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In the past few years, new technologies in the field of neuroscience have
made it possible to simultaneously image activity in large populations of neu-
rons at cellular resolution in behaving animals. In mid-2016, a huge reposi-
tory of this so-called “calcium imaging” data was made publicly available.
The availability of this large-scale data resource opens the door to a host of
scientific questions for which new statistical methods must be developed.

In this paper we consider the first step in the analysis of calcium imag-
ing data—namely, identifying the neurons in a calcium imaging video. We
propose a dictionary learning approach for this task. First, we perform im-
age segmentation to develop a dictionary containing a huge number of can-
didate neurons. Next, we refine the dictionary using clustering. Finally, we
apply the dictionary to select neurons and estimate their corresponding ac-
tivity over time, using a sparse group lasso optimization problem. We assess
performance on simulated calcium imaging data and apply our proposal to
three calcium imaging data sets.

Our proposed approach is implemented in the R package scalpel,
which is available on CRAN.

1. Introduction. The field of neuroscience is undergoing a rapid transforma-
tion; new technologies are making it possible to image activity in large popula-
tions of neurons at cellular resolution in behaving animals [Ahrens et al. (2013),
Prevedel et al. (2014), Huber et al. (2012), Dombeck et al. (2007)]. The resulting
calcium imaging data sets promise to provide unprecedented insight into neural
activity. However, they bring with them both statistical and computational chal-
lenges.

While calcium imaging data sets have been collected by individual labs for the
past several years, up until quite recently large-scale calcium imaging data sets
were not publicly available. Thus, attempts by statisticians to develop methods for
the analysis of these data have been hampered by limited data access. However,
in July 2016, the Allen Institute for Brain Science released the Allen Brain Ob-
servatory, which contains 30 terabytes of raw data cataloguing 25 mice over 360
different experimental sessions [Shen (2016)]. This massive data repository is ripe
for the development of statistical methods, which can be applied not only to the
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FIG. 1. In (a), we display sample frames from the raw calcium imaging video described in the text
in Section 4, and analyzed in greater detail in Section 6.2. We wish to construct a spatial map of the
neurons, like that shown in (b). As a by-product, we will also obtain a crude estimate of the calcium
trace for each neuron over time, as shown in (c).

data from the Allen Institute but also to calcium imaging data sets collected by
individual labs worldwide.

We now briefly describe the science underlying calcium imaging data. When a
neuron fires, voltage-gated calcium channels in the axon terminal open and cal-
cium floods the cell. Therefore, intracellular calcium concentration is a surrogate
marker for the spiking activity of neurons [Grienberger and Konnerth (2012)]. In
recent years genetically encoded calcium indicators have been developed [Chen
et al. (2013), Looger and Griesbeck (2012), Rochefort, Jia and Konnerth (2008)].
These indicators bind to intracellular calcium molecules and fluoresce. Thus, the
locations of neurons and the times at which they fire can be seen through a se-
quence of two-dimensional images taken over time, typically using two-photon
microscopy [Svoboda and Yasuda (2006), Helmchen and Denk (2005)].

A typical calcium imaging video consists of a 500 × 500 pixels frame over one
hour sampled at 15–30 Hz. A given pixel in a given frame is continuous valued,
with larger values representing higher fluorescent intensities due to greater calcium
concentrations. An example frame from a calcium imaging video is shown in Fig-
ure 1(a). We have posted snippets of the three calcium imaging videos analyzed in
this paper at www.ajpete.com/software.

On the basis of a calcium imaging video, two goals are typically of interest:

• Neuron identification: The goal is to assign pixels of the image frame to neurons.
Due to the thickness of the brain slice captured by the imaging technology, neu-
rons can overlap in the two-dimensional image. This means that a single pixel
can be assigned to more than one neuron. This step is sometimes referred to as
region of interest identification or cell sorting. An example of neurons identified
from a calcium imaging video is shown in Figure 1(b).

http://www.ajpete.com/software
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• Calcium quantification: The goal is to estimate the intracellular calcium con-
centration for each neuron during each frame of the movie. An example of these
estimated calcium traces is shown in Figure 1(c).

To a certain extent, these two goals can be accomplished by visual inspection.
However, visual inspection suffers from several shortcomings:

• It is subjective, and it is not reproducible. Two people who view the same video
may identify a different set of neurons or different firing times.

• It does not yield numerical information regarding neuron firing times, which
may be needed for downstream analyses.

• It may be inaccurate; for instance, a neuron that is very dim or that fires infre-
quently may not be identified by visual inspection.

• It is not feasible on videos with very large neuronal populations or very long
durations. In fact, a typical calcium imaging video contains 250,000 pixels and
more than 50,000 frames, making visual inspection essentially impossible.

In this paper we propose a method that identifies the locations of neurons. Pre-
vious proposals to automatically accomplish this task have been proposed in the
literature and are reviewed in Section 3. However, our method has several advan-
tages over competing approaches. Unlike many existing approaches, it:

• Involves few tuning parameters, which are themselves interpretable to the user,
can for the most part be set to default values and can be varied independently;

• Yields results that are stable across a range of tuning parameters;
• Is computationally feasible even on very large data sets; and
• Uses spatial and temporal information to resolve individual neurons from sets

of overlapping neurons without postprocessing.

The methods proposed in this paper can be seen as a necessary step that precedes
downstream modeling of calcium imaging data. For instance, there is substantial
interest in modeling functional connectivity among populations of neurons or us-
ing neural activity to decode stimuli [see, e.g., Ko et al. (2011), Mishchencko,
Vogelstein and Paninski (2011), Paninski, Pillow and Lewi (2007)]. However, be-
fore either of those tasks can be carried out, it is necessary to first identify the
neurons; this is the task that we consider in this paper.

The remainder of this paper is organized as follows. We introduce notation in
Section 2. In Section 3 we review related work. We present our proposal in Sec-
tion 4 and discuss the selection of tuning parameters in Section 5. We apply our
method to three calcium imaging videos in Section 6 and assess performance us-
ing simulated calcium imaging data in Section 7. We close with a discussion in
Section 8. Proofs are in the Supplementary Material [Petersen, Simon and Witten
(2018)].

2. Notation. Let P denote the total number of pixels per image frame and T

the number of frames of the video. We define Y to be a P ×T matrix for which the
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(i, j)th element, yi,j , contains the fluorescence of the ith pixel in the j th frame.

We let yi,· = (
yi,1 yi,2 . . . yi,T

)� represent the fluorescence of the ith pixel

at each of the T frames. We let y·,j = (
y1,j y2,j . . . yP,j

)� represent the
fluorescence of all P pixels during the j th frame. We use the same subscript con-
ventions in order to reference the elements, rows and columns of other matrices.

