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Flow cytometry is a high-throughput technology used to quantify multi-
ple surface and intracellular markers at the level of a single cell. This enables
us to identify cell subtypes and to determine their relative proportions. Im-
provements of this technology allow us to describe millions of individual cells
from a blood sample using multiple markers. This results in high-dimensional
datasets, whose manual analysis is highly time-consuming and poorly repro-
ducible. While several methods have been developed to perform automatic
recognition of cell populations most of them treat and analyze each sample
independently. However, in practice individual samples are rarely indepen-
dent, especially in longitudinal studies. Here we analyze new longitudinal
flow-cytometry data from the DALIA-1 trial, which evaluates a therapeutic
vaccine against HIV, by proposing a new Bayesian nonparametric approach
with Dirichlet process mixture (DPM) of multivariate skew ¢-distributions
to perform model based clustering of flow-cytometry data. DPM models di-
rectly estimate the number of cell populations from the data, avoiding model
selection issues, and skew 7-distributions provides robustness to outliers and
nonelliptical shape of cell populations. To accommodate repeated measure-
ments, we propose a sequential strategy relying on a parametric approxima-
tion of the posterior. We illustrate the good performance of our method on
simulated data and on an experimental benchmark dataset. This sequential
strategy outperforms all other methods evaluated on the benchmark dataset
and leads to improved performance on the DALIA-1 data.

1. Introduction. Flow cytometry is a high-throughput technology used to
quantify multiple surface and intracellular markers at the level of single cell. More
specifically, cells are stained with multiple fluorescently-conjugated monoclonal
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antibodies directed to cell surface receptors (such as CD4) or intracellular mark-
ers (such as cytokines) to determine the type of cell, their differentiation and their
functionality. With the improvement of this technology leading currently to the
measurement of up to 18 markers at the same time (using 18 colors for flow cytom-
etry), multiparametric description of millions of individual cells can be generated.

Analysis of such data is generally performed manually. This results in analyses
that are:

(i) poorly reproducible [Aghaeepour et al. (2013)],
(i1) expensive (highly time-consuming) and consequently
(iii) only focused on specific cell populations (i.e., specific combination of
markers) ignoring other cell populations.

There has been an effort in the recent years to offer automated solutions to over-
come these limitations [Aghaeepour et al. (2013), Gondois-Rey et al. (2016),
Lo, Brinkman and Gottardo (2008)]. Quite a lot of different methodological ap-
proaches have been proposed to perform automatic recognition of cell popu-
lations from flow cytometry data. Clustering methods related to the k-means
were proposed, including L2kmeans [Aghaeepour et al. (2013)] and flowMeans
[Aghaeepour et al. (2011)]. Model-based clustering methods relying on finite mix-
ture models, such as flowCust/merge [Lo, Brinkman and Gottardo (2008), Finak
et al. (2009)], FLAME [Pyne et al. (2009)] and SWIFT [Naim et al. (2014)], were
also proposed as well as dimension reduction methods such as MM and MMPCA
[Sugar and Sealfon (2010)], SamSPECTRAL [Zare et al. (2010)] and FLOCK
[Qian et al. (2010)]. All those approaches require the number of cell populations
to be fixed in advance, determining its optimal value according to various crite-
ria. Finally, several authors [Chan et al. (2008), Cron et al. (2013), Dundar et al.
(2014), Lin et al. (2013)] proposed nonparametric Bayesian mixture models of
Gaussian distributions that directly estimate this number of cell populations. All
of these methods, except those of Lin et al. (2013), of Cron et al. (2013) and of
Dundar et al. (2014), were evaluated by Aghaeepour et al. (2013).

However, there is still room for improvement, especially in the estimation of
the suitable number of cell populations as well as in the identification of rare cell
populations. In addition most of those previous approaches have been proposed
for single sample analysis except for Cron et al. (2013) who proposed to use hier-
archical Dirichlet process mixture (DPM) of Gaussian distribution models to ana-
lyze multiple samples simultaneously. Yet, in the case of repeated measurements
of flow cytometry data, it can be useful to perform a sequential analysis as the
samples are acquired (samples are often collected across several time points in a
population of patients). In such a case one would want to use previously acquired
samples as prior information in the analysis of a new sample. In this paper the
proposed approach includes a strategy of sequential approximations of the poste-
rior distribution for multiple data samples, presented in Section 3.2. Our approach
offers three advantages:
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(i) it quantifies the uncertainty of the posterior clustering,
(ii) it can make use of prior knowledge to inform on the structure of the data,
potentially building up on previous analyses, and
(iii) it allows the analysis of multiple samples without requiring to process all
the data at once, alleviating both the computational burden and the necessity for
all data to be readily available before any analysis can be performed.

