄0[T
 u
2r̂

< τ1]

≤ P̄0

[
Xτ1 · l ≥ u

2r̂

]
+ P̄0

[
Xτ1 · l <

u

2r̂
, T
 u

2r̂

< τ1

]
≤ exp

(
−κLc2

u

2r

)
Ē0

[
exp

(
c2κ

LXτ1 · l)]+ P0
[
XT
 u

2r̂

/∈ ∂+
 w
2r̂

]
,(4.27)

where in the last step we have used that by definition Xm · l < Xτ1 · l, when
0 ≤ m < τ1. Keeping in mind the layer cake decomposition (cf. [20], Chapter 8,
Theorem 8.16), the claim of the corollary follows after applying condition (T)�
and Proposition 4.1. �

In order to state the next proposition, it will be useful to fix some further nota-
tion. For L ∈ |l|1N, we introduce the approximate asymptotic direction denoted as
v̂L ∈ Sd−1 and given by

(4.28) v̂L := E0[Xτ1 |D′ = ∞]
|E0[Xτ1 |D′ = ∞]| ,
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which a priori depends on L, however when there is not risk of confusion, we shall
drop it.

As explained in [10], Proposition 7.2, page 34, one has the following.

PROPOSITION 4.4. There exist positive constants k1 and k2 (not depending
on L) such that for any L ∈ |l|1N,

E0
[(

κLXτ1 · l)|D′ = ∞]≥ k1 and
∣∣E0

[(
κLXτ1

)|D′ = ∞]∣∣
2 ≥ k2.

Thus, the upper bounds obtained in this sections are sharps. Proposition 4.4 will
be useful to prove Theorem 6.3 in Section 6.

We continue with the definition for t ∈R of the random variable

(4.29) Mt := sup{n ≥ 0 : Xn · l ≤ t},
this is the last visit to the half space H = {z : z · l ≤ t}. We also define the projector
operator � = �v̂ : Rd ⇀ Rd onto the orthogonal space to v̂L, so that for z ∈Rd

�(z) = z − (z · v̂)v̂.

The next proposition will be fundamental to apply renormalization arguments in
order to obtain annealed estimates of atypical quenched escapes for the walk.

PROPOSITION 4.5 (under (T)�, see (2.9)). Let C,g > 0 and assume either:
(SM)C,g or (SMG)C,g and (1.5). Let γ ∈ (5/9,1) and ρ > 0. Then there exists
c8 = c8(d, ρ, κ, l) > 0, so that for large u one has that

(4.30) P0

[
sup

0≤n≤Mu

∣∣�v̂(Xn)
∣∣≥ ρuγ

]
≤ exp

(−c8u
9
4 γ− 5

4
)
,

with the notation as in (4.29) and v̂ = v̂L is the vector defined by (4.28), where for
a fixed number t ∈ (1/2,1) with

(4.31) gt > 18 log
(

1

κ

)
,

L is the least integer in |l|1N, such that

exp(−gtL) ≤ u
9(γ−1)

4 .

PROOF. Fix γ ∈ (5/9,1), t as in (4.31) and consider a large enough u so that
the least integer L ∈ |l|1N satisfying

(4.32) exp(−gtL) ≤ u
9(γ−1)

4 ,
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is also satisfying the following requirements:

L ≥ L0,(4.33)

L ≥ 6(2c7 + 1)|l|1e
g|l|1

36

|l|2ρc6
and(4.34)

u
3(γ−1)

4 ≤ 1

2
.(4.35)

Above, constant L0 is as in the statement of Corollary 4.3. For the rest of the proof,
we will drop the prescribed L defined by (4.32) and satisfying (4.33)–(4.35)) from
the notation, to set for instance, v̂ = v̂L, τ1 = τ

(L)
1 , and so on. Furthermore, notice

that it is sufficient to prove an analogue inequality to (4.30), replacing �v̂(Xn) by
Xn · w, where w ∈ Sd−1 with w · v̂ = 0. Therefore, we will prove the proposition
under this convention and we introduce for n ∈ N the random variable Kn, via

Kn = sup{k ≥ 0 : τk ≤ n} (set τ0 = 0).

Since P 0-a.s., one has for m ≤ τ1 ≤ m′

Xm · l ≤ Xτ1 · l ≤ Xm′ · l and Xτ1 · l ≥ L
|l|2
|l|1 ,

it follows that P 0-a.s.

(4.36) 0 ≤ n ≤ Mu ⇒ Kn ≤ |l|1
|l|2Lu.

Hence, for n ∈ [0,Mu] and Kn as above, we have (recall the notation in display
(4.25))

Xn · w = (Xn − XτKn
) · w + XτKn

· w ≤ Y ◦ θKn + XτKn
· w,

and consequently for ρ > 0 we get the inequality

P0

[
sup

0≤n≤Mu

Xn · w ≥ ρuγ
]

≤ ∑
0≤k≤ |l|1|l|2L

u

P 0

[
Y ◦ θτk

≥ ρ

3
uγ

]

+ P 0

[
Xτ1 · w ≥ ρ

3
uγ

]
+ ∑

2≤k≤ |l|1|l|2L
u

P 0

[
(Xτk

− Xτ1) · w ≥ ρ

3
uγ

]
.
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Let λ ∈ [0, c6κ
L] and observe that an application of Chernoff bound leads us to

P0

[
sup

0≤n≤Mu

Xn · w ≥ ρuγ
]

≤ exp
(
−λ

ρ

3
uγ

)( ∑
0≤k≤ |l|1|l|2L

u

E0
[
exp(λY ◦ θτk

)
]

+ E0
[
exp(λXτ1 · w)

]+ ∑
2≤k≤ |l|1|l|2L

u

E0
[
exp

(
λ(Xτk

− Xτ1) · w)]).(4.37)

Let us now perform some computations required to estimate the expectations en-
tering in the last expression above. We first observe that for integer k ≥ 0,

E0
[
exp(λY ◦ θτk

)
]= ∑

k≥1,n∈N,x∈Zd

E
[
EQ⊗P 0

ε,ω
[1Sk=n,XSk

=x]

× EQ⊗P 0
θnε,θxω

[
exp(λY ),D′ = ∞]]

= ∑
k≥1,n∈N,x∈Zd

E
[
EQ⊗P 0

ε,ω
[1Sk=n,XSk

=x]

×E
[
EQ⊗P 0

θnε,θxω

[
exp(λY ),D′ = ∞]|Fx,L

]]
.