The primary goal of our work is to identify the locations of the neurons; as a
by-product we will also obtain a crude estimate of their calcium concentrations
over time: we view these tasks in the framework of a matrix factorization problem.
We decompose Y into a matrix of spatial components, A ∈ R

P×K and a matrix of
temporal components, Z ∈ R

K×T , such that

(1) Y ≈ AZ,

where K is the total number of estimated neurons. Note that a·,k specifies which
of the P pixels of the image frame are mapped to the kth neuron, and zk,· quan-
tifies the calcium concentration for the kth neuron at each of the T video frames.
We note that the true number of neurons is unknown and must be determined as
part of the analysis. The vectorization of the image frames in Y is simply for no-
tational convenience. In estimating A we will use spatial information from the
two-dimensional structure of the image frames.

3. Related work. There are two distinct lines of work in this area. The first
focuses on simply identifying the regions of interest in the video and then subse-
quently estimating the calcium traces. The second aims to simultaneously identify
neurons and quantify their calcium concentrations.

Methods that focus solely on region of interest identification typically construct
a summary image for the calcium imaging video and then segment this image us-
ing various approaches. For example, Pachitariu et al. (2013) calculate the mean
image of the video and then apply convolutional sparse block coding to identify
regions of interest. Alternatively, Smith and Häusser (2010) calculate a local cross-
correlation image, which is then thresholded using a locally adaptive filter to ex-
tract the regions of interest. Similar approaches have been used by others [Ozden
et al. (2008), Mellen and Tuong (2009)]. These region of interest approaches often
do not fully exploit temporal information; furthermore, they typically are unable
to resolve spatially-overlapping neurons.

We now focus on methods that simultaneously identify neurons and estimate
calcium concentrations. One of the first methods in this area was proposed by
Mukamel, Nimmerjahn and Schnitzer (2009). This method first applies princi-
pal component analysis to reduce the dimensionality of the data, followed by
spatio-temporal independent component analysis to produce spatial and temporal
components that are statistically independent of one another. Though this method
is widely used, it often requires heuristic postprocessing of the spatial compo-
nents, and typically fails to distinguish between spatially overlapping neurons
[Pnevmatikakis et al. (2016)].
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To better handle overlapping neurons, Maruyama et al. (2014) proposed a non-
negative matrix factorization approach, which estimates A and Z in (1) by solving

(2) minimize
A≥0,Z≥0,ab≥0

1

2

∥∥Y − AZ − abz
�
b

∥∥2
F .

In (2), the term abz
�
b is a rank-one correction for background noise; zb ∈ R

T is
a temporal representation of the background noise (known as the bleaching line
and estimated using a linear fit to average fluorescence over time of a background
region), and ab ∈R

P is a spatial representation of the background noise. Element-
wise positivity constraints are imposed on A, Z and ab in (1). While (2) can handle
overlapping neurons, there is no constraint on the sparsity of Z, and no effort to
ensure that the nonzero elements of A are sparse and spatially contiguous. Thus,
the estimated temporal components are very noisy, and the estimated spatial com-
ponents often require heuristic postprocessing.

To overcome these shortcomings, Haeffele, Young and Vidal (2014) modify (2)
so that the temporal components A are sparse, and the spatial components Z are
sparse and have low total variation. Recently, Pnevmatikakis et al. (2016) further
refine (2) by explicitly modeling the dynamics of the calcium when estimating
the temporal components Z and combining a sparsity constraint with intermediate
image filtering when estimating the spatial components A. Zhou et al. (2016) ex-
tend the work of Pnevmatikakis et al. (2016) to better handle one-photon imaging
data by: (i) modeling the background in a more flexible way, and (ii) introducing a
greedy initialization procedure for the neurons that is more robust to background
noise. Related approaches are taken by Diego et al. (2013), Diego and Hamprecht
(2014), Friedrich et al. (2015). Other recent approaches consider using convolu-
tional networks trained on manual annotation [Apthorpe et al. (2016)] and multi-
level matrix factorization [Diego and Hamprecht (2013)].

While these existing approaches show substantial promise and are a marked im-
provement over manual identification of neurons from the calcium imaging videos,
they also suffer from some shortcomings:

• The optimization problems [see, e.g., (2)] are biconvex. Thus, algorithms typi-
cally get trapped in unattractive local optima. Furthermore, the results strongly
depend on the choice of initialization.

• Each method involves several user-selected tuning parameters. There is no nat-
ural interpretation to these tuning parameters which leads to challenges in se-
lection. Furthermore, the tuning parameters are highly interdependent, so that
changing one tuning parameter may necessitate updating all of them. Moreover,
there is no natural nesting with respect to the tuning parameters. A slight in-
crease or decrease in one tuning parameter can lead to a completely different set
of identified neurons.

• The number of neurons K must be specified in advance, and the estimates ob-
tained for different values of K will not be nested: two different values of K can
yield completely different answers.
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• Postprocessing of the identified neurons is often necessary.
• Implementation on very large data sets can be computationally burdensome.

To overcome these challenges, instead of simultaneously estimating A and Z
in the model (1), we take a dictionary learning approach. We first leverage spatial
information to build a preliminary dictionary of spatial components, which is then
refined using a clustering approach to give an estimate of A. We then use our es-
timate of A to obtain an accurate estimate of the temporal components Z, while
simultaneously selecting the final set of neurons in A. This dictionary learning ap-
proach allows us to recast (1), a very challenging unsupervised learning problem,
into a much easier supervised learning problem. Compared to existing approaches,
our proposal is much faster to solve computationally, involves more interpretable
tuning parameters and yields substantially more accurate results.

4. Proposed approach. Our proposed approach is based on dictionary learn-
ing. In Figure 2, we summarize our Segmentation, Clustering and Lasso Penalties
(SCALPEL) proposal, which consists of four steps:

Step 0. Data preprocessing: We apply standard preprocessing techniques to
smooth the data both temporally and spatially, remove the bleaching effect and
calculate a standardized fluorescence. Details are provided in Section 9 of the
Supplementary Material [Petersen, Simon and Witten (2018)]. In what follows,
Y refers to the calcium imaging data after these three preprocessing steps have
been performed.

Step 1. Construction of a preliminary spatial component dictionary: We apply
a simple image segmentation procedure to each frame of the video to derive a
spatial component dictionary, which is used to construct the matrix A0 ∈ R

P×K0

with a0
j,k = 1 if the j th pixel is contained in the kth preliminary dictionary element

and a0
j,k = 0 otherwise. This is discussed further in Section 4.1.

Step 2. Refinement of the spatial component dictionary: To eliminate redun-
dancy in the preliminary spatial component dictionary, we cluster together dictio-
nary elements that colocalize in time and space. This results in a matrix A ∈ R

P×K

where K < K0: aj,k = 1 if the j th pixel is contained in the kth dictionary element,
and aj,k = 0 otherwise. More details are provided in Section 4.2.

