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CONDENSATION IN CRITICAL CAUCHY
BIENAYMÉ–GALTON–WATSON TREES1

BY IGOR KORTCHEMSKI∗,†,2 AND LOÏC RICHIER†

CNRS∗ & CMAP, École polytechnique†

We are interested in the structure of large Bienaymé–Galton–Watson ran-
dom trees whose offspring distribution is critical and falls within the do-
main of attraction of a stable law of index α = 1. In stark contrast to the
case α ∈ (1,2], we show that a condensation phenomenon occurs: in such
trees, one vertex with macroscopic degree emerges (see Figure 1). To this
end, we establish limit theorems for centered downwards skip-free random
walks whose steps are in the domain of attraction of a Cauchy distribution,
when conditioned on a late entrance in the negative real line. These results
are of independent interest. As an application, we study the geometry of the
boundary of random planar maps in a specific regime (called nongeneric of
parameter 3/2). This supports the conjecture that faces in Le Gall and Mier-
mont’s 3/2-stable maps are self-avoiding.

1. Introduction.

1.1. Context. This work is concerned with the influence of the offspring dis-
tribution on the geometry of large Bienaymé–Galton–Watson (BGW) trees. The
usual approach to understand the geometry of a BGW tree conditioned on hav-
ing size n, that we denote by Tn, consists in studying the limit of Tn as n → ∞.
There are essentially two notions of limits for random trees: the “scaling” limit
framework (where one studies rescaled versions of the tree) and the “local” limit
framework (where one looks at finite neighborhoods of a vertex).

Limits for critical offspring distributions. The study of local limits of BGW
trees with critical offspring distribution μ (i.e., with mean mμ = 1) was initiated
by Kesten in [27]. Assuming also that μ has finite variance, he proved that Tn

(actually under a slightly different conditioning) converges locally in distribution
as n → ∞ to the so-called critical BGW tree conditioned to survive (which is
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FIG. 1. Left: an embedding in the plane of a Bienaymé–Galton–Watson tree with a critical offspring
distribution μ such that μ(k) = 1

3k2 ln(k)2 for k ≥ 3, having 20,000 vertices (simulated using [14]).

Right: its associated looptree.

a random locally finite tree with an infinite “spine”). The same result was later
established under a sole criticality assumption by Janson [22].

In the scaling limit setting, Aldous [1] showed that when μ has finite variance,
the (rescaled) contour function of the tree converges in distribution to the Brownian
excursion, which in turns codes the Brownian continuum random tree. The second
moment condition on μ was later relaxed by Duquesne [16] (see also [29]), who
focused on the case where μ belongs to the domain of attraction of a stable law
of index α ∈ (1,2] (when μ has infinite variance, this means that μ([i,∞)) =
L(i)/iα with L a slowly varying function at ∞). He showed that the (rescaled)
contour function of Tn converges in distribution toward the normalized excursion
of the α-stable height process, coding in turn the so-called α-stable tree introduced
in [17, 35].

Limits for subcritical offspring distributions. When the offspring distribution
μ is subcritical (i.e., with mean mμ < 1), the geometry of Tn is in general very
different. Jonsson and Stefánsson [24] showed that if μ(i) ∼ c/iα+1 as i → ∞
with α > 1, a condensation phenomenon occurs: with probability tending to 1 as
n → ∞, the maximal degree of Tn is asymptotic to (1 − mμ)n. In addition, they
showed that Tn converges locally in distribution to a random tree that has a unique
vertex of infinite degree (in sharp contrast with Kesten’s tree).

These results were improved in [30], which deals with the case where μ is
subcritical and μ(i) = L(i)/iα+1 with L slowly varying at infinity and α > 1. It
was shown, roughly speaking, that Tn can be constructed as a finite spine with
height following a geometric random variable (with a finite number of BGW trees
grafted on it), and approximately (1 − mμ)n BGW trees grafted on the top of
the spine. In some sense, the vertex with maximal degree of Tn “converges” to
the vertex of infinite degree in the local limit, so that this limit describes rather
accurately the whole tree.
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The behavior of BGW trees when μ is subcritical and in the domain of attrac-
tion of a stable law is not known in full generality without regularity assumptions
on μ(n). However, the geometry of T≥n, which is the BGW tree under the weaker
conditioning to have size at least n has been described in [31], in view of applica-
tions to random planar maps in a case where regularity assumptions on μ(n) are
unknown.

Critical Cauchy BGW trees. The purpose of this work is to investigate a class
of offspring distributions which has been left aside until now, namely offspring
distributions which are critical and belong to the domain of attraction of a stable
law of index 1. We will prove that even though Tn converges locally in distribu-
tion to the critical BGW tree conditioned to survive (that has an infinite spine), a
condensation phenomenon occurs. More precisely, with probability tending to 1
as n → ∞, the maximal degree in Tn dominates the others, but there are many
vertices with degree of order n up to a slowly varying function (in particular, this
answers negatively Problem 19.30 in [22], as we will see). This means that vertices
with macroscopic degrees “escape to infinity” and disappear in the local limit.

Although interesting for itself, this has applications to the study of the boundary
of nongeneric critical Boltzmann maps with parameter 3/2, as will be explained
in Section 6.

Note that depending on μ, Janson [22] classified in full generality the local
limits of Tn. However, this local convergence is not sufficient to understand global
properties of the tree. For example, Janson [22], example 19.37, gives examples
of BGW trees converging locally to the same limit, but, roughly speaking, such
that in one case all vertices have degrees o(n), and in the second case there are
two vertices of degree n/3. In addition, outside of the class of critical offspring
distributions in the domain of attraction of a stable law of index α ∈ (1,2], it is
folklore that the contour function of Tn does not have nontrivial scaling limits. It
is therefore natural to wonder whether one could still describe the global structure
of Tn outside of this class.

In the recent years, it has been realized that BGW trees in which a condensation
phenomenon occurs code a variety of random combinatorial structures such as
random planar maps [23, 38, 48], outerplanar maps [54], supercritical percolation
clusters of random triangulations [11] or minimal factorizations [20]. See [55] for
a combinatorial framework and further examples. These applications are one of
the motivations for the study of the fine structure of such large conditioned BGW
trees.

1.2. Looptrees. In order to study the condensation phenomenon, the notion of
a looptree will be useful. Following [10], with every plane tree τ we associate a
graph denoted by Loop(τ ) and called a looptree. This graph has the same set of
vertices as τ , and for every vertices u, v ∈ τ , there is an edge between u and v

in Loop(τ ) if and only if u and v are consecutive children of the same parent in
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FIG. 2. A plane tree τ and its associated looptree Loop(τ ).

τ , or if v is the first or the last child of u in τ (see Figure 2 for an example). We
view Loop(τ ) as a compact metric space by endowing its vertices with the graph
distance.

The notion of a looptree is very convenient to give a precise formulation of the
condensation principle. Namely, we say that a sequence (τn : n ≥ 1) of plane trees
exhibits (global) condensation if there exists a sequence γn → ∞ and a positive
random variable V such that the convergence

(1)
1

γn

· Loop(τn)
(d)−−−→

n→∞ V · S1

holds in distribution with respect to the Gromov–Hausdorff topology (see [9],
Chapter 7.3, for background), where for every λ > 0 and every metric space (E,d),
λ · E stands for (E,λ · d) and S1 is the unit circle.

Since, intuitively speaking, Loop(τn) encodes the structure of large degrees in
τn, the convergence (1) indeed tells that a unique vertex of macroscopic degree (of
order γn) governs the structure of τn.

Translated in terms of looptrees, the results of [30] indeed show that when μ is
subcritical and μ(i) = L(i)/iα+1 with L slowly varying at infinity and α > 1, if
Tn is a BGW tree with offspring distribution μ conditioned on having n vertices,
then

1

n
· Loop(Tn)

(d)−−−→
n→∞ (1 − mμ) · S1,

where mμ is the mean of μ. As we will see, condensation occurs for a BGW tree
with critical offspring distribution in the domain of attraction of a stable law of
index 1, but at a scale which is negligible compared to the total size of the tree.

1.3. Framework and scaling constants. Let L be a slowly varying function at
∞ (see [6] for background on slowly varying functions). Throughout this work,
we shall work with offspring distributions μ such that

(Hμ) μ is critical and μ
([n,∞)

) ∼
n→∞

L(n)

n
.
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We now consider BGW trees with critical offspring distribution μ (BGWμ in
short). Let us introduce some important scaling constants which will appear in the
description of large BGWμ trees. To this end, we use a random variable X with
law given by P(X = i) = μ(i + 1) for i ≥ −1 (observe that X is centered since μ

is critical). Let (an : n ≥ 1) and (bn : n ≥ 1) be sequences such that

(2) nP(X ≥ an) −−−→
n→∞ 1, bn = nE[X1|X|≤an].

The main reason why these scaling constants appear is the following: if (Xi : i ≥ 1)

is a sequence of i.i.d. random variables distributed as X, then the convergence

X1 + · · · + Xn − bn

an

(d)−−−→
n→∞ C1

holds in distribution, where C1 is the random variable with Laplace transform given
by E[e−λC1] = eλ ln(λ) for λ > 0 (C1 is an asymmetric Cauchy random variable with
skewness 1; see [19], Chapter IX.8 and equation (8.15) p. 315).

It is well known that an and bn are both regularly varying with index 1, and
that bn → −∞ and |bn|/an → ∞ as n → ∞. One can express an asymptotic
equivalent of bn in terms of L; see (7).

For example, if μ(n) ∼ c
n2 ln(n)2 , we have an ∼ cn

ln(n)2 and bn ∼ − cn
ln(n)

(see Ex-
ample 19). We encourage the reader to keep in mind this example to feel the orders
of magnitude involved in the limit theorems.

1.4. Local conditioning. We start with the study of a BGWμ tree conditioned
on having exactly n vertices, which will be denoted by Tn. As in the subcritical case
considered in [30], it is not clear how to analyze the behavior of Tn under a sole
assumption on μ([n,∞)). For this reason, when studying this local conditioning,
as in [30] we shall work under the stronger assumption that

(Hloc
μ ) μ is critical and μ(n) ∼

n→∞
L(n)

n2 .

Of course, this implies (Hμ), but the converse is not true. Then, denoting by
�(τ) the maximal degree of a tree τ , our main result is the following.

THEOREM 1. Assume that μ satisfies (Hloc
μ ). Then the convergences

�(Tn) − |bn|
an

(d)−−−→
n→∞ C1 and

1

|bn| · Loop(Tn)
(d)−−−→

n→∞ S1

hold in distribution (with respect to the Gromov–Hausdorff topology for the second
one).

Therefore, condensation occurs at scale |bn| in Tn. Observe that |bn| = o(n),
in sharp contrast with the subcritical case where condensation occurs at scale n.
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Moreover, since an = o(|bn|), �(Tn)/|bn| → 1 in probability (but the above result
also gives the fluctuations of �(Tn) around |bn|).

In order to establish Theorem 1, we will use the coding of Tn by its Łukasiewicz
path, which is a centered random walk conditioned on a fixed entrance time in the
negative real line. We show that, asymptotically, this conditioned random walk is
well approximated in total variation by a simple explicit random trajectory Z(n)

(Theorem 21). To this end, we adapt arguments of Armendáriz and Loulakis [3].
The process Z(n) is then constructed by relying on a path transformation of a ran-
dom walk (the Vervaat transform; see Section 4.2 for details).

This approximation has several interesting consequences. First, it allows us to
establish that a “one big jump” principle occurs for Z(n) (Theorem 23) and for the
Łukasiewicz path of Tn (Proposition 24), which is a key step to prove Theorem 1.
Second, it allows to determine the order of magnitude of the height H ∗

n of the
vertex with maximal degree in Tn (i.e., its graph distance to the root vertex).

