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EFFECTIVE BERRY–ESSEEN AND CONCENTRATION BOUNDS
FOR MARKOV CHAINS WITH A SPECTRAL GAP

BY BENOÎT KLOECKNER

Université Paris-Est

Applying quantitative perturbation theory for linear operators, we prove
nonasymptotic bounds for Markov chains whose transition kernel has a spec-
tral gap in an arbitrary Banach algebra of functions X . The main results are
concentration inequalities and Berry–Esseen bounds, obtained assuming nei-
ther reversibility nor “warm start” hypothesis: the law of the first term of the
chain can be arbitrary. The spectral gap hypothesis is basically a uniform X -
ergodicity hypothesis, and when X consist in regular functions this is weaker
than uniform ergodicity. We show on a few examples how the flexibility in
the choice of function space can be used. The constants are completely ex-
plicit and reasonable enough to make the results usable in practice, notably
in MCMC methods.

1. Introduction.

General framework. Let (Xk)k≥0 be a Markov chain taking value in a general
state space �, and let ϕ : � → R be a function (the “observable”). Under rather
general assumptions, there is a unique stationary measure μ0 and it can be proved
that almost surely1

(1)
1

n

n∑
k=1

ϕ(Xk) → μ0(ϕ).

Then a natural question is to ask at what speed this convergence occurs. In many
cases, one can prove a central limit theorem (CLT), showing that the convergence
has the order 1/

√
n. But this is again an asymptotic result, and one is led to ask

for nonasymptotic bounds, both for the law of large numbers (1) (“concentration
inequalities”) and for the CLT (“Berry–Esseen bounds”).

A word on effectivity. In this paper, the emphasis will be on effective bounds,
that is, given an explicit sample size n, one should be able to deduce from the
bound that the quantity being considered lies in some explicit interval around its
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1Here and in the sequel, we write indifferently μ(f ) or

∫
f dμ for the integral of f with respect

to the measure μ.
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limit with at least some explicit probability. In other words, the result should be
nonaymptotic and all constants should be made explicit. The motivations for this
are at least twofold.

First, in practical applications of the Markov chain Monte-Carlo (MCMC)
method, where one uses (1) to estimate the integral μ0(ϕ), effective results are
needed to obtain proven convergence of a given precision. MCMC methods are
important when the measure of interest is either unknown, or difficult to sample
independently (e.g., uniform in a convex set in large dimension), but happens to
be the stationary measure for an easily simulated Markov chain. The Metropolis–
Hastings algorithm, for example, makes it possible to deal with an absolutely con-
tinuous measure whose density is only known up to the normalization constant.

A second, more theoretical motivation is that the constants appearing in limit
theorem depend on a number of parameters (e.g., the mixing speed of the Markov
chain, the law of X0, etc.). When the constants are not made explicit, one may not
be able to deduce from the result how the convergence speed changes when some
parameter approaches the limit of the domain where the result is valid (e.g., when
the spectral gap tends to 0).

There are many works proving concentration inequalities and (to a lesser extent)
Berry–Esseen bounds for Markov chains, under a variety of assumptions, and we
will only mention a small number of them. To explain the purpose of this article,
let us discuss briefly three directions.

Previous works (1): Total variation convergence. The first direction is mainly
motivated by MCMC; we refer to [34] for a detailed introduction to the topic.

The Markov chains being considered are usually ergodic (either uniformly,
which corresponds to a spectral gap on L∞, or geometrically); one measures dif-
ference between probability measure using the total variation distance, and the
limit theorems are typically obtained for L∞ observables ϕ (the emphasis here is
not on the boundedness, but on the lack of regularity assumption). Effective con-
centration inequalities have been obtained in this setting, for example, in [14] and
[24] which we shall discuss below. Watanabe and Hayashi [38] have given bounds
for tail probability and applied this to hypothesis testing, but their method is re-
stricted to finite-state spaces. Berry–Esseen bounds have been proved in [2], but
effective results are less common.

Previous works (2): The spectral method. The second direction grew from the
“Nagaev method” [29, 30], a functional approach where perturbative spectral the-
ory enables one to adapt the classical Fourier proofs of limit theorems, from in-
dependent identically distributed random variable to suitable Markov chains. This
approach is described in [17] in a quite general setting, and is especially popular in
dynamical systems (the statistical properties of certain dynamical systems can be
studied more easily by reversing time, and considering a Markov chain jumping
randomly along backward orbits).
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There the Markov chain being considered are often not ergodic in the total vari-
ation sense, but instead their transition kernel has a spectral gap in a space X
made of regular (e.g., Lipschitz or Hölder) functions; one sometimes say such a
Markov chain is X -ergodic. The limit theorems are then restricted to observables
ϕ ∈ X , and the speed of convergence is driven by the regularity of ϕ as much as
by its magnitude. Due to the use of perturbation theory of operator, in most cases
this method has not yielded effective results.

Note that the spectral method can be applied without regularity assumptions,
taking, for example, X = L2(μ0) or X = L∞(�) (or variants, see [25]), thus the
present direction intersects the previous one.

There are a few exceptions to the aforementioned lack of effectiveness. When
X is a Hilbert space, by symmetrization of the transition kernel one can use well-
known effective perturbation results. In this way, Lezaud obtains effective concen-
tration inequalities and Berry–Esseen bounds [26, 27]; see also [31]. Both work in
L2(μ0), restricting accordingly the Markov chains that can be considered. Second
Dubois [10] gave what seems to be the first effective Berry–Esseen inequality in
a dynamical context, and we shall compare the present Berry–Esseen inequality
with his. Last, Liverani [28] made very explicit the perturbation result obtained
with Keller [19] for operators in “strong-to-weak” norms, which might be usable
to obtain concentration results.

Previous works (3): Lipschitz observables. The third direction is quite recent:
Joulin and Ollivier [18] used ideas from optimal transportation to prove very ef-
ficiently effective concentration results under a positive curvature hypothesis; this
corresponds to strict contraction on the space X = Lip of Lipschitz functions.
Paulin [32] extended this method to the slightly more general case of a spectral
gap (on the same space). In a similar context but with different methods, Dedeker
and Fan [8] proved concentration near the expectation for non-linear, separately
Lipschitz functionals.

This method is very appealing, but is restricted to a single, pretty restrictive
function space constraining both the Markov chains and the observables that can
be considered; we will see in examples below that being able to change the function
space can be useful to get good constants even when [18] can be applied. Moreover,
this method seems unable to provide higher-order limit theorem such as the CLT
or Berry–Esseen bounds.

Contributions of this work. The goal of this article is to combine recent ef-
fective perturbation results [20] with the Nagaev method to obtain effective con-
centration inequalities and Berry–Esseen bounds for a wealth of Markov chains.
Our main hypothesis will basically be a spectral gap on some function space X ,
with the restriction that we need X to be a Banach algebra (this will in particular
restrict us to bounded observables). We obtain three main results:
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• a general concentration inequality (Theorem A),
• a variant which, under a bound on the dynamical variance of (ϕ(Xk))k , gives an

optimal rate for small enough deviations (Theorem B),
• a general Berry–Esseen bound (Theorem C).

Let us give a few examples where our results apply:

• taking X = L∞(�), our assumptions essentially reduce to uniform ergodicity
of the Markov chain and boundedness of the observable,

• taking X = Lip(�), our assumptions essentially reduce to positively curved
Markov chains (in the sense of Ollivier) and bounded Lipschitz observables.
This, for example, applies to contracting iterated function systems and backward
random walks of expanding maps. We shall see (Section 3.2) that in the toy
case of the discrete hypercube and observables with small Lipschitz constant,
Theorem A is less powerful than [18] but that for larger Lipschitz constants,
Theorem B can improve on [18],

• when � is a graph, we propose a functional space of functions with small “local
total variations” that yields improvement over [18] in some cases (Section 3.2),

• taking X = BV(I ) where I is an interval, our results apply to a natural Markov
chains related to Bernoulli convolutions, allowing observables of bounded vari-
ation such as characteristic functions of intervals (Section 3.3),

• more generally, when � is a domain of R
d some natural Markov chains are

BV(�)-ergodic and our results apply to functions of bounded variation, for ex-
ample, characteristic functions of sets of finite perimeter – but we will not con-
sider this case here, since it needs a somewhat sophisticated setup,

• Another direction we do not explore here is to take X = Holα(�), the space of
α-Hölder functions, or in case � = I is an interval, X = BVp(I ), the space of
p-bounded variation functions. These enable one to consider more general func-
tions than Lip(�) or respectively BV(�); even for Lipschitz of BV functions,
using these spaces can be useful because they tend to give regular observables a
much lower norm.

To my knowledge, no effective result was known in the setting of bounded vari-
ation functions (and while the usual spectral method could have been used in this
case, I do not know of previous asymptotic results either) and the effective Berry–
Esseen bound seems new in most of the above cases.

