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STEIN KERNELS AND MOMENT MAPS

BY MAX FATHI

CNRS and Université de Toulouse

We describe a construction of Stein kernels using moment maps, which
are solutions to a variant of the Monge–Ampère equation. As a consequence,
we show how regularity bounds in certain weighted Sobolev spaces on these
maps control the rate of convergence in the classical central limit theorem,
and derive new rates in Kantorovitch–Wasserstein distance in the log-concave
situation, with explicit polynomial dependence on the dimension.

1. Introduction. Stein’s method is a set of techniques introduced by Stein
[36, 37] to estimate distances between probability measures. We refer to the survey
[33] for an overview. We shall be interested in one particular way of implementing
Stein’s method in the Gaussian setting, based on the notion of Stein kernels. Let μ

be a probability measure on R
d . A matrix-valued function τμ : Rd −→ Md(R) is

said to be a Stein kernel for μ (with respect to the standard Gaussian measure γ

on R
d ) if for any smooth test function f taking values in R

d , we have

(1)
∫

x · f dν =
∫

〈τμ,∇f 〉HS dν.

For applications, it is generally enough to consider the restricted class of test func-
tions f satisfying

∫
(|f |2 + ‖∇f ‖2

HS) dμ < ∞, in which case both integrals in (1)
are well-defined as soon as τμ ∈ L2(μ), provided μ has finite second moments.

The motivation behind the definition is that, since the Gaussian measure is the
only probability distribution satisfying the integration by parts formula

(2)
∫

x · f dγ =
∫

div(f ) dγ ,

a Stein kernel τμ coincides with the identity matrix, denoted by Id, if and only
if the measure μ is equal to γ . Hence, the Stein kernel can be used to control
how far μ is from being a standard Gaussian measure in terms of how much it
violates the integration by parts formula (2). It appears implicitly in many works
on Stein’s method, and has recently been the topic of more direct investigations [1,
12, 24, 25, 30, 31]. The one-dimensional case, where Stein kernels can be explicitly
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constructed from the density, has been extensively studied [28]. It has applications
to central limit theorems [29], concentration inequalities [25, 32, 35] and random
matrix theory [10].

A related quantity is the Stein discrepancy

S(μ)2 := inf
τ

∫
|τ − Id |2 dμ,

where the infimum is taken over all possible Stein kernels for μ, since they may
not be unique. This quantity has two main interesting properties: it controls the L2

Kantorovitch–Wasserstein distance to the Gaussian [25], and is monotone along
the central limit theorem [12].

The aim of this work is to describe how we can construct Stein kernels using
a correspondence between centered measures and convex functions, known as the
moment measure problem, or moment map problem, which we shall describe in
Section 2.1. The main motivation was to give a construction of Stein kernels using
optimal transport maps, of which these moment maps can be viewed as a variant.
The Stein kernels we shall build have several nice properties that do not seem to
be necessarily satisfied by previous constructions. Most notably, they shall always
takes values that are symmetric, nonnegative matrices. As an application, we shall
derive in Section 3 new bounds on the rate of convergence in the multidimensional
central limit theorem when the random variables are log-concave, with explicit
dependence on the dimension. Their main interest is that the dependence on the
dimension will improve on a more general result of Bonis [7] in the particular case
of log-concave measures. In particular, we shall derive the sharp dependence on
the dimension in the uniformly log-concave setting. In Section 4, we shall dis-
cuss a multidimensional generalization of a result of Saumard [35] on weighted
Poincaré inequalities involving Stein kernels, and in Section 5 we shall briefly
point out a construction of Stein kernels with respect to non-Gaussian reference
measures.

2. Stein kernels and moment maps.

2.1. Moment maps. In [11] (revisited in [34], and following earlier works [4,
14, 27, 39]), the following theorem was established.