The automatic recognition of cell populations from flow cytometry data is a dif-
ficult task which can be seen as an unsupervised clustering problem [Lo, Brinkman
and Gottardo (2008)]. It is characterized by two big challenges. First, the total
number of cell populations to identify is unknown. Second, the empirical distri-
butions of the populations are heavily skewed, even when optimal transformation
of the data is applied [Lo, Brinkman and Gottardo (2008), Pyne et al. (2009), Lo
and Gottardo (2012)], and the data generally present many outliers. To address all
these points together, our approach considers a Bayesian nonparametric model-
based approach, where the flow cytometry data are assumed to be drawn from a
DPM of multivariate skew-¢-distributions. First, this approach enables the number
of cell populations to be inferred from the data and avoids the challenging problem
of model selection. Second, it has been demonstrated that the Gaussian assump-
tion for the parametric shape of a cell population fits poorly flow cytometry data
[Mosmann et al. (2014)]. Indeed, even after state-of-the-art transformation of raw
cytometry data, such as the biexponential transformation [Finak et al. (2010)], cell
population distributions are typically skewed. Pyne et al. (2009) have showed the
advantages of the skew ¢-distribution [Azzalini and Capitanio (2003)] for mod-
eling cell populations in flow cytometry data. Numerous parameterizations have
been proposed for the multivariate skew ¢-distribution [Azzalini et al. (2016), Lee
and McLachlan (2013), Murray, Browne and McNicholas (2014), McLachlan and
Lee (2016)], most notably the restricted and the unrestricted multivariate skew -
distributions (denoted rMST and uMST respectively) which are generalizations of
the skew normal distribution [Azzalini and Dalla Valle (1996)] with a heavier tail
(making it more robust to outliers). Lee and McLachlan (2016) recently proposed
the canonical fundamental skew ¢-distribution (CFUST) as a generalization that
encompasses both the rMST and the uMST. To avoid identifiability issues asso-
ciated with the uMST and the CFUST [Lee and McLachlan (2016)], in this work
we will adopt the rMST formulation, and in the remainder of this article we will
be referring to the rMST formulation when mentioning the skew ¢-distribution.
Frithwirth-Schnatter and Pyne (2010) proposed a finite mixture model of rMST.
We extend this model to the infinite mixture case in a Bayesian nonparametric
framework. Of interest quantifying the uncertainty around the estimated partition
is straightforward in this Bayesian paradigm, from the posterior distribution of
the partition. While a skewed distribution could be fitted either by a skew ¢ or by
a mixture of Gaussians, using the latter requires to estimate separately the over-
all number of clusters and the skewness. On the contrary, our proposed approach
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jointly estimates the two thus taking into account the uncertainty associated with
both. Furthermore, the use of a Bayesian framework enables the use of informative
priors. In the case of repeated measurements for instance, we propose to sequen-
tially estimate the posterior partition of flow cytometry using posterior information
from time point ¢ as prior information for time point ¢ + 1.

The proposed method is evaluated on simulated data and on a benchmark clin-
ical dataset from Aghaeepour et al. (2013) and is applied to analyze an original
experimental longitudinal dataset from a phase I HIV clinical trial DALIA-1 (fea-
turing depending time-course data where the sequential approach is of particular
interest). The method is implemented in the R package NPflow, available on the
CRAN at https://CRAN.R-project.org/package=NPflow.

2. Statistical model.
2.1. Motivation and problem set-up.

2.1.1. Motivating example. Our motivating example for developing a sequen-
tial model-based clustering approach for longitudinal flow cytometry data comes
from the DALIA-1 trial. DALIA-1 is a phase I trial for a therapeutic vaccine can-
didate against HIV [Lévy et al. (2014)]. This vaccine candidate was based on ex
vivo generated interferon-« dendritic cells loaded with HIV-1 lipopeptides and ac-
tivated with lipopolysaccharide. The primary objectives of this trial were to eval-
uate the safety of the vaccine strategy and to evaluate the immune response. As
part of this trial, 12 HIV positive patients had their cellular populations quantified
repeatedly by flow cytometry, generating an important amount of data, for which
comprehensive manual gating would take several months. Hence, we aimed at de-
veloping an automatic gating approach suitable for longitudinal measurements.

2.1.2. Problem set-up and notation. We first consider a single sample per sub-
ject, that is, one data matrix where each row represents a cell and each column con-
tains the fluorescence intensities for one marker measured by the flow cytometer.
The case of the sequential estimation of multiple datasets will be addressed in Sec-
tion3.2. We let y,. € R4 denote the data, c =1, ..., C corresponding to the vector
of fluorescence intensities measured for the cell c¢. Typically, the observations y,
have been transformed (to help visualization and gating) from the raw measure-
ments of fluorescence through a biexponential or Box—Cox transformation [Finak
et al. (2010)]. We assume that these observations are independent and identically
distributed from some unknown distribution F':

@.1) yIGHF fore=1,...,C

where F is a mixture of distributions

22) F(y) = /@ fo(1G(dh)
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with fp(y) is a known probability density function parameterized by § € ® a set
of parameters and defining the shape of a cluster. G is the unknown mixing dis-
tribution which carries the weights and locations of the mixture components. In a
parametric approach G = Z,le mid9,, Where 1y is the weight of the kth mixture
component. Maximum likelihood or Bayesian estimates of F can be derived for
such models [Biernacki, Celeux and Govaert (2000)]. In a nonparametric perspec-
tive (where the number of clusters is unknown) G is written as an infinite sum of
atoms—G = Z,j;’? 7k 8, - The Dirichlet process is a conjugate prior for the infinite
atomic discrete distribution which makes it very useful for unsupervised clustering
approaches.