Step 3. Application of the spatial component dictionary: We remove dictionary
elements corresponding to clusters with few members resulting in a filtered dictio-
nary Af ∈ R

P×Kf , which contains a subset of the columns of A. We then estimate
the temporal components Z corresponding to the filtered elements of the dictionary
by solving a sparse group lasso problem with a nonnegativity constraint. The kth
row of Ẑ is the estimated calcium trace corresponding to the kth filtered dictionary
element; if this is entirely equal to zero, then the kth dictionary element in Af

has been eliminated. Thus, in this step we finalize our estimates of the neurons’
locations, and as a by-product obtain a crude estimate of the temporal components
associated with each estimated neuron. Additional details are in Section 4.3.
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FIG. 2. A summary of the SCALPEL procedure, along with the results of applying each step to
an example data set with 205 × 226 pixels and 3000 frames, described in the text in Section 4, and
analyzed in greater detail in Section 6.2.

Step 1 is applied to each frame separately and thus can be efficiently performed in
parallel across the frames of the video. Similarly, parts of Step 0 can be parallelized
across frames and across pixels.
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FIG. 3. In (a), we display a single frame of the example calcium imaging video after performing
the preprocessing described in Section 9 of the Supplementary Material [Petersen, Simon and Witten
(2018)]. In (b), we show the binary image that results after thresholding using the negative of the
0.1% quantile of the video’s elements. In (c), we display the seven connected components from the
image in (b) that contain at least 25 pixels.

Throughout this section we illustrate SCALPEL on an example one-photon cal-
cium imaging data set that has 205 × 226 pixels and 3000 frames sampled at 10
Hz and collected in the lab of Ilana Witten at the Princeton Neuroscience Institute.
Figures 1–8, as well as Figures S1, S2 and S4–S9 in the Supplementary Material
[Petersen, Simon and Witten (2018)], involve this data set. In Section 6 we present
a more complete analysis of this data set along with analyses of additional data
sets.

4.1. Step 1: Construction of a preliminary spatial component dictionary. In
this step we identify a large set of preliminary dictionary elements, by applying a
simple image segmentation procedure to each frame separately:

1. Threshold image: We create a binary image by thresholding the image frame.
Figure 3(b) displays the binary image that results from thresholding the frame
shown in Figure 3(a).

2. Identify connected components: We identify the connected components of
the thresholded image using the notion of 4-connectivity. Connected pixels are
pairs of white pixels that are immediately to the left, right, above or below one
another [Sonka, Hlavac and Boyle (2014)]. Some of these connected components
may represent neurons, whereas others are likely to be noise artifacts or snapshots
of multiple nearby neurons.

3. Filter components: To eliminate noise, we filter components based on their
overall size, width and height. In the examples in this paper, we discard connected
components of fewer than 25 or more than 500 pixels, as well as those with a width
or height larger than 30 pixels.

We now discuss the choice of threshold used above. After performing Step 0, we
expect that the intensities of “noise pixels” (i.e., pixels that are not part of a firing
neuron in that frame) will have a distribution that is approximately symmetric and
approximately centered at zero. In contrast, nonnoise pixels will have larger values.
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This implies that the noise pixels should have a value no larger than the negative
of the minimum value of Y . Therefore, we threshold each frame using the negative
of the minimum value of Y . We also repeat this procedure using a threshold equal
to the negative of the 0.1% quantile of Y , as well as with the average of these two
threshold values. In Section 5.1, we discuss alternative approaches to choosing this
threshold.

The K0 connected components that arise from performing Step 1 on each frame,
for each of the three threshold values, form a preliminary spatial component dic-
tionary. We use them to construct the matrix A0 ∈ R

P×K0
. The kth column of A0

is a vector of 1’s and 0’s, indicating whether each pixel is contained in the kth
preliminary dictionary element.

4.2. Step 2: Refinement of the spatial component dictionary. We will now re-
fine the preliminary spatial component dictionary obtained in Step 1 by combining
dictionary elements that are very similar to each other, as these likely represent
multiple appearances of a single neuron. We proceed as follows:

1. Calculate dissimilarity matrix: We use a novel dissimilarity metric, which
incorporates both spatial and temporal information, to calculate the dissimilarity
between every pair of dictionary elements. More details are given in Section 4.2.1.

2. Perform prototype clustering: We use the aforementioned pair-wise dissimi-
larities to perform prototype clustering of dictionary elements [Bien and Tibshirani
(2011)]. We also identify a representative dictionary element for each cluster. More
details are given in Section 4.2.2.

These elements of this refined dictionary make up the columns of the matrix A,
which will be used in Step 3 and discussed in Section 4.3.

4.2.1. Choice of dissimilarity metric. Before performing clustering, we must
decide how to quantify similarity between the K0 elements of the preliminary dic-
tionary obtained in Step 1. Dictionary elements that correspond to the same neuron
are likely to have: (i) similar spatial maps and (ii) similar average fluorescence over
time. To this end, we construct a dissimilarity metric that leverages both spatial and
temporal information.

We define pi,j = (a0·,i)�a0·,j , the number of pixels shared between the ith and
j th dictionary elements. When i = j , pi,i is simply the number of pixels in the ith
dictionary element. We then define the spatial dissimilarity between the ith and
j th dictionary elements to be

(3) ds
i,j = 1 − pi,j√

pi,ipj,j

.

Thus, ds
i,j = 1 if and only if the ith and j th elements are nonoverlapping in space,

and ds
i,j = 0 if and only if they are identical. Note that ds

i,j is known as the cosine
dissimilarity or Ochiai coefficient [Gower (2006)].
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We now define the matrix YB , a thresholded version of the preprocessed data
matrix Y (obtained in Step 0), with elements of the form

[
YB]

j,k =
{[Y ]j,k if [Y ]j,k > −quantile0.1%(Y ),

0 otherwise.

Note that when a value other than the negative of the 0.1% quantile is used for
image segmentation in Step 1, this value can also be used to threshold Y above.
The temporal dissimilarity between the ith and j th dictionary elements is defined
as

(4) dt
i,j = 1 − (a0·,i)�YB(YB)�a0·,j

‖(YB)�a0·,i‖2‖(YB)�a0·,j‖2
.

[Note that the elements of (YB)�a0·,i ∈ R
T represent the thresholded fluorescence

of each time frame summed over all pixels in the ith preliminary dictionary ele-
ment.] We threshold Y before computing this dissimilarity, because: (i) we are in-
terested in the extent to which there is agreement between the peak fluorescences
of the ith and j th preliminary dictionary elements; and (ii) the sparsity induced by
thresholding is computationally advantageous.