Structure of the article. In Section 2, we state notation and the main results.
Section 3 explains briefly the aforementioned examples and compares our results
with previous ones; detailed proofs are available in a companion note [23]. In Sec-
tion 4, we recall how perturbation theory can be used to prove limit theorems, and
state the perturbation results we need to carry out this method in a effective man-
ner. In Section 5, we prove the core estimates to be used thereafter, while Section 6
carries out the proof of the concentration inequalities. Section 7 is devoted to the
proof of the Berry–Esseen inequality.



1782 B. KLOECKNER

2. Assumptions and main results. Let � be a Polish metric space endowed
with its Borel σ -algebra and denote by P(�) the set of probability measures
on �. We consider a transition kernel M = (mx)x∈� on �, that is, mx ∈ P(�)

for each x ∈ �, and a Markov chain (Xk)k≥0 following the kernel M, that is,
P(Xk+1 | Xk = x) = mx . We will only consider cases where there exist a unique
stationary measure (see Remark 2.5 below), but we do not ask the Markov chain
to be stationary: the law of X0 is arbitrary (“cold start”). In some cases of interest,
the law of each Xk will even be singular with respect to the stationary measure.

NOTATION. In the following, μ0 will always denote the stationary measure of
M, and μ shall denote the law of X0 (which is arbitrary).

We shall study the behavior of (Xk)k≥0 by comparing the empirical mean to the
stationary mean:

μ̂n(ϕ) := 1

n

n∑
k=1

ϕ(Xk) vs. μ0(ϕ)

for an arbitrary “observable” ϕ ∈ X , where X is a space of functions � → R

(or � → C). Our method seems not (directly) suitable to consider more general,
nonlinear functionals �(X1, . . . ,Xn): we decompose μ̂n(ϕ) to make a power of a
perturbed transfer operator appear (see Section 4).

2.1. Assumptions.

STANDING ASSUMPTION 2.1. Throughout the paper, we assume X satisfies
the following:

(i) its norm ‖·‖ dominates the uniform norm: ‖·‖ ≥ ‖·‖∞,
(ii) X is a Banach algebra, that is, for all f,g ∈ X we have ‖fg‖ ≤ ‖f ‖‖g‖,

(iii) X contains the constant functions and ‖1‖ = 1 (where 1 denotes the constant
function with value 1).

The first hypothesis ensures integrability with respect to arbitrary probability
measure, which is important for cold-start Markov chains; it also implies that every
probability measure can be seen as a continuous linear form acting on X . The
second hypothesis will prove very important in our method where products abound
(and can be replaced by the more lenient ‖fg‖ ≤ C‖f ‖‖g‖ up to multiplying the
norm by a constant), and the hypothesis on ‖1‖ is a mere matter of convenience
and could be removed at the cost of more complicated formulas.

REMARK 2.2. This setting may seem restrictive at first: the Banach algebra
hypothesis notably excludes Lp spaces, while classically one only makes moment
assumptions on the observable. This is quite unavoidable given that we will work



EFFECTIVE BOUNDS FOR MARKOV CHAINS 1783

with more than one equivalence class of measures, and we want to allow cold start
at a given position (X0 ∼ δx0 ). The measures mx may be singular with respect to
the stationary measure μ0, and as a matter of fact in the dynamical applications
mx will be purely atomic while μ0 will often be atomless. It may thus happen that
for ϕ an Lp(μ0) observable, ϕ(Xj ) is undefined with positive probability, or is
extremely large even if ϕ has small moments with respect to μ0.

To the transition kernel M is associated an averaging operator acting on X :

L0f (x) =
∫
�

f (y)dmx(y).

Since each mx is a probability measure, L0 has 1 as eigenvalue, with eigenfunc-
tion 1.

STANDING ASSUMPTION 2.3. In all the article, we assume M satisfies the
following:

(i) L0 acts as a bounded operator from X to itself, and its operator norm ‖L0‖
is equal to 1.

(ii) L0 is contracting with gap δ0 > 0, that is, there is a closed hyperplane G0 ⊂
X such that

‖L0f ‖ ≤ (1 − δ0)‖f ‖ ∀f ∈ G0.

The first hypothesis could be relaxed, considering operators of arbitrary norm,
at the cost of more complicated formulas.

REMARK 2.4. The second hypothesis is the main one, and implies in partic-
ular that 1 is a simple isolated eigenvalue. It is a slightly stronger assumption than
a spectral gap, which can be written as∥∥Ln

0f
∥∥ ≤ C(1 − δ0)

n‖f ‖ ∀f ∈ G0

for all n ∈ N and some C ≥ 1 (what we call here a contraction with gap δ0 can
thus also be called a spectral gap of size δ0 with constant 1). When L0 only has a
spectral gap, all our results still apply to the Markov chains Ym = Xn0+mk where
n0 is arbitrary and k is such that C(1 − δ0)

k < 1. This trick can be also used when
C = 1, in cases where the gap is small; in numerical computations, this can be
especially useful when the simulation of the random walk is much cheaper than
the evaluation of the observable.

REMARK 2.5. The contraction hypothesis (or a mere spectral gap) ensures
that up to scalar factors there is a unique continuous linear form φ0 acting on X
such that φ0 ◦L0 = φ0; since any stationary measure of M satisfy this, all stationary
measures coincide on X . They might not be unique (e.g., if X contains only
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constants), but since we consider the ϕ(Xk) with ϕ ∈ X , this will not matter. We
will thus denote an arbitrary stationary measure by μ0, and identify it with φ0
(observe that G0 is then equal to kerμ0). In most cases, X will be dense in the
space of continuous function endowed with the uniform norm, ensuring that two
measures coinciding on X are equal, and then the contraction hypothesis ensures
the uniqueness of the stationary measure.

REMARK 2.6. There are numerous examples where Assumptions 2.1 and 2.3
are satisfied; we will present a few of them in Section 3. Typically, X has a norm
of the form ‖·‖ = ‖·‖∞ + V (·) where V is a seminorm measuring the regularity
in some sense (e.g., Lipschitz constant, α-Hölder constant, total variation, total p-
variation, etc.) and satisfying V (fg) ≤ ‖f ‖∞V (g) + V (f )‖g‖∞. This inequality
ensures that X is a Banach Algebra, and ‖1‖ = 1 holds as soon as V (1) = 0. Since
averaging operators necessarily satisfy ‖L0f ‖∞ ≤ ‖f ‖∞, it is sufficient that L
contracts V (i.e., V (L0f ) ≤ θV (f ) for some θ ∈ (0,1) and all f ∈ X ) to ensure
that ‖L0‖ = 1. It can be proved that in many cases, the contraction of V also
implies the contraction of ‖·‖ in the sense of Assumption 2.3 (see Lemma 2.3 of
[21], and a more general version in [23]). In fact, all examples considered here are
of this kind, but it seemed better to state our main results in terms of the hypotheses
we use directly in the proof. This is done at the expense of some sharpness: indeed
we could in some cases improve our constants by estimating with more precision
‖π0‖ below (see Lemma 2.4 of [21]).

2.2. Concentration inequalities. Our first result is a concentration inequality,
featuring a dichotomy between a Gaussian regime and an exponential regime (note
that we consider concentration near μ0(ϕ): in many cases there is a purely Gaus-
sian concentration near E[μ̂n(ϕ)], and the exponential regime appears due to the
bias μ0(ϕ) −E[μ̂n(ϕ)]).

THEOREM A. For all n ≥ 1 + log 100
− log(1−δ0/13)

, it holds:

Pμ

[∣∣μ̂n(ϕ) − μ0(ϕ)
∣∣ ≥ a

] ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.488 exp
(
−n

δ0

13.44δ0 + 8.324

a2

‖ϕ‖2

)
if

a

‖ϕ‖ ≤ δ0

3
,

2.624 exp
(
−n

0.98δ2
0

12 + 13δ0

(
a

‖ϕ‖ − 0.254δ0

))
otherwise.

See Section 3 and [23] for a few sample cases where this result applies and com-
parisons with previous results. Let us stress right away that the main strength of the
present result is its broadness: we need no warm-start hypothesis, no reversibility,
and we can apply it in many functional spaces. In particular, this makes our results
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broader than those of [26, 27] which assume ergodicity. Lezaud also gets a front
constant proportional to the L2(μ0)-norm of the density of the distribution of X0
with respect to the stationary distribution, which would be infinite in many of our
cases of applicability; even in the case of a finite state space he then gets a large
front constant when X0 ∼ δx . The approach of Joulin and Ollivier enabled them to
get rid of this constant in some test cases, and we compare our results to theirs in
Section 3.2.

The spectral method gives us access to higher-order estimates, enabling us to
improve the Gaussian regime bound as soon as we have a good control over the
“dynamical variance” (also called “asymptotic variance”) σ 2(ϕ), which is the vari-
ance appearing in the CLT for (ϕ(Xk))k≥0; setting ϕ̄ = ϕ − μ0(ϕ), the dynamical
variance is defined by

σ 2(ϕ) = μ0
(
ϕ2) − (μ0ϕ)2 + 2

∑
k≥1

μ0
(
ϕLk

0ϕ̄
)
.

