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ON POISSON APPROXIMATIONS FOR THE EWENS SAMPLING
FORMULA WHEN THE MUTATION PARAMETER GROWS WITH

THE SAMPLE SIZE

BY KOJI TSUKUDA

The University of Tokyo

The Ewens sampling formula was first introduced in the context of pop-
ulation genetics by Warren John Ewens in 1972, and has appeared in a lot
of other scientific fields. There are abundant approximation results associated
with the Ewens sampling formula especially when one of the parameters, the
sample size n or the mutation parameter θ which denotes the scaled muta-
tion rate, tends to infinity while the other is fixed. By contrast, the case that
θ grows with n has been considered in a relatively small number of works,
although this asymptotic setup is also natural. In this paper, when θ grows
with n, we advance the study concerning the asymptotic properties of the
total number of alleles and of the component counts in the allelic partition
assuming the Ewens sampling formula, from the viewpoint of Poisson ap-
proximations. Specifically, the main contributions of this paper are deriving
Poisson approximations of the total number of alleles, an independent pro-
cess approximation of small component counts, and functional central limit
theorems, under the asymptotic regime that both n and θ tend to infinity.

1. Introduction. For a positive integer n, consider a sequence {Cn
j }∞j=1 of

nonnegative integer-valued random variables satisfying
∑n

j=1 jCn
j = n and Cn

j =
0 for j > n. For b = 1, . . . , n, let us denote Cn

b = (Cn
1 , . . . ,Cn

b ) and ab =
(a1, . . . , ab), where a1, . . . , ab are nonnegative integers. The random vector Cn

n

denotes the component counts in a random combinatorial structure of size n. In
the context of population genetics, Ewens (1972) introduced what is called the
Ewens sampling formula

(1.1) P
(
Cn

n = an

) = n!
(θ)n

n∏
j=1

(
θ

j

)aj 1

aj !1
{

n∑
j=1

jaj = n

}

as the distribution of the allelic partition in a sample of size n from a random
population following the stationary distribution of the infinitely-many neutral al-
lele model with scaled mutation rate θ > 0, where (θ)n is the rising factorial
θ(θ + 1) · · · (θ + n − 1). The distribution of the descending order population fre-
quency is referred to as the Poisson–Dirichlet distribution; see, for instance, Sec-
tion 2.5 of Feng (2010) for the derivation of (1.1) and basic properties. Hereafter,
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we consider (1.1) as a model of {Cn
j }nj=1. A random partition whose component

counts follow (1.1) is called a Ewens partition. When a permutation of n letters
is chosen equally likely, the numbers of cyclic permutations whose lengths are
1, . . . , n follow (1.1) with θ = 1. The unsigned Stirling number of the first kind
s̄(n, k) (k = 1, . . . , n) is the coefficient of θk in (θ)n, and is in conformity with the
number of permutations of n letters with k disjoint cycles. Hence, if (1.1) is as-
sumed, the total number Kn = ∑n

j=1 Cn
j of alleles included in a sample of size n,

in other words the total number of distinct cycles in a random permutation, follows
the falling factorial distribution (Watterson (1974a))

(1.2) P(Kn = k) = s̄(n, k)
θk

(θ)n

for k = 1, . . . , n. In this paper, we will present asymptotic properties, especially
Poisson approximations, of Cn

b and Kn under the asymptotic regime that both
n and θ increase. Specifically, there are three major goals: under the asymptotic
regime that θ grows with n, we will derive Poisson approximations of Kn; an in-
dependent process approximation of Cn

b ; and functional central limit theorems. As
it will be seen in Section 2, these topics have been studied so far with fixed θ set-
ting in many studies including Arratia, Barbour and Tavaré (1992), Arratia, Stark
and Tavaré (1995), Arratia and Tavaré (1992a), Hansen (1990), Tsukuda (2018).
As for the first goal, we consider Poisson approximations of Kn and n−Kn. As for
the second goal, we show a condition to derive an independent process approxima-
tion of Cn

b for b = 1,2, . . . and its total variation asymptotics. As for the third goal,
we extends functional central limit theorems for the Ewens sampling formula.

Let us explain motivations to study (1.1) and (1.2). A uniform random per-
mutation is a classic combinatorial probabilistic model traceable back to Pierre-
Rémond de Montmort’s essay published in 1708. The Montmort problem is calcu-
lating P(Cn

1 �= 0) when θ = 1. The uniform random permutation has been studied
in Goncharov (1944), Shepp and Lloyd (1966), DeLaurentis and Pittel (1985),
Arratia and Tavaré (1992b) and a lot of other works. See also Chapters 4 and 10
of Barbour, Holst and Janson (1992). Studies on (1.1) and (1.2) can be regarded
as one on random permutations where a permutation is not chosen equally likely.
Moreover, although (1.1) was derived firstly from the concrete model in popu-
lation genetics, it has been widely applied to other fields. For instance, to con-
duct a Bayesian procedure for nonparametric problems in statistics, a favorable
prior is the Dirichlet process introduced by Ferguson (1973), and a random sample
partition from the Dirichlet process follows (1.1) (Antoniak (1974)). We refer to
Favaro and James (2016) and Teh (2016) for more details about the literature in the
Bayesian nonparametrics. In addition, distributions of large component counts in
a lot of random combinatorial structures can be approximated by using the Ewens
sampling formula (Arratia, Barbour and Tavaré (2000)). Crane (2016) and Chap-
ter 41 of Johnson, Kotz and Balakrishnan (1997), whose write-up was provided
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by S. Tavaré and W. J. Ewens, are general review articles on the Ewens sampling
formula. They introduce several results including applications to other fields such
as ecology, physics and so on.