Finally, the overall dissimilarity is

(5) di,j = ωds
i,j + (1 − ω)dt

i,j ,

where ω ∈ [0,1] controls the relative weightings of the spatial and temporal dis-
similarities. We use ω = 0.2 to obtain the results shown throughout this paper.
While we wish to incorporate the spatial and temporal information equally, the
magnitudes of the two dissimilarity measures translate to different degrees of sim-
ilarity. That is, a pair of neurons will tend to have a larger spatial dissimilarity than
temporal dissimilarity. Therefore, we weight the temporal information more heav-
ily. A detailed justification for ω = 0.2 is given in Section 10 of the Supplementary
Material [Petersen, Simon and Witten (2018)]; furthermore, a sensitivity analysis
for the value of ω is presented in Section 7.3.

In Figure 4 we illustrate pairs of preliminary dictionary elements with various
dissimilarities for ω = 0.2.

4.2.2. Prototype clustering. We now consider the task of clustering the ele-
ments of the preliminary dictionary. To avoid prespecifying the number of clusters
and to obtain solutions that are nested as the number of clusters is varied, we opt
to use hierarchical clustering [Hastie, Tibshirani and Friedman (2009)].

In particular we use prototype clustering, proposed in Bien and Tibshirani
(2011), with the dissimilarity given in (5). Prototype clustering guarantees that
at least one member of each cluster has a small dissimilarity with all other mem-
bers of the cluster. To represent each cluster using a single dictionary element,
we choose the member with the smallest median dissimilarity to all of the other
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FIG. 4. Each column displays two pairs of preliminary dictionary elements with overall dissimi-
larities, as defined in (5), of 0.05, 0.1, 0.15, 0.2 and 0.25. For each preliminary dictionary element,
the average thresholded fluorescence over time and the (zoomed-in) spatial map are shown. These
results are based on the example calcium imaging video.

members. Then we combine the representatives of the K clusters to obtain a re-
fined spatial component dictionary. We can represent this refined dictionary with
the matrix A ∈ R

P×K , defined as follows: aj,k = 1 if the j th pixel is contained in
the kth cluster’s representative, and aj,k = 0 otherwise.

We apply prototype clustering to the example calcium imaging data set using
the R package protoclust [Bien and Tibshirani (2015)]. The resulting dendro-
gram is in Figure 5(a). In Section 5.2, we discuss choosing the cutpoint, or height,
at which to cut the dendrogram. Results for different cutpoints are displayed in
Figures 5(b)–(e). An additional example is provided in Section 11 of the Supple-
mentary Material [Petersen, Simon and Witten (2018)], and a sensitivity analysis
indicating that the results of SCALPEL are insensitive to the choice of cutpoint is
presented in Section 7.3.

4.3. Step 3: Application of the spatial component dictionary. In this final step
we optionally filter the K refined dictionary elements and then estimate the tempo-
ral components associated with this filtered dictionary. We recommend performing
the optional filtering of the dictionary elements based on the number of members in
the cluster, as clusters with a larger number of members are more likely to be true
neurons. This filtering process is discussed more in Section 12 of the Supplemen-
tary Material [Petersen, Simon and Witten (2018)]. After this filtering we construct
the filtered dictionary, Af ∈ R

P×Kf , which contains the retained columns of A.
We estimate the temporal components associated with the Kf elements of the

final dictionary by solving a sparse group lasso problem with a nonnegativity con-
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FIG. 5. In (a), we display the dendrogram that results from applying prototype clustering to the
example calcium imaging data set. Three different cutpoints are indicated: 0.05 ( ), 0.18 ( ),
and 0.4 ( ). In (b), we display the number of clusters that result from these three cutpoints. In
(c)–(e), we show the refined dictionary elements that result from using these three cutpoints. For
simplicity, we only display dictionary elements corresponding to clusters with at least five members.

straint,

(6) minimize
Z∈RKf ×T

,Z≥0

1

2

∥∥Y − Ã
f
Z

∥∥2
F + λα

Kf∑
k=1

‖zk,·‖1 + λ(1 − α)

Kf∑
k=1

‖zk,·‖2,

where α ∈ [0,1] and λ > 0 are tuning parameters, and Ã
f

is defined as ã
f
·,k =

a
f
·,k/‖af

·,k‖2
2. This scaling of Af is justified in Section 13.3 of the Supplementary

Material [Petersen, Simon and Witten (2018)].
The first term of the objective in (6) encourages the spatiotemporal factorization

(1) to fit the data closely. The two penalty terms in (6) were specifically chosen to
accomplish two goals:

• Temporal components should be nonzero for a small number of frames: The sec-
ond term in (6) is a lasso penalty on each of the temporal components. A lasso
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penalty on a vector encourages a subset of the individual elements of the vector
to be exactly zero [Tibshirani (1996)]. In our application this element-wise spar-
sity translates to each neuron being estimated to be active in a small number of
frames, which fits with the scientific understanding of the activity of neurons.

• Unneeded neurons should be removed: The third term in (6) is a group lasso
penalty on each of the temporal components. A group lasso penalty on a vector
encourages the entire vector to equal zero [Yuan and Lin (2006)]. This group-
wise sparsity on the temporal components leads to selection of dictionary com-
ponents. For λ(1 − α) sufficiently large, only a subset of the Kf elements in
the filtered dictionary will have a nonzero temporal component. This penalty
is especially useful for removing any dictionary elements that are a combina-
tion of neighboring neurons; we elaborate on this point in Section 13.5 of the
Supplementary Material [Petersen, Simon and Witten (2018)].

In Section 13 of the Supplementary Material [Petersen, Simon and Witten
(2018)], we discuss the technical details related to solving (6). We summarize the
practical implications of these results here:

• Feasible computational time: We show that solving (6) is decomposable into
spatially overlapping groups of neurons. Furthermore, in many cases a closed-
form solution is available. These two results greatly reduce the computational
time required in Step 3. See Sections 13.1 and 13.2 of the Supplementary Mate-
rial [Petersen, Simon and Witten (2018)] for details.

• Scaling of the columns of Af : In Section 13.3 of the Supplementary Material
[Petersen, Simon and Witten (2018)], we discuss how to scale the columns of
Af , so that the optimization problem (6) is invariant to the sizes of the dictionary
elements.

• Ease of tuning parameter selection: Our results in Section 13.4 of the Supple-
mentary Material [Petersen, Simon and Witten (2018)] allow us to determine
the largest value of λ to consider when selecting λ by cross-validation.

• Zeroing out of double neurons: Some of the preliminary dictionary elements in
Step 1 may be double neurons, that is, elements that are a combination of two
neighboring neurons that happened to be active during the same frame. In Step
2, these double neurons are unlikely to cluster with elements representing either
of the individual neurons they represent, and thus these double neurons may
remain in the filtered set of dictionary elements, Af , used in Step 3. Fortunately,
as detailed in Section 13.5 of the Supplementary Material [Petersen, Simon and
Witten (2018)], the group lasso penalty in (6) zeroes out these double neurons.