THEOREM B. Whenever n ≥ 1 + log 100
− log(1−δ0/13)

, U ≥ σ 2(ϕ) and a ≤ U
‖ϕ‖ ×

log(1 + δ2
0

12+13δ0
),

Pμ

[∣∣μ̂n(ϕ) − μ0(ϕ)
∣∣ ≥ a

] ≤ 2.637 exp
(
−n ·

(
a2

2U
− 10

(
1 + δ−1

0

)2 ‖ϕ‖3a3

U3

))
.

Given an upper bound S ≥ σ 2(ϕ), the right-hand side of the above inequality is
minimized for U ∈ [max(S, a · ‖ϕ‖/ log(1 + δ2

0/(12 + 13δ0))),∞) at

Umin := max
(
S,

√
a · √60

(
1 + δ−1

0

)‖ϕ‖ 3
2 , a · ‖ϕ‖

log(1 + δ2
0/(12 + 13δ0))

)
.

By this substitution, the reader can easily get a bound only in terms of a and S.

For small enough a, one takes U = S and the positive term in the exponential
is negligible; the leading term −na2/(2S) is then exactly the best we can expect
given the bound S: since (ϕ(Xk))k satisfies a central limit theorem with variance
σ 2(ϕ), any better value would necessarily imply a better bound on σ 2(ϕ).

Paulin [31] (Theorem 3.3) obtained a similar result for stationary, reversible
Markov chains with a spectral gap in L2; the advantage of our result is to dispense
from stationarity, reversibility and to apply to various functional spaces.

Section 3.2 contains an example where Theorem B improves crucially on The-
orem A. However, bounding the dynamical variance can be difficult in general. In
practice, one could use other tools to estimate it and then apply Theorem B.

2.3. A Berry–Esseen bound. Our third main result, proven in Section 7, quan-
tifies the speed of convergence in the central limit theorem.



1786 B. KLOECKNER

THEOREM C. Assume σ 2(ϕ) > 0 and let ϕ̃ := ϕ−μ0(ϕ)
σ (ϕ)

be the reduced cen-
tered version of ϕ, and denote by G,Fn the distribution functions of the reduced
centered normal law and of 1√

n
(ϕ̃(X1) + · · · + ϕ̃(Xn)), respectively. For all n ≥ 1,

it holds

‖Fn − G‖∞ ≤ (148 + 285δ−1
0 + 123δ−2

0 )max{‖ϕ̃‖,‖ϕ̃‖3}√
n

.

The absence of a lower bound for n simply comes from the fact that for small n,
the right-hand side is greater than 1 (see Lemma 7.2) and the inequality is thus
vacuously true.

REMARK 2.7. Note that σ 2(ϕ) is always nonnegative, as it can be rewritten
as

lim
n→∞

1

n
Varμ0

(
n∑

k=1

ϕ(Xk)

)
,

(where the μ0 subscript means that the assumption X0 ∼ μ0 is made). However,
σ 2(ϕ) can vanish even when ϕ is not constant modulo μ0, as in the case of a
dynamical system when mx is supported on T −1(x) for some map T : � → �,
and ϕ is a coboundary: ϕ = g −g ◦T for some g. One can, for example, see details
[13], where σ 2 is interpreted as a semi-norm. Whenever σ 2(ϕ) = 0, one can use the
present method to obtain stronger nonasymptotic concentration inequalities, giving
small probability to deviations a such that a/‖ϕ‖ 
 1/n2/3 instead of a/‖ϕ‖ 

1/

√
n.

There are numerous works on Berry–Esseen bounds. In the case of independent
identically distributed random variables, the optimal constant is not yet known (the
best known constant is, to my knowledge, given by Tyurin [37]). Berry–Esseen
bounds for Markov chains go back to [2], but I know only of two previous effective
results, by Dubois [10] and by Lezaud [27].

The scope of Dubois’ result is quite narrower than ours, as it is only written
for uniformly expanding maps of the interval and Lipschitz observables (though
the method is expected to have wider application), and our numerical constant is
much better: while the dependences on the parameters of the system are stated
differently, and thus somewhat difficult to compare, Dubois has a front constant
of 11,460 which is quite large for practical applications (the order of convergence
being 1/

√
n, this constant has a squared effect on the number of iterations needed

to achieve a given precision).
The scope of Lezaud’s Berry–Esseen bound is also restricted, to ergodic re-

versible Markov chains. Moreover, he gets a front constant proportional to the
L2(μ0)-norm of the density of the distribution of X0 with respect to the stationary
distribution; in comparison, our result is insensitive to the distribution of X0.
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Application to dynamical systems. As is well known, limit theorems for the
Markov chain also apply in a dynamical setting (see, e.g., [16]). Given a k-to-one
map T : � → �, one defines the transfer operator of a potential A ∈ X by

LT ,Af (x) = ∑
y∈T −1(x)

eA(y)f (y).

One says that A is normalized when LT ,A1 = 1. This condition exactly means
that mx = ∑

y∈T −1(x) e
A(y)δy is a probability measure for all x, making LT ,A the

averaging operator of a transition kernel. We could consider more general maps T ,
considering a transition kernel that is supported on its inverse branches.

If the transfer operator has a spectral gap, then the stationary measure μ0 is
unique, and readily seen to be T -invariant. We shall denote it by μA to stress the
dependence on the potential. The corresponding stationary Markov chain (Yk)k∈N
satisfies all results presented above; but for each n, the time-reversed process de-
fined by Xk = Yn−k (where 0 ≤ k ≤ n) satisfies Xk+1 = T (Xk): all the randomness
lies in X0 = Yn. Having taken Yn stationary makes the law of Yn, that is, X0, inde-
pendent of the choice of n. It follows as in the corollary below.

COROLLARY 2.8. For all normalized A ∈ X such that LT ,A is contracting
with gap δ0, for all ϕ ∈ X , Theorems A, B and C hold for the random process
(Xk)k∈N defined by X0 ∼ μA and Xk+1 = T (Xk).

In this context, spectral gap was proved in many cases under the impetus of
Ruelle; see, for example, the books [1, 35], the recent works [3, 4, 7], and ref-
erences therein. Chazottes and Gouëzel [5] proved concentrations inequalities for
nonuniformly hyperbolic dynamical systems, but with a nonexplicit constant.

Let me finally mention [21] (based on the same effective perturbation theory as
the present paper) and [22].

3. Examples. In this section, we briefly present some basic examples where
our results apply; detailed proofs of the claims can be found in the note [23].

3.1. Chains with Doeblin’s minorization. The simplest example of a Banach
Algebra of functions is L∞(�), the set of measurable bounded functions, which
we shall endow with the norm ‖f ‖ = ‖f ‖∞ + supf − inff . Observe that con-
vergence of measures in duality to L∞(�) is convergence in total variation. For a
transition kernel M, having an averaging operator L0 with a spectral gap is a very
strong condition, called uniform ergodicity (the second term in the norm above is
designed to get this equivalence). Under the (slightly stronger) contraction hypoth-
esis, for any bounded measurable observable ϕ Theorem A thus yields for small
enough a an effective inequality of the form

Pμ

[∣∣μ̂n(ϕ) − μ0(ϕ)
∣∣ ≥ a

] ≤ 2.488 exp
(
−C

na2

‖ϕ‖2∞
δ0

)
,
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where δ0 is the gap of the contraction of the Markov chain and C is an absolute ex-
plicit constant. Such explicit inequalities where obtained by Glynn and Ormoneit
[14] and Kontoyiannis, Lastras-Montaño and Meyn [24] using the characteriza-
tion of uniform ergodicity by the Doeblin minorization condition; they obtain a
nonoptimal quadratic dependency on the gap (although their results are stated with
another, directly related parameter β). More recently, an effective concentration
inequality with the optimal dependency on δ0 and better constants than ours was
obtained by Paulin [31] (Corollary 2.10). That result is stated in term of a certain
mixing time, and for concentration around the expectation of μ̂n(ϕ); but it can be
rephrased in term of the gap, and the bias μ̂n(ϕ) − μ0(ϕ) can easily be bounded.
Dedeker and Gouëzel [9] proved concentration results (that can be made effective)
under the more general hypothesis of geometric ergodicity (they actually prove that
geometric ergodicity is characterized by a sub-Gaussian concentration inequality).

3.2. Discrete hypercube. It is interesting to consider the same toy example as
Joulin and Ollivier [18], the lazy random walk on the discrete hypercube {0,1}N :
the transition kernel M chooses uniformly a slot i ∈ {1, . . . ,N} and replaces it with
the result of a fair coin toss.