For (1.1), (1.2) and related probabilistic models, a lot of works have discussed
asymptotic properties under the situations n → ∞ with fixed θ or θ → ∞ with
fixed n; see, for instance, Feng (2016). On the other hand, it is natural to con-
sider the asymptotic regime that both n and θ tend to infinity. There are several
motivations to consider this regime. A motivation in genetics is that θ is propor-
tional to the population size in the original infinitely-many neutral allele model.
Another motivation in genetics is that the large θ setting corresponds to the small
homozygosity

∑∞
j=1 f 2

j , where {fj }∞j=1 is the population frequency. The asymp-
totic regime that the population frequency decreases as the sample size increases
is commonly discussed, and the expected homozygosity is given by 1/(1 + θ) un-
der the infinitely-many neutral allele model (Ewens (1972)). When the Poisson–
Dirichlet random population is considered, a corresponding assumption is that θ

and n simultaneously increase. Moreover, when (1.1) is used as a statistical model
of random partitions, the sample size n may be small relative to θ in some actual
cases. When one of the parameters is not quite larger than the other, asymptotic
properties established under the regime that only one parameter tends to infinity
do not provide good approximations. A recipe for addressing this issue is consid-
ering the asymptotic regime that both parameters simultaneously tend to infinity.
Furthermore, in Bayesian nonparametrics, there is a methodology using a prior
depending on the sample size, so the parameter θ of the Dirichlet process may
depend on n.

Finally, let us introduce some previous works in which the asymptotic regime
that both n and θ tend to infinity is considered. Section 4 of Feng (2007) and
Tsukuda (2017b) discussed the asymptotic behavior of Kn. Varron (2014) proved
the nonparametric Bernstein–von Mises phenomenon for the Dirichlet process
prior when θ2/n → 0. Along the lines of these works, this paper provides novel
results under the regime.

1.1. Notation. Consider sequences {xn}∞n=1 and {yn}∞n=1. If xn/yn → 1, then
we write xn ∼ yn. Let c < ∞ be a constant. If xn/yn → 0, then we write
xn = o(yn), if xn/yn → c then we write xn = O(yn), and if xn/yn → c �= 0 then we
write xn = �(yn). Let

∑0
j=1 zj = 0 and

∏0
j=1 zj = 1 for any sequence {zn}∞n=−∞,

and let (z)0 = 1 for any value z. When we consider the limits of n and θ simulta-
neously, we use the notation limn,θ .

Let [xk]f (x) denote the coefficient of xk in the power series expansion of f (x).
Let f (i)(·) denote the ith derivative of function f (·). Let �·� and �·	 denote the
floor function and the ceiling function, respectively. Let �(·) be the gamma func-
tion and ψ(·) = (log�(·))′ the digamma function. For real x, let x+ denote the
positive part of x.
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The space D[0,1] is the set of càdlàg functions on [0,1] endowed with the Sko-
rokhod topology. The space L2(0,1) is equivalence classes of real valued func-
tions on (0,1) which are square integrable with respect to the Lebesgue measure
endowed with the L2 topology.

Let Z+ be the set of all nonnegative integers. For Zd+-valued random vec-
tors X and Y (d is a positive integer), dTV(X,Y ) denotes the total variation dis-
tance between the distributions which X and Y follow, where dTV(X,Y ) is de-
fined by supA⊂Zd+ |P(X ∈ A) − P(Y ∈ A)|. Note that the definition is equivalent to

dTV(X,Y ) = 1
2
∑

a∈Zd+ |P(X = a) − P(Y = a)|.
The convergence of a sequence of random variables {Xi}i≥1 to a random vari-

able Y in probability and the weak convergence of {Xi}i≥1 to Y are denoted by
Xi →p Y and Xi ⇒ Y , respectively.

Throughout the paper, Poisson variables frequently appear. To simplify expla-
nations, let us denote a Poisson variable with mean �(> 0) by P�.

1.2. Asymptotic regimes. Letting c be a finite constant, we study the following
asymptotic regimes in this paper:

• Case A: n/θ → ∞;
• Case B: n/θ → c with 0 < c < ∞;
• Case C: n/θ → 0;
• Case C1: n/θ → 0 and n2/θ → ∞;
• Case C2: n2/θ → c with 0 < c < ∞;
• Case C3: n2/θ → 0.

This division was introduced in Tsukuda (2017b). It should be noted that in Sec-
tion 4 of Feng (2007), when θ does not converge to 0, the relation between n

and θ are divided into Cases A, B, C above and θ → ∞ with fixed n. Moreover,
throughout this paper, we assume that θ does not decrease as n increase.

REMARK 1.1. In Case C3, it holds that Kn − n →p 0. Note that when θ =
o(1/ logn) in which we are not interested since θ → 0, it holds that Kn − 1 →p 0.
These convergences can be checked through showing the convergence in first
mean.

1.3. Organization. In Section 2, we review asymptotic results associated with
the Ewens sampling formula in the literature which will be discussed in the later
part of this paper, and introduce our contributions. Section 3 is devoted to show
Poisson approximations of Kn and n − Kn in Case A and Case C, respectively.
Section 4 is devoted to discuss independent process approximations of Cn

b in a
Ewens partition. Section 5 is devoted to show the functional central limit theo-
rems for the Ewens sampling formula. In addition, the Appendix includes some
auxiliary results used in proofs.
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2. Results in the literature and this paper.

2.1. Normal and Poisson approximations of Kn. In the combinatorial con-
text, it is worthwhile to know when typical distributions such as Normal, Poisson
or other distributions asymptotically appear; see, for instance, Flajolet and Soria
(1990). For the total number Kn of alleles which follows (1.2), Watterson (1974b)
proved the following central limit theorem (CLT for short): For fixed θ > 0,

(2.1)
Kn − θ logn√

θ logn
⇒ N(0,1)

as n → ∞, where N(0,1) is a standard normal variable. A stronger result, the
Poisson approximation of Kn, was stated by Arratia and Tavaré (1992a): For fixed
θ > 0,

(2.2) dTV(Kn,PE[Kn]) = �

(
1

logn

)

as n → ∞, where

E[Kn] =
n∑

j=1

θ

θ + j − 1
.