5. Tuning parameter selection. SCALPEL involves a number of tuning pa-
rameters:

• Step 1: Quantile thresholds for image segmentation.
• Step 2: Cutpoint for dendrogram and dissimilarity weight ω.
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• Step 3: λ and α for equation (6).

However, in marked contrast to competing methods (such as matrix factorization
approaches) that involve a number of interdependent tuning parameter values, the
tuning parameters in SCALPEL can be chosen independently at each step and
are very interpretable to the user. We provide recommendations for fixed default
values for all but the choice of λ in Step 3. We recommend that users first run
SCALPEL using the default values. Then, if needed to accommodate differences
between labs, experimental conditions, brain regions or calcium indicators, those
default values can be modified. Furthermore, a sensitivity analysis showing that
SCALPEL is robust to modest changes in the values of the tuning parameters will
be presented in Section 7.3.

We note that in a typical statistical problem, tuning parameters must be carefully
chosen using cross-validation or a validation set approach to avoid overfitting. By
contrast, the goal of SCALPEL is to identify neurons in the video at hand rather
than in a future video. Furthermore, true positives and false positives can be as-
sessed by visual inspection on a frame-by-frame basis. Thus, tuning parameter
selection in SCALPEL is more straightforward than in a typical statistical prob-
lem.

5.1. Tuning parameters for Step 1. The tuning parameters in Step 1 are the
quantile thresholds used in image segmentation. In analyzing the example video
considered thus far in this paper, we used three different threshold values to seg-
ment the video: the negative of the minimum value of Y , the negative of the 0.1%
quantile of Y and the average of these two values. In principle, these quantile
thresholds may need to be adjusted; however, it is straightforward to select rea-
sonable thresholds by visually examining a few frames and their corresponding
binary images, as in Figures 3(a) and (b). Furthermore, the results of SCALPEL
are insensitive to the exact values of these threshold values, as they serve only
to generate a preliminary dictionary. We illustrate the robustness of the results to
modest changes in the values of the quantile thresholds in Section 7.3 and Sec-
tion 14 of the Supplementary Material [Petersen, Simon and Witten (2018)].

5.2. Tuning parameters for Step 2. In Step 2, we must choose a height h ∈
[0,1] at which to cut the hierarchical clustering dendrogram, as shown in Fig-
ure 5(a). Fortunately, the cutpoint has an intuitive interpretation which can help
guide our choice. If we cut the dendrogram at a height of h, then each cluster will
contain an element of the preliminary dictionary that has dissimilarity no more
than h with each of the other members of that cluster. Figure 4 displays pairs of
preliminary dictionary elements with a given dissimilarity. We have used a fixed
cutpoint of 0.18 to obtain all of the results shown in this paper. An investigator can
either choose a cutpoint by visual inspection of the resulting refined dictionary el-
ements, or can simply use a fixed cutpoint, such as 0.18. We recommend choosing
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a cutpoint less than the dissimilarity weight ω in (5), as this guarantees that the
dictionary elements within each cluster will have spatial overlap. We recommend
using ω = 0.2, as discussed in Section 10 of the Supplementary Material [Petersen,
Simon and Witten (2018)]. Furthermore, in Section 7.3 and Section 14 of the Sup-
plementary Material we show that the results are robust to modest changes in the
values of ω and the cutpoint.

5.3. Tuning parameters for Step 3. In Step 3, we must choose values of λ and
α in (6). We suggest using a fixed value of α = 0.9, which is known to work well in
settings like this with a high level of element-wise sparsity [Simon et al. (2013)].
To select the value of λ, we use cross-validation. We illustrate this approach in Sec-
tion 6, and provide further details in Section 13.6 of the Supplementary Material
[Petersen, Simon and Witten (2018)]. Alternatively, both α and λ can be chosen
by cross-validation on a two-dimensional grid.

6. Results for calcium imaging data. In this section we compare
SCALPEL’s performance to that of competitor methods on three calcium imag-
ing data sets. In Section 6.1, we detail how we assess performance in this setting.
We consider one-photon and two-photon calcium imaging data sets in Sections 6.2
and 6.3 respectively. In Section 6.4, we compare the running times for the various
methods. Additional results for these three calcium imaging videos are available
at www.ajpete.com/software.

6.1. Assessment of performance. Given that we are in an unsupervised setting
in which both A and Z are unknown, performance cannot be assessed in a tradi-
tional manner, such as cross-validation error. Instead, we will assess whether iden-
tified neurons are true positives or false positives by visually inspecting a small
number of frames in which they are estimated to be active. In SCALPEL, these
active frames can be chosen in one of two ways: (i) the frames in which the ele-
ment was originally derived in Step 1 of SCALPEL, or (ii) the frames for which
the corresponding temporal component is estimated to be the largest in Step 3 of
SCALPEL. We can then visually examine these frames to see if the fluorescence
is consistent with the presence of a neuron.

We now briefly comment on the use of visual inspection to determine whether
an estimated neuron is a true or false positive. We believe that if the goal were to
identify neurons in a single calcium imaging frame, then visual inspection would
be the gold standard. However, while it is feasible to identify neurons in a single
frame by visual inspection, it would not be possible to identify neurons in an entire
movie by visual inspection, because a movie consists of O(105) frames, and be-
cause of difficulties in aligning neurons between frames (i.e., determining whether
two neurons identified in different frames are in fact the same neuron). Thus, while
we can confirm or disprove the presence of a given potential neuron by visual in-
spection, an automated procedure such as SCALPEL is needed to estimate neurons
throughout the entire video.

http://www.ajpete.com/software
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FIG. 6. In (a), we plot the spatial maps for the 29 elements of the final dictionary for the calcium
imaging video considered in Section 6.2. In (b), we plot their estimated intracellular calcium concen-
trations corresponding to λ chosen via a validation set approach. In (c), we compare the outlines of
the 29 dictionary elements from (a) to a heat map of the pixel-wise variance of the calcium imaging
video. That is, we plot the variance of each pixel over the 3000 frames with whiter points indicating
higher variance.