THEOREM 2. There is a slowly varying function � with �(x) → ∞ as x →
∞ such that

H ∗
n

�(n)

(d)−−−→
n→∞ Exp(1),

where Exp(1) is an exponential random variable with parameter 1.

In the particular case μ(n) ∼ c
n2 ln(n)2 , one can take �(n) = ln(n)

c2 (see Lemma 17
and Remark 18). In contrast with the subcritical case, where the height of the vertex
of maximal degree converges in distribution to a geometric random variable [30],
Theorem 2, here H ∗

n → ∞ in probability. This is consistent with the fact that in
the subcritical case, the local limit is a tree with one vertex of infinite degree, while
in the critical case Tn converges in distribution for the local topology to a locally
finite tree. Roughly speaking, vertices with large degrees in Tn “escape to infinity”
as n → ∞.

Intuitively speaking, the approximation given by Theorem 21 implies that the
tree Tn may be seen as a “spine” of height H ∗

n ; to its left and right are grafted
independent BGWμ trees, and on the top of the spine is grafted a forest of 	 |bn|
BGWμ trees. In particular, this description implies that while the maximal degree
of Tn is of order |bn|, the next largest degrees of Tn are of order an in the following
sense.

THEOREM 3. Let (�
(i)
n : i ≥ 0) be the degrees of Tn ordered in decreasing

order. Then the convergence(
�

(0)
n

|bn| ,
�

(1)
n

an

,
�

(2)
n

an

, . . .

)
(d)−−−→

n→∞
(
1,�(1),�(2), . . .

)



CONDENSATION IN CAUCHY BIENAYMÉ–GALTON–WATSON TREES 1843

holds in distribution for finite dimensional marginals, where (�(i) : i ≥ 1) is the
decreasing rearrangement of the second coordinates of the atoms of a Poisson
measure on [0,1] ×R+ with intensity dt ⊗ dx

x2 .

This result shows that there are many vertices with degrees of order n up to a
slowly varying function. However, the maximum degree of Tn is at a different scale
from the others since an = o(|bn|). In particular, �

(0)
n /�

(1)
n → ∞ in probability as

n → ∞. This also answers negatively problem 19.30 in [22] (in the case λ = ν = 1
in the latter reference), as by taking h(n) = √

an|bn|, we have nP(X ≥ h(n)) → 0,
but it is not true that �

(1)
n ≤ h(n) with high probability.

1.5. Tail conditioning. At this point, the reader may wonder if the results of
the previous section hold under the more general assumption (Hμ). In this case,
it is not known if the required estimates on random walks are still valid. For this
reason, analogous results may be obtained at the cost of relaxing the conditioning
on the total number of vertices of the tree. Namely, as in [31], we now deal with
T≥n, a BGWμ tree conditioned on having at least n vertices, where μ is a fixed
offspring distribution satisfying (Hμ). A motivation for studying this conditioning
is the application to large faces in random planar maps given in the last section,
where we merely know that the assumption (Hμ) is satisfied.

Similar to the previous setting, we use the coding of T≥n by its Łukasiewicz
path, which is then a centered random walk conditioned on a late entrance in the
negative axis. We show that, asymptotically, this conditioned random walk is well
approximated in total variation by a simple explicit random trajectory �Z(n) (The-
orem 27). To this end, we rely on the strategy developed in [31] and we obtain a
new asymptotic equivalence on the tails of ladder times of random walks (Proposi-
tion 12), which improves recent results of Berger [4] and is of independent interest.
Even though the global strategy is similar to the local case, we emphasize that �Z(n)

is of very different nature than the one we introduce in the local conditioning.
As we shall see, this approximation has several interesting consequences. First,

it allows to establish that a “one big jump” principle occurs for �Z(n) (Theorem 23)
and for the Łukasiewicz path of T≥n (Proposition 24). It is interesting to note that
similar “one big jump” principles have been established for random walks with
negative drift by Durrett [18] in the case of jump distributions with finite variance
and in [31] in the case of jump distributions in the domain of attraction of a stable
law of index in (1,2]. However, we deal here with centered random walks. Second,
it yields a decomposition of the tree T≥n which is very similar in spirit to that of
the tree Tn, except that the maximal degree in the tree remains random in the
scaling limit. As a consequence, we obtain the following analogues of Theorems
1, 2 and 3. Once Theorem 27 is established, their proofs are simple adaptations of
those in the local conditioning setting, and will be less detailed. We start with the
existence of a condensation phenomenon.
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THEOREM 4. Let J be the real-valued random variable such that P(J ≥ x) =
1/x for x ≥ 1. Assume that μ satisfies (Hμ). Then the convergence

(3)
1

|bn| · Loop(T≥n)
(d)−−−→

n→∞ J · S1

holds in distribution with respect to the Gromov–Hausdorff topology.

The height H ∗≥n of the vertex with maximal degree in T≥n turns out to have the
same order of magnitude as H ∗

n .

THEOREM 5. Let � be a slowly varying function such that the conclusion of
Theorem 2 holds. Then

H ∗≥n

�(n)

(d)−−−→
n→∞ Exp(1),

where Exp(1) is an exponential random variable with parameter 1.

Finally, the distribution of the sequence of higher degrees in T≥n can also be
studied.

THEOREM 6. Let (�
(i)
≥n : i ≥ 0) be the degrees of T≥n ordered in decreasing

order. Then the convergence

(
�

(0)
≥n

|bn| ,
�

(1)
≥n

an

,
�

(2)
≥n

an

, . . .

)
(d)−−−→

n→∞
(
�(0),�(1),�(2), . . .

)
holds in distribution for finite dimensional marginals, where �(0) (d)= J , and con-
ditionally given �(0) = a, (�(i) : i ≥ 1) is the decreasing rearrangement of the
second coordinates of the atoms of a Poisson measure on [0, a] × R+ with inten-
sity dt ⊗ dx

x2 .

REMARK 7. The results of this paper deal with the large scale geometry of
BGW trees whose offspring distribution is in the domain of attraction of a stable
law with index 1 and is critical. However, in the subcritical case, one can prove
that a condensation phenomenon occurs at a scale which is the total size of the
tree by a simple adaptation of the arguments developed in [30, 31] by using [4].
Moreover, in the supercritical case, the Brownian CRT appears as the scaling limit
in virtue of the classical “exponential tilting” technique [26].
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2. Bienaymé–Galton–Watson trees.

2.1. Plane trees. Let us define plane trees according to Neveu’s formalism
[46]. Let N = {1,2, . . . } be the set of positive integers, and consider the set of la-
bels U = ⋃

n≥0 N
n (where by convention N

0 = {∅}). For every v = (v1, . . . , vn) ∈
U, the length of v is |v| = n. We endow U with the lexicographical order, denoted
by ≺.

Then a (locally finite) plane tree is a nonempty subset τ ⊂ U satisfying the fol-
lowing conditions. First, ∅ ∈ τ (∅ is called the root vertex of the tree). Second, if
v = (v1, . . . , vn) ∈ τ with n ≥ 1, then (v1, . . . , vn−1) ∈ τ ((v1, . . . , vn−1) is called
the parent of v in τ ). Finally, if v ∈ τ , then there exists an integer kv(τ ) ≥ 0 such
that (v1, . . . , vn, i) ∈ τ if and only if 1 ≤ i ≤ kv(τ ) (kv(τ ) is the number of chil-
dren of v in τ ). The plane tree τ may be seen as a genealogical tree in which the
individuals are the vertices v ∈ τ .

Let us introduce some useful notation. For v,w ∈ τ , we let �v,w� be the vertices
belonging to the shortest path from v to w in τ . Accordingly, we use �v,w� for the
same set, excluding w. We also let |τ | be the total number of vertices (that is, the
size) of the plane tree τ .

2.2. Bienaymé–Galton–Watson trees and their codings. Let μ be a probability
measure on Z≥0, that we call the offspring distribution. We assume that μ(0) > 0
and μ(0)+μ(1) < 1 in order to avoid trivial cases. We also make the fundamental
assumption that μ is critical, meaning that it has mean mμ := ∑

i≥0 iμ(i) = 1.
The Bienaymé–Galton–Watson (BGW) measure with offspring distribution μ is
the probability measure BGWμ on plane trees that is characterized by

(4) BGWμ(τ) = ∏
u∈τ

μ
(
ku(τ )

)
for every finite plane tree τ (see [32], Proposition 1.4).

Let τ be a plane tree whose vertices listed in lexicographical order are ∅ =
u0 ≺ u1 ≺ · · · ≺ u|τ |−1. The Łukasiewicz path W(τ ) = (Wn(τ ) : 0 ≤ n < |τ |) of τ

is the path defined by W0(τ ) = 0, and Wn+1(τ ) = Wn(τ ) + kun(τ ) − 1 for every
0 ≤ n < |τ |. For technical reasons, we let Wn(τ ) = 0 for n > |τ | or n < 0.

The following result relates the Łukasiewicz path of a BGW tree to a random
walk (see [32], Proposition 1.5, for a proof). Let (Yi : i ≥ 1) be a sequence of i.i.d.
real valued random variables with law given by P(Y1 = i) = μ(i + 1) for i ≥ −1
and set ζ = inf{i ≥ 1 : Y1 + Y2 + · · · + Yi < 0}.

PROPOSITION 8. Let T be a tree with law BGWμ. Then(
W0(T ),W1(T ), . . . ,W|T |(T )

) (d)= (Y0, Y1, . . . , Y1 + Y2 + · · · + Yζ ).
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2.3. Tail bound for the height of a critical Cauchy BGW tree. The following
preliminary lemma gives a rough estimate on the tail of the height of a BGWμ tree
when μ satisfies (Hμ). Its proof may be skipped in a first reading.

For every plane tree τ , we let H(τ ) := sup{|v| : v ∈ τ } be its total height.

LEMMA 9. Under (Hμ), if T is a BGWμ tree, we have nP(H(T ) ≥ n) → 0
as n → ∞.

PROOF. The idea of the proof is to dominate P(H(T ) ≥ n) by a similar quan-
tity for an offspring distribution that is critical and belongs to the domain of at-
traction of a stable law with index strictly between 1 and 2. Indeed, in that case,
estimates for the height of the tree are known by [53].

Set Qn := P(H(T ) ≥ n) for every n ≥ 0. By conditioning with respect to the
degree of the root vertex, we get that (Qn : n ≥ 0) is the solution of the equation

(5)

{
Q0 = 1,

1 − Qn+1 = Gμ(1 − Qn), n ∈ Z≥0,

where Gμ(s) = ∑∞
i=0 μ(i)si stands for the generating function of μ. Observe that

∞∑
k=n

kμ(k) =
∞∑

k=n

μ
([k,∞)

) + nμ
([n,∞)

)
,

and recall that μ([n,∞)) ∼ L(n)/n with L slowly varying. Setting 
∗(n) :=∑∞
k=n

L(k)
k

, we have 
∗(n)/L(n) → 0 when n → ∞ by [6], Proposition 1.5.9a.
We can then apply Karamata’s Abelian theorem ([6], Theorem 8.1.6) to write

Gμ(s) = s + (1 − s)h(1 − s), s ∈ [0,1)

with h slowly varying at 0 and h(x) ∼ 
∗(1/x) as x → 0. Thus, (5) may be rewrit-
ten as Qn+1 = Qn(1−h(Qn)) for n ≥ 0. We now let ρ be an offspring distribution
whose generating function is given by Gρ(s) = s+ 1

2(1−s)3/2. (We could define ρ

with any exponent β ∈ (1,2) instead of 3/2, but this will suffice for our purpose).
If Q̂n denotes the probability that a BGWρ tree has height at least n, we simi-

larly have Q̂n+1 = Q̂n(1 − 1
2Q̂

1/2
n ) for every n ≥ 0. We introduce the functions

f (x) = x
(
1 − h(x)

)
and f̂ (x) = x

(
1 − 1

2
x1/2

)
, x ∈ [0,1].