THEOREM 2.1 (Cordero-Erausquin and Klartag [11]). Let μ be a centered
measure, with finite first moment and that is not supported on a hyperplane. Then
there exists a convex function ϕ such that μ is the pushforward of the probability
measure with density e−ϕ by the map ∇ϕ. This function ϕ is called the moment
map of μ.

This result can be seen as a variant of the optimal transport problem, where
instead of specifying two measures, we fix a target measure, and look for both an



2174 M. FATHI

original measure and a transport map while imposing the constraint that the map
should be the gradient of the potential of the measure. Indeed, here ∇ϕ is also the
Brenier map from optimal transport theory [38] sending e−ϕ onto μ.

The convex function given by this theorem may well not be smooth, most no-
tably when μ is a combination of Dirac masses. For example, if μ is the uniform
measure on {−1,+1}, viewed as a subset of R, the convex function is ϕ(x) = |x|
on R, which is not smooth at the origin. This will cause some issues later on.
We can however assume it satisfies some weak continuity property on the bound-
ary of its support (the notion of essential continuity, which is described in [11]).
A smooth version of this theorem, under extra assumptions, was previously ob-
tained by Berman and Berndtson [4], with earlier results due to Wang and Zhu
[39] and Donaldson [14]:

THEOREM 2.2 (Berman and Berndtson [4]). Assume that μ is supported on a
compact, open convex set, and that it has a smooth density ρ on its support. Assume
moreover that C ≥ ρ ≥ C−1 on the whole support, for some positive constant C.
Then the convex function ϕ of Theorem 2.1 is smooth and supported on the whole
space R

d .

In this result (which is based on Caffarelli’s regularity theory for Monge-
Ampère PDEs), the convexity of the support plays an essential role to guarantee
smoothness of the map.

We can reformulate those statements as pertaining to solutions of the PDE

(3) e−ϕ = ρ(∇ϕ)det
(∇2ϕ

)
.

This PDE is a variant of the Monge–Ampère equation, sometimes called the
toric Kähler–Einstein equation. It has been studied in complex geometry, where it
is related to the construction of differential structures with specific properties on
toric varieties [i.e., quotients of the complex space (C∗)n]. More recently, it has
been studied in [19–21, 23], where it was used to establish functional inequalities
for log-concave measures.

A relevant remark to the connection with Stein’s method that we shall describe
in the next section is that the standard Gaussian measure is the only fixed point
of the map μ → e−ϕ , where ϕ is the moment map of μ. So in some sense the
moment map already contains some information on how far the measure is from
being Gaussian.

In general, unless the dimension is 1, solutions to (3) are not explicit. One par-
ticular case where it can be determined is for the uniform measure on the unit cube
[−1,1]d , where the moment map is of the form ϕ(x) = ∑d

i=1 2 log cosh(xi/2)+C.
This can be generalized to uniform measures on centered parallelepipeds by com-
posing this function with the appropriate linear map.
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2.2. The connection with Stein kernels. For now, assume that μ has a density
with respect to the Lebesgue measure which is strictly positive on its support, and
is such that the convex function ϕ given by Theorem 2.1 is C2. There exists an
optimal transport map sending μ onto e−ϕ , which is necessarily ∇ϕ∗, where ϕ∗ is
the Legendre transform of ϕ. ϕ∗ is then also C2: since ∇ϕ∗ is the inverse of ∇ϕ

(this is a property of the Legendre transform) and Hessϕ is strictly positive on the
whole space, ∇ϕ∗ inherits C1 regularity from ∇ϕ.

THEOREM 2.3. If μ has a density ρ with respect to the Lebesgue measure,
and the solution ϕ to the PDE (3) is C2 and supported on the whole space R

d ,
then Hessϕ(∇ϕ∗) is a Stein kernel for μ. Moreover, the Stein discrepancy satisfies

S(μ)2 ≤
∫

|Hessϕ − Id |2HSe−ϕ dx.

In particular, if μ is supported on a compact, convex set and has density
bounded from above and below by positive constants, this result applies.