2.2. Dirichlet process mixture of skew t-distributions.

2.2.1. Dirichlet process mixture. We assume that the random mixing distribu-
tion G is drawn from a Dirichlet process [Ferguson (1973)]:

(2.3) G ~ DP(a, Gy),

where DP(«, Gg) denotes the Dirichlet process of concentration parameter o > 0
and base probability distribution Gg. A draw G ~ DP(«a, Gg) is almost surely
discrete [Sethuraman (1994)] and gives a nonparametric mixing distribution G =

Z,J{;O‘l’ g, With 6 - Gy, and w = (g )k=12,... drawn from a so-called “stick-
breaking” distribution written as the Griffiths—Engen—McCloskey (GEM) distribu-
tion [Pitman (2006)]. The model defined by Equations (2.1), (2.2) and (2.3) yields
the following hierarchical model known as a Dirichlet process mixture model
[Escobar and West (1995), Lo (1984), Teh (2010)] with a Gamma hyperprior on «:

(2.4a) ola, b ~ Gamma(a, b),

(2.4b) 7 |a ~ GEM(a),

(2.4¢) 0r | Go~ Gy fork=1,2,...,

(2.4d) Lo | T~ Mult(rr) forc=1,2,...,C,
(2.4e) ye I e, (0k) ~ fo,, forc=1,2,...,C,

where £, is the latent cluster-allocation for cell c. Go tunes the prior informa-
tion about the cluster locations while « tunes the prior distribution on the overall
number of clusters K that will be uncovered within C cells. In particular we have

E[K|Cl=Y{0) 2%

2.2.2. The multivariate skew t-distribution. Friihwirth-Schnatter and Pyne
(2010) rely on the parametrization of the multivariate skew normal (SA) of
Azzalini and Dalla Valle (1996) to propose a truncated normal random-effects
model representation of this distribution, ¥ = & + ¢ Z + & with Z ~ N0 +00(0, 1)
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and € ~ N(0,%). If X ~ SN(0,R,7) and W ~ Gamma(5, 5) [Azzalini and
Capitanio (2003)] show that ¥ = & + \/LWX then follows a multivariate skew 7-

distribution, Y ~ ST (¢, £, n, v). Following Frithwirth-Schnatter and Pyne (2010),
we write the density of a multivariate skew ¢-distribution as

fsT(y;:§,2,7,v)
(2.5)

- +d
=2fT<y;s,sz,v>Tv+d(nw (y—8) v"+Q )
y

with @ = 4/Diag(2), Oy = (y — £YQ '(y — &), fr the multivariate Student -
distribution density and 7,44 the cumulative distribution function of the stan-
dard univariate Student’s f¢-distribution with v + d degrees of freedom. This
parametrization of the skew ¢ is referred as the restricted multivariate skew -
distribution by Lee and McLachlan (2013), and it admits the following random-
effect model representation:

(2.6) Y=§+¢JLW+JLW'

2.2.3. Dirichlet process mixture of multivariate skew t-distributions. Combin-
ing model (2.4e) with a random-effects model representation (2.6) of the skew
t-distribution, we propose the following model:

(2.7a) o|a, b ~ Gamma(a, b),
(2.7b) 7 | o~ GEM(@) fork=1,2,...,
(2.7¢) E Vi Xk, vie ~ Gy forc=1,2,...,C,
(2.7d) Lo | T~ Mult(r),
(2.7e) Vel Le, {vi} ~ Gamma(ﬂ, %)
22

1
@.76) s e~ Ao s 0 y—),

C

1
(2'7g) yc | ZC, Vm Scy (§k7 ¢k7 Zk) NN(&[C + ‘lﬁzcs()? y_zﬁc),

c

where Gy is the product of a structured normal-inverse-Wishart (sNiW) and of a
prior on v: Go = sNiW (&, Yo, Bo, Ao, A0) Po,v-

2.3. Discussion on the model assumptions. In model (2.7g) the base distri-
bution parameter Go conveys the prior information on the cluster parametric
shape. For the parameters &, ¥ and Xj, we have conditional conjugacy with
the random-effects model representation using joint priors taking the form of a
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structured normal-inverse-Wishart distribution; see Online Supplement A for de-
tails [Hejblum et al. (2019)]. Frithwirth-Schnatter and Pyne (2010) pointed out that
the prior on X can have a big impact on the posterior number of clusters. Indeed,
setting the scale of the prior on Xj too small will result in an inflated number
of clusters in the posterior, whereas too large values tend to cluster all the obser-
vations together. Adding a Wishart hyperprior on X that carries on conjugacy
with the inverse-Wishart enables us to reduce this impact of the prior [Frithwirth-
Schnatter and Pyne (2010), Huang and Wand (2013)]. Assuming prior indepen-
dence between each v and also from the three parameters mentioned above, we
can use any of the three priors proposed in Juarez and Steel (2010) for instance
(such as an objective Jeffrey’s prior—see Online Supplement A [Hejblum et al.
(2019))).