But since f (x) = 1 − Gμ(1 − x), f is increasing. Moreover, h is slowly varying
at 0 so by Potter’s bound (see, e.g., [6], Theorem 1.5.6), there exists A > 0 such
that

(6) f (x) ≤ f̂ (x) ∀x ∈ [0,A].
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Moreover, since Q̂n is decreasing and vanishes when n goes to infinity, there exists
N̂ ≥ 1 such that Q̂n < A for every n ≥ N̂ . Similarly, there exists N ≥ 1 such that
Qn ≤ Q̂N̂ for every n ≥ N because Q̂N̂ > 0. We now claim that

QN+n ≤ Q̂N̂+n for every n ∈ Z≥0.

Let us prove this assertion by induction. The claim is clear for n = 0, and then we
have for n ≥ 0,

QN+n+1 = f (QN+n) ≤ f (Q̂N̂+n) ≤ f̂ (Q̂N̂+n) = Q̂N̂+n+1,

where we used the fact that QN+n ≤ Q̂N̂+n ≤ A, that f is increasing as well as
(6). By [53], Lemma 2,

Q̂n ∼
n→∞

C

n2

for a certain constant C > 0. This implies that n · Qn → 0, and completes the
proof. �

REMARK 10. By adjusting the choice of ρ in the previous proof, it is a sim-
ple matter to show that for every c > 0, nc · P(H(T ) ≥ n) → 0. When 
∗(x) =
o(1/ ln(x)), [56] gives an asymptotic equivalent for P(H(T ) ≥ n) (see also [45]).
However, in general, there is no known asymptotic equivalent for P(H(T ) ≥ n).

3. Estimates for Cauchy random walks. The strategy of this paper is based
on the study of BGW trees conditioned to survive via their Łukasiewicz paths.
The statement of Proposition 8 entails that under (Hμ), the Łukasiewicz path of
a BGWμ tree is a (killed) random walk on Z whose increment X satisfies the
following assumptions:

(HX) E[X] = 0, P(X ≥ x) ∼
x→∞

L(x)

x
and P(X < −1) = 0.

Here, we recall that L is a slowly varying function. Then we let (Xi : i ≥ 1)

be a sequence of i.i.d. random variables distributed as X. We put W0 = 0, Wn =
X1 + · · · + Xn for every n ≥ 1 and also let Wi = 0 for i < 0 by convention.

The goal of this section is to derive estimates (that are of independent interest)
on the random walk W , that will be the key ingredients in the proofs of our main
results.

3.1. Entrance time and weak ladder times. Recall that (an : n ≥ 1) and (bn :
n ≥ 1) are sequences such that

nP(X ≥ an) −−−→
n→∞ 1 and bn = nE[X1|X|≤an]

and that
Wn − bn

an

(d)−−−→
n→∞ C1,

in distribution, where C1 is an asymmetric Cauchy variable with skewness 1.
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One can express an asymptotic equivalent of bn in terms of L. Indeed, let 
∗ be
the function


∗(n) :=
∞∑

k=n

L(k)

k
, n ∈ N.

By [6], Proposition 1.5.9a, 
∗ is slowly varying, and as n → ∞, 
∗(n) → 0 and

∗(n)/L(n) → ∞. Then (see [4], Lemma 7.3 and Lemma 4.3) we have

(7) bn ∼
n→∞−n
∗(an) ∼

n→∞−n
∗(|bn|).
It is important to note that

bn −−−→
n→∞ −∞.

The above one-dimensional convergence can be improved to a functional con-
vergence as follows (by, e.g., [25], Theorem 16.14). If D(R+,R) denotes the space
of real-valued càdlàg functions on R+ equipped with the Skorokhod J1 topology
(see Chapter VI in [21] for background), the convergence

(8)
(

W�nt� − bnt

an

: t ≥ 0
)

(d)−−−→
n→∞ (Ct : t ≥ 0)

holds in distribution in D(R+,R), where C is a totally asymmetric Cauchy process
characterized by E[e−λC1] = eλ ln(λ) for λ > 0.

The first quantity of interest is the distribution of the first entrance time ζ of the
random walk W into the negative half-line,

ζ = inf{i ≥ 1 : Wi < 0}.
Then we will consider the sequence (Ti : i ≥ 0) of (weak) ladder times of (Wn :
n ≥ 1). That is, T0 = 0 and, for i ≥ 1,

Ti+1 = inf{j > Ti : Wj ≥ WTi
}.

We say that j ≥ 0 is a weak ladder time of W if there exists i ≥ 0 such that j = Ti .
We let In be the last weak ladder time of (Wi : 0 ≤ i ≤ n), that is, In = max{0 ≤
j ≤ n : ∃i ≥ 0 : Ti = j}.

LEMMA 11. For every 0 ≤ j ≤ n, we have

(9) P(In = j) = P(∃i ≥ 0 : Ti = j)P(T1 > n − j) = P(ζ > j)P(T1 > n − j).

PROOF. The first equality follows from the Markov property of the random
walk at time j .

For the second equality, observe that saying that j is a weak ladder time for
(Wi : 0 ≤ i ≤ j) is equivalent to saying that the random walk (W

[j ]
i : 0 ≤ i ≤ j)

defined by

W
[j ]
i = Wj − Wj−i , 0 ≤ i ≤ j
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FIG. 3. Left: an example of (Wi : 0 ≤ i ≤ 8) such that 8 is a weak ladder time; Right: its associated

time-reversed path (W
[8]
i : 0 ≤ i ≤ 8) (obtained by reading the jumps from right to left).

satisfies W
[j ]
i ≥ 0 for every 0 ≤ i ≤ j (see Figure 3). Since (Wi : 0 ≤ i ≤ j) and

(W
[j ]
i : 0 ≤ i ≤ j) have the same distribution, this implies that P(∃i ≥ 0 : Ti =

j) = P(ζ > j) and completes the proof. �

The estimates of Proposition 12 and Proposition 15 below will play an important
role in the following. The first one extends [4], Theorem 3.4, when there is no
analyticity assumption on L.

PROPOSITION 12. There exists an increasing slowly varying function � such
that the following assertions hold.

(i) We have

P(ζ > n) ∼
n→∞

L(|bn|)
|bn| · �(n) and P(T1 > n) ∼

n→∞
1

�(n)
.

(ii) We have
n∑

k=0

P(ζ > k) ∼
n→∞�(n).

The key point is that the same slowly varying function � appears in both
asymptotic estimates. Its proof is based on a recent estimate of P(Wn ≥ 0) due
to Berger [4].

PROOF OF PROPOSITION 12. Our main input is the following estimate of [4],
Lemma 7.3:

(10) P(Wn ≥ 0) ∼
n→∞

L(|bn|)

∗(|bn|) .

Now, define the function � by

�

(
1

1 − s

)
:= exp

( ∞∑
k=1

P(Wk ≥ 0)

k
sk

)
, s ∈ [0,1),

and observe that � is increasing.
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As n → ∞, since P(Wn ≥ 0) → 0, we also have 1
n

∑n
k=1 P(Wk ≥ 0) → 0, so

that by [49], Lemma 1, � is slowly varying. Note that by [6], Theorem 1.8.2,
instead of working with regularly varying sequences (•n : n ≥ 1), we may work
with infinitely differentiable functions (•u : u ≥ 0) (with • ∈ {
∗,L,�,a, b}).

For the first assertion, by the Wiener–Hopf factorization (see Theorem 4 in [19],
XII.7):

p(s) :=
∞∑

n=0

P(ζ > n)sn = exp

( ∞∑
k=1

P(Wk ≥ 0)

k
sk

)
= �

(
1

1 − s

)
, s ∈ [0,1).

Then by [4], equation (7.23), we have
∞∑

k=1

P(Wk ≥ 0)sk ∼
s↑1

1

1 − s

L(|b1/(1−s)|)

∗(|b1/(1−s)|) ,

so that

p′(s) ∼
s↑1

1

1 − s

L(|b1/(1−s)|)

∗(|b1/(1−s)|)�

(
1

1 − s

)
.

In particular, setting p̂(u) = p(e−u) for u > 0, we have

(11) p̂′(u) ∼
u↓0

−1

u

L(|b1/u|)

∗(|b1/u|)�

(
1

u

)
.

We now claim that it is enough to check that for every fixed c > 0,

(12) p̂

(
1

ct

)
− p̂

(
1

t

)
∼

t→∞ ln(c) · L(|bt |)

∗(|bt |)�(t).

Indeed, by de Haan’s monotone density theorem (see, e.g., [6], Theorem 3.6.8
and 3.7.2), this will imply that P(ζ > n) ∼ L(|bn|)

|bn| �(n) since |bn| ∼ n
∗(|bn|). To
establish (12), write

p̂

(
1

ct

)
− p̂

(
1

t

)
=

∫ 1/(ct)

1/t
p̂′(u)du =

∫ 1/c

1
p̂′

(
x

t

)
dx

t
.

For a slowly varying function 
, the convergence 
(ax)/
(x) → 1 holds uniformly
for a in compact subsets of R∗+ when x → ∞ (see [6], Theorem 1.5.2), so by (11)
we have

1

t
p̂′

(
x

t

)
∼

t→∞−1

x

L(|bt |)

∗(|bt |)�(t),

uniformly in min(1,1/c) ≤ x ≤ max(1,1/c). Thus

p̂

(
1

ct

)
− p̂

(
1

t

)
∼

t→∞
L(|bt |)

∗(|bt |)�(t)

∫ 1

1/c

dx

x
= ln(c) · L(|bt |)


∗(|bt |)�(t).

This establishes (12). Note also that since p(s) = �(1/(1−s)), Karamata’s Taube-
rian theorem for power series ([6], Corollary 1.7.3) readily implies assertion (ii).
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We now turn to the behavior of P(T1 > n) as n → ∞. Once again, by the
Wiener–Hopf factorization ([19], XII.7, Theorem 1) we have

1 −
∞∑

n=0

P(T1 = n)sn = exp

(
−

∞∑
k=1

P(Wk ≥ 0)

k
sk

)
= 1

�( 1
1−s

)
, s ∈ [0,1).

Then, an application of Karamata’s Tauberian theorem [6], Theorem 8.1.6 (see
also [49], Theorem 3) ensures that P(T1 > n) ∼ �(n) as n → ∞. �

REMARK 13. It is possible to relax the condition P(X1 < −1) = 0. Indeed,
if (Xi : i ≥ 1) is a sequence of i.i.d. integer-valued random variables such that
E[X1] = 0, P(X1 ≥ x) ∼ pL(x)/x, P(X1 ≤ −x) ∼ qL(x)/x with p + q = 1
(interpreted as o(L(x)/x) if p,q = 0). When p > q , the same proof using [4],
Lemma 7.3 and equation (7.23), shows the existence of a slowly varying function
� such that

P(ζ > n) ∼
n→∞

L(|bn|)
|bn| · �(n), P(T1 > n) ∼

n→∞
1

�(n)
.

We state the following technical corollary in view of future use.

COROLLARY 14. Let (xn : n ≥ 1) be a sequence of positive real numbers such
that xn = o(n) as n → ∞. Then the following estimates hold as n → ∞:

(i) We have max1≤j≤xn |P(T1>n−j)
P(T1>n)

− 1| → 0.

(ii) We have P(ζ>n)
P(ζ≥xn)

→ 0.