The regularity assumptions can be weakened, indeed if
∫ |Hessϕ − Id |2HSe−ϕ dx

is finite and μ has a continuous density, then the result will still hold. For general
measures with density and full support, the moment map is only in W

2,1
loc in the

interior of its support [13], which is not enough to make the proof work. But this is
not surprising, since for heavy-tailed random variables the CLT may fail, and this
would rule out existence of a Stein kernel belonging to L2(μ). For background on
regularity theory for Monge–Ampère PDEs, we refer to the lecture notes [16].

REMARK 2.1. An interesting byproduct of this result is that the Stein kernel
obtained in this way takes values that are symmetric and positive matrices. In par-
ticular, this explains why the explicit formula for Stein kernels in dimension one
defines a nonnegative function. This remark will play an important role later on,
notably in Section 4.

REMARK 2.2. The Stein kernel constructed this way seems to be in general
different from the one constructed in [12]. Since when the density is supported on
a compact, convex set and has density bounded from above and below by positive
constants a Poincaré inequality holds, existence of a Stein kernel in that situation
was already proven in [12]. It is the particular structure of the kernel we obtain here
that makes it interesting, as we will see when obtaining new rates of convergence
in the CLT.

PROOF OF THEOREM 2.3. Since ϕ is smooth, we have the Stein equation∫
∇ϕ · f e−ϕ dx =

∫
Tr(∇f )e−ϕ dx.
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There is no boundary term remaining when integrating by parts because ϕ grows at
least linearly at infinity, since it is convex and

∫
e−ϕ dx < ∞ (see, e.g., Lemma 2.1

in [18]).
Fix g a smooth function, and take f (x) = g(∇ϕ(x)) in the above equation. We

get ∫
∇ϕ(x) · g(∇ϕ(x)

)
e−ϕ dx =

∫ 〈
Hessϕ,∇g(∇ϕ)

〉
e−ϕ dx.

Applying the change of variable y = ∇ϕ∗(x), which sends μ onto e−ϕ , we obtain∫
x · g(x) dμ =

∫ 〈
Hessϕ

(∇ϕ∗)
,∇g

〉
dμ

which ensures that Hessϕ(∇ϕ∗) = (Hessϕ∗)−1 is indeed a Stein kernel for μ.
The bound on the Stein discrepancy is an immediate consequence of the change

of variable: since Hessϕ(∇ϕ∗) is a Stein kernel, by definition of the Stein discrep-
ancy we have

S(μ)2 ≤
∫ ∣∣Hessϕ

(∇ϕ∗) − Id
∣∣2
HS dμ =

∫
|Hessϕ − Id |2HSe−ϕ dx. �

The well-known Caffarelli contraction theorem [9] states that the Brenier map
sending the standard Gaussian map onto a uniformly log-concave measure is Lip-
schitz. Klartag [19] proved an analogous estimate for moment maps, which leads
to the following bound on Stein kernels in that setting.

COROLLARY 2.4. Assume that μ is uniformly convex, that is it is of the form
e−V dx with HessV ≥ ε Id for some ε > 0. Then there exists a Stein kernel with
values that are positive symmetric matrices, and which is uniformly bounded, that
is, ‖τ‖op ≤ ε−1.

In dimension one, this result was pointed out in [35]. Such pointwise estimates
can be used to derive properties of the density and concentration inequalities [32]
and isoperimetric inequalities [35].

PROOF OF COROLLARY 2.4. The Stein kernel described in this statement is
the one built in Theorem 2.3; all that we need to do is to prove the uniform bound
on its operator norm. In [19], it was shown that under the uniform convexity as-
sumption, the moment map indeed satisfies the uniform bound ‖Hessϕ‖op ≤ ε−1,
and the conclusion follows. �

It would also be possible to build a Stein kernel using the construction of [10,
30] and the optimal transport map sending the standard Gaussian measure onto μ.
Existence could be proved in the same setting, but there would be two main down-
sides: we do not have an analogue to Proposition 3.2 below for those maps, so we



STEIN KERNELS AND MOMENT MAPS 2177

would only get a useful quantitative estimate in the uniformly convex setting, and
due to the particular form of the construction of [10], even in the latter setting the
quantitative estimates would get worse. But we would still get existence of a Stein
kernel that is bounded for uniformly log-concave measures.