Using the proof of the Proposition 3.1, it is easy to see that for the nonnegative
random variable λY , the inequality

E
[
EQ⊗P 0

θnε,θxω

[
exp(λY )|D′ = ∞]|Fx,L

]
≤ exp

(
e−gtL)E0

[
exp(λY )|D′ = ∞]

holds.
Therefore, as a result we get for integer k ≥ 0 the estimate

max
{
E0

[
exp(λY ◦ θτk

)
]
,E0

[
exp(λXτ1 · w)

]}
= E0

[
exp(λY ◦ θτk

)
]≤ 2E0

[
exp(λY )|D′ = ∞]

.(4.38)

On the other hand, quit a similar procedure but now using the complete statement
of Proposition 3.1 along successive conditioning, allows us to conclude that for
k ∈ [2, |l|1u/|l|2L] one has

E0
[
exp

(
λ(Xτk

− Xτ1) · w)]
= E0

[
exp

(
λ

k∑
j=2

(Xτj
− Xτj−1) · w

)]

≤ (
exp

(
e−gtL)E0

[
exp(λXτ1 · w)|D′ = ∞])k−1
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(4.36)≤ (
exp

(
e−gtL)E0

[
exp(λXτ1 · w)|D′ = ∞]) |l|1u

|l|2L .(4.39)

Define now for |λ| ≤ κLc6 the function

H(λ) := E0
[
exp{λXτ1 · w}|D′ = ∞]

.

Taking λ = �u
5
4 (γ−1) for a positive constant � chosen so that

(4.40)
c6

2
e−g

|l|1
36 < � < c6e

−g
|l|1
36

holds from the very definition of L in (4.32), we obtain

�u
γ−1

8 < �e− gt (L−|l|1)

18 ≤ c6e
− log(1/κ)L.

We observe that, for our choice of λ, w⊥v̂, Proposition 4.1 and Lebesgue’s domi-
nated convergence theorem, one has

H(λ) = E0

[
1 + λXτ1 · w + λ2

2! (Xτ1 · w)2 + λ3

3! (Xτ1 · w)2 + · · · |D′ = ∞
]

≤ E0

[
1 + �u

5(γ−1)
4 Xτ1 · w + u

9(γ−1)
4

(�u
γ−1

8 Xτ1 · w)2

2!

+ u
9(γ−1)

4 + 3(γ−1)
4

(�u
γ−1

8 Xτ1 · w)3

3! + · · · |D′ = ∞
]

≤ 1 + c7u
(

9(γ−1)
4 )

∞∑
j=0

u(
3j (γ−1)

4 )

(4.35)≤ 1 + 2c7u
9(γ−1)

4 ) ≤ e2c7u
(

9(γ−1)
4 )

.

Consequently, once again since (4.32) and requirement (4.33) we have that

(4.39) =(exp
(
e−gtL) exp

(
log

(
E0

[
exp(λXτ1 · w)|D′ = ∞]))) |l|1u

|l|2L

≤ exp
(
(2c7 + 1)u(

9(γ−1)
4 ) ×

( |l|1u
|l|2L

))
.(4.41)

Inserting estimates (4.38) and (4.41) into (4.37) the assertion of the proposition
follows since assumption (4.34). �

REMARK 4.6. Let us sketch the proof for finite dependent random environ-
ments. Taking L large enough with respect to the dependence of the environment
we get to the rightmost expression in (4.39) without factor exp(e−gtL). Then, it
is direct to see that i.i.d. renormalization techniques can be applied in this case
without the help of assumption (1.5). Here, the crucial point is that there exists a
finite L such that τ

(L)
1 is in fact a regeneration time.
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5. Estimates for the regeneration time tails. The main objective of this sec-
tion will be to obtain an upper bound for the probability P 0[τ1 ≥ u] when u is
large and independent of L. Let C,g > 0, throughout the complete section we
shall assume condition (T)�, where � ∈ Sd−1 satisfies (2.9), and either: (SM)C,g

or (SMG)C,g . We first prove a basic lemma in the spirit of [22], Lemma 1.3. It is
convenient to fix a rotation R on Rd , with

R(e1) = l

|l|2 = �.

Introducing for M > 0 the hypercube

(5.1) CM := BM,rM,�(0).

We have the following lemma.

LEMMA 5.1. There exist c9 > 0 and L0 > 0, L0 ∈ |l|1N such that for any
function M :R+ →R+, with limu→∞ M(u) = ∞ one has that, for large u,

P 0[τ1 > u] ≤ P0
[
TCM(u)

= T l
M(u) > u

]+ e−c9κ
LM(u)

for each L ∈ |l|1N, L ≥ L0.

PROOF. Let us start with the inequality

P 0[τ1 > u] ≤ P 0
[
τ1 > u,Xτ1 · l ≤ |l|2M(u)

]+ P 0
[
Xτ1 · l > |l|2M(u)

]
≤ P 0

[
τ1 > u,Xτ1 · l ≤ |l|2M(u)

]
+ e−c1κ

L|l|2M(u)E0
[
exp

(
c1κ

LXτ1 · l)]
≤ P 0

[
τ1 > u,Xτ1 · l ≤ |l|2M(u)

]+ e− c1|l|2κLM(u)

2 .(5.2)

It is then sufficient to estimate the probability

P 0
[
τ1 > u,Xτ1 · l ≤ |l|2M(u)

]
.

From the definition of time τ1, one has that τ1 = T l
Xτ1 ·l . Hence, we find that

P 0
[
τ1 > u,Xτ1 · l ≤ M(u)

]≤ P0
[
T l|l|2M(u) > u

] (1.4)= P0
[
T �

M(u) > u
]
.

We first proceed to consider the following decomposition inequality:

P0
[
T �

M(u) > u
]≤ P0

[
TCM(u)

= T �
M(u) > u

]+ P0
[
TCM(u)

< T �
M(u)

]
,

for large u. Since (T)� holds (see (2.1) and Lemma 2.2),

P0
[
TCM(u)

< T l′
M(u)

]≤ P0
[
XTCM(u)

/∈ ∂+CM(u)

]
≤ exp

(−c̃M(u)
)
,(5.3)

for a suitable constant c̃ > 0.
Thus, coming back to (5.2) the required assertion follows from (5.3). �
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In the next subsection we will present an atypical quenched estimate for mixing
environments in the spirit of [22], Proposition 3.1.

5.1. Renormalization. The main objective here is to establish a version of an
atypical quenched estimate for mixing random environments in the spirit of Propo-
sition 3.1 in [22] for i.i.d. environments. To this purpose, we first introduce the set

UM = {
y ∈ Zd : |y · �| < M

}
for M > 0. The crucial ingredient to bound from above the tail of τ1 is given below.