To improve the approximation accuracy, Yamato (2013) provided the following
CLT which adopts another standardization: For fixed θ > 0,

(2.3)
Kn − θ(logn − ψ(θ))√

θ(logn − ψ(θ))
⇒ N(0,1)

as n → ∞. Moreover, Yamato (2013) showed the approximation of Kn by a Pois-
son variable with the approximate mean: For fixed θ > 0,

(2.4) dTV(Kn,Pθ(logn−ψ(θ))) = O

(
1

logn

)
as n → ∞.

When θ grows with n, the standardization should be changed in many cases.
Let μ = θ log (1 + n/θ) and σ 2 = θ{log (1 + n/θ)−n/(n+ θ)}. Tsukuda (2017b)
showed that

(2.5)
Kn − μ

σ
⇒

⎧⎪⎪⎨
⎪⎪⎩

N(0,1) (Case A, B, C1),

(c/2 − Pc/2)/
√

c/2 (Case C2),

0 (Case C3),

where c = limn,θ (n
2/θ) in Case C2.

Following (2.2) and (2.4), Theorem 3.1 and Proposition 3.1 give Poisson ap-
proximations in large θ setup. These results show that in Case A the distribution of
Kn is approximately Poisson and in Case C the distribution of n − Kn is approxi-
mately Poisson. Our results give a background of (2.5) in Cases A and C.



POISSON APPROXIMATIONS FOR ESF 1193

REMARK 2.1. Professor Shuhei Mano pointed out that the proof of Theo-
rem 2 in Tsukuda (2017b), which asserts (2.5) above in Case A, B and C1, is
incorrect in Case C1, even though the result holds true. The correction note will
appear in Journal of Applied Probability.

REMARK 2.2. As a corollary to the large deviation principle for Kn when
θ → ∞, Feng (2007) provided the following weak laws of large numbers in Corol-
lary 4.1:

(2.6)

Kn

θ log (n/θ)
→p 1 (Case A),

Kn

n
→p

⎧⎪⎨
⎪⎩

log
(

1 + 1

c

)c

(Case B),

1 (Case C)

and Kn →p n as θ → ∞ with fixed n. These laws of large numbers in Cases A,
B and C can be obtained directly from the calculation of E[|Kn/E[Kn] − 1|2]; see
Proposition 2 of Tsukuda (2017b).

2.2. Independent process approximations of Cn
b . Consider a sequence {Zj }∞j=1

of independent Poisson variables with E[Zj ] = θ/j for j = 1,2, . . . and denote
Zb = (Z1, . . . ,Zb) for a positive integer b. Then it is well known that (1.1) can be
derived from the conditioning relation

(2.7) P
(
Cn

n = an

) = P

(
Zn = an

∣∣∣ n∑
j=1

jZj = n

)
;

see, for instance, Watterson (1974a). It means that the dependence in {Cn
j }nj=1 is

given by the condition
∑n

j=1 jZj = n. It is of interest to discuss whether the effect
of this dependence asymptotically vanishes or not. It was answered by Arratia,
Barbour and Tavaré (1992) who showed the small components can be approxi-
mated by independent Poisson variables: For any fixed positive integer b, it holds
that

(2.8)
(
Cn

1 , . . . ,Cn
b

) ⇒ (Z1, . . . ,Zb)

as n → ∞. Note that (2.8) is equivalent to limn→∞ dTV(Cn
b,Zb) = 0 because both

Cn
b and Zb are discrete. Our Corollary 4.1, which summarizes the results in Propo-

sitions 4.1 and 4.2, shows that in Case A the distribution of Cn
b is approximately

one of Zb for fixed b if, and only if, θ2/n → 0.
It is more interesting to consider the case that b grows with n. To describe

such results, let us begin with preparing some notions. For positive integer b,
let us denote the total variation distance between Cn

b = (Cn
1 , . . . ,Cn

b ) and Zb =
(Z1, . . . ,Zb) by db(n), that is, db(n) = dTV(Cn

b,Zb). A coupling of two random
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variables is constructed as a joint random variable which have the same marginal
distributions as the original random variables. If Cn

b and Zb are coupled, then it
generally holds that db(n) ≤ P(Cn

b �= Zb). However, there exists a maximal cou-
pling which attains the equality, so

db(n) = inf
couplings

P
(
Cn

b �= Zb

)
,

where the infimum in the above display is taken over all couplings of Cn
b and Zb

on a common probability space; see Section A.1 of Barbour, Holst and Janson
(1992). Moreover, for positive integer b, let us denote the distance between the
distributions of Cn

b = (Cn
1 , . . . ,Cn

b ) and Zb = (Z1, . . . ,Zb) in the Wasserstein �1

metric by dW
b (n) which satisfies

dW
b (n) = inf

couplings

b∑
j=1

E
[∣∣Cn

j − Zj

∣∣].
For the definition of this distance, see Section A.1 of Barbour, Holst and Janson
(1992). Since db(n) ≤ P(Cn

b �= Zb) = P(
∑b

j=1 |Cn
j − Zj | ≥ 1) ≤ E[∑b

j=1 |Cn
j −

Zj |] for any coupling of Cn
b and Zb, it holds that db(n) ≤ dW

b (n). As for the Ewens
sampling formula, dW

b (n) is a convenient measure of approximations because a
concrete construction, the Feller coupling, can be given. See Arratia, Barbour and
Tavaré (1992, 2016). The Feller coupling is as follows: Let {ξj }∞j=1 be a sequence
of independent Bernoulli variables with P(ξj = 1) = pj = θ/(θ + j − 1) for any
j = 1,2, . . . . Then the Ewens sampling formula (1.1) is given as the joint distri-
bution of

Cn
1 =

n−1∑
i=1

ξiξi+1 + ξn

and

Cn
j =

n−j∑
i=1

ξi(1 − ξi+1) · · · (1 − ξi+j−1)ξi+j + ξn−j+1(1 − ξn−j+2) · · · (1 − ξn)

for j = 2, . . . , n. Moreover, define

C∞
j =

∞∑
i=1

ξi(1 − ξi+1) · · · (1 − ξi+j−1)ξi+j

for j = 1,2, . . ., then {C∞
j }∞j=1 is a sequence of independent Poisson variables

with E[C∞
j ] = θ/j (j = 1,2, . . .). That is because the convergences in probability