We consider two kind of observables: 1
N

Lipschitz maps such as the “polariza-
tion” ρ giving the proportion of 1’s in its argument, and the characteristic function
1S of a subset S ⊂ {0,1}N . We shall distinguish further the case of a very regular
set S = [0] := {(0, x2, . . . , xN) : xi ∈ {0,1}} and the case of “scrambled” sets, that
is, such that the dynamical variance of 1S is bounded by a constant independent of
the dimension N ; this is the case of sets such that every vertex has exactly 2pN

neighbors with the same value of 1S , where p is fixed independently of N .
We compare our results with those of Joulin and Ollivier in Table 1. In the

case of 1
N

-Lipschitz observable, we apply Theorem A with the weighted Lipschitz
norm ‖·‖L := ‖·‖∞ + N Lip(·); in the case of 1[0] we apply Theorem A but with
the “local total variation” norm

‖f ‖W := ‖f ‖∞ + sup
x∈{0,1}N

∑
y∼x

∣∣f (y) − f (x)
∣∣,

where ∼ denotes adjacency (x ∼ y whenever they differ in exactly one coordinate);
in the case of 1S with a scrambled S, we apply Theorem B with the norm ‖·‖L.
One sees that we obtain a weaker estimate in the case of ρ, but a better one in the
case of 1S , by exploiting the flexibility of our results in the choice of norm and in
the possible use of bounds on the dynamical variance. The case of scrambled sets
is notable, as we get a runtime independent of the dimension N .

3.3. Bernoulli convolutions and BV observables. As a last example, let us con-
sider the “Bernoulli convolution” of parameter λ ∈ (0,1), defined as the law βλ of
the random variable

∑
k≥1 εkλ

k where the εk are independent variables taking the
value 1 with probability 1/2 and the value −1 with probability 1/2.
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TABLE 1
Runtime to ensure error below a � 1 with good probability

1
N -Lip maps 1[0] 1S , scrambled S

Joulin–Ollivier O(N + 1
a2 ) O(N2

a2 ) O(N2

a2 )

Our best result O( N
a2 ) O( N

a2 ) O( 1
a2 )

When λ < 1/2, the support of βλ is a Cantor set of zero Lebesgue measure, so
that βλ is singular (with respect to Lebesgue measure). When λ = 1/2, βλ is the
uniform measure on [−1,1]. But when λ ∈ (1/2,1) (which we assume from now
on), the question of the absolute continuity of βλ is very difficult, and fascinating.
It was proved by Erdős [11] that if λ is the inverse of a Pisot number, then βλ is
singular, and a while later Solomyak discovered that for Lebesgue-almost all λ, βλ

is absolutely continuous [36]. See [33] for more information on these questions.
One can realize βλ as the stationary law of the Markov transition kernel

M =
(
mx = 1

2
δT0(x) + 1

2
δT1(x)

)
x∈R

,

where T0(x) = λx −λ and T1(x) = λx +λ. In order to evaluate βλ(ϕ) by a MCMC
method, one cannot use the methods developed for ergodic Markov chains since,
conditionally to X0 = x, the law mk

x of Xk is atomic, and thus singular with respect
to βλ: dTV(mk

x,βλ) = 1 for all k. The convergence only holds for observables satis-
fying some regularity assumption, and it is natural to ask what regularity is needed.

Our results can deal with observables of bounded variation, a regularity which
has the great advantage over, for example, Lipschitz to include the characteristic
functions of intervals. It can be proved that some iterate of M is contracting on
the space BV in the sense of Hypothesis 2.3 (precisely, it is sufficient to iterate
� := �1 + log 2/ log 1

λ
� times). Applying Theorem A to (Yk = Xk�)k≥0 and setting

μ̂Y
n = 1

n

∑n
k=1 δYk

we get for any starting distribution Y0 ∼ μ, any ϕ ∈ BV(Iλ), any
positive a < ‖ϕ‖BV/3(2�+1 − 1) and any n ≥ 120 · 2�:

Pμ

[∣∣μ̂Y
n (ϕ) − μ0(ϕ)

∣∣ ≥ a
] ≤ 2.488 exp

(
− na2

‖ϕ‖2
BV(16.65 · 2� + 5.12)

)
.

To the best of my knowledge, chains of this type together with BV observ-
ables could not be handled effectively by previously known results. For example,
[15] needs the observable to be at least C2 to have explicit estimates, and they do
not give a concentration inequality.

4. Connection with perturbation theory. To any ϕ ∈ X (sometimes called
a “potential” in this role) is associated a weighted averaging operator, called a
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transfer operator in the dynamical context:

Lϕf (x) =
∫
�

eϕ(y)f (y)dmx(y).

The classical guiding idea for the present work combines two observations.
First, we have

L2
ϕf (x0) =

∫
�

eϕ(x1)Lϕf (x1)dmx0(x1)

=
∫
�×�

eϕ(x1)eϕ(x2)f (x2)dmx1(x2)dmx0(x1)

and by a direct induction, denoting by dmn
x0

(x1, . . . , xn) the law of n steps of a
Markov chain following the transition M and starting at x0, we have

Ln
ϕf (x0) =

∫
�n

eϕ(x1)+···+ϕ(xn)f (xn)dmn
x0

(x1, . . . , xn).

In particular, applying to the function f = 1, we get

Ln
ϕ1(x0) =

∫
�n

eϕ(x1)+···+ϕ(xn) dmn
x0

(x1, . . . , xn) = Ex0

[
eϕ(X1)+···+ϕ(Xn)],

where (Xk)k≥0 is a Markov chain with transitions M and the subscript on ex-
pectancy and probabilities specify the initial distribution (x0 being short for δx0 ).

It follows by linearity that if the Markov chain is started with X0 ∼ μ where μ

is any probability measure, then setting μ̂nϕ := 1
n
ϕ(X1) + · · · + 1

n
ϕ(Xn) we have

(2) Eμ

[
exp(tμ̂nϕ)

] =
∫

Ln
t
n
ϕ

1(x)dμ(x).

This makes a strong connection between the transfer operators and the behavior of
μ̂nϕ.

Second, when the potential is small (e.g., t
n
ϕ with large n), the transfer operator

is a perturbation of L0, and their spectral properties will be closely related. This is
the part that has to be made quantitative to obtain effective limit theorems.

We will state the perturbation results we need after introducing some notation.
The letter L will always denote a bounded linear operator, and ‖·‖ will be used
both for the norm in X and for the operator norm. From now on, it is assumed
that L0 is a contraction with gap δ0. In [20], the leading eigenvalue of L0 is denoted
by λ0, an eigenvector is denoted by u0, and an eigenform (eigenvector of L∗

0) is
denoted by φ0.

Two quantities appear in the perturbation results below. The first one is the
condition number τ0 := ‖φ0‖‖u0‖|φ0(u0)| . To define the second one, we need to introduce
π0, the projection on G0 along 〈u0〉, which here writes π0(f ) = f − μ0(f ), and
observe that by the contraction hypothesis (L0 − λ0) is invertible when acting on
G0 (of course a spectral gap suffices). Then the spectral isolation is defined as

γ0 := ∥∥(L0 − λ0)
−1
|G0

π0
∥∥.
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We shall denote by P0 the projection on 〈u0〉 along G0, and set R0 = L0 ◦ π0.
We then have the expression

L0 = λ0P0 + R0

with P0R0 = R0P0 = 0. This decomposition will play a role below, and can be
done for all L with a spectral gap: we denote by λL, πL,PL,RL the corresponding
objects for L, and by λ,π,P,R we mean the corresponding maps L �→ λL, etc.

Last, the notation OC(·) is the Landau notation with an explicit constant C, that
is, f (x) = OC(g(x)) means that for all x, |f (x)| ≤ C|g(x)|.

THEOREM 4.1 (Theorems 2.3 and 2.6 and Proposition 5.1(viii) of [20]). All
L such that ‖L − L0‖ < 1/(6τ0γ0) have a simple isolated eigenvalue; λ,π,P,R
are defined and analytic on this ball. Given any K > 1, whenever ‖L − L0‖ ≤
(K − 1)/(6Kτ0γ0) we have

λL = λ0 + O
τ0+K−1

3

(‖L − L0‖)
,

λL = λ0 + φ0(L − L0)u0 + OKτ0γ0

(‖L − L0‖2)
,

λL = λ0 + φ0(L − L0)u0 + φ0(L − L0)S0(L − L0)u0

+ O2K2τ 2
0 γ 2

0

(‖L − L0‖3)
,

PL = P0 + O2Kτ0γ0

(‖L − L0‖)
,

πL = π0 + O
τ0+K−1

3

(‖L − L0‖)
,

∥∥∥∥D
[

1

λ
R

]
L

∥∥∥∥ ≤ 1

|λL| + τ0 + K−1
3

|λL|2 ‖L‖ + 2Kτ0γ0.

THEOREM 4.2 (Corollary 2.12 from [20]). In the case λ0 = ‖L0‖ = 1, all L
such that

‖L − L0‖ ≤ δ0(δ0 − δ)

6(1 + δ0 − δ)τ0‖π0‖
have a spectral gap of size δ below λL, with constant 1, that is, for all f on a
closed hyperplane, ‖Lnf ‖ ≤ |λL|n(1 − δ)n‖f ‖.

Since we will apply these results to the averaging operator L0, we need to eval-
uate the parameters in this case.

LEMMA 4.3. We have λ0 = 1, τ0 = 1, ‖π0‖ ≤ 2 and γ0 ≤ 2/δ0.