PROPOSITION 5.2. For β ∈ [0,1) and c > 0,

lim sup
M→∞

M−χ logP
[
P0,ω

[
XTUM

· l

|l|2 ≥ M

]
≤ e−cMβ

]
< 0,(5.4)

where either χ = 1 or χ < d

(
13

4
β − 9

4

)
.(5.5)

PROOF. By a quit similar argument of [22], page 121, the case χ = 1 easily
follows from condition (T)�. We thus only need to consider the case when β ∈
[0,1) is large enough such that

(5.6) d

(
13

4
β − 9

4

)
> 1.

The key idea of the proof (cf. [22]) is to construct strategies for the walk ensuring
that this starting from 0 ∈ Zd , escapes from UM by the boundary side ∂+UM :=
∂UM ∩ {z ∈ Rd : z · l/|l|2 ≥ M}. Such a construction involves the notion of good
and bad boxes for the environment, and they will provide high probability on the
event that the walk fulfills the required strategies.

In order to introduce the definitions of good and bad boxes, we need some fur-
ther notation. For L ≥ L0 with L ∈ |l|1N, we pick a rotation R̃L on Rd so that

R̃L(e1) = v̂L (we shall only write R̃, because we will fix L below).

We consider γ ∈ (5/9,1) and t ∈ (1/2,1) ∩Q so that

tg > 18 log
(

1

κ

)
.

Pick then M0 > 2
√

d large enough, such that if L is the integer satisfying

L = min
{
L̂ ∈ |l|1N : e−gtL̂ ≤ M

(
9(γ−1)

4 )

0

}
,

one has that L ≥ L0 and L ≥ 48|l|1
v̂·l (which is possible by Proposition 4.4).
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Define for z ∈ M0Z
d (M0 as above), the following blocks:

B̃1(z) := R̃
(
z + (0,M0)

d)∩Zd

B̃2(z) := R̃
(
z + (−M

γ
0 ,M0 + M

γ
0

)d)∩Zd,
(5.7)

which are nonempty because M0 > 2
√

d . One also defines the boundary positive
part of B̃2(z) via

(5.8) ∂+B̃2(z) := ∂B̃2(z) ∩ {
y : (y − z) · R̃(e1) ≥ M0 + M

γ
0

}
.

We then say that site z ∈ M0Z
d is M0-good if

(5.9) sup
x∈B̃1(z)

Px,ω

[
XT

B̃2(z)
∈ ∂+B̃2(z)

]≥ 1

2
,

and M0-bad otherwise. We have the following upper bound for M0-bad blocks:

LEMMA 5.3. Let γ ∈ (5/9,1). Then one has that

(5.10) lim sup
M0→∞

M
5/4−(9/4γ )
0 sup

z∈M0Zd

logP[z is M0-bad] < 0.

PROOF. For z ∈ M0Z
d ,

P[z is M0-bad] = P

[
sup

x∈B̃1(z)

Px,ω

[
XT

B̃2(z)
/∈ ∂+B̃2(z)

]
>

1

2

]
≤ 2

∣∣B̃1(z)
∣∣ sup
x∈B̃1(z)

Px

[
XT

B̃2(z)
/∈ ∂+B̃2(z)

]
.(5.11)

Observe that for x ∈ B̃1(z), one has that B̃2(z) is included in the closed Euclidean
ball centered at x of radius 3

√
dM0. Therefore, recalling that � = l/|l|2 (cf. (2.9))

one gets Px-a.s.

T
B̃2(z)

≤ T l′
x·l′+3

√
dM0

.

On the other hand, Px -a.s. on the event {XT
B̃2(z)

/∈ ∂+B̃2(z)}, one has

either (XT
B̃2(z)

− x) · v̂ ≤ −M
γ
0

2
or
∣∣�v̂(XT

B̃2(z)
− x)

∣∣
2 ≥ M

γ
0

2
,

where the notation is as in Proposition 4.5. As a result, one gets

P[z is M0-bad]
≤ c(d)Md

0

(
P0

[
sup

0≤n≤T �

3
√

dM0

∣∣�v̂(Xn)
∣∣
2 ≥ v̂ · �

4
M

γ
0

]
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+ P0

[
sup

0≤n≤T �

3
√

dM0

∣∣�v̂(Xn)
∣∣
2

<
v̂ · �

4
M

γ
0 , inf

0≤n≤T �

3
√

dM0

Xn · v̂ ≤ −M
γ
0

2

])

≤ c(d)Md
0

(
P0

[
sup

0≤n≤T �

3
√

dM0

∣∣�v̂(Xn)
∣∣
2 ≥ v̂ · �

4
M

γ
0

]

+ P0
[
T̃ �

−M
γ
0 v̂·�
4

< ∞])
,(5.12)

where we used the inequality Xn · � ≤ (Xn · v̂)v̂ · �+|�v̂(Xn)|2 to obtain the right-
most term in the last line of (5.12). The claim follows now from Proposition 4.5
and condition (T)�. �

The general procedure is now to consider columns, constructed by joining to-
gether boxes in direction v̂. One then gathers columns to form tubes. We next make
precise the terms “column” and “tube” by some further definitions. For M > 0 and
M0 as above (the relation between M and M0 will appear in (5.21)), we attach to
each z ∈ M0Z

d , the column

Col(z) = {
z′ ∈ M0Z

d : ∃j ∈ [0, J ], z′ = z + jM0e1
}

where J is the smallest integer such that JM0v̂ · l

|l|2 ≥ 3M.(5.13)

We choose M1 > 0 an integer multiple of M0 and define the tube attached to z ∈
M0Z

d by

Tube(z)

=
{
z′ ∈ M0Z

d : ∃j1, j2, . . . , jd ∈
[
0,

M1

M0

]
, z′ = z +

d∑
i=2

jiM0ei

}
.(5.14)

We stress that the key idea behind these definitions is the following strategy: one
way for the walk to escape from slab UM is to move to one of the bottom blocks in
Tube(0) of an appropriate column containing the greatest amount of good blocks
and then move along this column up to its top. Under the choices that we will
do later on, we will ensure that the walk escapes from UM by the boundary side
∂+UM ; see Figure 2. It will be convenient to introduce for z ∈ M0Z

d , the top of a
tube as

(5.15) Top(z) = ⋃
z′∈Tube(z)

∂+B̃2
(
z′ + JM0e1

)
,
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FIG. 2. Schematic representation of definitions (5.13), (5.14) and strategy to escape of UM by
∂+UM . Dashed lines delimitate set UM and if y is a point in Tube(0) with minimal amount of bad
boxes on its column, the strategy is get to y from 0 and then use column on y to escape by ∂+UM .
The name columns comes from rotating counter clockwise this figure by a π/2 angle.

along with the neighborhood of a tube as

(5.16) V (z) =
{
x ∈ Zd : ∃y ∈ ⋃

z′∈Tube(z),
0≤j≤J

B̃1
(
z′ + jM0e1

)
, |x − y|1 ≤ 3dM1

}
.