6.2. Application to one-photon calcium imaging data. We now present the re-
sults from applying SCALPEL to the calcium imaging video used as an example
in Section 4. This one-photon video, collected by the lab of Ilana Witten at the
Princeton Neuroscience Institute, has 3000 frames of size 205 × 226 pixels sam-
pled at 10 Hz. We used the default tuning parameters to analyze this video. Using
the default quantile thresholds that corresponded to thresholds of 0.0544, 0.0743
and 0.0942, Step 1 of SCALPEL resulted in a preliminary dictionary with 2943
elements, which came from 997 different frames of the video. Using a cutpoint
of 0.18 in Step 2 resulted in a refined dictionary that contained 50 elements. In
Step 3, we discarded the 21 components corresponding to clusters with fewer than
five preliminary dictionary elements assigned to them and then fit the sparse group
lasso model with α = 0.9 and λ = 0.0416, which was chosen using the validation
set approach described in Section 13.6 of the Supplementary Material [Petersen,
Simon and Witten (2018)]. This resulted in 29 estimated neurons. The results are
shown in Figures 6(a) and (b). In Figure 6(c), we compare the estimated neurons
to a pixel-wise variance plot of the calcium imaging video. We expect pixels that
are part of true neurons to have higher variance than pixels not associated with any
neurons. Indeed, we see that many of the estimated neurons coincide with regions
of high pixel-wise variance. However, some estimated neurons are in regions with
low variance. Examining the frames from which the dictionary elements were de-
rived can provide further evidence as to whether an estimated neuron is truly a
neuron. For example, in Figure 7(a) we show that one of the estimated neurons in
a low-variance region does indeed appear to be a true neuron, while Figure 7(b)
shows evidence that one of the estimated neurons (element 22 in Figure 6) is not
truly a neuron. Repeating this process for all of the estimated neurons, we see that
element 22 in Figure 6 is the only estimated neuron that does not appear to be a
true neuron.
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FIG. 7. In (a), we see that one of the estimated neurons in a low-variance region in Figure 6(c)
does correspond to a true neuron. In (b), we see a frame in which one of the estimated neurons was
identified, though there does not appear to be a true neuron.

We compare the performance of SCALPEL to that of CNMF-E [Zhou et al.
(2016)], a proposal for the analysis of one-photon data that takes a matrix fac-
torization approach as described in Section 3. The tuning parameters we consider
are those noted in Algorithm 1 of Zhou et al. (2016)—the average neuron size
r and the width of the 2D Gaussian kernel σ , which relate to the spatial filter-
ing, and the minimum local correlation cmin and the minimum peak-to-noise ratio
αmin, which relate to initializing neurons. We choose r = 11 in accordance with
the average diameter of the neurons identified using SCALPEL. The default values
suggested for the other tuning parameters are σ = 3, cmin = 0.85 and αmin = 10.
We present the results for these default values in Figure 8(a). Only 14 of the 29
neurons identified using SCALPEL were found by CNMF-E using these default

FIG. 8. We display the estimated neurons that result from applying a competitor method, CNMF-E
[Zhou et al. (2016)], to the calcium imaging video considered in Section 6.2 for (a) the default
parameters cmin = 0.85 and αmin = 10, (b) the parameters cmin = 0.6 and αmin = 7 and (c) the
parameters cmin = 0.5 and αmin = 3. The variation in darkness of the neurons estimated by CNMF-E
is due to the fact that they take on continuous values compared to the binary masks produced by
SCALPEL. In each plot the true neurons identified by SCALPEL are outlined in gray. Regardless
of the tuning parameters used, CNMF-E yields a substantial number of false positives and false
negatives.
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parameters. To increase the number of neurons found, we consider lower values
for cmin and αmin. We fit CNMF-E for all combinations of cmin = 0.5,0.6,0.7 and
αmin = 3,5,7. To assess the performance of these nine combinations of tuning
parameters, we reviewed each estimated neuron for evidence of whether or not it
appeared to be a true neuron by visually inspecting the frames in which the neuron
was estimated to be most active. In Figure 8(b), we present the results, chosen from
the nine combinations of tuning parameter values considered, that has the smallest
number of false positive neurons (i.e., estimated neurons that are noise or dupli-
cates of other estimated neurons). These results consist of 24 estimated neurons;
21 elements correspond to neurons identified using SCALPEL. One element [el-
ement 23 in Figure 8(b)] corresponds to a neuron not identified using SCALPEL,
and two elements [elements 22 and 24 in Figure 8(b)] appear to be duplicates of
other estimated neurons. In Figure 8(c), we present the results, chosen from the
nine combinations of tuning parameter values considered, with the highest num-
ber of true positive neurons (i.e., neurons that were identified by CNMF-E that
appear to be real). These results consist of 41 estimated neurons; 25 elements cor-
respond to neurons identified using SCALPEL. Two elements [elements 27 and 34
in Figure 8(c)] correspond to neurons not identified using SCALPEL, 11 elements
appear to be duplicates of other estimated neurons and three elements [elements
39, 40 and 41 in Figure 8(c)] appear to be noise. So while this pair of tuning pa-
rameter values resulted in the identification of most of the neurons, it also resulted
in a number of false positives. Some of the estimated neurons in Figure 8(c) are
large and diffuse making them difficult to interpret.

6.3. Application to two-photon calcium imaging data. We now illustrate
SCALPEL on two calcium imaging videos released by the Allen Institute as part
of their Allen Brain Observatory. In addition to releasing the data, the Allen Insti-
tute also made available the spatial masks for the neurons they identified in each
of the videos, using their own in-house software for this task. Thus, we compare
the estimated neurons from SCALPEL to those from the Allen Institute analysis.
The two-photon videos we consider are those from experiments 496934409 and
502634578. The videos contain 105,698 and 105,710 frames respectively, of size
512 × 512 pixels. In their analyses, the Allen Institute downsampled the number
of frames in each video by a factor of eight; we did the same in our analysis. For
these videos we found that using a value slightly smaller than the negative of the
0.1% quantile for the smallest threshold value in Step 0 was preferred based on
visual inspection of the thresholding via the plotThresholdedFrame func-
tion in the SCALPEL R package. Otherwise, default values were used for all of
the tuning parameters.

6.3.1. Allen Brain Observatory experiment 496934409. Using thresholds of
0.250, 0.423 and 0.596, Step 1 of SCALPEL resulted in a preliminary dictionary
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FIG. 9. We present the results for the calcium imaging video analyzed in Section 6.3.1. In (a), we
plot the outlines of the neurons identified by the Allen Institute in blue, along with the outlines of the
corresponding SCALPEL neurons in orange. In (b), we plot the 25 potential neurons uniquely iden-
tified by SCALPEL in color, along with the SCALPEL neurons also identified by the Allen Institute
in gray. In (c), we provide evidence for four of the 25 unique neurons. Similar plots for all of the po-
tential neurons uniquely identified by SCALPEL are available at www.ajpete.com/software.

with 68,630 elements, which came from 11,739 different frames of the video. Af-
ter refining the dictionary via clustering in Step 2, we were left with 544 elements.
In the analysis by the Allen Institute, neurons near the boundary of the field of
view were eliminated from consideration. Thus we filtered out 259 elements that
contained pixels outside of the region considered by the Allen Institute. Of the
remaining 285 elements, 32 of these were determined to be dendrites, 131 were
small elements not of primary interest and 10 were duplicates of other neurons
found. Thus in the end, we identified the same 87 neurons that the Allen Institute
did in addition to 25 potential neurons not identified by the Allen Institute. In Fig-
ure 9(a), we show the neurons identified by both SCALPEL and the Allen Institute.
In Figure 9(b), we show the potential neurons uniquely identified by SCALPEL,
along with evidence that they are, in fact, neurons in Figure 9(c).