(iii) We have P(X ≥ |bn|) ∼ P(ζ ≥ n)P(T1 > n).

PROOF. For (i), first fix n0 > 1 sufficiently large so that λ := infm≥n0(1 −
xm/m) > 0. Then, for n ≥ n0, by monotonicity, for every 1 ≤ j ≤ xn, 1 ≤
P(T1 > n − j)/P(T1 > n) ≤ P(T1 > λn)/P(T1 > n). By Proposition 12(i), the last
quantity tends to 1 as n → ∞, which yields the first assertion.

For the second assertion, observe that by Proposition 12(i) one may write
P(ζ ≥ n) = 
(n)/n with 
 a slowly varying function. By Potter’s bound (see,
e.g., [6], Theorem 1.5.6), there exists a constant A > 0 such that for every n ≥ 1,

(n)/
(xn) ≤ A(n/xn)

1/2, so that

P(ζ > n)

P(ζ ≥ xn)
≤ A

(
xn

n

)1/2
−−−→
n→∞ 0.

The last assertion is an immediate consequence of Proposition 12(i), since
P(X ≥ |bn|) = L(|bn|)

|bn| . This completes the proof. �

The following estimate concerning the asymptotic behavior of In, the last weak
ladder time of (Wi : 0 ≤ i ≤ n), will be important.
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PROPOSITION 15. Let �̃ be any continuous increasing slowly varying func-
tion such that, as n → ∞, P(T1 > n) ∼ 1

�̃(n)
. The following assertions hold as

n → ∞:

(i) For every x ∈ (0,1), P( �̃(In)

�̃(n)
≤ x) → x.

(ii) The convergence In

n
→ 0 holds in probability.

Note that one could for instance take �̃ to be the function � provided by Propo-
sition 12.

PROOF OF PROPOSITION 15. Let (xn : n ≥ 1) be a sequence of positive real
numbers such that xn → ∞ and xn = o(n) as n → ∞. Let us first show that

(13) P(In ≤ xn) ∼
n→∞

�̃(xn)

�̃(n)
.

To establish this, we use Lemma 11 to write P(In ≤ xn) = ∑xn

j=0 P(ζ > j)P(T1 >

n − j). Then by Corollary 14(i) and Proposition 12, we have �(n) ∼ �̃(n) as
n → ∞ and

P(In ≤ xn) ∼
n→∞P(T1 > n)

xn∑
j=0

P(ζ > j)

∼
n→∞P(T1 > n)�̃(xn)

∼
n→∞

�̃(xn)

�̃(n)
.

Next, fix x ∈ (0,1). Since �̃ is increasing and continuous, we may consider its
inverse �̃−1, so that

P

(
�̃(In)

�̃(n)
≤ x

)
= P

(
In ≤ �̃−1(

x�̃(n)
))

.

We claim that �̃−1(x�̃(n)) → ∞ and that �̃−1(x�̃(n)) = o(n) as n → ∞. The
first convergence is clear since �̃ → ∞. For the second one, argue by contradiction
and assume that there is ε > 0 such that along a subsequence �̃−1(x�̃(n)) ≥ εn.
Then x�̃(n) ≥ �̃(εn) along this subsequence. But �̃(εn)/�̃(n) → 1 since �̃

varies slowly. This implies x ≥ 1, a contradiction. These claims then allow to use
(13):

P

(
�̃(In)

�̃(n)
≤ x

)
∼

n→∞
�̃(�̃−1(x�̃(n))))

�̃(n)
= x�̃(n)

�̃(n)
= x,

which establishes (i).
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For the assertion (ii), fix ε > 0. Then the previous paragraph shows that for
every fixed x ∈ (0,1), we have x�̃(n) ≤ �̃(εn) for n sufficiently large. Hence

P(In ≤ εn) = P
(
�̃(In) ≤ �̃(εn)

) ≥ P
(
�̃(In) ≤ x�̃(n)

) −−−→
n→∞ x.

Since this is true for every x ∈ (0,1), it follows that P(In ≤ εn) → 1. Observe
that one could also obtain this as a consequence of the functional convergence (8),
thanks to the definition of In. �

We conclude this section with an estimate concerning the number of weak lad-
der times up to time n. Recall that (Ti : i ≥ 0) denotes the sequence of (weak)
ladder times of (Wi : i ≥ 0).

PROPOSITION 16. Let Hn = #{i ≥ 0 : Ti ≤ n} be the number of weak ladder
times of (Wi : 0 ≤ i ≤ n). We have

P(T1 > n) · Hn
(d)−−−→

n→∞ Exp(1).

PROOF. Fix x > 0. Writing P(T1 > n) = r(n) to simplify notation, by [12],
Theorem 4.1,

P
(
nr(Tn) ≥ x

) −−−→
n→∞ e−x.

By replacing n with �x/r(n)� we get that

P
(
r(T�x/r(n)�) ≥ r(n)

) −−−→
n→∞ e−x.

But, since r is decreasing, we have

P

(
Hn >

x

r(n)

)
= P(T�x/r(n)� ≤ n) = P

(
r(T�x/r(n)�) ≥ r(n)

) −−−→
n→∞ e−x.

This completes the proof. �

3.2. Improvement in the local setting. In the previous section, we have estab-
lished estimates on the random walk associated with the Łukasiewicz path of a
BGWμ tree under the assumption (Hμ). The goal of this section is to discuss one
improvement in these estimates under the stronger assumption (Hloc

μ ). In terms of
the Łukasiewicz path, this translates into the following assumption on the incre-
ment X.

(Hloc
X ) E[X] = 0, P(X = x) ∼

x→∞
L(x)

x2 and P(X < −1) = 0.

Note that under these assumptions P(X1 ≥ x) ∼ L(x)
x

as x → ∞ so that (HX)
is satisfied and the results of Section 3.1 also hold. In this new setting, our main
input is the following estimate, due to Berger ([4], Theorem 2.4):

(14) P(Wn = −1) ∼
n→∞n

L(|bn|)
|bn|2 .

(Indeed, we apply [4], Theorem 2.4(i), with x = −�bn� − 1.)
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Recall that 
∗ is the slowly varying function defined by 
∗(n) = ∑∞
k=n

L(k)
k

,
which satisfies L(n)/
∗(n) → 0 as n → ∞. The next result identifies the slowly
varying function � in Proposition 12 under the assumptions of this section.

LEMMA 17. The following estimates hold as n → ∞:

(i) P(ζ = n) ∼ L(|bn|)
b2
n

and P(ζ ≥ n) ∼ nL(|bn|)
b2
n

.

(ii) P(T1 > n) ∼ 
∗(|bn|) ∼ 
∗(an).

PROOF. The first estimate readily follows from (14), since P(ζ = n) =
1
n
P(Wn = −1) by Kemperman’s formula (see, e.g., [47], Section 6.1).
For P(ζ ≥ n), note that |bn| ∼ n
∗(|bn|) ∼ n
∗(an) (by [4], Lemma 7.3 and

Lemma 4.3), so we have P(ζ = n) ∼ 1
n2 · L(|bn|)


∗(|bn|)2 . Since moreover L(|bn|)

∗(|bn|)2 is slowly

varying, we get by [6], Proposition 1.5.8, that

P(ζ ≥ n) ∼
n→∞

1

n
· L(|bn|)

∗(|bn|)2 ∼ nL(|bn|)

b2
n

.

The second assertion follows from the first and the fact that P(T1 > n) ∼
P(X≥|bn|)
P(ζ≥n)

by Corollary 14(iii). �

REMARK 18. In the specific case where P(X = n) ∼ L(n)

n2 as n → ∞, one

may thus take �(n) = 1

∗(an)

or �(n) = 1

∗(|bn|) .

The following example follows from Lemma 17 and may help to visualize the
different orders of magnitude.

EXAMPLE 19. Assume that μ(n) ∼ c
n2 ln(n)2 as n → ∞. Then, as n → ∞,

an ∼ cn

ln(n)2 , bn ∼ − cn

ln(n)
,

P
(|X| ≥ bn

) ∼ 1

n ln(n)
, P(ζ ≥ n) ∼ 1

c2n

and P(T1 > n) ∼ c2

ln(n)
.

4. Cauchy random walks: Local conditioning. The ultimate goal of this
section is to study a BGWμ tree Tn conditioned to have n vertices, when the off-
spring distribution μ satisfies (Hloc

μ ).
To this end, we consider a random walk (Wi : i ≥ 0) whose increments satisfy

assumption (Hloc
X ). We aim at studying the behavior of the excursion (W

(n)
i : i ≥ 0),

whose law is that of the random walk (Wi : i ≥ 0) under the conditional probability
P(·|ζ = n), and which is also the Łukasiewicz path of the random tree Tn. (Note
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that our assumptions imply that P(ζ = n) > 0 for every n sufficiently large; see
Lemma 17.)

More precisely, we shall couple with high probability the trajectory (W
(n)
i : i ≥

0) with that of a random walk conditioned to be nonnegative for a random number
of steps (whose number converges in probability to ∞ as n → ∞), followed by
an independent “big jump,” and then followed by an independent unconditioned
random walk. This allows us to obtain a functional invariance principle for W(n)

which is of independent interest (Theorem 23).
We will use the notation and results of Section 3.

4.1. Bridge conditioning. In order to study the excursion W(n), we start with
some results on the bridge that has the law of (Wi : 0 ≤ i ≤ n) under the probability
measure P(·|Wn = −1). Recall that (Xi : i ≥ 1) is a sequence of i.i.d. variables
distributed as X and for every n ∈ N, let

Vn := inf
{
1 ≤ j ≤ n : Xj = max{Xi : 1 ≤ i ≤ n}}

be the first index of the maximal element of (X1, . . . ,Xn). Then we denote by
(X

(n)
1 , . . . ,X

(n)
n−1) a random variable following the distribution of (X1, . . . ,XVn−1,

XVn+1 . . . ,Xn) under P(·|Wn = −1).

PROPOSITION 20. We have

dTV
((

X
(n)
i : 1 ≤ i ≤ n − 1

)
, (Xi : 1 ≤ i ≤ n − 1)

) −−−→
n→∞ 0,

where dTV denotes the total variation distance on R
n−1 equipped with the product

topology.

We refer to [37] or [13], Section 2, for background concerning the total variation
distance. The proof is inspired from that of [3], Theorem 1. Since the context is
different, we give a detailed proof.

PROOF OF PROPOSITION 20. For every A ∈ B(Rn−1) and n sufficiently
large, note that the quantity P((X1, . . . ,XVn−1,XVn+1 . . . ,Xn) ∈ A,Wn = −1) is
bounded from below by the probability of the event

n⋃
i=1

{
(X1, . . . ,Xi−1,Xi+1, . . . ,Xn−1) ∈ A,

∣∣∣∣ ∑
1≤j≤n,j �=i

Xj + |bn|
∣∣∣∣ ≤ Kan,

max
1≤j≤n,j �=i

Xj < |bn| − 1 − Kan,Wn = −1
}
,

where K > 0 is an arbitrary constant and the events appearing in the union
are disjoint By cyclic invariance of the law of (X1, . . . ,Xn), we get that
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P((X1, . . . ,XVn−1,XVn+1 . . . ,Xn) ∈ A,Wn = −1) is bounded from below by

nP
(
(X1, . . . ,Xn−1) ∈ A,

∣∣Wn−1 + |bn|
∣∣ ≤ Kan,

max
1≤j≤n−1

Xj < |bn| − 1 − Kan,Wn = −1
)
.

Let us introduce the event

Gn(K) :=
{∣∣Wn−1 + |bn|

∣∣ ≤ Kan, max
1≤j≤n−1

Xj < |bn| − 1 − Kan

}
.