PROOF. By the construction of L0, we get u0 = 1 and λ0 = 1; we mentioned
that φ0 is identified with the stationary measure μ0.
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By hypothesis ‖u0‖ = 1, and ‖φ0‖ = 1 since ‖·‖ ≥ ‖·‖∞ and φ0 is a probability
measure. Then |φ0(u0)| = |μ0(1)| = 1 and it follows τ0 = 1.

Since for all f ∈ X , we have π0(f ) = f − μ0(f ) and ‖μ0(f )1‖ = |μ0(f )| ≤
‖f ‖∞ ≤ ‖f ‖, we get ‖π0‖ ≤ 2. (In general, this trivial bound can hardly be im-
proved without more information, notably on μ0: it may be the case that μ0 is
concentrated on a specific region of the space, and then f − μ0(f ) could have
norm close to twice the norm of f .)

Last, from the Taylor expansion (1 − L0)
−1 = ∑

k≥0 Lk
0, the contraction with

gap δ0, and the upper bound on ‖π0‖ we deduce γ0 ≤ 2/δ0. �

5. Main estimates. Standing Assumption 2.3 ensures that for all small
enough ϕ we can apply the above perturbation results; recall that μ0 is the sta-
tionary measure, so that for all f ∈ X we have

∫
L0f dμ0 = ∫

f dμ0.
We will first apply Theorem 4.2 with δ = δ0/13; this is somewhat arbitrary, but

the exponential decay will be strong enough compared to other quantities that we
do not need δ to be large. Taking it quite small allow for a larger radius where the
result applies.

As a consequence of this choice, the following smallness assumption will often
be needed:

(3) ‖ϕ‖ ≤ log
(

1 + δ2
0

13 + 12δ0

)
.

We will often use ϕ instead of Lϕ in subscripts: for example, λϕ = λLϕ is the
largest eigenvalue of Lϕ , obtained by perturbation of λ0, and πϕ is linear pro-
jection on its eigenline along the stable complement appearing in the contraction
hypothesis.

LEMMA 5.1. We have Lϕ(·) = L0(
∑

j≥0
ϕj

j ! ·) and ‖Lϕ − L0‖ ≤ e‖ϕ‖ − 1. If
(3) holds, then we have

‖Lϕ − L0‖ ≤ δ2
0

13 + 12δ0
≤ 1

25
Lϕ = L0 + O1.02

(‖ϕ‖)
= L0 + L0(ϕ·) + O0.507

(‖ϕ‖2)
‖πϕ‖ ≤ 2.053 = L0

((
1 + ϕ + 1

2
ϕ2

)
·
)

+ O0.169
(‖ϕ‖3)

.

Assumption (3) is in particular sufficient to apply Theorem 4.2 with δ = δ0/13 and
Theorem 4.1 with K = 1 + 12δ0/13.

PROOF. The first formula is a rephrasing of the definition of Lϕ ; observe then
that thanks to the assumption that X is a Banach algebra, we have

‖Lϕ − L0‖ = ∥∥L0
((

eϕ − 1
)·)∥∥ ≤ ‖L0‖

∥∥∥∥∥
∞∑

j=1

ϕj

j !
∥∥∥∥∥ ≤

∞∑
j=1

‖ϕ‖j

j ! ≤ e‖ϕ‖ − 1.
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Observing that x �→ x2/(13 + 12x) is increasing from 0 to 1/25 as x varies
from 0 to 1 completes the uniform bound of ‖Lϕ − L0‖ and gives ‖ϕ‖ ≤ log(1 +
1/25) := b. By convexity, we deduce that e‖ϕ‖ − 1 ≤ (eb − 1)

‖ϕ‖
b

≤ 1.02‖ϕ‖ and
the zeroth order Taylor formula follows.

The higher-order estimates are obtained similarly:

Lϕ = L0
((

1 + ϕ + (
eϕ − ϕ − 1

))·) = L0 + L0(ϕ·) + O‖L0‖
(
eϕ − ϕ − 1

)
and using the triangle inequality, the convexity of ex−x−1

x
and the bound on ϕ:

∥∥eϕ − ϕ − 1
∥∥ ≤ e‖ϕ‖ − ‖ϕ‖ − 1

‖ϕ‖ ‖ϕ‖ ≤ eb − b − 1

b2 ‖ϕ‖2 ≤ 0.507‖ϕ‖2.

The second order remainder is bounded by∥∥∥∥eϕ − 1

2
ϕ2 − ϕ − 1

∥∥∥∥ ≤ eb − 1
2b2 − b − 1

b3 ‖ϕ‖3 ≤ 0.169‖ϕ‖3

and finally, we have

‖πϕ‖ ≤ ‖π0‖ +
(

1 + 4δ0

13

)
‖Lϕ − L0‖ ≤ 2 +

(
1 + 4

13

)
1

25
≤ 2.053. �

LEMMA 5.2. Under (3), we have

|λϕ − 1| ≤ 0.0524, λϕ = 1 + O1.334
(‖ϕ‖)

,

λϕ = 1 + μ0(ϕ) + O2.43+2.081δ−1
0

(‖ϕ‖2)
and

λϕ = 1 + μ0(ϕ) + 1

2
μ0

(
ϕ2) + ∑

k≥1

μ0
(
ϕLk

0(ϕ̄)
) + O7.41+17.75δ−1

0 +8.49δ−2
0

(‖ϕ‖3)
.

PROOF. With K = 1 + 12δ0/13 we have τ0 + K−1
3 = 1 + 4δ0/13 and by the

Theorem 4.1, L �→ λL has Lipschitz constant at most 1 + 4/13 = 17/13. We get
|λϕ − λ0| ≤ 17

13‖Lϕ − L0‖ from which we deduce both |λϕ − 1| ≤ 17
13×25 ≤ 0.0524

and |λϕ − 1| ≤ 17
131.02‖ϕ‖ ≤ 1.334‖ϕ‖.

Now we use the first-order Taylor formula for λ, using Kτ0γ0 ≤ 2δ−1
0 (1 +

12δ0/13) = 24
13 + 2δ−1

0 :

λϕ = 1 + μ0
(
(Lϕ1 − L01)

) + O 24
13 +2δ−1

0

(‖Lϕ − L0‖2)
,

then using Lϕ1 − L01 = L0(ϕ) + O0.507(‖ϕ‖2) from Lemma 5.1 we get

μ0(Lϕ1 − L01) = μ0
(
L0(ϕ)

) + O0.507
(‖ϕ‖2) = μ0(ϕ) + O0.507

(‖ϕ‖2)
.
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Using ‖Lϕ − L0‖ ≤ 1.02‖ϕ‖ gives the following constant in the final O(‖ϕ‖2) of
the first-order formula:

0.507 + (1.02)2
(

24

13
+ 2δ−1

0

)
≤ 2.43 + 2.081δ−1

0 .

Then we apply the second-order Taylor formula:

λϕ = 1 + μ0(Lϕ1 − L01) + μ0
(
(Lϕ − L0)S0(Lϕ1 − L01)

)
+ O8K2δ−2

0

(‖Lϕ − L0‖3)
.

Using Lϕ1 − L01 = L0(ϕ + 1
2ϕ2) + O0.169(‖ϕ‖3) from Lemma 5.1 we first get

μ0(Lϕ1 − L01) = μ0(ϕ) + 1

2
μ0

(
ϕ2) + O0.169

(‖ϕ‖3)
.

To simplify the second term, we recall that Lϕ − L0 = L0(ϕ·) + O0.507(‖ϕ‖2) and
S0 = (1−L0)

−1π0 = (
∑

k≥0 Lk
0)π0 where π0 is the projection on kerμ0 along 〈1〉,

that is, π0(f ) = f − μ0(f ) =: f̄ , and has norm at most 2. We thus have (noticing
that in the second line both the main term and the remainder term belong to kerμ0):

π0(Lϕ1 − L01) = π0
(
L0(ϕ) + O0.507

(‖ϕ‖2)) = L0(ϕ̄) + O1.014
(‖ϕ‖2)

,

S0(Lϕ1 − L01) = ∑
k≥1

Lk
0(ϕ̄) + O1.014δ−1

0

(‖ϕ‖2)
.