3. Estimation.

3.1. Posterior estimation via Gibbs sampling. For making inference on the
model (2.7g), MCMC methods can be used to sample the partition {€;.c} and
the corresponding cluster parameters {6,'} = {{&;}, {¥}}, {Z}}, {v/}} from the
marginal posterior distribution. Extending results from Friihwirth-Schnatter and
Pyne (2010) and Caron, Teh and Murphy (2014), it is possible to implement an
efficient and valid partially collapsed Gibbs sampler with a Metropolis—Hastings
step [Van Dyk and Jiao (2015), van Dyk and Park (2008)]. The use of slice sam-
pling [Kalli, Griffin and Walker (2011), Neal (2003)] enables the straightforward
parallelization of the latent allocation sampling (thanks to conditional conjugacy)
in such an MCMC algorithm (even in the skew normal and skew ¢ cases) which
can lead to substantial computation speed up when the number of observations
C (cells) per sample increases. Each iteration of our Gibbs sampler proceeds in
the following order (details are provided in Online Supplement A [Hejblum et al.
(2019)]):

1. Update the concentration parameter « given the previous partition {£1.c}
using the data augmentation technique from Escobar and West (1995).

2. Update the mixing distribution G given «, {&;}, {¥;}, {Z«} and the base dis-
tribution G via slice sampling.

3. For c=1,..., C update the individual skew parameter s. given {&,}, {¥;},
{X} and the new £.

4. Update {&,}, {¥,}, {Z«} given the base distribution G, the updated partition
{£1.c} and the updated individual skew parameters {si.c}.

5. Finally jointly update the degrees of freedom and the individual scale factors
({ve}, {y1:.c}) in an Metropolis—Hastings (M—H) within Gibbs step. First an M—H
step is performed to update the {v}, where the {y;.c} are integrated out, imme-
diately followed by a Gibbs step to sample the {y;.c} from their full conditional
distribution. This ensures that the reduced conditioning performed in the M—H step
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does not change the stationary distribution of the Markov chain [Van Dyk and Jiao
(2015)]—see Online Supplement A [Hejblum et al. (2019)].

3.2. Sequential posterior approximation. In flow cytometry experiments it is
common to actually have multiple datasets y) (with i =1, ..., ) correspond-
ing to multiple individuals or repeated measurements of the same individual. In
such cases it is of interest to use previous time points or previous samples results
as prior information in order to leverage all the information available to estimate
the mixture. However, incorporating prior information into Dirichlet process mix-
ture models is not straightforward [Kessler, Hoff and Dunson (2015)]. Here we
propose to use the posterior MCMC draws obtained from previous dataset y) as
prior information to analyze the next dataset y*1_ To do so, first we consider the
hierarchical model using all observations from both y® and y“*D at once:

(3.1a) o ~ Gamma(a, b),
(3.1b) Gla ~ DP(a, Gy),
(3.10) y@, yithiG /@ fo(2dG®).

We are interested in estimating p(Gly(i), YDy o p(GlyD)p(yitD|G). The
idea is to first approximate p(G|y)) by a Dirichlet process through MCMC draws
from the model described in Section 2.1,

(3.2) p(Gly?) :/DP(G;O{,Gl)Gamma(a;al,bl)da,

where G1, a; and by are parameters to be estimated from the MCMC approxima-
tion of the true posterior:

@) @\ and l;] can be taken as MLE estimates from the MCMC samples al);

(i) Gy is a parametric approximation of the posterior mixing distribution G
(the true posterior is not suitable for being directly plugged in as a base distribution
parameter of another D P as it is nonparametric).

In the case of a skew z-distribution mixture model, we approximate G| with the
following joint distribution, G| 2~ (sNiW, Py, ), where Py, is the chosen prior for
the skew z-distribution degrees of freedom. To estimate G, we estimate the max-
imum a posteriori (MAP) from the posterior MCMC samples; see Online Supple-
ment B [Hejblum et al. (2019)].

Now, using this posterior parametric approximation, we have the same hierar-
chical model as before but conditional on y®:

(3.3a) ozly(i) ~ Gamma(dy, by),
(3.3b) Gle, y) ~DP(a, G),

(3.30) yHD|G, y@ - f@ fo()dG®).
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Note, that under this approximate posterior model, the cluster parameters @} are
i.i.d.according from G . Such an approach can be iterated a number of times, if for
instance several time points are observed, iteratively approximating the successive
posteriors. This approach allows us to finally account for all the previous infor-
mation in the mixture model estimation. This model hypothesizes that all the data
are originating from the same mixture model and, as more data are acquired, the
successive posteriors will concentrate: since the overall posterior is our target; this
concentration effect is desired. When the data are anticipated to be nonstationary,
which might be the case in real life applications, we propose a forgetful factor by
adding a vague component in the base distribution of the prior.

3.3. Point estimate of the clustering. Getting a representation of the partition
posterior distribution is difficult [Medvedovic and Sivaganesan (2002)]. One can
use the maximum a posteriori, that is, using the point estimation from the MCMC
sample that maximizes the posterior density. However, this ignores all the informa-
tion about the uncertainty around the partition provided by the Bayesian approach.