6.3.2. Allen Brain Observatory experiment 502634578. Using thresholds of
0.250, 0.481 and 0.712, Step 1 of SCALPEL resulted in a preliminary dictionary
with 84,996 elements, which came from 12,272 different frames of the video. After
refining the dictionary via clustering in Step 2, we were left with 1297 elements.
Once again, we filtered out the 390 elements that contained pixels outside of the re-
gion considered by the Allen Institute. Of the remaining 907 elements, 22 of these
were determined to be dendrites, 382 were small elements not of primary interest
and 39 were duplicates of other neurons found. Thus in the end, we identified 370
of the 375 neurons that the Allen Institute did, in addition to 94 potential neurons
not identified by the Allen Institute. Note that the five neurons identified by the
Allen Institute, but not SCALPEL, each appear to be combinations of two neu-
rons. SCALPEL did identify the 10 individual neurons of which these five Allen
Institute neurons were a combination. In Figure 10(a), we show the neurons jointly

http://www.ajpete.com/software
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FIG. 10. We present the results for the calcium imaging video analyzed in Section 6.3.2. In (a),
we plot the outlines of the neurons identified by the Allen Institute in blue, along with the out-
lines of the corresponding SCALPEL neurons in orange. Those shown in green are the Allen In-
stitute neurons that appear to actually be a combination of two neurons. In (b), we plot the 94
potential neurons uniquely identified by SCALPEL in color, along with the SCALPEL neurons also
identified by the Allen Institute in gray. In (c), we provide evidence for four of the 94 unique neu-
rons. Similar plots for all of the potential neurons uniquely identified by SCALPEL are available at
www.ajpete.com/software.

identified by SCALPEL and the Allen Institute. In Figure 10(b), we show the po-
tential neurons uniquely identified by SCALPEL, along with evidence that they
are, in fact, real neurons in Figure 10(c).

6.4. Timing results. All analyses were run on a Macbook Pro with a 2.0 GHz
Intel Sandy Bridge Core i7 processor. Running the SCALPEL pipeline on the one-
photon data presented in Section 6.2 took 6 minutes for Step 0 and 2 minutes for
Steps 1–3. Running CNMF-E on the one-photon data presented in Section 6.2 took
5, 5 and 7 minutes for the analyses with a single set of tuning parameters presented
in Figures 8(a), 8(b) and 8(c) respectively. Running the SCALPEL pipeline on the
two-photon data presented in Section 6.3.1 took 12.85 hours for Step 0, 2.33 hours
for Step 1, and 0.42 hours for Step 2. Running the SCALPEL pipeline on the two-
photon data presented in Section 6.3.2 took 12.50 hours for Step 0, 2.55 hours for
Step 1 and 0.43 hours for Step 2.

Further computational gains could be made by parallelizing the implementation
of SCALPEL Steps 0 and 1. Also, recall that SCALPEL’s most time-intensive step,
Step 0, is only ever run a single time for each data set regardless of whether the
user wishes to fit SCALPEL for different tuning parameters.

7. Results for simulated calcium imaging data. In this section we apply
SCALPEL and CNMF-E [Zhou et al. (2016)] to simulated calcium imaging data
to assess performance under a range of noise settings. In Section 7.1, we discuss
the process of generating the data and assessing performance. In Section 7.2, we
present the results comparing SCALPEL to CNMF-E. In Section 7.3, we consider
the impact on performance of using nondefault tuning parameters.

http://www.ajpete.com/software
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7.1. Data generation and performance metrics. We generate simulated cal-
cium imaging videos with 200 × 200 pixels and 1000 frames by combining
the true signal with independent noise and spatially correlated noise, that is,
Y = AZ + Ein + Esc, using the notation from (1). In each replicate the true A
matrix includes 100 neurons, whose shapes are based on actual calcium imaging
data and are available in the ADINA toolbox [Diego et al. (2013)]. The calcium
traces that make up the true Z are constructed to have 1–3 spikes per neuron, with
each spike producing a nonzero calcium concentration for a period of 50 frames.
The elements are Ein are independent Uniform draws. To construct the spatially
correlated noise Esc, we generate a spatially correlated two-dimensional image
(i.e., a random field) whose intensity peaks and recedes over a span of 75 frames.
There are 20 of these spatially correlated noise patterns in each video. We vary the
strength of the noise patterns to explore different signal to noise ratios. We define
the signal to noise ratio as the ratio of the peak intensity of the spiking neurons to
the peak absolute intensity of the noise. We consider two noise scenarios. In the
first we keep the signal to independent noise ratio fixed at 1.5 and consider values
of 1, 1.5 and 2 for the signal to spatially correlated noise ratio. In the second we
keep the signal to spatially correlated noise ratio fixed at 1.5 and consider values
of 0.5, 1, 1.5 and 2 for the signal to independent noise ratio. In order to understand
the difficulty of identifying neurons in this simulated data, example frames from
each of these noise scenarios are shown in Figure 11. Further details needed to
replicate the generation of this simulated data are provided in the R code available
at www.ajpete.com/software.

We measure performance in terms of sensitivity, defined as the percent of true
neurons detected, and precision, defined as the percent of neurons detected that are
true neurons. We consider a detected neuron to be a match to a true neuron when:
(i) the pixels of the detected neuron contain at least 50% of the true neuron’s total
intensity, and (ii) no more than 20% of the detected neuron’s intensity is contained
in pixels not belonging to the true neuron. When more than one detected neuron
matches these criteria for a true neuron, we match the detected neuron that captures
the highest percentage of the true neuron’s intensity. We chose these fairly liberal
matching criteria as to not put the competitor method, CNMF-E, at a disadvantage,
since it tends to estimate more diffuse neuron masks than SCALPEL.

7.2. Comparison of methods. We applied SCALPEL and CNMF-E [Zhou
et al. (2016)] to the simulated calcium imaging data. For all noise scenarios
SCALPEL was fit using the default tuning parameter values. We found that the de-
fault tuning parameter values performed poorly for the competitor method, CNMF-
E. Thus we fit CNMF-E for all combinations of cmin = 0.5,0.6,0.7,0.85 and
αmin = 3,5,7,10 on five replicates of data for each noise scenario. For each noise
scenario, we choose the tuning parameter combination that had the highest sum of
the average sensitivity and average precision such that the average sensitivity was
within 5% of the maximum average sensitivity. We then used this selected tuning

http://www.ajpete.com/software
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FIG. 11. We illustrate the various noise scenarios that we consider for the simulated calcium imag-
ing data described in Section 7.1. We vary the signal to spatially correlated noise (SSCN) ratio and
the signal to independent noise (SIN) ratio. We show the simulated neurons truly active during a
particular frame, along with the simulated data for that frame for each of the noise scenarios. The
top row of frames has a variable strength of spatially correlated noise with a fixed strength of in-
dependent noise (SIN = 1.5), and the bottom row of frames has a variable strength of independent
noise with a fixed strength of spatially correlated noise (SSCN = 1.5).

parameter combination to analyze the remaining replicates of data for that noise
scenario. Note that we used knowledge of the true neurons to select the tuning
parameter values for CNMF-E so that we can compare SCALPEL’s performance
to the best possible performance of CNMF-E in these settings. By contrast, no
knowledge of the true neurons was used when applying SCALPEL, for which we
just used the default tuning parameter values.