We also have ‖S0(Lϕ1 − L01)‖ ≤ 2
δ0

‖Lϕ1 − L01‖ ≤ 2.04
δ0

‖ϕ‖ and it comes

(Lϕ − L0)S0(Lϕ1 − L01) = L0

(
ϕ

∑
k≥1

Lk
0(ϕ̄)

)
+ O1.014δ−1

0

(‖Lϕ − L0‖‖ϕ‖2)

+ O0.507
(‖ϕ‖2∥∥S0(Lϕ1 − L01)

∥∥)
= L0

(
ϕ

∑
k≥1

Lk
0(ϕ̄)

)
+ O2.07δ−1

0

(‖ϕ‖3)
,

μ0(Lϕ − L0)S0(Lϕ1 − L01) = ∑
k≥1

μ0
(
ϕLk

0(ϕ̄)
) + O2.07δ−1

0

(‖ϕ‖3)
,

where the reversal of sum and integral is enabled by normal convergence.
Last we observe 8K2δ−2

0 = 8(12
13 + δ−1

0 )2 ≤ 6.82 + 14.77δ−1
0 + 8δ−2

0 , and we
gather all what precedes:

λϕ = 1 + μ0(Lϕ1 − L01) + μ0
(
(Lϕ − L0)S0(Lϕ1 − L01)

)
+ O8K2δ−2

0

(‖Lϕ − L0‖3)
= 1 + μ0(ϕ) + 1

2
μ0

(
ϕ2) + O0.169

(‖ϕ‖3) + ∑
k≥1

μ0
(
ϕLk

0(ϕ̄)
)
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+ O2.07δ−1
0

(‖ϕ‖3) + O
(6.82+14.77δ−1

0 +8δ−2
0 )1.023

(‖ϕ‖3)
= 1 + μ0(ϕ) + 1

2
μ0

(
ϕ2) + ∑

k≥1

μ0
(
ϕLk

0(ϕ̄)
)

+ O7.41+17.75δ−1
0 +8.49δ−2

0

(‖ϕ‖3)
. �

Under Assumption (3), we know that Lϕ is contracting with gap δ0/13, and we
can write Lϕ = λϕPϕ + Rϕ where Pϕ is the projection to the eigendirection along
the stable complement and Rϕ = Lϕπϕ is the composition of the projection to the
stable complement and Lϕ . Then it holds PϕRϕ = RϕPϕ = 0, so that for all n ∈ N:

Ln
ϕ = λn

ϕPϕ + Rn
ϕ.

LEMMA 5.3. Under Assumption (3), it holds∥∥∥∥
(

1

λϕ

Rϕ

)n

1
∥∥∥∥ ≤ (

6.388 + 4.08δ−1
0

)
(1 − δ0/13)n−1‖ϕ‖

Pϕ1 = 1 + O3.77+4.08δ−1
0

(‖ϕ‖)
.

PROOF. At any L = Lϕ where ϕ satisfies (3) we have∥∥∥∥D
[

1

λ
R

]
L

∥∥∥∥ ≤ 1

|λL| + 17/13

|λL|2 |L| + 2Kτ0γ0

≤ 1

0.9476
+ 17

13 × 0.94762 × 1.04 + 48

13
+ 4

δ0

≤ 6.263 + 4

δ0

so that ∥∥∥∥ 1

λϕ

Rϕ1
∥∥∥∥ =

∥∥∥∥ 1

λϕ

Rϕ1 − 1

λ0
R01

∥∥∥∥
≤

(
6.263 + 4

δ0

)
‖Lϕ − L0‖‖1‖

≤ (
6.388 + 4.08δ−1

0

)‖ϕ‖.
Moreover, since RL takes its values in GL where πL acts as the identity, we have
‖Rn

ϕ1‖ ≤ λn−1
ϕ (1 − δ0/13)n−1‖RL1‖ from which the first inequality follows.

Then we have Pϕ = P0 + O2Kτ0γ0(‖Lϕ − L0‖), which yields the claimed result
using K = 1 + 12δ0/13, τ0 = 1, γ0 ≤ 2δ−1

0 and ‖Lϕ − L0‖ ≤ 1.02‖ϕ‖. �

This control of Pϕ and Rϕ can be then be used to reduce the estimation of Ln
ϕ1

to the estimation of λn
ϕ .
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COROLLARY 5.4. Under Assumptions (3) and

(4) n ≥ 1 + log 100

− log(1 − δ0/13)

it holds

Ln
ϕ1 = λn

ϕ

(
1 + O3.834+4.121δ−1

0

(‖ϕ‖))
,

λn
ϕ = exp

(
nμ0(ϕ) + O3.36+2.081δ−1

0

(
n‖ϕ‖2))

,

λn
ϕ = exp

(
nμ0(ϕ) + 1

2
nσ 2(ϕ) + O10.89+20.04δ−1

0 +8.577δ−2
0

(
n‖ϕ‖3))

.

PROOF. Assuming (3), Lemma 5.3 yields Ln
ϕ1 = λn

ϕPϕ1 + Rn
ϕ1 = λn

ϕA where

(5) A := 1 + O3.77+4.08δ−1
0

(‖ϕ‖) + O6.388+4.08δ−1
0

((
1 − δ0

13

)n−1
‖ϕ‖

)

is easily controlled if we ask (4), under which we have

A = 1 + O3.77+4.08δ−1
0

(‖ϕ‖) + O0.064+0.041δ−1
0

(‖ϕ‖) = 1 + O3.834+4.121δ−1
0

(‖ϕ‖)
.

The first estimate for λn
ϕ is obtained through the first-order Taylor formula. We

use the monotony and convexity of x �→ (log(1 + x) − x)/x and set x = λϕ − 1 ∈
[−b, b] with b = 0.0524 to evaluate log(λϕ):∣∣∣∣ log(1 + x) − x

x

∣∣∣∣ ≤ log(1 − b) + b

−b
· |x|

b
≤ 0.52|x|

log(λϕ) = λϕ − 1 + O0.52
(|λϕ − 1|2)

= λϕ − 1 + O0.52×1.3342
(‖ϕ‖2)

= λϕ − 1 + O0.926
(‖ϕ‖2)

and then using λϕ = 1 + μ0(ϕ) + O2.43+2.081δ−1
0

(‖ϕ‖2) from Lemma 5.2:

λn
ϕ = exp

(
n log(λϕ)

) = exp
(
n(λϕ − 1) + O0.926

(
n‖ϕ‖2))

= exp
(
nμ0(ϕ) + O3.36+2.081δ−1

0

(
n‖ϕ‖2))

.

The second estimate for λn
ϕ is obtained, of course, from the second-order for-

mula given in Lemma 5.2:

λϕ = 1 + μ0(ϕ) + 1

2
μ0

(
ϕ2) + ∑

k≥1

μ0
(
ϕLk

0(ϕ̄)
) + O7.41+17.75δ−1

0 +8.49δ−2
0

(‖ϕ‖3)
.
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Here, it is somewhat tedious to use a convexity argument and we instead use the
slightly less precise Taylor formula: for x ∈ [−b, b] (where again b = 0.0524) we
have ∣∣∣∣1

6

d3

dx3 log(1 + x)

∣∣∣∣ ≤ 2

6(1 − 0.0524)3 ≤ 0.392

so that

log(1 + x) = x − 1

2
x2 + O0.392

(
x3)

and, therefore (using at one step |μ0(ϕ)| ≤ ‖ϕ‖):

log(λϕ) = (λϕ − 1) − 1

2
(λϕ − 1)2 + O0.392

(
(λϕ − 1)3)

= μ0(ϕ) + 1

2
μ0

(
ϕ2) + ∑

k≥1

μ0
(
ϕLk

0ϕ̄
)

+ O7.41+17.75δ−1
0 +8.49δ−2

0

(‖ϕ‖3)
− 1

2

(
μ0(ϕ) + O2.43+2.081δ−1

0

(‖ϕ‖2))2 + O0.392×1.3343
(‖ϕ‖3)

= μ0(ϕ) + 1

2
σ 2(ϕ) + O10.771+19.831δ−1

0 +8.49δ−2
0

(‖ϕ‖3)
+ O2.953+5.06δ−1

0 +2.166δ−2
0

(‖ϕ‖4)
.

Now assumption (3) ensures ‖ϕ‖ ≤ 0.04, so that we can combine the two error
terms into Oc(‖ϕ‖3) with c = 10.771 + 19.831δ−1

0 + 8.49δ−2
0 + 0.04(2.953 +

5.06δ−1
0 + 2.166δ−2

0 ) ≤ 10.89 + 20.04δ−1
0 + 8.577δ−2

0 . �

6. Concentration inequalities. We will in this section apply Corollary 5.4 to
t
n
ϕ instead of ϕ, which we can do as soon as n is large enough with respect to t

and ‖ϕ‖ in the sense that

(6) n ≥ ‖tϕ‖
log(1 + δ2

0
12+13δ0

)

and n ≥ 1 + log 100

− log(1 − δ0/13)
.

(These conditions can be replaced by the stronger but simpler conditions n ≥
26‖tϕ‖

δ2
0

and n ≥ 60
δ0

, respectively.)

Under conditions (6), we obtain our first control of the moment generating func-
tion of the empiric mean μ̂n(ϕ) := 1

n
ϕ(X1) + · · · + 1

n
ϕ(Xn) by plugging the first-

order estimate of Corollary 5.4 in (2):

Eμ[exp(tμ̂n(ϕ))]
exp(tμ0(ϕ))

= e−tμ0(ϕ)
∫

Ln
t
n
ϕ

1(x)dμ(x)
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=
(

1 + O3.834+4.121δ−1
0

(
t

n
‖ϕ‖

))

× exp
(
O3.36+2.081δ−1

0

(
t2

n
‖ϕ‖2

))
.

By the classical Chernov bound, it follows that for all a, t > 0:

Pμ

[∣∣μ̂n(ϕ) − μ0(ϕ)
∣∣ ≥ a

]
≤

(
2 + (

7.668 + 8.242δ−1
0

) t

n
‖ϕ‖

)
(7)

× exp
(
−at + (

3.36 + 2.081δ−1
0

) t2

n
‖ϕ‖2

)
).