We need a lower bound on the P0,ω-probability for the event of reaching the top of
a tube attached to the site 0 ∈ Zd , before the walk exits from V (0). To this end, we
introduce the random minimum number of M0-bad boxes contained in a column
among columns in a tube as

(5.17) n(z,ω) = min
z′∈Tube(z)

{
J∑

j=0

1{z′ + M0je1 is M0-bad}

}
.

Recalling our choice of κ provided in (1.1), the proof of Lemma 3.3 in [22] allows
us to establish the next lemma.
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LEMMA 5.4. There exists c10 > 0 such that for any z ∈ M0Z
d and any

x ∈ ⋃
z′∈Tube(z),

0≤j≤J

B̃1
(
z′ + jM0e1

) := D(z),

one has

(5.18) Px,ω[HT op(z) < TV (z)] ≥ (2κ)c14(M1+JM
γ
0 +n(z,ω)M0)

(
1

2

)J+1
.

By virtue of Lemma 5.3, we now choose γ ∈ (5/9,1), such that

(5.19) χ := 1 − β

1 − γ
< β < 1,

and notice that such a choice is possible in view of assumption (5.6). We then
choose

(5.20) ν > 1 − γ,

and introduce for large M

(5.21) M0 = ρ1M
χ, M1 = [

ρ2M
β−χ ]M0, N0 = [

ρ3M
β−χ ],

where the constants ρ1, ρ2, ρ3, possibly depend on κ , |l|2, |v̂|2, d , r , δ and c (cf.
(5.4)). They are chosen so that for large M , the following requirements:

min
{
(2κ)c10JM

γ
0 , (2κ)c10M1, (2κ)c10N0M0,

(
1

2

)J+1}
> exp

(
−c

5
Mβ

)
,(5.22)

N0

3
> (J + 1)

(e2 − 1)

Mν
0

and(5.23)

any nearest neighbor path within V (0), between 0 and Top(0),(5.24)

first exits UM through ∂+UM

are satisfied.
To see that such a choice is possible observe that it suffices to take ρ1 large

enough and ρ2 = ρ3 = c(10ρ1c10 log(1/(2κ)))−1, then (5.22) and (5.24) are sat-
isfied for large M . As for (5.23), when β < 1, it follows from the equality
β − χ = 1 − (1 + ν)χ .

Note that as a remark, the sites over which the environment events {z: is M0-
good} depend, where z runs over the collection (k1M0, . . . , kdM0), with ki, i ∈
[1, d] nonnegative integers, and k1 + · · · + kd has a fixed parity; they are at least a
| · |1-distance of M0 − 2M

γ
0 separated. Keeping this in mind, an application of the
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Bunyakovsky–Cauchy–Schwarz inequality gives

P
[
n(0,ω) > N0

]= P

[ ⋂
z′∈Tube(0)

{
J∑

j=0

1{z′ + M0je1 is M0-bad } > N0

}]

≤ P

[ ⋂
z′∈Tube(0)

k2+···+kdeven

{
J∑

j=0

1{z′ + M0je1 is M0−bad
} > N0

}] 1
2

× P

[ ⋂
z′∈Tube(0)

k2+···+kdodd

{
J∑

j=0

1{z′ + M0je1 is M0-bad
} > N0

}] 1
2

.(5.25)

Using the previous remark for the last two expressions on the rightmost hand of
(5.25) along successive conditioning to apply the mixing conditions (1.2) or (1.3),
one gets

P
[
n(0,ω) > N0

]
≤ exp(Ca)

(
sup

z′∈Tube(0)

P

[
J∑

j=0

1{z′ + M0je1 is M0-bad
} > N0

])[ M1
2M0

]d−1

(5.26)

with the notation

a = ∑
x∈H,y∈T

e−g|x−y|1,

where in turn for the mixing condition (SM)C,g (cf. (1.2)), H , T denote the sets

H = ∂r

{
y ∈ Zd : y ∈ B̃2(z), for some z ∈ B̃1(M0je1 + �2≤i≤dkiei),

ki ∈
[
0,

M1

M0

]
, (k2 + · · · + kd) − (d − 1)

M1

M2
= 1(mod 2), j ∈ [0, J ]

}
T = ∂r

{
x ∈ Zd : x ∈ B̃2(z), for some z ∈ B̃1

(
M0je1 + �2≤i≤d

M1

M0
ei

)
,

j ∈ [0, J ]
}
,

and for the mixing condition (SMG)C,g (cf. 1.3), the sets H and T will be switched
to

H =
{
y ∈ Zd : y ∈ B̃2(z), for some z ∈ B̃1(M0je1 + �2≤i≤dkiei),

ki ∈
[
0,

M1

M0

]
, (k2 + · · · + kd) − (d − 1)

M1

M2
= 1(mod 2), j ∈ [0, J ]

}
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T =
{
x ∈ Zd : x ∈ B̃2(z), for some z ∈ B̃1

(
M0je1 + �2≤i≤d

M1

M0
ei

)
,

j ∈ [0, J ]
}
.

By means of a similar argument as the one of Lemma 3.2, one sees that for large
M0

Ca ≤ exp
(
−gM0

2

)
,

and consequently

P
[
n(0,ω) > N0

]
≤ exp

(
e− gM0

4
)(

sup
z′∈Tube(0)

P

[
J∑

j=0

1{z′ + M0je1 is M0-bad
} > N0

])[ M1
2M0

]d−1

.(5.27)

Let us now observe that arguing as in [22], page 125, when Z is a Bernoulli random
variable taking values onto {0,1}, with success probability smaller than M−ν

0 , then
E[exp(2Z)] ≤ 1 + (e2 − 1)/Mν

0 . As a result, restricting j to even or odd integers,
we conclude from Chebyshev’s inequality with the help of: Lemma 5.12, succes-
sive conditioning, the mixing conditions (SM)C,g or (SMG)C,g and the choice of
ν in (5.20), for large M

sup
z′∈Tube(0)

P

[
J∑

j=0

1{z′ + M0je1 is M0-bad
} > N0

]

≤ 2 exp
(
e− gM0

4
)

exp(−N0)

(
1 + e2 − 1

Mν
0

)J+1

≤ 4 exp
(
−N0 + (J + 1)

e2 − 1

Mν
0

)
(5.23)≤ 1

2
exp

(
−N0

2

)
,(5.28)

where we have assumed in turn that M is large enough so that

exp
(
e− gM0

4
)≤ 2.

Therefore, for large M ,

(5.29) P
[
n(0,ω) > N0

]≤ exp
(
−N0

2

[
M1

2M0

]d−1)
.