Since P(X = n) is regularly varying, observe that

P(X = −1 − kn) ∼
n→∞P

(
X = |bn|)

uniformly in kn satisfying |kn −|bn|| ≤ Kan (because an/|bn| → 0). Moreover, by
(14) we have that P(Wn = −1) ∼ nP(X = |bn|). Therefore, there exists a sequence
εn → 0 such that

P
((

X
(n)
1 , . . . ,X

(n)
n−1

) ∈ A
)

≥ (1 − εn)P
(
(X1, . . . ,Xn−1) ∈ A,Gn(K)

)
≥ (1 − εn)

(
P

(
(X1, . . . ,Xn−1) ∈ A

) − P
(
Gn(K)

))
.

Hence

P
((

X
(n)
1 , . . . ,X

(n)
n−1

) ∈ A
) − P

(
(X1, . . . ,Xn−1) ∈ A

)
≥ −εnP

(
(X1, . . . ,Xn−1) ∈ A

) − (1 − εn)P
(
Gn(K)

)
.

By writing this inequality with A instead of A, we get that∣∣P((
X

(n)
1 , . . . ,X

(n)
n−1

) ∈ A
) − P

(
(X1, . . . ,Xn−1) ∈ A

)∣∣
≤ εn + P

(
Gn(K)

)
.

It therefore remains to check that

lim sup
K→∞

lim sup
n→∞

P
(
Gn(K)

) = 0.

To this end, first notice that by (8),

P
(∣∣Wn−1 + |bn|

∣∣ > Kan

) −−−→
n→∞ P(C1 > K),

where C is an asymmetric Cauchy process. Since C1 is almost surely finite, we
have P(C1 > K) → 0 as K → ∞. Second, write

P

(
max

1≤j≤n−1
Xj ≥ |bn| − 1 − Kan

)
= 1 − (

1 − P
(
X ≥ |bn| − 1 − Kan

))n−1
.

But

(n − 1)P
(
X ≥ |bn| − 1 − Kan

) ∼ nL(|bn|)
|bn| ∼ L(|bn|)


∗(|bn|) −−−→
n→∞ 0.

This completes the proof. �
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4.2. Excursion conditioning. We now deduce from Proposition 20 a result on
the excursion W(n). To do so, we will use the so-called Vervaat transform V which
is defined as follows. Let n ∈ N, (x1, . . . , xn) ∈ Z

n and let w = (wi : 0 ≤ i ≤ n) be
the associated walk defined by

w0 = 0 and wi =
i∑

j=1

xj , 1 ≤ i ≤ n.

We also introduce the first time at which (wi : 0 ≤ i ≤ n) reaches its overall mini-
mum,

kn := min
{
0 ≤ i ≤ n : wi = min{wj : 0 ≤ j ≤ n}}.

The Vervaat transform V(w) := (V(w)i : 0 ≤ i ≤ n) of w is the walk obtained by
reading the increments (x1, . . . , xn) from left to right in cyclic order, started from
kn. Namely,

V(w)0 = 0 and V(w)i+1 − V(w)i = xkn+i mod [n], 0 ≤ i < n;
see Figure 4 for an illustration.

Recall that (Wi : i ≥ 0) is a random walk with increments distributed as X, and
for every n ∈ N define the random process Z(n) := (Z

(n)
i : 0 ≤ i ≤ n) by

(15) Z(n) := V(W0,W1, . . . ,Wn−1,−1).

The next result shows that (W
(n)
i : 0 ≤ i ≤ n) and (Z

(n)
i : 0 ≤ i ≤ n) are

close in the total variation sense when n goes to infinity, where we recall that
(W

(n)
i : 0 ≤ i ≤ n) is the random walk (Wi : i ≥ 0) under the conditional probabil-

ity P(·|ζ = n).

FIG. 4. The bridge B(n) = (B
(n)
i : 0 ≤ i ≤ n) with the location V b

n of its (first) maximal jump, its

Vervaat transform V(B(n)) with the location V ′
n of its (first) maximal jump, and the shifted bridge

R(n) = (R
(n)
i : 0 ≤ i ≤ n) with the location of its first overall minimum.
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THEOREM 21. We have

dTV
((

W
(n)
i : 0 ≤ i ≤ n

)
,
(
Z

(n)
i : 0 ≤ i ≤ n

)) −−−→
n→∞ 0,

where dTV denotes the total variation distance on R
n+1 equipped with the product

topology.

PROOF OF THEOREM 21. Throughout the proof, we let B(n) := (B
(n)
i : 0 ≤

i ≤ n) be a bridge of length n, that is, a process distributed as (Wi : 0 ≤ i ≤ n)

under P(·|Wn = −1). For every 0 ≤ i < n, we denote by b
(n)
i := B

(n)
i+1 − B

(n)
i the

ith increment of the bridge. We will need the first time at which (B
(n)
i : 0 ≤ i ≤ n)

reaches its largest jump, defined by

V b
n := inf

{
0 ≤ i < n : b(n)

i = max
{
b

(n)
j : 0 ≤ j < n

}}
.

Without loss of generality, we assume that the largest jump of B(n) is reached
once. We finally introduce the shifted bridge R(n) := (R

(n)
i : 0 ≤ i ≤ n), obtained

by reading the jumps of the bridge B(n) from left to right starting from V b
n . Namely,

we set

R
(n)
0 = 0 and r

(n)
i := R

(n)
i+1 − R

(n)
i = b

(n)

V b
n +i+1 mod [n], 0 ≤ i < n;

see Figure 4 for an illustration.
Since V b

n is independent of (b
(n)
0 , . . . , b

(n)

V b
n −1, b

(n)

V b
n +1, . . . , b

(n)
n−1), we have(

r
(n)
i : 0 ≤ i < n − 1

) = (
b

(n)

V b
n +i+1 mod [n] : 0 ≤ i < n − 1

)
(d)= (

X
(n)
1 , . . . ,X

(n)
n−1

)
.

One can then apply Proposition 20 to get that

dTV
((

R
(n)
i : 0 ≤ i < n

)
, (Wi : 0 ≤ i < n)

) −−−→
n→∞ 0.

We now use the Vervaat transform. By construction, V(R(n)) = V(B(n)) (see
Figure 4), and V(B(n)) has the same distribution as the excursion (W

(n)
i :

0 ≤ i ≤ n); see, for instance, [47], Section 5. Since R
(n)
n = −1 and Z(n) =

V(W0, . . . ,Wn−1,−1) by definition, this completes the proof. �

Let us denote by V z
n the index of the first largest jump of Z(n),

V z
n := inf

{
0 ≤ i < n : Z(n)

i+1 − Z
(n)
i = max

{
Z

(n)
j+1 − Z

(n)
j : 0 ≤ j < n

}}
.

Then one can identify with high probability the law of Z(n) until time V z
n as fol-

lows. Let us denote by (Ŵi : 0 ≤ i < n) the time reversed random walk defined by
Ŵi = Wn−1 − Wn−1−i for 0 ≤ i < n, and let În−1 be the last weak ladder time of
(Ŵi : 0 ≤ i < n). We have the following result.
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COROLLARY 22. Let En be the event

En := {
max{Xi : 1 ≤ i < n} < −1 − Wn−1

}
.

Then:

(i) We have P(En) → 1 as n → ∞;
(ii) On the event En, we have (Z

(n)
i : 0 ≤ i ≤ V z

n ) = (Ŵi : 0 ≤ i ≤ În−1).

PROOF. The event En can be rephrased as the fact that the maximal jump of
the process (W0,W1, . . . ,Wn−1,−1) is the last one. First, observe that the func-
tion convergence (8) combined with the continuity of the largest jump for the Sko-
rokhod J1 topology implies that 1

an
max1≤j<n Xk converges in distribution to a

nondegenerate random variable. Moreover, 1
an−1

(Wn−1 − bn−1) converges in dis-

tribution so that 1
|bn|(−1 −Wn−1) converges in distribution to 1. The first assertion

then follows from the fact that an = o(|bn|), while the second is a simple conse-
quence of the definition (15) of Z(n). �

We now establish a functional invariance principle for W(n). We set W
(n)
k = 0

for k < 0 by convention.

THEOREM 23. The convergence(W
(n)
�nt�

|bn| : −1 ≤ t ≤ 1
)

(d)−−−→
n→∞

(
(1 − t)1t≥0 : −1 ≤ t ≤ 1

)
holds in distribution in D([−1,1],R).

Here, we work with D([−1,1],R) instead of D([0,1],R) since our limiting
process almost surely takes a positive value in 0 (it “starts with a jump”), while
W(n) stays small for a positive time (see Figure 5 for a simulation).

PROOF OF THEOREM 23. By Theorem 21, it is enough to establish the result
with W(n) replaced with Z(n) = V(W0,W1, . . . ,Wn−1,−1). Recall that V z

n is the
index of the first largest jump of Z(n). Thanks to Corollary 22, we can also assume
without loss of generality that En is realized, so that

– (Z
(n)
i : 0 ≤ i ≤ V z

n ) = (Ŵi : 0 ≤ i ≤ În−1);

– Z
(n)

V z
n +1 − Z

(n)

V z
n

= −1 − Wn−1;

– (Z
(n)

V z
n +1+i

− Z
(n)

V z
n +1 : 0 ≤ i < n − V z

n ) = (Wi : 0 ≤ i < n − În−1).

Since (Ŵi : 0 ≤ i < n) and (Wi : 0 ≤ i < n) have the same distribution, by
Proposition 15(ii) and (8) we have the convergences

V z
n

n

(P)−−−→
n→∞ 0,

1

|bn| max
0≤i≤V z

n

∣∣Z(n)
i

∣∣ (P)−−−→
n→∞ 0
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FIG. 5. The Łukasiwiecz path of the tree depicted in Figure 1.

and

1

|bn|
(
Z

(n)

V z
n +1 − Z

(n)

V z
n

) (P)−−−→
n→∞ 1

as well as the convergence in distribution in D([0,1],R)(
1

|bn|
(
Z

(n)
Vn+1+�nt� − Z

(n)
Vn+1

) : 0 ≤ t ≤ 1
)

(d)−−−→
n→∞ (−t : 0 ≤ t ≤ 1),

where we set Z
(n)
k = 0 for k > n. The desired result readily follows. �

4.3. Applications: Limit theorems for BGW trees. Throughout this section, we
let μ be an offspring distribution satisfying (Hloc

μ ), and let Tn be a BGWμ tree
conditioned on having n vertices. We now apply the results of the previous sections
to the study of the tree Tn.

First of all, we immediately obtain a limit theorem for the Łukasiewicz path
W(Tn) by simply combining Proposition 8 with Theorem 23. Also note that Theo-
rem 21 gives a simple and efficient way to asymptotically simulate Tn.

PROPOSITION 24. The convergence(
W�nt�(Tn)

|bn| : −1 ≤ t ≤ 1
)

(d)−−−→
n→∞

(
(1 − t)1t≥0 : −1 ≤ t ≤ 1

)
holds in distribution in D([−1,1],R).

Our goal is now to prove Theorem 1, which requires more work.

PROOF OF THEOREM 1. First of all, by Proposition 8 and Theorem 21, we
can work with the tree T ′

n whose Łukasiewicz path is Z(n) instead of Tn. Recall
that by (15), Z(n) := V(W0,W1, . . . ,Wn−1,−1).
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By Corollary 22(i), we have �(T ′
n) = |Wn−1| + 1 with probability tending to

one as n → ∞, which yields the first part of the statement, that is,

�(T ′
n) − |bn|
an

(d)−−−→
n→∞ C1.