Another way is to rather consider a co-clustering posterior probability (or simi-
larity) matrix ¢ on each pair (c, d) of observations. Such a matrix can be estimated
by averaging the co-clustering matrices from all the explored partitions in the pos-
terior MCMC draws

. 1Y
(3.4) led = ¥ 2%&‘)4}%
i=

where N is the number of MCMC draws from the posterior, i the MCMC itera-
tion and 8y; = 1 if kK =1, 0 otherwise. An optimal partition point estimate {zﬂzc}
can then be derived in regard of this similarity matrix through stochastic search
with the explored partitions in the posterior MCMC draws [Miiller and Vannucci
(2006)] by using a pairwise coincidence loss function [Lau and Green (2007)]
such as the one proposed by Binder (1978, 1981) which optimizes the Rand index
[Fritsch and Ickstadt (2009)]

c-1 ¢
(3.5) {ticy= argmin DD 26,00 — L)
(0 yee M)y =1 d=c+1 ¢

The computational complexity of this approach, however, is of the order O(N C?)
due to the necessity of computing all the similarity matrices.

A different optimal partition point estimate {€1.c} can also be derived using the
F-measure as our loss function. The F-measure is widely used as a way to sum-
marize the accordance between two methods, one being considered as a reference
(gold standard). It is the harmonic mean of the precision and recall

2Pr Re

3.6 = —.
(3.6) Pr+Re
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In order to use the F-measure to evaluate our clustering method, we rely on the
definition proposed in the online methods from Aghaeepour et al. (2013). In this
unsupervised clustering setting the precision Pr is the number of cells correctly
assigned to a given cluster divided by the total number of cells assigned to that
cluster (also called Positive Predictive Value). The recall Re is the number of
cells correctly assigned to a given cluster divided by the number of cells that
should be assigned to this cluster according to the gold standard. Since in our
problem the labels of the different clusters are exchangeable, the F-measure is
computed for each combination of the reference clusters and the predicted clus-
ters. Let G = {g1, ..., gn} be a set of m reference clusters, and H = {hy, ..., h,}
be set of n predicted clusters. For each combination pair of a reference cluster g,
and a predicted cluster %, the F-measure is computed as follows:

Nh Nh
% and Re(h,, g;) = 184 N Ay

2Pr(gqv hi’)Re(gqa hl”)

Pr(gg, hr) +Re(gy, hy) .

This F-measure is comprised in [0, 1] and the closer it is to 1 the better the
agreement is between the predicted cluster and the reference cluster. The total

F-measure for a predicted partition H given a gold-standard G is then defined as
the weighted sum of the best matched F-measure

(3.7) Pr(hy. 8) =

’

|gq|

(3.8) Fhr,8q) =

(3.9) Fot(H, G) = Z|gq max  F(hr, gq)-

This total F-measure is again between 0 and 1, and the closer it is to 1 the better
the predicted partition agrees with the gold standard. The optimal partition point
estimate in respects of this /-measure is then obtained with the partition that max-
imizes its average J-measure over all the other explored partitions in the posterior
MCMC draws

(3.10) (0y.c) = arg max —Z]—}ot ({el0), (e,
ettty
J#t
Note the F-measure is computed here only between sampled partitions, and a
gold-standard partition is unnecessary.

4. Simulation study.

4.1. Weakly informative prior. First, to assess the performance of the Dirich-
let process mixture of skew ¢-distributions model in a simple clustering case, 100
simulations in two dimensions were performed. In each simulation 10,000 ob-
servations were drawn from five distinct clusters representing respectively 50%,
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FI1G. 1. Partition point estimate from one of the 100 two-dimensional simulations with weakly in-
formative prior (10,000 observations with five clusters representing respectively 50%, 29.9%, 15%,
5% and 0.1% of the data). (A) well-separated clusters; (B) overlapping clusters.

29.9%, 15%, 5% and 0.1% of the data. After 20,000 MCMC iterations (18,000
iterations burnt and a thinning of 20 gave 100 partitions sampled from the poste-
rior; the chain was initialized with 30 clusters), we compared the partition point
estimate obtained from our approach with the true clustering of the simulated data
through the resulting mean F-measure. When the clustering problem is well char-
acterized, that is, when the true clusters are well separated [Tibshirani, Walther and
Hastie (2001)], the median F-measure was 0.998. When considering overlapping
clusters, that is, when the true clustering is not entirely recoverable, our approach
was nevertheless able to maintain good performance with a median F-measure
of 0.895. Figure 1 shows an example of the partition point estimate obtained for
one of those simulation runs in both cases, where one can see that NPflow is able
to correctly recover the five clusters, including the extremely small one of 0.1%
(green diamond). Of course, if this extremely small cluster was not well separated
from larger clusters in Figure 1(B), the data would hardly contain any evidence of
its presence, and the model would likely not recover it. As a comparison k-means
only reached a F-measure of 0.920 and 0.823 in the well separated and overlap-
ping scenarios respectively, in spite of having the correct number (five) of true
clusters specified.