On the other hand, we have that on the event {n(0,ω) ≤ N0}

P0,ω

[
XTUM

· l

|l|2 ≥ M

]
(5.24)≥ P0,ω[HT op(0) < TV (0)] (5.18)–(5.22)

> e−cMβ

.
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Thus, one gets

lim sup
M

Md(β−χ) logP
[
P0,ω

[
XTUM

· l

|l|2 ≥ M

]
≤ e−cMβ

]
< 0,

and the estimate (5.4) follows by letting γ vary according to (5.19). �

5.2. Proof of Theorem 1.3. We now proceed with the proof of Theorem 1.3.
The rough plan is to bound tails of the time τ1 and then we will apply Theorem 2 of
[5]. We begin with applying the previous atypical quenched estimate to obtain con-
trols on the tails of the approximate regeneration times τ

(L)
1 . The precise statement

will be the content of the following:

PROPOSITION 5.5. There exist constants c11, c12 > 0 and L0 ∈ |l|1N, so that
for each L ∈ |l|1N with L ≥ L0 and for all α < 1 + 4(d−1)

13d+4

(5.30) P0
[
τ

(L)
1 > u

]≤ e−c1κ
L(log(u))α + e−c2(log(u))α .

PROOF. We pick an α ∈ (1,1+ 4(d−1)
13d+4 ) and consider for large u, the following

choice of scales:


(u) = 1

10
√

d

log(u)

log( 1
κ
)

and M(u) = N(u)
(u)

where N(u) = [(
log(u)

)α−1]
.(5.31)

To simplify notation, we drop the dependence on u for the remainder of the proof.
In virtue of Lemma 5.1, the claim will follow once we can prove that

(5.32) lim sup
u

log(u)−α log
(
P0[TCM

> u])< 0.

Observe that for large u, one has (recall (5.1))

P0[TCM
> u] ≤ E

[
∀x ∈ CM,Px,ω

[
TCM

≤ u

log(u)α

]
≥ 1

2
,P0,ω[TCM

> u]
]

+ P

[
∃x1 ∈ CM,Px1,ω

[
TCM

>
u

log(u)α

]
>

1

2

]
.(5.33)

As a result of applying the Markov property, we see that

E

[
∀x ∈ CM,Px,ω

[
TCM

≤ u

log(u)α

]
≥ 1

2
,P0,ω[TCM

> u]
]

≤
(

1

2

)[log(u)α]
.(5.34)
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Therefore, in order to prove (5.30), we need to obtain an upper bound as above for
the second term on the right-hand side of (5.33). To this end, notice that when x1
is such that Px1,ω[TCM

> u
log(u)α

] > 1/2,

(5.35)
1

2

u

log(u)α
≤ Ex1,ω[TCM

] = ∑
x∈CM

Px1,ω[Hx < TCM
]

Px,ω[H̃x > TCM
] ,

where H̃x := inf{n ≥ 1 : Xn = x}, Hx := H{x} (cf. (2.2)). To see how the last equal-
ity above is obtained, we calculate

Ex1,ω[TCM
] = ∑

n≥0

Px1,ω[TCM
> n]

= ∑
x∈CM

(∑
n≥0

Px1,ω[TCM
> n,Xn = x]

)

∑
x∈CM

Ex1,ω

[TCM∑
j=0

1{Xj=x}
]

= ∑
x∈CM

Ex1,ω

[∑
j≥1

1{(Hx)j<TCM
}
]
,

(5.36)

where we have defined (Hx)1 = Hx for x ∈ CM , and then by recursion for j > 1:

(Hx)j = H̃x ◦ θ(Hx)j−1 + (Hx)j−1.

Applying the strong Markov property to the last term in (5.36), we get

Ex1,ω[TCM
] = ∑

x∈CM

Px1,ω[Hx < TCM
]∑
j≥1

Px,ω[H̃x < TCM
]j−1

= ∑
x∈CM

Px1,ω[Hx < TCM
]

Px,ω[H̃x > TCM
] .

Thus, coming back to (5.35), one has that there exists some x2 ∈ CM so that P-a.s.

(5.37) Px2,ω[H̃x2 > TCM
] ≤ |CM |2(log(u))α

u

holds, on the event in the second term on the rightmost side of (5.33). Furthermore,
notice that when ω ∈ � is arbitrary, for y := x2 ∈ CM as in (5.37), and x ∈ Zd a
nearest neighbour lattice point to y + �K with 0 < K ≤ [1

3
logu

log( 1
2κ

)
], by the elliptic

assumption (1.1) we have that

Py,ω[H̃y > TCM
] ≥ u− 1

3 Px,ω[Hy > TCM
].

Consequently for large u, we have x ∈ CM and

(5.38) Px,ω[Hy > TCM
] ≤ 1√

u
.
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Thus, introducing the set

(5.39) Vi = ∂

{
y ∈ Zd : y · l

|l|2 < i


}
for i ∈ Zd,

we have that on the event

(5.40) E = ⋃
x1∈CM

{
ω ∈ � : Px1,ω

[
TCM

>
u

(log(u))α

]
>

1

2

}
one can find i0 ∈ [−N + 1,N] and x ∈ CM ∩ Vi0 , such that

(5.41) Px,ω

[
T̃ l

(i0−1)
 > TCM

]≤ 1√
u
.

Let us remark that in order to obtain (5.41), we have used (5.38), the inequality:
2
 + d ≤ [1

3
logu

log( 1
2κ

)
] and the fact that for any y ∈ Zd a closest point to x − (2
)�,

one has that

Px,ω

[
T̃ l

(i0−1)
 > TCM

]≤ Px,ω[Hy > TCM
].

It will be convenient to introduce for i ∈ Zd the random variables

Xi :=
{

− log
(
infx∈CM∩Vi

Px,ω

[
T̃ l

(i−1)
 > T l
(i+1)


])
if CM ∩ Vi �= ∅,

0 if CM ∩ Vi = ∅.

The next inequality is a consequence of induction along the strong Markov prop-
erty (cf. [22], page 128). For i ∈ [−N + 1,N] and x ∈ Vi ,

Px,ω

[
T̃ l

(i−1)
 > TCM

]≥ exp

(
−

N∑
j=i

Xi

)
.

As a result from this last inequality and (5.41),

(5.42) P[E] ≤ 2N sup
i∈[−N+1,N]

P

[
Xi ≥ logu

2N

]
.

Note that for i ∈ Z, and ν > 0 one has

(5.43) P[Xi > ν] ≤ |CM |P
[
P0,ω

[
XTU


· l

|l|2 ≥ 


]
≤ e−ν

]
.