We now turn to the second part. We denote by v′
n the vertex of maximal degree

in T ′
n , and we work without loss of generality conditionally on the event that this

vertex is unique and has degree �(T ′
n) = |Wn−1| + 1. We let (τk : 0 ≤ k ≤ |Wn−1|)

be the connected components of T ′
n\{v′

n} (cyclically ordered), where τ0 is the con-
nected component containing the root vertex of T ′

n . For every k �= 0, we assume
that v′

n is the root vertex of τk . By construction, Loop(T ′
n) can be described as a

cycle of length �(T ′
n) on which the random graphs (Loop(τk) : 0 ≤ k ≤ |Wn−1|)

are grafted. Our goal is to prove the following estimate:

(16)
1

|bn| sup
0≤k≤|Wn−1|

rad
(
Loop(τk)

) (P)−−−→
n→∞ 0,

where rad(G) stands for the radius of the pointed graph G, that is, the maximal
graph distance to the root vertex in G (implicitly, τ and Loop(τ ) share the same
root vertex). Then the desired result will follow from standard properties of the
Gromov–Hausdorff topology.

Let us introduce a decomposition of the walk (Wi : i ≥ 0) into excursions above
its infimum. Namely, we set ζk = inf{i ≥ 0 : Wi = −k} for every k ≥ 0, and intro-
duce the excursions(

W(k)
i : 0 ≤ i ≤ ζk − ζk−1

) := (Wζk+i + k : 0 ≤ i ≤ ζk − ζk−1), k ∈ N.

For every k ≥ 1, we let τk be the tree whose Łukasiewicz path is W(k). This choice
of notation is justified by the fact that for every 1 ≤ k ≤ |Wn−1|, τk is indeed the
kth tree grafted on v′

n in T ′
n (see Figure 6 for an illustration).

The ancestral tree τ0 plays a special role. If we set Wk := inf{Wi : 0 ≤ i ≤ k}
for every k ≥ 1, then its Łukasiewicz path is given by[

(Wζ|Wn−1|+i − Wn−1)0≤i<n−ζ|Wn−1|,Wn−1 − Wn−1 − 1,

(Wζ|Wn−1|+i − Wn−1 − 1)0≤i<ζ|Wn−1|−ζ|Wn−1 |
]
.

Thus, we can decompose this tree into:

• The tree τ ∗|Wn−1|+1 whose Łukasiewicz path is (Wζ|Wn−1|+i − Wn−1 : 0 ≤ i <

n− ζ|Wn−1|) (completed by −1 steps). This is the tree made of the spine �∅, v′
n�

together with children of its vertices and all descendants on its left in T ′
n .

• The trees (τk : |Wn−1| < k ≤ |Wn−1|) that are the Wn−1 − Wn−1 trees grafted
on the right of the spine �∅, v′

n� in T ′
n .

This decomposition is illustrated in Figure 6.



1862 I. KORTCHEMSKI AND L. RICHIER

FIG. 6. The random walk (Wi : 0 ≤ i < n) and the associated tree T ′
n . In light green, the |Wn−1|

first excursions of W that encode the trees grafted above the vertex with maximal degree v′
n. In blue,

the next Wn−1 − Wn−1 excursions of W , that encode the trees (τk : |Wn−1| < k ≤ |Wn−1|). In bold
red, the tree τ∗|Wn−1|+1 and its Łukasiewicz path.

Back to (16), we get that

sup
0≤k<�(T ′

n)

rad
(
Loop(τk)

) ≤ rad
(
Loop(τ0)

) + sup
1≤k≤|Wn−1|

rad
(
Loop(τk)

)
≤ rad

(
Loop

(
τ ∗|Wn−1|+1

)) + sup
1≤k≤|Wn−1|

rad
(
Loop(τk)

)
.

By standard estimates on looptrees (see [31], Lemma 11), for every plane tree τ

we have

rad
(
Loop(τ )

) ≤ H(τ ) + sup
0≤i<|τ |

Wi (τ ),

where H(τ ) is the height (i.e., the radius) of τ and W(τ ) its Łukasiewicz path. This
yields

sup
0≤k<�(T ′

n)

rad
(
Loop(τk)

) ≤ H
(
τ ∗|Wn−1|+1

) + sup
1≤k≤|Wn−1|

H(τk)

+ 2 sup
0≤i≤n

(Wi − Wi).

By the functional convergence (8) and since an = o(|bn|), we have

1

|bn| sup
0≤i≤n

(Wi − Wi)
(P)−−−→

n→∞ 0,

so that it suffices to show that
1

|bn|
(
H

(
τ ∗|Wn−1|+1

) + sup
1≤k≤|Wn−1|

H(τk)
)

(P)−−−→
n→∞ 0.

Since τ ∗|Wn−1|+1 is a subtree of τ|Wn−1|+1 (i.e., the tree encoded by the (|Wn−1|+1)-

th excursion of W ), we obtain

H
(
τ ∗|Wn−1|+1

) + sup
1≤k≤|Wn−1|

H(τk) ≤ sup
1≤k≤|Wn−1|+1

H(τk).
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Moreover, we have

P

(
sup

1≤k≤|Wn−1|+1
H(τk) ≥ ε|bn|

)
≤ P

(|Wn−1| ≥ 2|bn|)
+ P

(
sup

1≤k≤2|bn|
H(τk) ≥ ε|bn|

)
.

Thanks to the functional convergence (8), we have P(|Wn−1| ≥ 2|bn|) → 0 as
n → ∞. Then recall that (Wi : i ≥ 0) is a random walk, so that the trees (τk : k ≥ 1)

are i.i.d. BGWμ trees. It follows from Lemma 9 that

P

(
sup

1≤k≤2|bn|
H(τk) ≥ ε|bn|

)
∼ 2|bn|P(

H(τk) ≥ ε|bn|) −−−→
n→∞ 0.

This proves (16) and completes the proof. �

We now obtain information concerning the vertex with maximal degree in Tn,
such as its height and its index in the lexicographical order. In this direction, in
virtue of Proposition 12, we let � be the increasing slowly varying function such
that

P
(
inf{j > 0 : Wj ≥ 0} ≥ n

) = 1

�(n)
.

We also denote by U∗
n the index of the first vertex of Tn with maximal out-degree

in the lexicographical order (starting from 0).

COROLLARY 25. The following assertions hold as n → ∞:

(i) For every x ∈ (0,1), P(
�(U∗

n )

�(n)
≤ x) → x.

(ii) The convergence 1
n
U∗

n → 0 holds in probability.

PROOF. By definition, U∗
n is the index of the first maximal jump of W(Tn).

By Proposition 8, Theorem 21 and Corollary 22, it is enough to establish the result
when U∗

n is replaced with În−1. Since În−1 and In−1 have the same law, the result
follows from Proposition 15. �

We now establish a limit theorem for the height H ∗
n of the first vertex of Tn with

maximal out-degree (Theorem 2).

PROOF OF THEOREM 2. Thanks to the relation between the height and the
Łukasiewicz path (see, e.g., [32], Proposition 1.2) we have

H ∗
n = #

{
0 ≤ i < U∗

n : Wi (Tn) = min[i,U∗
n ] W(Tn)

}
.
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Recall that V z
n is the index of the first largest jump of Z(n). By Proposition 8 and

Theorem 21, it is enough to establish that

1

�(n)
· #

{
0 ≤ i < V z

n : Z(n)
i = min

[i,V z
n ]

Z(n)
}

(d)−−−→
n→∞ Exp(1).

By Corollary 22, we can assume without loss of generality that the maximal jump
of (W0,W1, . . . ,Wn−1,−1) is the last one, so that

#
{
0 ≤ i < V z

n : Z(n)
i = min

[i,V z
n ]

Z(n)
}

= #
{
0 < i ≤ În−1 : Ŵi = max[0,i] Ŵ

}
.

Since (Ŵi : 0 ≤ i < n) and (Wi : 0 ≤ i < n) have the same distribution, and more-
over P(T1 > n) ∼ 1

�(n)
by Proposition 12(i), the desired result follows from Propo-

sition 16. �

REMARK 26. In particular, U∗
n → ∞ and H ∗

n → ∞ in probability. However,
if μ is subcritical and in the domain of attraction of a Cauchy distribution, U∗

n and
H ∗

n converge in distribution as n → ∞ (this can be seen by adapting the arguments
of [31] together with the results of [4]).

We are now ready to prove Theorem 3.

PROOF OF THEOREM 3. By Proposition 8 and Theorem 21, it is suffi-
cient to establish the result with W(Tn) replaced with the quantity Z(n) =
V(W0,W1, . . . ,Wn−1,−1). We keep the notation V z

n for the index of the first
largest jump of Z(n), and work on the event En thanks to Corollary 22.

Recall that (Z
(n)
i : 0 ≤ i ≤ V z

n ) = (Ŵi : 0 ≤ i ≤ În−1) and that moreover
In/n → 0 in probability by Proposition 15. Thus, by the functional convergence
(8) (applied with Ŵ instead of W ) and standard properties of Skorokhod’s J1
topology, we get that

1

an

sup
0≤i<V z

n

∣∣Z(n)
i+1 − Z

(n)
i

∣∣ (P)−−−→
n→∞ 0,

meaning that the first V z
n − 1 jumps of Z(n) are o(an).

By the proof of Theorem 23 and Skorokhod’s representation theorem, we may
assume that the following convergences hold almost surely as n → ∞: V z

n

n
→ 0

and

(17)

1

|bn| sup
[0,V z

n ]

∣∣Z(n)
∣∣ → 0,

1

an

sup
0≤i<V z

n

∣∣Z(n)
i+1 − Z

(n)
i

∣∣ → 0,

1

|bn|
(
Z

(n)

V z
n +1 − Z

(n)

V z
n

) → 1
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and

(18)
(Z

(n)

V z
n +1+�nt� − Z

(n)

V z
n +1 − bnt

an

: 0 ≤ t ≤ 1
)

(d)−−−→
n→∞ (Ct )0≤t≤1,

where we set Z
(n)
k = 0 for k > n.

Therefore, for n sufficiently large, we have �
(0)
n = Z

(n)

V z
n +1 −Z

(n)

V z
n

and (�
(i)
n : i ≥

1) are the jumps of (Z
(n)
i : V z

n + 1 ≤ i ≤ n) in decreasing order. Since C is almost
surely continuous at 1, by continuity properties of the Skorokhod topology, we get
that (�

(1)
n /an,�

(2)
n /an, . . .) converges in distribution to the decreasing rearrange-

ment of the jumps of (Ct ,0 ≤ t ≤ 1). Since the Lévy measure of C is 1x>0
dx
x2 , the

desired result follows from the fact that (Ct −Ct−, t ≥ 0) is a Poisson point process
with intensity 1x>0

dx
x2 (see, e.g., [5], Section 1.1). �

5. Cauchy random walks: Tail conditioning. In this section, we deal with a
BGWμ tree T≥n conditioned to have at least n vertices, when the offspring distri-
bution μ satisfies the more general assumption (Hμ).

In order to do so, we consider a random walk (Wi : i ≥ 0) whose increments
satisfy assumption (HX). Contrary to Section 4, we aim at studying the behavior
of the meander ( �W(n)

i : i ≥ 0), defined as (Wi : i ≥ 0) under the “tail” conditional
probability P(·|ζ ≥ n), which is the Łukasiewicz path of T≥n. (We use the nota-
tion �W(n) because the notation W(n) has been used when working under the local
conditioning P(·|ζ = n)).

More precisely, we shall couple with high probability the trajectory ( �W(n)
i : i ≥

0) with that of a random walk conditioned to be nonnegative for a random number
of steps (whose number converges in probability to ∞ as n → ∞), followed by
an independent “big jump,” and then followed by an independent unconditioned
random walk.