Comparison between skew-t and Gaussian kernels. Figure 2 illustrates the im-
provement due to the use of a skew ¢ kernel over a Gaussian kernel in a nonpara-
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FI1G. 2.  Comparison of a Gaussian kernel versus a skew t kernel. (A), (B) well-separated clusters;
(C), (D) overlapping clusters.

metric mixture model. Figures 2(A) and 2(C) both show that the F-measure is
significantly better with a skew ¢ kernel than with a Gaussian kernel for well-
separated and overlapping settings respectively, while Figures 2(B) and 2(D) both
show that skew ¢ kernels allow to accurately recover the true number of clusters in
a majority of cases for well-separated and overlapping settings respectively. Both
criteria also highlight the increased difficulty in the overlapping setting as the clus-
tering problem becomes less well characterized.

4.2. Sequential posterior approximation plugged-in as informative prior. To
illustrate how the sequential posterior approximation strategy compares to the
standard weakly informative prior setting, we ran simulations where we consid-
ered two samples derived from the same infinite mixture model. The first sample
is simulated for a time ¢ and the second sample at # + 1. As all observations orig-
inate from the exact same distribution, regardless of the sample, the hypothesis of
the sequential posterior approximation strategy is satisfied. One of the major gains
observed is the time to convergence for the partition. Using an informative prior
derived from the sample at time # to estimate the partition of the sample from ¢ + 1
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FIG. 3. Mean F-measure according to the number of observations available at time t + 1, while
1000 observations are available at time t over 300 simulations.

makes it more than three time faster to converge according to the Gelman—Rubin
statistics.

In further simulations we also investigated the performance of this sequential
posterior approximation strategy. As opposed to using the standard weakly infor-
mative prior strategy, it shows substantial gains when the amount of information
brought by the prior is substantial compared to the amount available from the data
at time ¢ + 1 alone. As the amount of information available at time ¢ + 1 increases,
the gain from using this strategy can become less noticeable, as shown using the
F-measure in Figure 3. But even when the number of observations available at
time ¢t + 1 is the same as at time ¢, the accuracy for rare cell populations is still
improved by using an informative prior. This is not necessarily visible at the scale
of the total F-measure because it is masked by the larger clusters. However, when
computing a limited F-measure that only takes into account smaller clusters, the
use of an informative prior in this sequential strategy seems to always improve the
clustering accuracy for smaller clusters; see Supplementary Figure S1 in Online
Supplement C [Hejblum et al. (2019)].

5. Application to real datasets.

5.1. Benchmark dataset. The Graft versus Host Disease (GvHD) dataset is a
public dataset that was first analyzed (manually gated) in Brinkman et al. (2007)
with the objective of identifying a cellular signature that correlates or predicts the
GvHD. These GvHD data were used as benchmark data in the FlowCAP challenge
[Aghaeepour et al. (2013)]. Flow cytometry data was collected for 12 samples, and
original manual gates are being regarded as the true cell clustering (actually a con-
sensus over eight different manual operators). In an attempt to mitigate further
the well known reproducibility issues with manual gating [Ge and Sealfon (2012),
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TABLE 1
Mean F-measures across all the 12 samples from the
GvHD benchmark dataset

Method F-measure®

NPflow 0.85 (0.80, 0.90)
NPflow-seq* 0.89 (0.85, 0.94)
NPflowG 0.61 (0.57, 0.66)
ADICyt 0.81 (0.72, 0.88)
CDPf 0.52 (0.46, 0.58)
FLAMET 0.85(0.77, 0.91)
FLOCK' 0.84 (0.76, 0.90)
ﬂowClust/MergeT 0.69 (0.55, 0.79)
flowMeans 0.88 (0.82, 0.93)
FlowVBT 0.85 (0.79, 0.91)
L2kmeans’ 0.64 (0.57, 0.72)
MMt 0.83 (0.74, 0.91)
MMPCAT 0.84 (0.74, 0.93)
SamSPECTRAL 0.87 (0.81, 0.93)
SWIFT' 0.63 (0.56, 0.70)
HDPGMM+ 0.35 (0.30, 0.39)

*95% Confidence Intervals are calculated on 10,000 bootstrap
samples of the F-measures.

+methods that do not analyze the 12 samples independently.
Testimates from Aghaeepour et al. (2013).

festimates are from Johnsson, Wallin and Fontes (2016).

Aghaeepour et al. (2013)], only the most concordant clusters between the eight
gatings (i.e., with an F-measure above 0.8) were used for comparison with the
automated results, as was done in Aghaeepour et al. (2013). The data were down-
loaded from the FlowCAP project website (http://flowcap.flowsite.org/) as part
of the FlowCAP-I challenge (http://flowcap.flowsite.org/codeanddata/FlowCAP-1.
zip). Table 1 shows the performance of our proposed approach NPflow on this
dataset compared to the other approaches reviewed by Aghaeepour et al. (2013).
The F-measure is computed for all samples available for a given dataset and the
mean over all samples is reported, as well as a bootstrap 95% confidence interval.
No algorithm is performing significantly better than NPflow thus placing NPflow
among the top methods for automatic gating. Additionally, we compared the use of
a skew ¢ kernel by NPflow with the use of a Gaussian kernel (denoted NPflowG in
Table 1), the latter reaching a mere 0.61 F-measure on average thus demonstrating
the benefit of the skew ¢-distributions for modeling real flow-cytometry data.
Thanks to its use of sequential information, the sequential posterior model
would ideally improve results by analyzing each individual sample sequentially.
The GvHD benchmark data are not longitudinal, but, as long as the different sam-


http://flowcap.flowsite.org/
http://flowcap.flowsite.org/codeanddata/FlowCAP-I.zip
http://flowcap.flowsite.org/codeanddata/FlowCAP-I.zip