ξn →p 0 and ξn−j+1(1 − ξn−j+2) · · · (1 − ξn) →p 0 for any j = 2,3, . . . yield that
Cn

j ⇒ C∞
j , and so (2.8) yields that C∞

j =d Zj for any j = 1,2, . . . . By using the
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Feller coupling, Arratia, Barbour and Tavaré (1992) proved the Poisson process
approximation when b grows with n:

db(n) → 0 ⇔ b = o(n);(2.9)

db(n) ≤ bθ

θ + n

(
θ + n

θ + n − b

)
;(2.10)

dW
b (n) ≤ bθ

θ + n − b

(
θ + n

θ + n

)
;(2.11)

dW
n (n) = O(1);(2.12)

if θ ≥ 1 then

(2.13)
θ(θ − 1)b

θ + n − 1

{
1 − (θ − 1)(b + 1)

4(θ + n − 1)

}
≤ dW

b (n) ≤ bθ(θ + 1)

θ + n
.

Note that (2.10), (2.11) and (2.13) are not asymptotic results. As for lower bound
results for the total variation distance, which complement (2.10), Arratia, Barbour
and Tavaré (1992) showed that

lim inf
n→∞

(
ndb(n)

) ≥
(

bθ |θ − 1|
2

)
exp

(
−θ

b∑
j=1

1

j

)
,

and Barbour (1992) showed that if θ �= 1 then db(n) ≥ c3b/n for some positive
constant c3 which depends on θ .

Another fascinating result for evaluating db(n) is deriving the leading term of
db(n), which were given by Arratia, Stark and Tavaré (1995) for general logarith-
mic assemblies. If the Ewens sampling formula is considered, the statement is as
follows: If b = o(n/ logn), then

(2.14) db(n) = |1 − θ |
2n

E
[|T0b − θb|]+ o

(
b

n

)
,

where T0b = ∑b
j=1 jZj . As it is stated in Corollary 4 of their paper, if θ �= 1 and

if b = o(n/ logn) then the leading term of db(n) is given by the first term in the
right-hand side of (2.14).

An important application of the Poisson approximation for Cn
b is deriving the

asymptotic property of short cycle lengths. The kth shortest cycle lengths {Sk
n}∞k=1

is defined by

(2.15) Sk
n = inf

(
j : Cn

1 + · · · + Cn
j ≥ k

)
for k = 1,2, . . . and Sk

n = ∞ when there is no such j . It was studied in, for instance,
Shepp and Lloyd (1966) and Arratia and Tavaré (1992a).

In Case A, we will show independent process approximations in large θ

setup. Theorem 4.1 provides the total variation asymptotics corresponding to
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(2.14). Moreover, Proposition 4.3, which directly follows from (2.13), provides the
asymptotics for dW

b (n). These results show that if θ → ∞ then the asymptotic de-
cay rates of db(n) and dW

b (n) are different. The convergence of dW
b (n) is applied

to see an asymptotic property of the kth shortest cycle lengths in Corollary 4.2.
Furthermore, following (2.12), Proposition 4.4 gives the bound of dW

n (n).
On the other hand, in Case C, such independent process approximations seem

difficult. Indeed, our Theorem 4.2 shows that in Case C2 only Cn
1 and Cn

2 have
nondegenerate limit, and in Case C3 all components of Cn

n become degenerate.
This result implies asymptotic properties of the shortest and longest cycle length
(Corollaries 4.3 and 4.4).

REMARK 2.3. Developing a method to generate combinatorial structures ran-
domly is an important problem in combinatorics. The Feller coupling can be ap-
plied to generate not only component counts which follow (1.1) but also ones of
other logarithmic combinatorial structures (Arratia et al. (2018)). Moreover, a re-
cently proposed algorithm, probabilistic divide-and-conquer, is a efficient way to
generate component counts of random structures whose laws are given by indepen-
dent random variables with conditioning (like (2.7)) (Arratia and DeSalvo (2016),
DeSalvo (2018)).

2.3. Functional central limit theorems. The results in Arratia, Barbour and
Tavaré (1992) provide an elegant way to derive asymptotic properties. Among oth-
ers, by using (2.12), Arratia and Tavaré (1992a) provided an alternative proof of
the functional central limit theorem for the Ewens sampling formula which was
originally proved by Hansen (1990): The random process

(2.16) X1
n(·) =

(∑�nu�
i=1 Cn

j − uθ logn√
θ logn

)
0≤u≤1

converges weakly to (B(u))0≤u≤1 in D[0,1] as n → ∞, where B(·) is a standard
Brownian motion. Note that DeLaurentis and Pittel (1985) demonstrated the weak
convergence of X1

n(·) when θ = 1. The approach of Arratia and Tavaré (1992a)
is generalized for broader logarithmic structures; see Arratia, Stark and Tavaré
(1995) and Arratia, Barbour and Tavaré (2000). Moreover, by using the Poisson
process approximation, Tsukuda (2018) provided a weighted version in L2(0,1):
Both of the random processes

(2.17) X2
n(·) =

(∑�nu�
i=1 Cn

j − θ
∑�nu�

j=1 1/j√
θ
∑�nu�

j=1 1/j

)
0<u<1

and

(2.18) X3
n(·) =

(∑�nu�
i=1 Cn

j − uθ logn√
uθ logn

1
{
u >

ε

logn

})
0<u<1
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converge weakly to (B(u)/
√

u)0<u<1 in L2(0,1) as n → ∞, where ε is a positive
constant.

In Theorem 5.1, the weak convergence results for X1
n(·), X2

n(·) and X3
n(·) are ex-

tended to the case where θ slightly increase as n increase. The meaning of slightly
is the assumptions, (5.1) and (5.2), require that θ increases very slowly compared
with n.