We will use again the notation and results of Section 3.

5.1. Invariance principle for meanders. First recall that In is the last weak
ladder time of (Wi : 0 ≤ i ≤ n). For n ≥ 1, we consider the process ( �Z(n)

i : i ≥ 0)

whose distribution is specified as follows.
For every j ≥ 1, conditionally given {In = j − 1}, the three random variables

( �Z(n)
i : 0 ≤ i < j), Y

(n)
j := �Z(n)

j − �Z(n)
j−1 and ( �Z(n)

i+j − �Z(n)
j : i ≥ 0) are independent

and distributed as follows:

• ( �Z(n)
i : 0 ≤ i < j)=(d)(Wi : 0 ≤ i < j) under P(·|ζ ≥ j)

• Y
(n)
j =(d) X under P(·|X ≥ |bn|)

• ( �Z(n)
i+j − �Z(n)

j : i ≥ 0)=(d)(Wi : i ≥ 0).

Our main result is the following.
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THEOREM 27. We have

dTV
(( �W(n)

i : i ≥ 0
)
,
( �Z(n)

i : i ≥ 0
)) −−−→

n→∞ 0,

where dTV denotes the total variation distance on R
Z+ equipped with the product

topology.

Intuitively speaking, this means that under the conditional probability P(·|ζ ≥
n), as n → ∞, the random walk (Wi : i ≥ 0) first behaves as conditioned to stay
nonnegative for a random number In of steps, then makes a jump distributed as
P(·|X ≥ |bn|), and finally evolves as a nonconditioned walk. See Proposition 15
above for an estimate on the order of magnitude of In.

EXAMPLE 28. When μ(n) ∼ c
n2 ln(n)2 as n → ∞, by Proposition 15 and Ex-

ample 19 we have that ln(In)
ln(n)

converges in distribution to a uniform random variable

U on [0,1]. In other words, the time In of the “big jump” of �Z(n) is of order nU .

Proof of Theorem 27. The structure of the proof is similar to that of [31],
Theorem 7. However, in the latter reference, In converges in distribution as n →
∞ to an integer-valued distribution, while here In → ∞ in probability. For these
reasons, the approach is more subtle.

Let us introduce some notation. Let A be the Borel σ -algebra on R
N associated

with the product topology and for every A ∈ A set

μn(A) := P
(( �W(n)

i : i ≥ 0
) ∈ A

)
and νn(A) := P

(( �Z(n)
i : i ≥ 0

) ∈ A
)
.

The idea of the proof of Theorem 27 is to transform the estimates of Corol-
lary 14 into an estimate on probability measures by finding a “good” event
Gn such that νn(Gn) → 1 as n → ∞ and then by showing that we have
supA∈A |μn(A ∩ Gn) − νn(A ∩ Gn)| → 0 as n → ∞.

By Proposition 15, we have that In/n converges in probability to 0 as n → ∞.
As a consequence, we may find a sequence (xn : n ≥ 1) such that xn = o(n) and
P(In ≥ xn) → 0. From now on, we let (xn : n ≥ 1) be such a sequence.

LEMMA 29. For every n ∈ N, set

Gn := {
(w0, . . . ,wn) ∈ R

n+1+ : ∃!i ∈ �1, xn� s.t. wi − wi−1 ≥ |bn|}.
Then, νn(Gn) −→ 1 as n → ∞.

Let us first explain how one establishes Theorem 27 using Lemma 29.

PROOF OF THEOREM 27. By Lemma 29, it suffices to show that, as n → ∞,
we have supA∈A |μn(A ∩ Gn) − νn(A ∩ Gn)| → 0. Without loss of generality, we
focus on events of the form w × A, where w = (0,w1, . . . ,wn) ∈ Gn and A ∈ A.
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On the one hand, since w ∈ Gn we have

μn(w × A) = P((W0,W1, . . . ,Wn) = w)P((Wn+i : i ≥ 1) ∈ A)

P(ζ ≥ n)
.

On the other hand, write

νn(w × A) =
∞∑

j=1

P
(
In = j,

( �Z(n)
i : i ≥ 0

) ∈ w × A
)
.

Since w ∈ Gn, there is a unique value of j ∈ �1, xn� such that we have wj −
wj−1 > |bn|, which we denote by j (w). Hence

P
(
In < xn,

( �Z(n)
i : i ≥ 0

) ∈ w × A
)

=
xn∑

j=1

P(In = j − 1) · P((W0, . . . ,Wj−1) = (w0, . . . ,wj−1))

P(ζ ≥ j)

· P(X = wj − wj−1,X ≥ |bn|)
P(X ≥ |bn|)

· P(
(Wi+j : i ≥ 1) ∈ (wj+1, . . . ,wn) × A

)
= P(In = j (w) − 1)

P(ζ ≥ j (w))P(X ≥ |bn|)
· P(

(W0,W1, . . . ,Wn) = w
)
P

(
(Wn+i : i ≥ 1) ∈ A

)
.

We therefore obtain by Lemma 11 that the quantity |μn(w × A) − νn(w × A)| is
bounded from above by

P(In ≥ xn) +
∣∣∣∣P(In = j (w) − 1)P(ζ ≥ n)

P(ζ ≥ j (w))P(X ≥ |bn|) − 1
∣∣∣∣

≤ P(In ≥ xn) +
∣∣∣∣P(T1 > n − j (w) + 1)P(ζ ≥ n)

P(X ≥ |bn|) − 1
∣∣∣∣.

The first term goes to zero as n → ∞ by definition of (xn : n ≥ 1), as well as the
second one since by Corollary 14, we have P(T1 > n − j + 1)P(ζ ≥ n) ∼ P(X ≥
|bn|) uniformly in 1 ≤ j ≤ xn. This completes the proof. �

PROOF OF LEMMA 29. First, set ηn = √
an|bn| and recall that Y

(n)
j = �Z(n)

j −
�Z(n)
j−1 for every j ≥ 1. Then observe that the event

{In ≤ xn} ∩
{

max
1≤i≤In

Y
(n)
i < |bn|

}
∩ {

Y
(n)
In+1 > |bn| + ηn

}
∩

{
max

In+1<i≤xn

Y
(n)
i < |bn|

}
∩

{
min

0≤i≤n−In

( �Z(n)
In+i − �Z(n)

In

)
> −|bn| − ηn

}
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is included in the event {( �Z(n)
0 , . . . , �Z(n)

n ) ∈ Gn}. As a consequence, νn(Gn) is
bounded from above by

P(In > xn) + max
1≤j≤xn

P

(
max

1≤i≤j
Xi ≥ |bn|

∣∣ ζ ≥ j
)

+ P
(
X < |bn| + ηn | X ≥ |bn|)

+ P

(
max

1≤i≤n
Xi ≥ |bn|

)
+ P

(
min

1≤i≤n
Wi ≤ −|bn| − ηn

)
.

Since P(In > xn) → 0 as n → ∞, it is enough to show that each one of the four
last terms of the above inequality tends to 0 as n → ∞.

First term. Let us show that P(max1≤i<j Xi ≥ |bn| | ζ ≥ j) → 0 uniformly in
1 ≤ j ≤ xn. To this end, by decomposing the event {max1≤i<j Xi ≥ |bn|} accord-
ing to the position of the first jump greater than |bn|, write

P

(
max

1≤i<j
Xi ≥ |bn|

∣∣ ζ ≥ j
)

≤ 1

P(ζ ≥ j)

j−1∑
k=1

P
(
X ≥ |bn|)P(ζ ≥ k).

Hence it remains to check that

P(X ≥ bn)

P(ζ ≥ xn)

xn∑
k=1

P(ζ ≥ k) −−−→
n→∞ 0.

But since P(In ≤ xn) → 1 as n → ∞, we know by Lemma 11 that

xn−1∑
k=0

P(ζ > k)P(T1 > n − k) =
xn−1∑
k=1

P(In = k) −−−→
n→∞ 1.

Since xn = o(n), by Corollary 14(i) we have P(T1 > n − k) ∼ P(T1 > n) as
n → ∞, uniformly in 1 ≤ k ≤ xn. Therefore,

∑xn

k=1 P(ζ ≥ k) ∼ 1
P(T1>n)

. Hence,
by Corollary 14(iii),

P(X ≥ |bn|)
P(ζ ≥ xn)

xn∑
k=1

P(ζ ≥ k) ∼
n→∞

P(ζ > n)

P(ζ ≥ xn)
.

Since xn = o(n), this term tends to 0 as n → ∞ by Corollary 14(ii).
Second term. The quantity P(X < |bn| + ηn | X ≥ |bn|) is equal to

1 − P(X ≥ |bn| + ηn)

P(X ≥ |bn|) = 1 − L(|bn| + ηn)

L(|bn|)
1

1 + ηn/|bn| ,

which tends to 0 as n → ∞ since ηn/|bn| = √
an/|bn| → 0.

Third term. Using (7), write

P

(
max

1≤i≤n
Xi ≥ |bn|

)
≤ nP

(
X1 ≥ |bn|) = nL(|bn|)

|bn| ∼
n→∞

L(|bn|)

∗(|bn|) ,

which tends to 0 as n → ∞ since 
∗(n)/L(n) → ∞.
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Fourth term. Write

P

(
min

1≤i≤n
Wi ≤ −|bn| − ηn

)
≤ P

(
inf

0≤t≤1
(W�nt� − bnt) ≤ −ηn

)
= P

(
inf

0≤t≤1

W�nt� − bnt

an

≤ −ηn

an

)
.

By (8), since the infimum is a continuous functional on D([0,1]) (see, e.g., [21],
Chapter VI, Proposition 2.4, inf0≤t≤1

W�nt�−bnt

an
converges in distribution to a real-

valued random variable and since ηn/an = √|bn|/an → ∞, the last term indeed
tends to 0. �

We now establish a functional invariance principle for �W(n), whose law we
recall to be that of the random walk (Wi : i ≥ 0) under the conditional probability
P(·|ζ ≥ n).

THEOREM 30. Let J be the real-valued random variable such that P(J ≥
x) = 1/x for x ≥ 1. Then the convergence( �W(n)

�nt�
|bn| : t ≥ −1

)
(d)−−−→

n→∞
(
(J − t)1t≥0 : t ≥ −1

)
holds in distribution in D([−1,∞),R). In addition, the convergence

inf{i ≥ 1 : �W(n)
i = −1}

|bn|
(d)−−−→

n→∞ J

holds jointly in distribution.

As in Theorem 23, we work with D([−1,∞),R) instead of D(R+,R) since our
limiting process almost surely takes a positive value in 0, while �W(n) stays small
for a positive time.

PROOF OF THEOREM 30. The proof is similar to that of Theorem 23. By
Theorem 27, it is enough to establish the result with �W(n) replaced with �Z(n). By
Proposition 15(ii), we have that In/n → 0 in probability, while Y

(n)
In+1/|bn| → J in

distribution as n → ∞. Thus, it suffices to show that as n → ∞:

(i) 1
|bn| sup[0,In] | �Z(n)| → 0 in probability,

(ii) ( 1
|bn|( �Z(n)

In+1+�nt� − �Z(n)
In+1) : t ≥ 0)−→(d)(−t : t ≥ 0) in D(R+,R).