6.1. Gaussian regime. Our first concentration inequality is obtained by choos-
ing t to optimize the argument of the exponential in (7), that is, taking

t = na

2(3.36 + 2.081δ−1
0 )‖ϕ‖2

.

This choice can be made as soon as a is small enough: indeed the first condition
on n then reads

a ≤ (
6.72 + 4.162δ−1

0

)
log

(
1 + δ2

0

12 + 13δ0

)
‖ϕ‖ =: amax‖ϕ‖.

Let us find a simpler lower bound for the right-hand side:

amax ≥ (
6.72 + 4.162δ−1

0

) · 0.98
δ2

0

12 + 13δ0
≥ 6.58δ0 + 4

13δ0 + 12
δ0 ≥ δ0

3

so that a sufficient condition to make the above choice for t is

(8) a ≤ δ0‖ϕ‖
3

.

Then the argument in the exponential becomes

−at + (
3.36 + 2.081δ−1

0

) t2

n
‖ϕ‖2 ≤ − na2

(13.44 + 8.324δ−1
0 )‖ϕ‖2

and the constant in front:

2 + (
7.668 + 8.242δ−1

0

) t

n
‖ϕ‖ ≤ 2 + (7.668 + 8.242δ−1

0 )a

(6.72 + 4.162δ−1
0 )‖ϕ‖

≤ 2 + 7.668δ2
0 + 8.242δ0

20.16δ0 + 12.486

≤ 2 + 7.668 + 8.242

20.16 + 12.486
≤ 2.488,
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which is the first part of Theorem A (one can also bound the front constant in a
different way to show it can be taken close to 2 for small a).

6.2. Exponential regime. For larger a, we obtain a result with exponential de-
cay by taking t as large as allowed by the first smallness condition (6), that is,

t � n
‖ϕ‖ log(1 + δ2

0
12+13δ0

). To simplify, we precisely take the slightly smaller

t = n

‖ϕ‖ · 0.98δ2
0

12 + 13δ0
.

Then the argument in the exponential becomes

−at + (
3.36 + 2.081δ−1

0

) t2

n
‖ϕ‖2)

= n
0.98δ2

0

12 + 13δ0

(
− a

‖ϕ‖ + 0.98(3.36δ2
0 + 2.081δ0)

12 + 13δ0

)

≤ −n
0.98δ2

0

12 + 13δ0

(
a

‖ϕ‖ − 0.254δ0

)
and the constant in front:

2 + (
7.668 + 8.242δ−1

0

) t

n
‖ϕ‖ = 2 + (

7.668 + 8.242δ−1
0

) 0.98δ2
0

12 + 13δ0

= 2 + 7.515δ2
0 + 8.078δ0

12 + 13δ0

≤ 2 + 15.593

25
≤ 2.624

and we obtain the second part of Theorem A.

6.3. Second-order concentration. In the case one has a good upper bound for
the dynamical variance σ 2(ϕ), then the previous concentration results can be im-
proved by using the second-order formula in Corollary 5.4, which yields

Eμ[exp(tμ̂n(ϕ))]
exp(tμ0(ϕ))

= exp
(

t2

2n
σ 2(ϕ) + O10.89+20.04δ−1

0 +8.577δ−2
0

(
t3

n2 ‖ϕ‖3
))

×
(

1 + O3.834+4.121δ−1
0

(
t

n
‖ϕ‖

))
so that, if we know σ 2(ϕ) ≤ U :

Pμ

[∣∣μ̂n(ϕ) − μ0(ϕ)
∣∣ ≥ a

] ≤
(

2 + (7.668 + 8.242δ−1
0 )t

n
‖ϕ‖

)

× exp
(
−at + t2

2n
U + C

t3

n2 ‖ϕ‖3
)
,
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where C can be any number above 10.89+20.04δ−1
0 +8.577δ−2

0 . To get a compact
expression, we observe that 0.89 + 0.04δ−1

0 ≤ 0.93δ−2
0 so that

10.89 + 20.04δ−1
0 + 8.577δ−2

0 ≤ 10 + 20δ−1
0 + 9.507δ−2

0 ≤ 10
(
1 + δ−1

0

)2 =: C.

The choice of t can then be adapted to the circumstances; we will only explore
the choice t = an/U which is nearly optimal when a is small.

This choice can be made as soon as

a ≤ U

‖ϕ‖ log
(

1 + δ2
0

12 + 13δ0

)
and entails the following upper bound for the front constant:

2 + (
7.668 + 8.242δ−1

0

) δ2
0

12 + 13δ0
≤ 2 + 7.668 + 8.242

12 + 13
≤ 2.637.

Meanwhile, the exponent becomes

−at + t2

2n
U + C

t3

n2 ‖ϕ‖3 = −a2n

2U
+ C‖ϕ‖3a3n

U3

yielding Theorem B.

7. Berry–Esseen bounds. In this section, we use the second-order Taylor
formula for the leading eigenvalue to prove effective Berry–Esseen bounds. The
method we use is the one proposed by Feller [12], which does not yield the best
constant in the IID case, but is quite easily adapted to the Markov or dynamical
case as observed in [6].

The starting point is a “smoothing” argument that allows to translate the prox-
imity of characteristic functions into a proximity of distribution functions.

PROPOSITION 7.1 ([12]). Let F,G be the distribution functions and φ,γ be
the characteristic functions of real random variables with vanishing expectation.
Assume G is differentiable and ‖G′‖∞ ≤ m; then for all T > 0:

‖F − G‖∞ ≤ 1

π

∫ T

−T

∣∣∣∣φ(t) − γ (t)

t

∣∣∣∣ dt + 24m

πT
.

We set G(T ) = (2π)− 1
2
∫ T
−∞ e− t2

2 dt the reduced normal distribution function

(so that ‖G′‖∞ = (2π)− 1
2 ) and γ (t) = e− t2

2 , and apply the above estimate to the
distribution function Fn of the random variable Yn = 1√

n
(ϕ̃(X1) + · · · + ϕ̃(Xn)),

where here ϕ̃ is the fully normalized version of ϕ:

ϕ̃ = ϕ − μ0(ϕ)

σ (ϕ)
where σ 2(ϕ) = μ0

(
ϕ2) − (μ0ϕ)2 + 2

∑
k≥1

μ0
(
ϕLk

0(ϕ̄)
)
,
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assuming σ 2(ϕ) > 0 and with ϕ̄ := ϕ −μ0(ϕ). The point is then to use the spectral
method to obtain an expression of the characteristic function φn of Yn close to the
expression of γ .

We start by showing that the norm of a normalized potential is bounded away
from zero.

LEMMA 7.2. We have ‖ϕ̃‖ ≥ √
δ0/2.

PROOF. We have σ 2(ϕ) = σ 2(ϕ̄) ≤ ‖ϕ̄2‖∞ + 2
∑

k≥1‖ϕ̄‖∞(1 − δ0)
k‖ϕ̄‖ ≤

‖ϕ̄‖2( 2
δ0

− 1). Using σ 2(ϕ̃) = 1, we get ‖ϕ̃‖ ≥ ( 2
δ0

− 1)− 1
2 and the result follows.

�

This has a first interesting consequence: if Assumption (4) is not satisfied, we
have in particular n ≤ 60/δ0 and Lemma 7.2 implies that in the conclusion of
Theorem C the right-hand side is (much) larger than 1, making the conclusion
vacuously true (the left-hand side is always less than 1). It follows that we only
need to consider the case when (4) is satisfied even though we did not include it in
the hypotheses. For the same reason, we can and do assume n ≥ 10,000.

To apply the estimates from Section 5 to it√
n
ϕ̃, it is therefore sufficient to have

(9)
√

n ≥ ‖t ϕ̃‖
log(1 + δ2

0
13+12δ0

)

.

LEMMA 7.3. Under assumption (9), we have

φn(t) = λn
it√
n
ϕ̃
(1 + O3.668+4.121δ−1

0

(∥∥∥∥ t√
n
ϕ̃

∥∥∥∥
)
,

λn
it√
n
ϕ̃

= exp
(
− t2

2
+ O10.89+20.04δ−1

0 +8.577δ−2
0

(
1√
n
‖t ϕ̃‖3

))
.

PROOF. Applying formula (2) to it√
n
ϕ̃, we obtain the following expression for

the characteristic function (where μ is the law of X0):

φn(t) =
∫

L it√
n
ϕ̃

1(x)dμ(x) = λn
it√
n
ϕ̃

(∫
P it√

n
ϕ̃

1 dμ +
∫

[R/λ]nit√
n
ϕ̃

1 dμ

)
︸ ︷︷ ︸

=:A

.

Corollary 5.4 gives the claimed expression for λn
it√
n
ϕ̃

and

A =
∫

P it√
n
ϕ̃

1 dμ + λ−n
it√
n
ϕ̃

∫
Rn

it√
n
ϕ̃

1 dμ = 1 + O3.668+4.121δ−1
0

(∥∥∥∥ t√
n
ϕ̃

∥∥∥∥
)
.