Let Rj be the j th cycle length in a random permutation of n which has Kn

disjoint cycles, and the loglength of j th cycle is defined by logn Rj . Consider its
empirical distribution function Fn(·) defined as

Fn(u) =
∑Kn

j=1 1{logn Rj ≤ u}
Kn

=
∑�nu�

j=1 Cn
j

Kn

(0 ≤ u ≤ 1).

Define the random processes

(2.19) X4
n(·) = (√

θ logn
(
Fn(u) − u

))
0≤u≤1,

and

(2.20) X5
n(·) =

(√
θ logn

(Fn(u) − u)√
u(1 − u)

1
{

ε

logn
< u < 1 − ε

logn

})
0<u<1

,

where ε is a positive constant. When θ = 1, the weak convergence of X4
n(·) to a

standard Brownian bridge (B◦(u))0≤u≤1 in D[0,1] was shown by DeLaurentis and
Pittel (1985); see the notes (2) after the theorem in their paper. Its extension to the
Ewens sampling formula may have not appeared in the literature. We will present
an extended version in Theorem 5.2 under the same assumptions as Theorem 5.1.

2.4. Auxiliary results in the literature. In this subsection, let us set out some
auxiliary results concerning Poisson approximations which will be used in the
proofs of our statements.

Consider a sequence of independent Bernoulli variables {ξj }∞j=1 and its partial
sum Sn = ∑n

j=1 ξj , where P(ξj = 1) = pj for any j = 1,2, . . . . Then, by using the
Chen–Stein method, Theorems 1 and 2 of Barbour and Hall (1984) gave a sharp
bound for the Poisson approximation of a partial sum of Bernoulli variables: For a
Poisson variable Pλ with mean λ = ∑n

j=1 pj , it holds that

(2.21)
1 ∧ λ−1

32

n∑
j=1

p2
j ≤ dTV(Sn,Pλ) ≤ 1 − e−λ

λ

n∑
j=1

p2
j .

Moreover, from a property of the Hellinger integral, a bound for the total variation
distance between two Poisson distributions were given in Theorem 2.1 of Yannaros
(1991): For Poisson variables Pλ1 and Pλ2 with respective means λ1 and λ2, it
holds that

(2.22) dTV(Pλ1,Pλ2) ≤ min
(|√λ1 −√

λ2|, |λ1 − λ2|).
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3. Poisson approximations of Kn. In this section, we establish Poisson ap-
proximations of Kn in Cases A and C. Define

(3.1) pj = θ

θ + j − 1
, qj = 1 − pj = j − 1

θ + j − 1
(j = 1,2, . . .)

and let λA = ∑n
j=1 pj and λC = ∑n

j=1 qj . Some asymptotic evaluations associated
with {pj }∞j=1 and {qj }∞j=1 are presented in Section A.1. Introduce two Poisson
variables PλA

and PλC
. Then E[PλA

] = E[Kn] and E[PλC
] = n − E[Kn]. We first

show Poisson approximations corresponding to (2.2).

THEOREM 3.1. (i) In Case A,

(3.2) dTV(Kn,PλA
) ≤ nθ + n + θ

θ(n + θ) log(1 + n/θ) + n/2
,

and

dTV(Kn,PλA
) = �

(
1

log(n/θ)

)
.

(ii) In Case C,

(3.3) dTV(n − Kn,PλC
) ≤ 2n(n + θ)

3θ2

(
1 − e−n2/2θ ),

and

dTV(n − Kn,PλC
) = �

(
n

θ

(
1 ∧ n2

θ

))
.

PROOF. Let {ξj }∞j=1 and {ζj }∞j=1 be sequences of independent Bernoulli vari-
ables with respective parameters P(ξj = 1) = pj and P(ζj = 1) = qj for j =
1,2, . . . . Then it holds that Kn =d ∑n

i=1 ξi and that n − Kn =d ∑n
i=1 ζi (see, for

instance, (41.12) of Johnson, Kotz and Balakrishnan (1997)). To prove the desired
results, we will use (2.21) and Proposition A.1.

(i) The result (3.2) follows from

dTV(Kn,PλA
) ≤

∑n
j=1 p2

j∑n
j=1 pj

≤ nθ/(n + θ) + 1

θ log(1 + n/θ) + n/{2(θ + n)} .

Since
∑n

j=1 pj → ∞, it holds for enough large n that

dTV(Kn,PλA
) ≥

∑n
j=1 p2

j

32
∑n

j=1 pj

≥ nθ/(n + θ)

32θ log(1 + n/θ)
.

The above two displays yield dTV(Kn,PλA
) = �(1/ log(n/θ)).
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(ii) The result (3.3) follows from

dTV(n − Kn,PλC
) ≤ (

1 − e
−∑n

j=1 qj
)∑n

j=1 q2
j∑n

j=1 qj

≤ (
1 − e−n2/2θ )n(n − 1)(2n − 1)/(6θ2)

n(n − 1)/{2(θ + n)} .

In Case C1, since
∑n

j=1 qj → ∞, it holds for enough large n that

dTV(n − Kn,PλC
) ≥

∑n
j=1 q2

j

32
∑n

j=1 qj

≥ n(n − 1)(2n − 1)/{6(θ + n)2}
32n(n − 1)/2θ

.

The above two displays yield dTV(n − Kn,PλC
) = �(n/θ). In Case C2, since

1−e
−∑n

j=1 qj ≤ 1 and since (1/
∑n

j=1 qj ) is bounded by some constant for enough
large n, the same evaluation provides dTV(n − Kn,PλC

) = �(n/θ). In Case C3,

since
∑n

j=1 qj → 0, it holds that 1 − e
−∑n

j=1 qj ∼ n2/(2θ) and that

dTV(n − Kn,PλC
) ≥ 1

32

n∑
j=1

q2
j ≥ n(n − 1)(2n − 1)

192(θ + n)2

for enough large n. We thus have dTV(n − Kn,PλC
) = �(n3/θ2). This completes

the proof. �

REMARK 3.1. From asymptotic properties of the Poisson distribution and
Theorem 3.1, the result of (2.5) in Cases A and C can be derived.