652 B. P. HEJBLUM ET AL.

ples are similar enough, one can expect an improvement. On this benchmark our
sequential approach NPflow-seq reaches a mean/-measure of 0.89 (0.85, 0.94)
compared to a value of 0.85 (0.80, 0.90) with the standard NPflow model (Table 1).
Of note the only other approach not analyzing the samples independently, and that
relies on a hierachical Dirichlet process Gaussian mixture model (HDPGMM),
only reaches a value of 0.35 (0.30, 0.39)—Cron et al. (2013), Johnsson, Wallin
and Fontes (2016). This illustrates that integrating all samples in a simultaneous
model does not necessarily yield better results (e.g., if the global model across
samples is misspecified or not flexible enough). For the GVHD benchmark dataset
our sequential strategy thus exhibits the highest F-measure compared to standard
NPflow and to HDPGMM as well as to competing unsupervised automatic gating
methods evaluated in Aghaeepour et al. (2013) that however analyze each sam-
ple independently. It is worth noting that since our sequential strategy performs
sequential approximations of the posterior and provides intermediate results for
each sample, the order in which observations are included can have an impact (es-
pecially for the first sample). Here we analyzed the GvHD samples in their original
order as provided by their identifiers in FlowCAP-I (from 001 to 012).

5.2. Original DALIA-1 data: A longitudinal real data study. We applied our
method to analyze an original dataset from DALIA-1, a phase I trial evaluating
a therapeutic vaccine against HIV [Lévy et al. (2014)]. For our purpose here we
are interested in the 12 HIV positive patients who had their cellular populations
quantified at 18 time points during the trial. More specifically, we focused on two
time points (at week 24 and week 26 of the trial) immediately following antiretro-
viral treatment (HAART) interruption which took place at week 24. Following this
interruption, the increase of viral replication is associated with changes in cell pop-
ulations [Thiébaut et al. (2005), Lévy et al. (2012)]. Here we especially looked at
the CD4+ effector T-cells, defined as CD45RA+CD27— among the CD3+CD4+
cells [Larbi and Fulop (2014)], that are one of the first cell populations to be af-
fected during the viral rebound [Lévy et al. (2012)]. Since flow-cytometry mea-
surements were repeated at each time point for each patient, we used the sequen-
tial strategy at week 26 in the hope to use the information from week 24 to better
identify the CD4+ effector T-cell population at the next time point. Figure 4 illus-
trates the overall efficiency gain at week 26 from using the sequential strategy. The
average limited F-measure (considering available manual gating as gold standard)
on those 12 samples is 0.58 for NPflow with a noninformative prior and increases
to 0.63 with the sequential strategy. By comparison, flowMeans (the second best
method on the benchmark GvHD dataset) gives an average limited F-measure of
0.49 (see Online Supplement D for details). We also compared our approach to the
HDPGMM proposed by Cron et al. (2013) that is specifically focusing on small
cell populations (even if it had the lowest F-measure on the benchmark dataset—
see Table 1). In spite of this example representing its ideal use case, it performed
slightly worse than our approach giving an average limited F-measure of 0.62; see
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Online Supplement D for more details [Hejblum et al. (2019)]. Figure 5 gives an
example of a patient for who the sequential strategy was especially improving the
identification of the CD4+ effector T-cells. In this case the percentage of CD4+
effector T-cells was estimated at 31.7 by the manual gating, at 7.6 by NPflow and
at 38.1 by the sequential strategy. Figure 6 shows the slight increase (of about
2%) of CD4+ effector T-cell proportions after treatment interruption; see Online
Supplement D for more details [Hejblum et al. (2019)].

In addition to providing a point estimate of the partition, our method also quanti-
fies the uncertainty around the posterior clustering through posterior co-clustering
probabilities. Figure 7 displays such a co-clustering posterior probability matrix
where we can clearly identify four core clusters with some uncertainty between

Manual Gating NPflow NPflow seq

8 Cell population
N Identified T—eff
8 6 CD45RA+CD27-

© Other
4
4 6 8 10 4 6 8 10 4 6 8 10
CD45RA

FIG.5. CD3+4CD4+ cells of patient 3 from the DALIA-1 trial two weeks after HAART interruption
(at week 26).
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6. Discussion. We analyzed longitudinal flow cytometry data from the
DALIA-1 trial, focusing on the CD4+4 effector T-cell population among 12
HIV positive patients. Compared to state-of-the-art automatic gating approaches,
our sequential strategy using Dirichlet process mixtures of multivariate skew ¢-
distributions allowed a better recovery of the effector T-cell population after a
meaningful perturbation of this targeted population following HAART interrup-
tion, highlighting their expected increase.