�
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LEMMA 7.4. Under Assumption (9), for any α ∈ (0,0.5), if

(10)
√

n ≥ 10.89 + 20.04δ−1
0 + 8.577δ−2

0

0.5 − α
|t |‖ϕ̃‖3

then ∣∣φn(t) − γ (t)
∣∣ ≤ 1.32ne−0.9999αt2 ∣∣φn(t)

1
n − γ (t)

1
n
∣∣.(11)

PROOF. Following Feller [12], we use that for all a, b, c with |a|, |b| ≤ c and
all n ∈ N:

(12)
∣∣an − bn

∣∣ ≤ n|a − b|cn−1.

We take a = φn(t)
1
n , b = γ (t)

1
n and c an upper bound which we will now choose.

Feller takes c = e− t2
4n , but we need two adaptations and take c = 1.32

1
n e−α t2

n where

α ∈ (0,0.5) will be optimized later on. We already have γ (t)
1
n = e− t2

2n ≤ c and
need to ensure the same bound for φn. We have

φn(t)
1
n ≤ e− t2

2n exp
((

10.89 + 20.04δ−1
0 + 8.577δ−2

0

)( 1

n3/2 ‖t ϕ̃‖3
))

A
1
n ,

where, using ‖ t√
n
ϕ̃‖ ≤ δ2

0
13+12δ0

,

A ≤ 1 + (
3.834 + 4.121δ−1

0

)∥∥∥∥ t√
n
ϕ̃

∥∥∥∥ ≤ 1.32.

To ensure φn(t)
1
n ≤ c, it is therefore sufficient that

(
10.89 + 20.04δ−1

0 + 8.577δ−2
0

)( 1√
n
‖t ϕ̃‖3

)
≤ (0.5 − α)t2,

that is, Condition (10) suffices. Using n ≥ 10 000 to bound (n− 1)/n by 0.9999 in
(12), we then obtain (11). �

LEMMA 7.5. Under Assumption (9), we have

∣∣φn(t)
1
n − γ (t)

1
n
∣∣ ≤ f ‖t ϕ̃‖3 + g‖t ϕ̃‖

n3/2 + t4

8n2

with f = 7.41 + 17.75δ−1
0 + 8.49δ−2

0 and g = 4.036 + 4.338δ−1
0 .

PROOF. We follow Feller again and write

∣∣φn(t)
1
n − γ (t)

1
n
∣∣ ≤

∣∣∣∣λ it√
n
ϕ̃
A

1
n − 1 + t2

2n

∣∣∣∣ +
∣∣∣∣e− t2

2n − 1 + t2

2n

∣∣∣∣,(13)
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where A is defined in the proof of Lemma 7.3. Since for all x ∈ [0,+∞[ we have
0 ≤ e−x − 1 + x ≤ 1

2x2, the second summand is bounded above by t4

8n2 . To deal
with the first summand, we start by a finer evaluation of A:

A
1
n =

(
1 + O3.834+4.121δ−1

0

(∥∥∥∥ t√
n
ϕ̃

∥∥∥∥
)) 1

n

≤ exp
(

1

n3/2

(
3.834 + 4.121δ−1

0

)‖t ϕ̃‖
)
).

By our assumptions, the argument of the exponential is not greater than

1

n

(
3.834 + 4.121δ−1

0

)
log

(
1 + δ2

0

13 + 12δ0

)

≤ 1

10,000

3.834δ2
0 + 4.121δ0

13 + 12δ0

≤ 0.0001.

Using e0.0001 ≤ 1.00011, for all ε ∈ [0,0.0001], we have exp(ε) ≤ 1 + 1.00011ε

so that:

A
1
n ≤ 1 + 3.835 + 4.122δ−1

0

n3/2 ‖t ϕ̃‖.

Using Lemma 5.2, definition of σ 2 and normalization of ϕ̃, we have

λ it√
n
ϕ̃

= 1 − t2

2n
+ O7.41+17.75δ−1

0 +8.49δ−2
0

(∥∥∥∥ t√
n
ϕ̃

∥∥∥∥3)
.

The lower order terms simplify in the first summand of (13) and we obtain

∣∣φn(t)
1
n − γ (t)

1
n
∣∣

≤
∣∣∣∣O7.41+17.75δ−1

0 +8.49δ−2
0

(∥∥∥∥ t√
n
ϕ̃

∥∥∥∥3)

+ λ it√
n
ϕ̃

3.835 + 4.122δ−1
0

n3/2 ‖t ϕ̃‖
∣∣∣∣

+ t4

8n2

≤ f ‖t ϕ̃‖3 + g‖t ϕ̃‖
n3/2 + t4

8n2

(using g ≥ 1.0524(3.835 + 4.122δ−1
0 )). �
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For all T > 0 such that the above conditions (9) and (10) hold for all t ∈
[−T ,T ], we have by Proposition 7.1 and Lemmas 7.4, 7.5:

‖Fn − G‖∞ ≤ 1

π

∫ T

−T

∣∣∣∣φ(t) − γ (t)

t

∣∣∣∣ dt + 24m

πT

≤ 2.64

π

∫ T

0

n

t
e−0.9999αt2 ∣∣φn(t)

1
n − γ (t)

1
n
∣∣ dt + 3.048

T

≤ 2.64

π
√

n

∫ ∞
0

e−0.9999αt2(
f ‖ϕ̃‖3t2 + g‖ϕ̃‖ + ht3)

dt + 3.048

T
,

where f , g are defined in Lemma 7.5 and, using n ≥ 10,000, h = 0.00125. We
want to take T as large as possible to lower the last term, but we need to ensure
conditions (9) and (10), that is,

T ≤
√

n

‖ϕ̃‖ log
(

1 + δ2
0

13 + 12δ0

)
and

T ≤
√

n

‖ϕ̃‖3

(0.5 − α)

10.89 + 20.04δ−1
0 + 8.577δ−2

0

.

We could use here the lower bound on ‖ϕ̃‖ to replace the left condition by a
condition of the same form as the right one, but this would be too strong when ‖ϕ̃‖
is far from the bound. We will make a choice which will be better when ‖ϕ̃‖ is of
the order of 1, by replacing the above conditions by the more stringent

T ≤
√

n

max{‖ϕ̃‖,‖ϕ̃‖3} min
{

log
(

1+ δ2
0

13 + 12δ0

)
,

(0.5 − α)

10.89 + 20.04δ−1
0 + 8.577δ−2

0

}
.

In the min, the first term is larger than 0.98δ2
0/(13 + 12δ0) which is easily seen to

be larger than the second term for all δ0. We thus take

T =
√

n(0.5 − α)

max{‖ϕ̃‖,‖ϕ̃‖3}(10.89 + 20.04δ−1
0 + 8.577δ−2

0 )

and we obtain

‖Fn − G‖∞ ≤ 2.64

π
√

n

∫ +∞
0

e−0.9999αt2(
f ‖ϕ̃‖3t2 + g‖ϕ̃‖ + ht3)

dt

+ (33.193 + 61.082δ−1
0 + 26.082δ−2

0 )max{‖ϕ̃‖,‖ϕ̃‖3}
(0.5 − α)

√
n

.

Setting α′ = 0.9999α, we have for each d = 0,2,3:∫ +∞
0

e−α′t2
td dt = α′− d+1

2

∫ +∞
0

e−t2
td dt = 1

2
α′− d+1

2 �

(
d + 1

2

)
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and thus

‖Fn − G‖∞ ≤ 1.32

π
√

n

(
f α′− 3

2

√
π

2
‖ϕ̃‖3 + gα′− 1

2
√

π‖ϕ̃‖ + hα′−2
)

+ (33.193 + 61.082δ−1
0 + 26.082δ−2

0 )max{‖ϕ̃‖,‖ϕ̃‖3}
(0.5 − α)

√
n

.

We will now choose α, by comparing the two most troublesome coefficients
in the small δ0 regime; these coefficients are 0.66f√

π(0.9999α)3/2 , which is close to

3.162δ−2
0 α−3/2 (making us want to take α large), and

(33.193+61.082δ−1
0 +26.082δ−2

0 )

0.5−α

which is close to 26.082δ−2
0 /(0.5 − α) (and makes us want to take α small). Opti-

mizing the sum of these coefficients leads us to take α = 0.195. We then get

‖Fn − G‖∞ ≤ 1√
n

((
32.05 + 76.77δ−1

0 + 36.72δ−2
0

)‖ϕ̃‖3 + (
6.81 + 7.32δ−1

0

)‖ϕ̃‖

+ 0.02 + (
108.83 + 200.27δ−1

0 + 85.52δ−2
0

)
max

{‖ϕ̃‖,‖ϕ̃‖3})
≤ 1√

n

(
0.02 + (

148 + 284.36δ−1
0 + 123δ−2

0

)
max

{‖ϕ̃‖,‖ϕ̃‖3})
which yields Theorem C after using Lemma 7.2 to get 0.02 ≤ 0.03‖ϕ̃‖δ−1

0 .
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