3. Application to rates of convergence in the central limit theorem. We
now show how the construction of Stein kernels discussed in the previous section
leads to new estimates on the rate of convergence in the central limit theorem. The
family of distances we shall consider to estimate the distance in the CLT are the
Kantorovitch–Wasserstein distances from optimal transport theory, defined as

Wp(μ,ν) := inf
π

∫
‖x − y‖p

2 π(dx, dy),

where the infimum runs over all couplings of the measures μ and ν. We refer to
the textbook [38] for background on optimal transport.

The following statement is a variant of a result of [25] on how Lp bounds on
a Stein kernel control Wasserstein distances to the standard Gaussian measure,
which we shall prove in Section 3.2.

PROPOSITION 3.1. Let τ be a Stein kernel for the probability measure μ on
R

d . Then for any p ≥ 2 we have

Wp(μ,γ ) ≤ Cp

(∫
‖τ − Id‖p

HS dμ

)1/p

with Cp = (
∫ |x|p dγ1)

1/p .

The original result of [25] bounds the Wasserstein distance of order p by∫ ∑
i,j |τij − δij |p dμ, but with an extra prefactor that depends on the dimension.

We shall use the above variant instead because it leads to a better dependence on
the dimension for the quantitative CLT we shall later obtain. The prefactor Cp

behaves like O(p).
These results mean that if we get estimates on Hessϕ, averaged out against

e−ϕ , we can deduce estimates on transport distances. It turns out that when μ is
log-concave and compactly supported, such an estimate was already obtained by
Klartag [19].

PROPOSITION 3.2. Let μ be a log-concave probability measure, supported
on an open bounded convex set, and with a density bounded from above and be-
low. Then the essentially continuous convex function ϕ for which μ is the moment
measure is C2 and satisfies for any p ≥ 1 and any θ ∈ Sd−1,∫ ∣∣〈Hessϕ

(∇ϕ∗)
θ, θ

〉∣∣p dμ ≤ 8pp2p

(∫
(x · θ)2 dμ

)p

.
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We shall give a proof of Klartag’s estimate in Section 3.1. It will be the same
proof as in [19], reformulated in a different language, which may be of interest to
some readers.

REMARK 3.1. The results of [19] assume C∞ smoothness, relying on a result
of [4] to deduce C∞ smoothness of ϕ. Since we actually only need C2 smoothness
of ϕ, it turns out we only need continuity of the density.

Combining our construction of Stein kernels, Klartag’s estimate and basic ar-
guments from Stein’s method, we get the following application to rates of conver-
gence in the CLT.

THEOREM 3.3. Let μ be an isotropic log-concave probability measure with
strictly positive and continuous density on its support. Let μn be the law of
n−1/2 ∑n

i=1 Xi , where the Xi are i.i.d. random variables with law μ. Then for
any p ≥ 2 we have

Wp(μn, γ ) ≤ C̃(p)
d

n1/2

with C̃(p) is a constant that depends only on p (and which grows like p4). In
particular, this estimate does not depend on μ.

In the case p = 2, the main result of [12] combined with the best currently
known estimate on the Poincaré constant of log-concave measures [26] leads to a
rate of convergence of the form Cd3/4n−1/2, which is better than the one we ob-
tain here. The Kannan–Lovasz–Simonovits conjecture predicts that the Poincaré
constant of isotropic log-concave measures is bounded by some universal con-
stant, independently of the dimension, so we expect a rate of order

√
d/n. In a far

more general setting, Bonis [7] proved the sharp rate of convergence for measures
with moments of order p + 2, and with a prefactor behaving like d5/4 for general
isotropic log-concave measures. In dimension one, Bobkov [5] also obtained the
sharp rate for measures with finite moment.