Our proposed method extends the classical multivariate Dirichlet process
Gaussian mixture model to multivariate skew ¢-distribution mixtures, based on
Friihwirth-Schnatter and Pyne (2010) parametrization of the restricted multivariate
skew z-distribution [Lee and McLachlan (2013)]. Automatic gating of cell popu-
lations from flow cytometry data is an open research problem and the proposed
approach features two important characteristics for this task:

(i) it avoids the difficult issue of model selection by estimating directly the
number of components in the mixture;

(i1) it uses skew and heavy tailed distributions in the form of skew ¢-
distributions, of which the skew normal and the normal are particular cases.

Further domain-knowledge can be incorporated in the proposed model by spec-
ifying more informative priors on the Dirichlet process parameters for instance.
Thanks to the use of the rMST formulation of the skew ¢, we avoid the identifia-
bility issues mentioned by Lee and McLachlan (2016). Estimation of the pairwise
posterior co-clustering probabilities allows to quantify the uncertainty about the
posterior partition, and an optimal point estimate of the clustering is provided by
minimizing a cost function in regards to the average posterior co-clustering ma-
trix. We have developed and implemented an efficient collapsed Metropolis within
Gibbs sampler for estimating such models. One of the advantages of our proposed
sampler is the absence of label switching issue, as it uses directly the partition of
the data without having to deal with labels [Jasra, Holmes and Stephens (2005)].
The computational cost of fitting our model is linear in the number of observations
as well as in the number of clusters, whilst the computational cost of the partition
point estimate depends of the optimal criterion chosen. The use of state-of-the-art
MCMC techniques along with inner parallelization allow us to mitigate the com-
putational cost that comes with such approaches on large data. As an indication of
runtime, around 3000 MCMC iterations can be run on average for a real dataset of
around 30,000 observations over six dimensions using one Intel® Xeon® x 5675
processor for one hour. Besides, instead of using a partially collapse Gibbs sam-
pler algorithm, it could be of interest to also investigate the use of sequential Monte
Carlo algorithms, especially for the sequential modeling strategy or other possible
dynamic extensions of the model proposed here [Caron et al. (2008, 2017)].

In case of repeated measurements of flow cytometry data, we propose to use se-
quential parametric approximations of the posterior as refined informative priors.
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The proposed sequential analysis strategy enables to analyze each sample sequen-
tially, as the data are acquired. It does not require to wait for the last sample to
perform the automatic gating nor to analyze all data at once, but it still uses avail-
able prior knowledge. This contrasts with hierarchical extensions of the Dirichlet
Process Mixture Model such as those proposed by Cron et al. (2013) or Dundar
et al. (2014), where the complete dataset must be analyzed at once. This sequen-
tial strategy allows one to analyze the samples as they are acquired which can be
useful in clinical trials where there are often intermediate analyses for instance.
Moreover, in large studies the size of the data can make it challenging to analyze
all samples at once, and such a sequential approach then makes practical sense
[Huang and Gelman (2005)]. Futhermore, this use of sequentially informed pri-
ors does not face the usual complications of cluster matching arising when an
algorithm is run on each sample separately [Cron et al. (2013)]. In our simula-
tion study this sequential posterior approximation strategy improves the fit of the
model. In addition such a strategy exhibits accelerated convergence and greater
accuracy for small clusters, as long as the different samples are similar enough.
Besides, the parametric prior can also be specified to inform the model with ex-
pert knowledge, for example, to favor a range for the expected number of clusters.
On real flow-cytometry data we showed that the sequential strategy also improves
the clustering performances. On the benchmark dataset it outperformed all other
methods investigated in by Aghaeepour et al. (2013), and in the DALIA-1 trial the
sequential strategy also improved the automatic gating results. It is worth noting
however that in other cases, for instance if the data distributions were too different
between samples, the sequential posterior model would not necessarily improve
the clustering results and could even gave a diminished F-measure compared to
the nonsequential strategy.

Manual gating is still considered the gold standard when evaluating an auto-
matic gating strategy on real flow cytometry data. Yet one should keep in mind that
manual gating has reproducibility issues, often resulting in a partial and subjective
clustering [Aghaeepour et al. (2013), Ge and Sealfon (2012), Gondois-Rey et al.
(2016), Welters et al. (2012)]. Therefore using manual gating as the gold standard
might not be actually the best way to assess the performance of automatic gating
algorithms on real data because of its inherent flaws.

Mass cytometry is a technology very similar to flow cytometry. Using ions in
place of colors, CyTOF is able to measure up to 40 cell markers at once gener-
ating even more data than flow cytometry. Efficient automated gating method are
therefore all the more needed in the context of CyTOF [Melchiotti et al. (2017)].
The approach proposed here could be directly applied to such data. More gener-
ally, we propose here a framework for Dirichlet process mixtures of multivariate
skew z-distributions modeling that is suitable for any kind of data modeled as such
a mixture, especially when the number of mixture components is unknown. We
provide an efficient implementation of our method within the R package NPf1ow
that is available on CRAN at https://CRAN.R-project.org/package=NPflow.
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SUPPLEMENTARY MATERIAL

Online Supplement to “Sequential Dirichlet process mixtures of multivari-
ate skew 7-distributions for model-based clustering of flow cytometry data”
(DOI: 10.1214/18-A0OAS1209SUPP; .pdf). We provide additional mathematical
details for the proposed Gibbs samplers and the parameter estimations, as well as
additional plots showing the good performance of the sequential strategy.
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