Therefore, using our version of an atypical quenched estimate given in (5.2), we
get that whenever

1 > 2 − α ≥ 9d + 4

13d

(
and thus α ≤ 17d − 4

13d

)
one has

(5.44) P[E] ≤ exp
(−c̃(logu)χ

)
for all χ < d(13

4 (2 − α) − 9
4) and a suitable constant c̃ = c̃(d, κ, l).
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In turn, the rightmost term in (5.44) is less than

e−ĉ(logu)α

for a positive constant ĉ, whenever α < 17d
13d+4 ≤ 17d−4

13d
. The proof is now complete

from this last argument as was mentioned after (5.34). �

We are ready to finish the proof of our main result.

PROOF OF THEOREM 1.3. We observe that Proposition 5.5, via layer cake
decomposition (cf. [20], Chapter 8, Theorem 8.16) implies that there exists a de-
terministic constant M = M(L), such that

(5.45) P

[
Ē0[(κLτ1)

3,D′ = ∞|F0,L]
P̄0[D′ = ∞|F0,L] > M

]
= 0.

The result of Theorem 1.3 follows from the central limit theorem of [5]. Notice
that the argument of that theorem is performed for a fixed L by applying Proposi-
tion 4.1.1 and Theorem 4.1.2 of [13]. �

6. On Kalikow’s condition. We will introduce in this section Kalikow’s con-
dition. We then prove that for a given � ∈ Sd−1 the transient (T)� condition is
satisfied whenever Kalikow’s condition holds in the same direction. In the last part
of this section, we will derive a ballistic strong law of large numbers, which is a
slight extension of the main theorem in [18].

6.1. (T ) is weaker than Kalikow’s condition.

DEFINITION 6.1. Kalikow’s chain (Xn)n≥0 on a connected V � Zd with
0 ∈ V is the canonical Markov chain with state space in V ∪ ∂V , with transition
probabilities given by

P̂V (x, x + e) :=
⎧⎪⎨⎪⎩

E0[∑TV c

n=0 1{Xn=x}ω(x,e)]
E0[∑TV c

n=0 1{Xn=x}]
for x ∈ V and |e| = 1,

1 for x ∈ ∂V and e = 0.

For x ∈ V ∪ ∂V we will denote by P̂x,V and Êx,V the law and expectation re-
spectively of the corresponding Kalikow’s chain starting from x with transition
probabilities as above. Setting the local drift d̂V (x) = Êx,V [X1 − X0] at site x of
this walk, we say that Kalikow’s condition is satisfied in direction l ∈ Rd\{0} and
we denote this by (K)l if there exists a constant δ(l) > 0 such that

(6.1) inf
x∈V,V

d̂V (x) · l > δ,

where the infimum runs over all the connected strict subsets V of Zd , with 0 ∈ V .
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We quote here the following result owed to S. Kalikow [14], which to some
extent depicts the best-known property of Kalikow’s chain:

Suppose that P̂0,V -a.s., TV is finite, then P0-a.s. TV is also finite,

and XTV
has the same law under both P̂0,V and P0.(6.2)

This property will be called as Kalikow’s Proposition (see [14], Proposition 1 for
a proof).

Notice that when |l|2 = 1, a straightforward application of Cauchy–Schwarz
inequality makes us see that the infimum in (6.1) is at most equal to 1. In [4] was
assumed at the nestling example of Section 5 that this infimum is close to 1 for
l = e1, besides a conditional version of Kalikow’s condition. We will not need
these further assumptions here.

Let us note that, for n ≥ 0,

(6.3) MV
n := Xn − X0 − ∑

0≤j≤n−1

d̂V (Xj )

is a martingale for the canonical filtration of Kalikow’s chain (Xn)n≥0 starting
from x ∈ V ∪ ∂V , with state space in V ∪ ∂V , where V is a strict connected subset
of Zd with 0 ∈ V . These martingales have increments bounded in Euclidean norm
by 2, then Azuma–Hoeffding inequality (see [1], page 85) turns out that

(6.4) P̂x,V

[
MV

n · w > A
]≤ exp

(−A2

8n

)
for A > 0, n ≥ 0, |w|2 = 1.

We recall that under Kalikow’s condition the process (Hn)n∈N, defined by (see
[22], pages 101–103 for a proof)

Hn := exp(−ηXn · l)
for all η ∈ [0, η0], where η0 > 0 depends on δ,(6.5)

is a supermartingale under P̂x,V , for all strict connected subset V of Zd and x ∈
V ∪ ∂V .

Letting � ∈ Sd−1, the main result of this subsection comes in the next proposi-
tion.

PROPOSITION 6.2. Assume (K)�, then (T)� holds.

PROOF. Assume condition (K)� and take δ > 0 as in the definition (6.1). In
virtue of item (iii) of Lemma 2.2, we set r = 2/δ and for large M we estimate (cf.
(2.1) for notation)

P0
[
XTBM,rM,�(0)

/∈ ∂+BM,rM,�(0)
]
,

where as usual the underlying rotation R entering in the definition of the box
BM,rM,�(0) satisfies R(e1) = �.
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Notice that denoting BM the box BM,rM,�(0), one has

P0
[
XTBM,rM,�(0)

/∈ ∂+BM,rM,�(0)
]

(6.2)= P̂0,BM
[XTBM

· � < M] ≤ P̂0,BM
[TBM

> rM]
+ P̂0,BM

[TBM
≤ rM,XTBM

· � < M].(6.6)

We set N = [rM] and observe that P̂0,BM
-a.s. on TBM

> rM ,

MN · � < −M/2.

Hence, using the Azuma–Hoeffding inequality (6.4), we find that

(6.7) P̂0,BM
[TBM

> rM] ≤ exp
(
− M2

16N

)
.

On the other hand, applying Chevyshev’s inequality and the optional stopping the-
orem along the supermartingale in (6.5), we get

P̂0,BM
[TBM

≤ rM,XTBM
· � < M] = P̂0,BM

[XTBM
· � ≤ −M]

≤ exp(−ηM).(6.8)

Inserting (6.7) and (6.8) into (6.6) we complete the proof. �

The class of random environments studied in the present article extends the i.i.d.
class. Alongside our ballisticity condition (T)� extends the previous i.i.d. condition
(T )|� as well (cf. Theorem 1.1 of [24]). Recently in the framework of i.i.d. random
environments, we have been able to prove the equivalence (T )|� ↔ (T ′)|� (cf.
Theorem 2.1 of [11]). On the other hand, Sznitman in [25] has constructed ballistic
walk examples satisfying (T ′)|� where Kalikow’s condition breaks down, for all
dimension d ≥ 3. Thus, at least for dimensions d ≥ 3, condition (T)� is strictly
weaker than (K)�.