In the situation where μ is uniformly log-concave, the uniform estimate on the
operator norm of our Stein kernel leads to an improved dependence on the dimen-
sion.

THEOREM 3.4. Let μ = e−V be an isotropic probability measure with strictly
positive and continuous density on its support, and assume that HessV ≥ ε Id for
some ε > 0. Then for any p ≥ 2, we have

Wp(μn, γ ) ≤ C(p)

√
d

εn1/2 .
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In this result, the dependence on the dimension is actually sharp, since it cannot
be improved for product measures. It extends a result of [12] for p = 2 to all p ≥ 2.
Once again, the constant C(p) we obtain grows like p4.

PROOF OF THEOREM 3.3. We first work in the situation where μ has a com-
pact support and a density bounded away from zero. Let τ = (∇2ϕ∗)−1, which
we know is a Stein kernel for μ. Then as is standard, τn(x) := E[ 1

n

∑n
k=1 τ(Xi)|

1√
n

∑n
k=1 Xi = x] is a Stein kernel for μn. See, for example, the proof of The-

orem 3.2 in [12] for a proof of this statement. Applying Jensen’s inequality, we
have ∫

|τn − Id |pHS dμn ≤
∫ ∣∣∣∣1

n

∑
τ(xi) − Id

∣∣∣∣p
HS

dμ⊗n(x1, . . . , xn),

and Rosenthal’s inequality for sums of independent random variables [17] yields∫
|τn − Id |pHS dμn ≤ Kp

p n−p/2
∫

|τ − Id |pHS dμ

with Kp = O(p) the best constant in the Rosenthal inequality. This argument was
already used in the discussion below Theorem 2.8 in [25]. We then have, given an
orthonormal basis (θ1, . . . , θd) of Rd ,∫ (∑ |τij − δij |2

)p/2
dμ ≤ 2p

(
dp/2 +

∫ (∑ |τij |2
)p/2

dμ

)

≤ 2p

(
dp/2 +

∫ (∑
i

〈τθi, θi〉
)p

dμ

)

≤ 2p

(
dp/2 + d(p−1)

∑∫
〈τθi, θi〉p dμ

)

≤ 2pdp(
1 + 8pp2p)

.

Hence

(4)
∫ ∣∣(τn)ij − δij

∣∣p
HS dμn ≤ Kpn−p/22pdp(

1 + 8pp2p)
and, therefore,

Wp(μn, γ ) ≤ 2Kp

(
1 + 8pp2p)1/p

Cp

d

n1/2 .

For the general case, when the support of μ is not necessarily compact, we can
take a sequence of compact sets F� that converge to the support of μ, and apply our
results to the restriction of μ to F� (renormalized to remain a centered, isotropic
probability measure, so that F� has to be modified to take this into account, but this
modification will remain convex and compact). The estimate on the Wasserstein
distance does not depend on F�, so that we can let � go to infinity and the result
remains valid. �
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The proof of Theorem 3.4 follows the exact same argument except that we use
the improved bound of Corollary 2.4, so we omit it.

3.1. Proof of Proposition 3.2. We shall now give a proof of Proposition 3.2,
omitting many computations taken from [20, 22]. While it is not written in the
same way as in [19], it is the same proof, and we stress it is not due to us. We de-
scribe it in this form so that it is more easily readable for people with a knowledge
of Bakry–Emery calculus.