In Figure 12, we present the performance of SCALPEL and CNMF-E on
the simulated calcium imaging data. In Figure 12(a), we see that sensitivity of
SCALPEL improves as the strength of the spatially correlated noise is reduced,
while the precision is fairly constant. Both the sensitivity and precision of CNMF-
E improve as the strength of the spatially correlated noise is reduced. However,
SCALPEL outperforms CNMF-E on both metrics under all noise scenarios. In Fig-
ure 12(b), we see that the sensitivity of SCALPEL is fairly constant as the strength
of the independent noise is varied. However, the precision of SCALPEL drops as
the strength of independent noise is reduced. While this might seem counterin-
tuitive at first, the strong independent noise effectively counteracts the spatially
correlated noise, since the former prevents spatial noise artifacts from being mis-
construed as neurons. With the lowest strength of independent noise, CNMF-E has
slightly higher precision, but still lower sensitivity than SCALPEL.



2452 A. PETERSEN, N. SIMON AND D. WITTEN

FIG. 12. We illustrate the performance of SCALPEL ( ) and CNMF-E [Zhou et al. (2016)]
( ) in terms of the average sensitivity (percent of true neurons detected; shown as a solid line)
and precision (percent of neurons detected that are true neurons; shown as a dashed line) for the
simulated calcium imaging data described in Section 7.1. For both, 95% confidence intervals are
shown. In (a), we consider the performance for a fixed signal to independent noise ratio of 1.5 and
varying signal to spatially correlated noise ratio. In (b), we consider the performance for a fixed
signal to spatially correlated noise ratio of 1.5 and varying signal to independent noise ratio. Note
that CNMF-E was unable to initialize neurons in the presence of a high amount of independent noise,
so the CNMF-E results are omitted for ratios of 0.5 and 1 in (b).

7.3. Sensitivity of results to tuning parameter selection. In Section 7.2, we
presented the results for SCALPEL with all tuning parameters set to their default
values. To determine how sensitive the results are to changes in the tuning param-
eters, we now consider the performance of SCALPEL for varied tuning parame-
ter selections. In particular, we investigate the impact of modifying the quantile
threshold in Step 1, the dissimilarity weight ω in Step 2, and the dendrogram
cutpoint in Step 2. The panels of Figure 13 plot the sensitivity and precision of
SCALPEL when one of the tuning parameters is varied and the others are kept
fixed at their default values. Note that the results presented are for a signal to spa-
tially correlated noise ratio of 1.5 and a signal to independent noise ratio of 1.5. In
Figure 13(a), we see that a high sensitivity is maintained regardless of the quantile
threshold. Precision is slightly higher when a lower quantile threshold is used. In
Figure 13(b), we see that the choice of ω does not have an impact on the precision,
but choosing a large ω near 1 results in finding a lower percentage of the true neu-
rons. Recall that when ω equals 1, only spatial information is used to cluster the
preliminary dictionary elements. Without the benefit of temporal information, we
are likely to erroneously cluster together spatially overlapping neurons, resulting
in reduced sensitivity. In Figure 13(c), we see that the performance is robust to
modest variations in the dendrogram cutpoint. These simulations illustrate that the
performance of SCALPEL does not diminish with modest variations in the values
of the tuning parameters. In Section 14 of the Supplementary Material [Petersen,
Simon and Witten (2018)], we investigate the robustness of the results to modest
changes in the tuning parameters for the one-photon data analyzed in Section 6.2.
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FIG. 13. We present the sensitivity of SCALPEL’s performance to changes in the tuning parameters
for the simulated calcium imaging data described in Section 7.1. In all panels, we plot the average
sensitivity ( ) and precision ( ), along with 95% confidence intervals, as a function of the tuning
parameter value. The dashed line indicates the default value of the tuning parameter. In (a), we
consider the value of the quantile threshold used to construct the preliminary dictionary in Step 1.
In (b), we consider the value of the dissimilarity weight ω in Step 2. In (c), we consider the value of
the dendrogram cutpoint in Step 2, as a proportion of ω = 0.2.

8. Discussion. We have presented SCALPEL, a method for identifying neu-
rons from calcium imaging data. SCALPEL takes a dictionary learning approach.
We segment the frames of the calcium imaging video to construct a large pre-
liminary dictionary of potential neurons, which is then refined through the use of
clustering using a novel dissimilarity metric that leverages both spatial and tempo-
ral information. We then solve a sparse group lasso problem with a nonnegativity
constraint to obtain a final estimate of the neurons in the data, and to obtain a crude
estimate of the calcium concentrations for these neurons.

Future work could consider alternative ways of deriving a preliminary dictio-
nary in Step 1. Currently, we perform image segmentation via thresholding with
multiple quantiles. This approach assumes that active neurons will have bright-
ness, relative to their baseline fluorescence levels, that is within the range of our
image segmentation threshold values. In practice there is evidence that some neu-
rons have comparatively lower fluorescence following spiking, which presents a
challenge for optimal identification. Though SCALPEL performed well on the
one-photon calcium imaging video we considered in Section 6.2, other one-photon
videos may have more severe background effects. If this is the case, it may be de-
sirable to incorporate more sophisticated modeling of the background noise, like
that employed in Zhou et al. (2016). Additionally, in future work we could modify
Step 3 of SCALPEL to make use of a more refined model for neuron spiking, as in
Friedrich, Zhou and Paninski (2017), Vogelstein et al. (2010), Jewell and Witten
(2018).

Our SCALPEL proposal is implemented in the R package scalpel,
which is available on CRAN. A vignette illustrating how to use the pack-
age, and code to reproduce all results presented in this paper, are available at
ajpete.com/software.

http://ajpete.com/software
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SUPPLEMENTARY MATERIAL

Supplementary Materials for “SCALPEL: Extracting neurons from cal-
cium imaging data” (DOI: 10.1214/18-AOAS1159SUPP; .pdf). We provide ad-
ditional results including the technical details of SCALPEL’s Step 3 and analyses
illustrating the sensitivity of results to changes in SCALPEL’s tuning parameters.
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