6.2. Ballistic regime under Kalikow’s condition. The next result can be
thought as an alternative proof of the law of large numbers in [18] under Kalikow’s
condition, however a slightly more general mixing condition will be considered.
Precisely one has the following theorem.

THEOREM 6.3. Let C,g > 0. Assume that the RWRE fulfils conditions (K)l
and either (SMG)C,g or (SM)C,g , then there exists a deterministic vector v ∈
Rd\{0}, so that P0-a.s.

lim
n→∞

Xn

n
= v,

with v · l > 0.
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Let us begin by recalling the following (cf. [12], Lemma 9 for a proof).

LEMMA 6.4. Let a ∈ (0,1). Suppose that a sequence (Xn)n≥1 of nonnegative
random variables satisfies

a ≤ dP [Xn+1 ∈ ·|Xn, . . . ,X1]
dμ

≤ a−1

for all n ≥ 1, where P and μ are probability measures. Setting mμ = ∫
xdμ(x),

then P -a.s. one has that

amμ ≤ lim inf
n→∞

n∑
k=1

Xk/n ≤ lim sup
n→∞

n∑
k=1

Xk/n ≤ a−1mμ.

The key result for our proof comes in the next proposition, where a limiting but
possibly vanishing velocity is proven. For l ∈ Zd we will always assume (K)l (this
is not a restriction; see Section 2.2) and either (SM)C,g or (SMG)C,g . As a result

of Proposition 6.2, for L ∈ |l|1N we can construct the random variable τ
(L)
1 along

vector l.

PROPOSITION 6.5. Assume (K)l an either: (SM)C,g or (SMG)C,g . Then
there exists v ∈ Rd deterministic, such that P0-a.s.

(6.9) lim
n→∞

Xn

n
→ v.

PROOF. We complete the unit vector l
|l|2 to form an orthonormal base of Rd ,

which we will denote by V := { l
|l| ,w2, . . . ,wd−1}. We need the following claim

whose proof will be postponed.

For all vector w ∈ V, there exist Ĉ > 0 and L0 ∈ |l|1N so that for all L ≥ L0 one
has that

(6.10) lim sup
n→∞

∣∣∣∣κL Xτn · w
n

− κLE0
[
Xτ1 · w|D′ = ∞]∣∣∣∣≤ e−ĈL.

Assuming the previous claim we can now prove the proposition. Pick a nonde-
creasing sequence (kn)n≥0, such that

τkn ≤ n < τkn+1.

By the very definition of the renewal structure, we have P 0-a.s: kn goes to ∞ as
n → ∞. Furthermore, with the help of Corollary 3.3 we can use Lemma 6.4 to see
that

lim sup
n→∞

∣∣∣∣κL τn

n
− κLE0

[
τ1|D′ = ∞]∣∣∣∣≤ e−CL
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and by the claim

lim sup
n→∞

∣∣∣∣κL Xτn

n
− κLE0

[
Xτ1 |D′ = ∞]∣∣∣∣

2
≤ e−CL,

for a suitable positive constant C. Therefore, using the decomposition

Xn

n
= Xτkn

kn

kn

n
+ Xn − Xτkn

n
,

there exists a positive constant C6, so that

lim sup
n→∞

∣∣∣∣Xn

n
− E0[Xτ1 |D′ =]

E0[τ1|D′ = ∞]
∣∣∣∣≤ e−C6L,

where we have used that

lim sup
n→∞

∣∣∣∣Xn − Xτkn

n

∣∣∣∣= 0

which will be implied once we show that there exists C7 > 0 such that

lim sup
n→∞

∣∣∣∣
∑

1≤j≤n sup0≤i≤τ1
|Xi◦θτj

− Xτj
|

n
− E0

[
sup

0≤i≤τ1

|Xi ||D′ = ∞
]∣∣∣∣

≤ e−C7L.(6.11)

In order to prove (6.11), we apply Lemma 6.4 together with Corollary 3.3 once
again, to get

lim sup
n→∞

∣∣∣∣
∑

1≤j≤n sup0≤i≤τ1
|Xi◦θτj

− Xτj
|

n
− E0

[
sup

0≤i≤τ1

|Xi ||D′ = ∞
]∣∣∣∣

≤ 1 − exp
(−2e(−gL)/4),

which implies the claim in (6.11). The proposition follows now by letting (recall
our notation τ1 = τ

(L)
1 )

(6.12) v = lim
L→∞

E0[Xτ1 |D′ = ∞]
E0[τ1|D′ = ∞] ,

with the convention that L in the limit runs over N|l|1. To see that such limit exists,
notice

lim
L→∞E0

[
τ1|D′ = ∞]= sup

L∈N|l|1
E0

[
τ1|D′ = ∞] ∈ (0,∞].

Setting

T1(L) := κLE0
[
τ1|D′ = ∞]

,
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by virtue of Proposition 4.4, we have two cases: limL→∞T1(L) = ∞ or there ex-
ists k3 ∈ [k2,∞) such that limL→∞T1(L) = k3. In the former case, using Corol-
lary 4.3 we have that v = 0. In the second case, we define for integer n > 1

vn :=
E0

[
X

τ
(n|l|1)

1
|D′ = ∞

]
E0[τ (n|l|1)

1 |D′ = ∞]
.

From the very definition of the renewal structure, we have that for large integers
m > n ∣∣E0

[
X

τ
(m|l|1)

1
− X

τ
(n|l|1)

1
|D′ = ∞]∣∣

2

≤ E0

[
sup

0≤i≤τ
((m−n)|l|1)

1

|Xn|2|D′ = ∞
]

(6.13)

and

(6.14) E0
[
τ

(m|l|1)
1 − τ

(n|l|1)
1 |D′ = ∞]≤ E0

[
τ

((m−n)|l|1)
1 |D′ = ∞]

.

Using both estimates (6.13)–(6.14) and Proposition 4.4, it is routine to prove that
for large m and n with m > n,

|vm − vn| ≤ 2κn|l|1 .

Therefore the limiting velocity in (6.12) exists.
We now turn to prove claim (6.10). Let w ∈ V and set (with the notation τ0 = 0)

Zi = κL(Xτi
− Xτi−1) · w

for integer i ≥ 1. Using a coupling decomposition argument (cf. [4]), we can en-
large the probability space where the sequence (Zi)i≥1 is defined. We will still
denote the new probability measure by P 0 in order to support the following:

• There exist two i.i.d. sequences (Z̃i)i≥1 and (
i)i≥1 such that Z̃1 is dis-
tributed according to the distribution P 0[Z1 ∈ ·|D′ = ∞], and 
1 is Bernoulli dis-
tributed with values onto {0,1} and success probability P 0[
1 = 1] = exp(−c̃L),
for some suitable and fixed constant c̃ > 0.