PROOF OF PROPOSITION 3.2. We introduce the Hessian metric on R
d given

by the Riemannian metric tensor g = (∇ϕ)−1. A result of Kolesnikov [22] as-
serts that when μ is log-concave and satisfies the regularity conditions of The-
orem 2.2, then the metric-measure space M = (Rd, g, e−ϕ) has Ricci curvature
bounded from below by 1/2. Moreover, if we consider the Laplacian on M , which
is given by the formula

Lϕf = Tr
(∇2f (∇ϕ)−1) + ∇ logρ(∇ϕ) · ∇f

then one can check that

Lϕ∂eϕ = −∂eϕ; 
(∂eϕ) = ∂2
eeϕ;

where 
 is the squared norm of the gradient with respect to the metric g. These
computations can be found in [20, 22]. We can then use tools from Bakry–Émery
theory to obtain estimates on eigenfunctions of the Laplacian for spaces with pos-
itive curvature to deduce the desired bound. Indeed, if we denote by Pt the semi-
group acting on functions induced by Lϕ , we have for any locally Lipschitz func-
tion f


(Ptf ) ≤ 1

2(et − 1)
Pt

(
f 2);

see Theorem 4.7.2 in [2]. Taking f = ∂eϕ, since it is an eigenfunction of Lϕ associ-
ated to the eigenvalue 1, we have Pt∂eϕ = e−t ∂eϕ. Therefore, 
(Ptf ) = e−2t ∂2

eeϕ

and for any t > 0 and p ≥ 1 we have

e−2pt (∂2
eeϕ

)p ≤
(

1

2(et − 1)

)p(
Pt

(
(∂eϕ)2))p ≤

(
1

2(et − 1)

)p

Pt

(
(∂eϕ)2p)

.

Hence after integrating, for any t > 0 we have∫ (
∂2
eeϕ

)p
e−ϕ dx ≤

(
e2t

2(et − 1)

)p ∫
(∂eϕ)2pe−ϕ dx.

Taking t = ln 2, the result then follows from the bound

‖f ‖2p,e−ϕ ≤ 2p‖f ‖2,e−ϕ

for any eigenfunction of Lϕ associated with the eigenvalue −1, when a logarithmic
Sobolev inequality with constant 1/2 holds; see Section 5.3 of [2]. �
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3.2. Proof of Proposition 3.1. Following the argument at the start of the proof
of Proposition 3.4 in [25], if we consider X a random variable distributed ac-
cording to μ, Z a standard Gaussian random variable independent of X, and
Xt := e−tX + √

1 − e−2tZ, we have when p ≥ 2,

Wp(μ,γ )

≤
∫ ∞

0

e−2t

√
1 − e−2t

E

[(
E

[
d∑

i=1

(
d∑

j=1

(
τij (X) − δij

)
Zj

)2∣∣∣Xt

])p/2]1/p

dt.

Applying Jensen’s inequality, this is bounded by

∫ ∞
0

e−2t

√
1 − e−2t

E

[(
d∑

i=1

(
d∑

j=1

(
τij (X) − δij

)
Zj

)2)p/2]1/p

dt.

We can integrate in time, and we obtain

Wp(μ,γ ) ≤ E
[∥∥(τ − Id)Z

∥∥p]1/p
.

Since for a standard Gaussian random variable on R
d and a symmetric matrix

A, we have E[‖AZ‖p] ≤ C
p
p‖A‖p

HS, this implies the desired bound. This moment
bound can be proved by considering the case where A is diagonal and applying the
lower bound in the Marcinkiewicz–Zygmund inequality for sums of independent
random variables with its sharp constant for symmetric random variables [15].

4. A remark on the connection with weighted Poincaré inequalities. The
main result of [12] gives a construction of Stein kernels for measures satisfying a
converse-weighted Poincaré, that is,

inf
c∈R

∫
(f − c)2ωdμ ≤

∫
|∇f |2 dμ

for some fixed weight function w :Rd −→R
∗+, and all smooth scalar functions f .

This notion generalizes the classical Poincaré inequality, which corresponds to the
case of constant weight function.

In [35], Saumard proved that in dimension one, the Stein kernel τ (if the density
is sufficiently nice) gives rise to the following weighted Poincaré inequality:

Varμ(f ) ≤
∫

τ
(
f ′)2

dμ.