In Theorem 3.1, we have considered Poisson variables with rigorous means
E[Kn] and n − E[Kn]. Next, let us discuss centerings by approximate means
presented by Yamato (2013) and Tsukuda (2017b) from the viewpoint of Pois-
son approximation. Introduce three Poisson variables PμA

,Pμa and PμC
, where

μA = θ log(1 + n/θ), μa = θ(logn − ψ(θ)) and μC = n − θ log(1 + n/θ). Next,
Proposition 3.1 corresponds to (2.4). It follows from Lemma 3.1 presented after
the proposition together with the triangle inequality.

PROPOSITION 3.1. (i) In Case A, if (log (n/θ))/θ → ∞ then

dTV(Kn,PμA
) = O

(
1√

θ log(n/θ)

)
,

and if (log (n/θ))/θ = O(1) then

dTV(Kn,PμA
) = O

(
1

log(n/θ)

)
.
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Moreover, in Case A, if (θ3 log (n/θ))/n2 = O(1) then

dTV(Kn,Pμa ) = O

(
1

log(n/θ)

)
,

and if (θ3 log (n/θ))/n2 → ∞ and θ3/(n2 log (n/θ)) = O(1) then

dTV(Kn,Pμa) = O

(
θ3/2

n
√

log(n/θ)

)
.

(ii) In Case C, it holds that

dTV(n − Kn,PμC
) = O

(
n

θ

)
.

LEMMA 3.1. (i) In Case A, it holds that

(3.4) dTV(PλA
,PμA

) = O

(
1√

θ log(n/θ)

)

and that

(3.5) dTV(PλA
,Pμa ) = O

(
θ3/2

n
√

log(n/θ)

)
.

(ii) In Case C, it holds that

(3.6) dTV(PλC
,PμC

) = O

(
1√
θ

(
1 ∧ n√

θ

))
.

PROOF. We will use (2.22). (i) First, we see (3.4). Since λA and μA tend to
infinity in Case A, |√λA − √

μA| ≤ |λA − μA| for enough large n. Moreover, by
using Proposition A.1, |√λA − √

μA| = |λA − μA|/(√λA + √
μA) is

|∑n
j=1 pj − θ log(1 + n/θ)|√∑n
j=1 pj + √

θ log(1 + n/θ)
= O

(
n/(n + θ)√

θ log(1 + n/θ)

)
,

and hence (3.4). Next, we see (3.5). By using Propositions A.1 and A.2, |√λA −√
μa| = |λA − μa|/(√λA + √

μa) is

|∑n
j=1 pj − θ(logn − ψ(θ))|√∑n
j=1 pj + √

θ(logn − ψ(θ))
= O

(
θ2/n√

θ log(1 + n/θ)

)
,

and hence (3.5).
(ii) First, consider Case C1. Since λC and μC tend to infinity in Case C1,

|√λC − √
μC | ≤ |λC − μC | for enough large n. By using Proposition A.1,

|√λC − √
μC | = |λC − μC |/(√λC + √

μC) is

|∑n
j=1 qj − (n − θ log(1 + n/θ))|√∑n
j=1 qj + √

n − θ log(1 + n/θ)
= O

(
n/(θ + n)√

n2/θ

)
= O

(
1√
θ

)
,

and hence (3.6) holds as dTV(PλC
,PμC

) = O(1/
√

θ).
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Next, consider Case C2. The magnitude relationship of |√λC −√
μC | and |λC −

μC | is not determined, but they have the same bound O(1/
√

θ) because 1/
√

θ =
�(1/n). Hence (3.6) holds as dTV(PλC

,PμC
) = O(1/

√
θ).

Finally, consider Case C3. Since λC and μC tend to 0, |√λC − √
μC | ≥ |λC −

μC | for enough large n. By using Proposition A.1, it holds that

|λC − μC | =
∣∣∣∣∣

n∑
j=1

qj −
(
n − θ log

(
1 + n

θ

))∣∣∣∣∣ = O

(
n

θ

)
,

and hence (3.6) holds as dTV(PλC
,PμC

) = O(n/θ). This completes the proof. �

4. Independent process approximation of Cn
b . In this section, we discuss

Poisson approximations of Cn
b . As it is stated in Section 1.2, we assume that θ

does not decrease as n increase. Additionally, in several results, we will suppose
that there exists a positive integer n0 such that θ ≥ 1 for all n ≥ n0. The other case,
θ < 1 for all n, is not discussed because we are interested in large θ . Moreover, in
the proofs of Lemma 4.1 and Proposition 4.2, the case will be further divided.

4.1. Asymptotic independence of Cn
b (Case A). First, we see the asymptotic

independence of small components Cn
b = (Cn

1 , . . . ,Cn
b ) in this setting. We begin

with Proposition 4.1 which shows that if θ2/n → 0 then the previously established
Poisson approximation results (2.8) is still valid even for large θ when b is fixed.
Recall ab defined in Section 1 and {Zj }∞j=1 and Zb = (Z1, . . . ,Zb) defined in
Section 2.2.

PROPOSITION 4.1. Suppose that there exists a positive integer n0 such that
θ ≥ 1 for all n ≥ n0. In Case A, if θ2/n → 0 then P(Cn

b = ab) ∼ P(Zb = ab) for
any ab with any fixed positive integer b.

Before proving Proposition 4.1, let us introduce a useful expression of P(Cn
b =

ab). Define Tlm = ∑m
j=l+1 jZj for l = 0,1, . . . , n − 1 and m = l + 1, . . . , n, then

it follows from (2.7) that

(4.1) P
(
Cn

b = ab

) = P(Zb = ab)
P(Tbn = n − a)

P(T0n = n)
,

where ab = (a1, . . . , ab) and a = ∑b
j=1 jaj .

Moreover, let us prepare two lemmas which will be used several times.