Since by construction ( �Z(n)
In+1+i − �Z(n)

In+1 : i ≥ 0) has the same distribution as
(Wi : i ≥ 0), the second assertion simply follows from the functional conver-
gence (8) combined with the fact that an = o(|bn|) and standard properties of
Skorokhod’s topology.
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For the first assertion, we use a time-reversal technique. By arguing as in the
proof of Lemma 11, we see that

(19)
( �Z(n)

i : 0 ≤ i ≤ In

) (d)= (
W

[In]
i : 0 ≤ i ≤ In

)
,

where W
[In]
i := WIn −WIn−i for 0 ≤ i ≤ In. Hence, by combining (8) with the fact

that In/n → 0 in probability and an = o(|bn|), we get that 1
|bn| sup[0,In] |W [In]| → 0

in probability. Since sup[0,In] | �Z(n)| is stochastically bounded from above by
2 sup[0,In] |W [In]|, we obtain the desired result. �

5.2. Application: Limit theorems for BGW trees. From now on, we let μ be an
offspring distribution satisfying (Hμ), and let T≥n be a BGWμ tree conditioned on
having at least n vertices. The goal is to apply the results of the previous sections
to the study of the tree T≥n.

Here, our strategy is very similar to that of Section 4.3, where we replace Theo-
rem 21 by Theorem 27. For this reason, we give less detailed proofs. For instance,
Theorem 4 is proved along the same lines as Theorem 1 and is simpler, so we omit
the details. Next, we immediately obtain a limit theorem for the Łukasiewicz path
W(T≥n) by simply combining Proposition 8 with Theorem 30. As before, Theo-
rem 27 gives a simple and efficient way to asymptotically simulate T≥n.

PROPOSITION 31. Let J be the real-valued random variable such that P(J ≥
x) = 1/x for x ≥ 1. Then the convergence(

W�nt�(T≥n)

|bn| : t ≥ −1
)

(d)−−−→
n→∞

(
(J − t)1t≥0 : t ≥ −1

)
holds in distribution in D([−1,∞),R). In addition, the convergence

|T≥n|
|bn|

(d)−−−→
n→∞ J

holds jointly in distribution.

We now obtain information concerning the vertex with maximal degree in T≥n.
Using Proposition 12, we let � be the increasing slowly varying function such that

P
(
inf{j > 0 : Wj ≥ 0} ≥ n

) = 1

�(n)
.

We also denote by U∗≥n the index in the lexicographical order (starting from 0) of
the first vertex of Tn with maximal out-degree.

COROLLARY 32. The following assertions hold as n → ∞:

(i) For every x ∈ (0,1), P(
�(U∗≥n)

�(n)
≤ x) → x.

(ii) The convergence 1
n
U∗≥n → 0 holds in probability.
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PROOF. By Proposition 8 together with Theorems 27 and 30, it is enough to
establish the result when U∗≥n is replaced with In. It then follows from Proposi-
tion 15. �

Next, we establish a limit theorem for the height H ∗≥n of the first vertex of T≥n

with maximal out-degree (Theorem 5).

PROOF OF THEOREM 5. By arguing as in the proof of Theorem 2 and using
again Theorems 27 and 30, it is enough to show the result when H ∗≥n is replaced
with

#
{
0 ≤ i < In : �Z(n)

i = min[i,In]
�Z(n)

}
.

Thanks to the time-reversal identity (19), the desired result then follows from
Proposition 16. �

REMARK 33. The conclusions of Corollary 25 and Theorem 2 (for Tn) are
respectively the same as those of Corollary 32 and Theorem 5 (for T≥n). This may
be alternatively explained by the following fact: on an event of high probability,
Tn and T≥n have the same distribution once one removes the descendants of the
vertex with maximal degree (since we do not require this stronger statement, we
do not give a proof).

We conclude by establishing Theorem 6.

PROOF OF THEOREM 6. The proof follows that of Theorem 3. First, by The-
orem 27, we may replace W(T≥n) with �Z(n). Then, as in the proof of Theorem 3,
we observe that the first In jumps of �Z(n) are o(an), and that by Skorokhod’s rep-
resentation theorem, one may assume that the following convergences hold almost
surely:

(20)

1

|bn| sup
[0,In]

∣∣ �Z(n)
∣∣ → 0,

1

an

sup
0≤i<In

∣∣ �Z(n)
i+1 − �Z(n)

i

∣∣ → 0,

1

|bn|Y
(n)
In+1 → J

and

(21)
( �Z(n)

In+1+�nt� − �Z(n)
In+1 − bnt

an

: t ≥ 0
)

(d)−−−→
n→∞ (Ct )t≥0.
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Therefore, for n sufficiently large, we have �
(0)
≥n = Y

(n)
In+1 and (�

(i)
≥n)i≥1 are the

jumps of ( �Z(n)
i : In < i ≤ ζn) in decreasing order, where ζn = inf{i ≥ 1; �Z(n)

i =
−1}. Since an = o(|bn|), by (20) and (21), 1

n
ζn → J and we conclude as in the

proof of Theorem 3. �

6. Application to random planar maps. We now deal with an application of
Theorem 4 to the study of the boundary of Boltzmann maps. A (planar) map is the
proper embedding of a finite connected graph into the 2-dimensional sphere, seen
up to orientation-preserving homeomorphisms. In order to break symmetries, we
assume that maps carry a distinguished oriented root edge. The faces of a map are
the connected components of the sphere deprived of the embedding of the edges,
and the degree of this face is the number of its incident oriented edges. Given
a weight sequence q = (q1, q2, . . .) of nonnegative real numbers, the Boltzmann
weight of a bipartite map m (i.e., whose faces have even degree) is given by

wq(m) := ∏
f ∈Faces(m)

qdeg(f )/2.

The sequence q is termed admissible if these weights form a finite measure on the
set of bipartite maps. Then a q-Boltzmann map is a random planar map chosen
with probability proportional to its weight.

Over the years, a classification of weight sequences has emerged in the liter-
ature, following the milestones laid in [7, 39]. Besides admissibility, we usually
assume that the weight sequence q is critical, meaning that the expected squared
number of vertices of the q-Boltzmann map is infinite. Among critical weight se-
quences, further distinction is made by specifying the distribution of the degree
of a typical face of the q-Boltzmann map. A critical weight sequence is called
generic critical if the degree of a typical face has finite variance, and nongeneric
critical with parameter α ∈ (1,2) if the degree of a typical face falls within the do-
main of attraction of a stable law with parameter α (see [36, 39] for more precise
definitions).

This classification is justified by scaling limit results for Boltzmann maps con-
ditioned to have a large number of faces. After the seminal papers [33, 40], Le
Gall [34] and Miermont [43] proved that uniform quadrangulations have a scaling
limit, the Brownian map. This convergence was later extended to generic critical
sequences in [42], building on the earlier works [34, 39]. In 2011, Le Gall and
Miermont [36] established the subsequential convergence of nongeneric critical
Boltzmann maps. The natural candidate for the limit is called the stable map with
parameter α (see [41] for extensions allowing slowly varying corrections).

The geometry of the stable maps is dictated by large faces that remain present in
the scaling limit. Predictions originating from theoretical physics suggest that their
behavior differ in the dense phase α ∈ (1,3/2), where they are supposed to be self-
intersecting, and in the dilute phase α ∈ (3/2,2), where it is conjectured that they
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are self-avoiding. The strategy initiated in [48] and carried on in [31] touches upon
this conjecture via a discrete approach. It consists in studying Boltzmann maps
with a boundary, meaning that the face on the right of the root edge is viewed as
the boundary ∂m of the map m. As a consequence, this face receives unit weight
and its degree is called the perimeter of the map. Then, for every k ≥ 0, we let
M≥k be a q-Boltzmann map conditioned to have perimeter larger than 2k, so
that its boundary ∂M≥k stands for a typical face of degree larger than 2k of a
q-Boltzmann map.

The key observation of [48], Corollary 3.7 and Lemma 4.1, is that the random
graph ∂M≥k can be described as Loop(T≥2k+1), where T≥2k+1 is a BGWν tree
conditioned on having at least 2k + 1 vertices. The offspring distribution ν of
this tree has been analyzed in [48], Lemma 3.5 and Proposition 3.6. In the dense
regime α ∈ (1,3/2), it was shown that ν is critical and heavy-tailed, so that the
scaling limit of the boundary of Boltzmann maps conditioned to have large (fixed)
perimeter is a so-called random stable looptree introduced in [10]. On the contrary,
in the dilute phase α ∈ (3/2,2), ν is subcritical and heavy-tailed, and [31], Corol-
lary 4, shows that the scaling limit of ∂M≥k when k goes to infinity is a circle with
random perimeter. Together, these results show the existence of a phase transition
on the geometry of large faces at α = 3/2.

The purpose of the following application is to discuss the critical case α = 3/2.
It was established in [48], Lemma 6.1, that in this case, the offspring distribution ν

can be either subcritical or critical. However, the aforementioned predictions from
theoretical physics (see Remark 35) suggest that the scaling limit should be a circle
in both cases. Moreover, it is conjectured in [48] that the offspring distribution ν

falls within the domain of attraction of a Cauchy distribution. However, due to
technical difficulties involving analytic combinatorics, this was only established in
[48], Proposition 6.2, for a specific weight sequence q∗ defined by

(22) q∗
k := 1

4
61−k �(k − 3/2)

�(k + 5/2)
1k≥2, k ∈ N.

This weight sequence was first introduced in [2] (see also [8], Section 5). It turns
out that q∗ is nongeneric critical with parameter 3/2, and [48], Proposition 6.2,
entails that the associated offspring distribution ν is critical and satisfies

ν
([k,∞)

) ∼
k→∞

1

k ln2(k)
.

A direct application of Theorem 4 gives the following result.

COROLLARY 34. For every k ≥ 0, let M≥k be a Boltzmann map with weight
sequence q∗ conditioned to have perimeter at least 2k. Let J be the real-valued
random variable such that P(J ≥ x) = 1/x for x ≥ 1. Then there exists a slowly
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varying function L∗ tending to infinity such that the convergence

L∗(k)

k
· ∂M≥k

(d)−−−→
k→∞ J · S1

holds in distribution for the Gromov–Hausdorff topology.

As mentioned above, we believe that this result holds in greater generality,
namely for all nongeneric critical weight sequences with parameter 3/2.

REMARK 35. Part of the motivation for this result comes from a stronger form
of the celebrated Knizhnik–Polyakov–Zamolodchikov (KPZ) formula [28] that we
briefly describe. On the one hand, it is conjectured that planar maps equipped
with statistical mechanics models converge toward a so-called Liouville Quantum
Gravity (LQG) surface [15] coupled with a Conformal Loop Ensemble (CLE) of
a certain parameter κ ∈ (8/3,8) (which is a random collection of loops; see [51,
52]). On the other hand, nongeneric critical Boltzmann maps are related to maps
equipped with an O(n) loop model [7] through the gasket decomposition. As a
consequence, there is a conjectural relation between the parameter α ∈ (1,2) of
Boltzmann maps and the parameter κ of CLEs, given by the formula

α = 1

2
+ 4

κ
.

In this correspondence, the faces of the map play the role of loops of CLEs. It
is also proved in [50] that CLEs admit a phase transition between a dense, self-
intersecting phase and a dilute self-avoiding phase at κ = 4. Through this cor-
respondence, 3/2-stable maps are thus related to CLE4. Although self-avoiding,
CLE4 loops are “very close from each other” (see, for instance, the discussion
in [44], Section 1.1). In our wording, this critical phenomenon corresponds to the
fact that the scaling limit of large faces in nongeneric critical Boltzmann maps with
parameter 3/2 is still a circle, but with a renormalizing sequence that is possibly
o(n), in sharp contrast with the dilute regime.

REMARK 36. The condensation principle established in Theorem 1 should
also have an application to the study of nongeneric critical Boltzmann maps with
parameter α = 1 (i.e., such that the degree of a typical face is in the domain of
attraction of a stable law with parameter 1). We believe that by using the argument
of [23], the scaling limit of such maps should be the Brownian tree. This will be
investigated in future work.
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