Of course, this inequality exploits the fact that the (unique) Stein kernel in dimen-
sion one is nonnegative. Moreover Saumard showed that conversely the argument
of [12] could be modified to prove that if such an inequality holds for some weight
replacing τ , then a Stein kernel exists (although the argument seems to guaran-
tee the validity of the Stein identity for a possibly smaller class of test functions,
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depending on the behavior of the weight). The proof of the weighted Poincaré in-
equality makes use of the formula for Stein kernels in dimension one, and does not
seem to readily extend to higher dimension.

The Brascamp–Lieb inequality [8] asserts that for any strictly log-concave prob-
ability measure ν = e−V , we have a weighted Poincaré-type inequality

Varν(f ) ≤
∫ 〈

(HessV )−1∇f,∇f
〉
dν.

This inequality has many connections with geometric and functional inequalities
(see, e.g., [6]), and has found applications in the study of long-time behavior of
stochastic processes.

It turns out that, combined with our construction of Stein kernels, this inequality
immediately yields a multidimensional analogue of Saumard’s result, at least as
soon as the moment map is nice enough. Indeed, by taking ϕ the moment map
associated with a centered probability measure ν, setting τ = Hessϕ(∇ϕ∗) as our
Stein kernel, we have

Varν(f ) = Vare−ϕ (f ◦ ∇ϕ)

≤
∫ 〈(∇2ϕ

)−1∇2ϕ∇f (∇ϕ),∇2ϕ∇f (∇ϕ)
〉
e−ϕ dx

=
∫ 〈∇f (∇ϕ),∇2ϕ∇f (∇ϕ)

〉
e−ϕ dx

=
∫

〈τ∇f,∇f 〉dν.

Hence we obtain a multidimensional generalization of Saumard’s result, albeit
for a specific choice of Stein kernel. Note that it is not clear at all that we should
expect general Stein kernels to take values that are positive matrices, so a similar
weighted Poincaré inequality for any kernel might not be true. In particular, it is
not clear at all that the Stein kernels constructed in [12] have such a property. But
in dimension one, since all possible Stein kernels match when the measure has a
density, this in particular gives an alternative proof of Saumard’s result.

5. Transporting Stein kernels for other reference measures. The abstract
setup of Stein’s method can be generalized to cover non-Gaussian reference
measures [3]. If we wish to compare some measure μ to a reference measure
μ0 = e−V dx, say for a smooth function V that is finite everywhere, then μ0 is
characterized by the integration by parts formula∫

∇V · f dμ0 =
∫

Tr(∇f )dμ0

which leads to a definition of Stein kernel as a matrix-valued function such that

(5)
∫

∇V · f dμ =
∫

〈τ,∇f 〉dμ.
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Assume that V is convex, C2 and that HessV > 0, and let μV be the push-
forward of μ by ∇V . Then for any vector-valued smooth function f , defining
g(x) = f (∇V ∗(x)), we have∫

∇V (x) · f (x) dμ =
∫

∇V (x) · g(∇V (x)
)
dμ

=
∫

x · g(x) dμV ,

so if we take τ̃V ,γ to be a Stein kernel for μV with respect to the Gaussian measure
(assuming for now it exists), we get∫

∇V (x) · f (x) dμ =
∫

〈τ̃V ,γ ,∇g〉dμV

=
∫ 〈

τ̃V ,γ

(∇V (x)
)
,∇g

(∇V (x)
)〉

dμ

=
∫ 〈

τ̃V ,γ

(∇V (x)
)
,
(
HessV (x)

)−1∇f (x)
〉
dμ

=
∫ 〈

τ̃V ,γ

(∇V (x)
)(

HessV (x)
)−1

,∇f (x)
〉
dμ

and, therefore, τ̃V ,γ (∇V (x))(HessV (x))−1 is a Stein kernel for μ relative to μ0.
To be valid, in addition to the regularity and convexity assumptions on V , this
arguments requires that τ̃V ,γ exists. It is okay if it is only defined in the sense of
distributions (since ∇V is smooth and bijective, composing a distribution with it
is possible).
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