LEMMA 4.1. Let f (x) = exp(−θ
∑b

j=1 xj/j). For θ > 1, k = 1, . . . , �θ	 − 1
and any positive integers a < n and b, it holds that

(4.2)
1

k!
∣∣∣∣f

(k)(1)

f (1)

∣∣∣∣(θ − k)n−a

(θ)n−a

≤
(

bθ2

n − a

)k

.
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Moreover, suppose that there exists a positive integer n0 such that θ ≥ 1 for all
n ≥ n0, then in Case A, it holds that

(4.3)
�θ	−1∑
k=0

1

k!
∣∣∣∣f

(k)(1)

f (1)

∣∣∣∣(θ − k)n−a

(θ)n−a

= 1 + bθ(θ − 1)

θ + n − a
+ O

(
b2θ4

n2

)

if a = o(n), b = o(n/θ2) and θ2/n → 0.

PROOF. Let g(x) be −θ
∑b

j=1 xj/j . It holds that

g(i)(x) = −θ

b∑
j=i

j · · · (j − i + 1)

j
xj−i = −θ

b−i+1∑
j=1

(j)i−1x
j−1

for 1 ≤ i ≤ b. Thus, for 1 ≤ i ≤ b,

0 ≥ g(i)(1) = −θ

b−i+1∑
j=1

(j)i−1 ≥ −θ(b − i + 1)i−1(b − i + 1) ≥ −θbi.

For i > b, g(i)(1) = 0 ≥ −θbi . The Faà di Bruno formula yields that

f (k)(x) = exp
(
g(x)

) k∑
j=1

Bk,j

((
g(1)(x), . . . , g(k−j+1)(x)

))
,

where Bk,j (·) is the partial Bell polynomial, so

f (k)(1)

f (1)
=

k∑
j=1

Bk,j

((
g(1)(1), . . . , g(k−j+1)(1)

))

for any k = 1,2, . . . . By using the triangle inequality,∣∣Bk,j

((
g(1)(1), . . . , g(k−j+1)(1)

))∣∣
≤ n! ∑

{s·:∑ si=j,
∑

isi=k}

n∏
i=1

( |g(i)(1)|
i!

)si 1

si !
≤ θjbkS(k, j),

where S(k, j) is the Stirling number of the second kind. The above two displays
and the triangle inequality imply that

∣∣∣∣f
(k)(1)

f (1)

∣∣∣∣ ≤
k∑

j=1

∣∣Bk,j

((
g(1)(1), . . . , g(k−j+1)(1)

))∣∣

≤ bk
k∑

j=1

θjS(k, j)
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≤ bk
k∑

j=1

θj s̄(k, j) = bk(θ)k.

For k ≤ �θ	 − 1, the Stirling formula yields that

(θ)k
(θ − k)n−a

(θ)n−a

= �(θ + k)�(θ − k + n − a)�(θ)

�(θ)�(θ − k)�(θ + n − a)
≤ θ2k

(n − a)k
,

where we have used �(θ + k)/�(θ − k) = (θ − k)(θ2 − (k − 1)2) · · · (θ2 − 12)θ ≤
θ2k and �(θ −k+n−a)/�(θ +n−a) = 1/((θ −1+n−a) · · · (θ −k+n−a)) ≤
1/(n − a)k . We thus have

∣∣∣∣f
(k)(1)

f (1)

∣∣∣∣(θ − k)n−a

(θ)n−a

≤
(

bθ2

n − a

)k

for k ≤ �θ	 − 1, which is (4.2).
Next, we prove (4.3). If θ ≤ 1 for all n, the result is obvious because the left-

hand side of (4.3) is 1. Otherwise, there exists a positive integer ñ0 such that θ > 1
for all n ≥ ñ0. Let n be an positive integer such that n ≥ ñ0, then the desired result
follows from

1

1!
f (1)(1)

f (1)

(θ − 1)n−a

(θ)n−a

= bθ
θ − 1

θ + n − a

and from

�θ	−1∑
k=2

1

k!
∣∣∣∣f

(k)(1)

f (1)

∣∣∣∣(θ − k)n−a

(θ)n−a

≤
�θ	−1∑
k=2

(
bθ2

n − a

)k

= O

((
bθ2

n

)2)
.

This completes the proof. �

LEMMA 4.2. Let f (x) = exp(−θ
∑b

j=1 xj/j) and let

h(x) = (1 − x)−θ
∞∑

k=�θ	

f (k)(1)

k! (−1)k(1 − x)k.

Then, for any positive integers a < n and b, it holds that

∣∣[xn−a]h(x)
∣∣ ≤ 1

rn
1

(
be(r2−1)b

r2

)θ 1

r2 − 1 − r1

{
ra

1 (1 + r1)r2
}
,

where r1 = 1 + c1r , r2 = 2 + c2r , 1 < c1 < c2, and r is an arbitrary positive
constant.
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PROOF. Consider a complex variable z ∈ C. Since h(z) and f (z) are analytic
in C, by using the Cauchy inequality for coefficients, we have

sup
|z|=r1

∣∣h(z)
∣∣ ≤ sup

|z|=r1

∞∑
k=�θ	

∣∣∣∣f
(k)(1)

k!
∣∣∣∣∣∣(1 − z)k−θ

∣∣

≤
∞∑

k=�θ	

∣∣∣∣f
(k)(1)

k!
∣∣∣∣ sup
|z|=r1

∣∣(1 − z)k−θ
∣∣

≤
∞∑

k=�θ	

sup|1−z|=r2
|f (z)|

rk
2

(1 + r1)
k−θ

= sup|1−z|=r2
|f (z)|

(1 + r1)θ

∞∑
k=�θ	

(
1 + r1

r2

)k

= sup|1−z|=r2
|f (z)|

(1 + r1)θ

{(1 + r1)/r2}�θ	

1 − (1 + r1)/r2
.