• There exists a third sequence (Wi)i≥1 so that for i ≥ 1 one has that 
i is
independent of Wi and the σ -algebra Gi defined by

Gi = σ
(
(Zj )j≤i−1, (
j )j≤i−1

)
,

with the convention that G1 is the trivial σ -algebra.
• In the new probability space, for integer i ≥ 1 one has the decomposition

Zi = Z̃i(1 − 
i) + 
iWi.
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Therefore, one has on that large probability space

(6.15)
κLXτn · w

n
=
∑n

i=1 Zi

n
=
∑n

i=1 Z̃i

n
−
∑n

i=1 Z̃i
i

n
+
∑n

i=1 
iWi

n
.

We are going now to estimate each one of the terms to the right of (6.15). The
strong law of large numbers implies that P 0-a.s.

(6.16)

∑n
i=1 Z̃i

n
→ E0[Z̃1] = E0

[
κLXτ1 · w|D′ = ∞]

and together with Corollary 4.3, P 0-a.s. we have∑n
i=1 Z̃i
i

n

→ E0[Z̃1
1] ≤ (
E0

[(
κLXτ1 · w)2|D′ = ∞]

exp(−c̃L)
) 1

2

≤ exp(−cL),(6.17)

for some positive constant c.
We next turn to bound from above the third expression on the rightmost side of

6.15. This will be performed following a close argument to the one of [4], pages
894–895. Define W̄i := E0[Wi |Gi] and Mn = �n

i=1(
i(Wi − W̄i))/i, for integers
i and n greater than 0. Notice that Mn is a Gn-martingale centered at 0. We apply
the Burkholder–Gundy maximal inequality (cf. [27], Section 14.18) and Corollary
4.3 to get

E0

[∣∣∣sup
n≥1

Mn

∣∣∣2]≤ C8E0

[∑
i≥1

(
i(Wi − W̄i))
2

i2

]
≤ C̃3

for some constants C8 and C̃3. This implies that Mn almost surely converges to an
integrable random variable. Consequently, applying now Kronecker’s lemma (cf.
[27], Section 12.7), one has that P 0-a.s. Hn := �n

i=1(
i(Wi − W̄i))/n → 0. Since

i is independent of Gi , using Corollary 4.3 and Jensen’s inequality we get

|W̄i | ≤ (
E0

[|Wi |2|Gi

]) 1
2

≤ (
exp

(
e−(gL)/4)E0

[(
κLXτ1 · w)2|D′ = ∞]) 1

2 exp
(

c̃L

2

)
≤ C4 exp

(
c̃L

2

)
,

where C4 > 0 is a constant. Hence
n∑

i=1


iW̄i

n
≤ C4 exp

(
c̃L

2

) n∑
i=1


i

n

LLN→ C4 exp
(
− c̃L

2

)
.(6.18)

Thus, combining (6.16), (6.17) and (6.18) we have proven claim (6.10). �
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We need another auxiliary result in order to prove that the limiting velocity v is
a nonvanishing one. Specifically, Kalikow’s condition admits a ballistic character-
ization (cf. [26], pages 1861–1862 for a proof):

LEMMA 6.6. For any finite connected set U containing 0,

(6.19) E0[TU ] ≤ 1

δ
E0[XTU

· l],
where δ is as in (6.1) and TU is defined in (2.2).

We are now ready to prove Theorem 6.3.

PROOF OF THEOREM 6.3. Fixing L ≥ L0 with L ∈ |l|1N, we consider for
m ≥ 0, the nondecreasing sequence k′

m, P0-almost surely tending to ∞ as m does
(where as before, we use the convention τ

(L)
0 = 0), such that

τ
(L)
k′
m

≤ T l
m < τ

(L)
k′
m+1.

From the definitions of the sequence (τ
(L)
k )k≥1 (and from now on, we drop the

index L for τ
(L)
k and X

(L)
τk ), one has that P 0-a.s.

l · Xn < l · Xτk
≤ l · Xn′ for 0 ≤ n < τk ≤ n′.

Hence, for m ≥ 0, P 0-a.s.

(6.20) Xτk′
m

· l ≤ XT l
m

· l ≤ Xτk′
m+1

· l
and on the other hand, one has

(6.21) |XTm · l − m|2 ≤ sup
i∈[1,d]

|li |.

Notice first that by Lemma 6.4 and Corollary 3.3 one has that P 0-a.s.

(6.22) lim inf
m→∞

k′
m

Xτk′
m

· l ≥ exp
(−e−(gL)/4) 1

E0[Xτ1 · l|D′ = ∞] ,

together with

(6.23) lim inf
m→∞

τk′
m

k′
m

≥ exp
(−e−(gL)/4)E0

[
τ1|D′ = ∞]

.

Moreover, a similar argument to the one in (6.11) gives the following upper bound
P 0-a.s.:

(6.24) lim sup
m→∞

|(Xτk′
m+1

− Xτk′
m
) · l|

m
= 0.
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Hence, by the very definition of the sequence k′
m, estimates (6.22), (6.23) and

(6.24), we have P 0-a.s.

lim inf
m→∞

T l
m

m
≥ lim inf

m→∞
τk′

m

m
= τk′

m

k′
m

k′
m

Xτk′
m

· l
Xτk′

m
· l

m

≥ lim inf
m→∞

τk′
m

k′
m

lim inf
m→∞

k′
m

Xτk′
m

· l lim inf
m→∞

Xτk′
m

· l
m

≥ (
exp

(−e−(gL)/4)E0
[
τ1|D′ = ∞])( exp(−e−(gL)/4)

E0[Xτ1 · l|D′ = ∞]
)
,(6.25)

where to obtain the rightmost estimate in (6.25), we have used

lim inf
m→∞

Xτk′
m

· l
m

= lim inf
m→∞

(XT l
m

· l
m

−
(XT l

m
− Xτk′

m
) · l

m

)
= 1

which is satisfied, by virtue of (6.21) and (6.24). Furthermore, by an exhaustion
of {y ∈ Zd : y · l < m} by finite subsets of Zd , one sees that applying Lemma 6.19
and Fatou’s lemma

E0

[
lim inf
m→∞

T l
m

m

]
≤ lim inf

m→∞ E0

[
T l

m

m

]
≤ 1

δ
.

Therefore, Kalikow’s condition implies that there exists a constant f = f (g, d,

l, δ) which does not depend on L so that

E0
[
κLτ1|D′ = ∞]≤ f.

As a result v := limL→∞ E0[Xτ1 |D′ = ∞]/E0[τ1|D′ = ∞] is a nonvanishing lim-
iting velocity and furthermore, there exists a constant k4 > 0 such that v · l ≥ k4 by
Proposition 4.4. �
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