The right-hand side is

(4.4)
sup|1−z|=r2

|f (z)|
(1 + r1)θ−�θ	r�θ	

2 {1 − (1 + r1)/r2}
≤

(
be(r2−1)b

r2

)θ (1 + r1)r2

r2 − 1 − r1
,

because

sup
|1−z|=r2

∣∣f (z)
∣∣ = sup

|1−z|=r2

∣∣∣∣∣exp

(
−θ

b∑
j=1

zj

j

)∣∣∣∣∣
≤ exp

(
θ

b∑
j=1

(r2 − 1)j

j

)

≤ exp
(
θ
{
logb + (r2 − 1)b

})
= (

be(r2−1)b)θ ,
where we have used Lemma A.3 for the second inequality. Hence, it follows from
the Cauchy inequality again that

∣∣[xn−a]h(x)
∣∣ ≤ sup|z|=r1

|h(z)|
rn−a

1

≤ 1

rn
1

(
be(r2−1)b

r2

)θ 1

r2 − 1 − r1

{
ra

1 (1 + r1)r2
}
.

This completes the proof. �
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PROOF OF PROPOSITION 4.1. From (4.1), in order to prove the desired result,
it suffices to show that

P(Tbn = n − a)

P(T0n = n)
→ 1.

We first calculate gn−a = exp(θ
∑n

j=b+1 1/j)P(Tbn = n − a). Letting f (x) =
exp(−θ

∑b
j=1 xj/j), we have

gn−a = [
xn−a](1 − x)−θf (x),

see equation (5) of Arratia, Barbour and Tavaré (1992).
Let n be a positive integer such that n ≥ n0. It holds that

(4.5)

[
xn−a](1 − x)−θf (x)

= [
xn−a](1 − x)−θ

{�θ	−1∑
k=0

f (k)(1)

k! (−1)k(1 − x)k

+
∞∑

k=�θ	

f (k)(1)

k! (−1)k(1 − x)k

}

= [
xn−a](1 − x)−θ

{�θ	−1∑
k=0

f (k)(1)

k! (−1)k(1 − x)k

}
+ [

xn−a]h(x),

where

h(x) = (1 − x)−θ
∞∑

k=�θ	

f (k)(1)

k! (−1)k(1 − x)k.

Since the right-hand side of (4.5) is

(4.6)
f (1)(θ)n−a

(n − a)!
{

1 +
�θ	−1∑
k=1

(−1)k

k!
f (k)(1)

f (1)

(θ − k)n−a

(θ)n−a

}
+ [

xn−a]h(x),

the first term and the second term is evaluated in Lemmas 4.1 and 4.2, respectively.
From Lemma 4.1, the elements in the bracket of the first term is 1 + O(θ2/n).
Next, we see [xn−a]h(x). It follows from Lemma 4.2 that

∣∣[xn−a]h(x)
∣∣ ≤ 1

rn
1

(
be(r2−1)b

r2

)θ 1

r2 − 1 − r1

{
ra

1 (1 + r1)r2
}
,

where r1 = 1 + c1r and r2 = 2 + c2r with constants c1, c2 such that 1 < c1 < c2.
By letting r be a positive constant, the right-hand side is o(1/nk) for any positive
k since b is fixed and since θ2/n → 0. Thence [xn−a]h(x) = o(1/n).
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Now we have

(4.7) gn−a = f (1)
(θ)n−a

(n − a)!
(

1 + O

(
θ2

n

))
+ o

(
1

n

)

and, as a result,

P(Tbn = n − a)

= exp

(
−θ

n∑
j=1

1

j

)
(θ)n−a

(n − a)!
(

1 + O

(
θ2

n

))
+ exp

(
−θ

n∑
j=b+1

1

j

)
o

(
1

n

)
.

On the other hand,

(4.8) P(T0n = n) = exp

(
−θ

n∑
j=1

1

j

)[
xn](1 − x)−θ = exp

(
−θ

n∑
j=1

1

j

)
(θ)n

n! .

If θ → c < ∞, (θ)n/n! ∼ nθ−1/�(θ) and so

(4.9) exp

(
θ

b∑
j=1

1

j

)
n!

(θ)n
≤ exp(θ logb)

eθn!
(θ)n

∼ n�(θ)

(
be

n

)θ

= o(n).

If θ → ∞, Lemma A.2 and the Stirling formula yield that

(θ)n

n! ∼ nθ−1

�(θ)
∼ nθ−1θ1/2eθ

√
2πθθ

,

and hence

(4.10)

exp

(
θ

b∑
j=1

1

j

)
n!

(θ)n
∼

(
θe

(
∑b

j=1
1
j
−1)

n

)θ
√

2πn

θ1/2

≤ √
2π

n

θ1/2

(
θb

n

)θ

= o(n).

From what has already been proved, we obtain

P(Tbn = n − a)

P(T0n = n)
= n!

(θ)n

(θ)n−a

(n − a)!
(

1 + O

(
θ2

n

))
+ o(n)o

(
1

n

)

∼ θθ

nθ−1θ1/2eθ

(n − a)θ−1θ1/2eθ

θθ
→ 1.

This completes the proof. �

Let us provide some remarks on Proposition 4.1.
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REMARK 4.1. Proposition 4.1 indicates that when θ2/n → 0 the components
of (Cn

1 , . . . ,Cn
b ) are asymptotically independent, and Cn

j asymptotically follows
the Poisson distribution with mean θ/j for j = 1, . . . , b. As a consequence, for
any fixed b, if θ → c < ∞ then(

Cn
1 , . . . ,Cn

b

) ⇒ (
Z∗

1 , . . . ,Z∗
b

)
,

where {Z∗
j }∞j=1 is a sequence of independent Poisson variables with E[Z∗

j ] = c/j

for j = 1,2, . . ., and if θ → ∞ then

1√
θ

(
Cn

1 − θ,
√

2
(
Cn

2 − θ

2

)
, . . . ,

√
b

(
Cn

b − θ

b

))
⇒ Nb(0, I ),

where Nb(0, I ) is a b-dimensional standard normal variable with independent co-
ordinates.

REMARK 4.2. Proposition 4.3 presented in the next subsection is stronger
than Proposition 4.1, but the proof is included. That is because some evaluations
are different from the proof of Theorem 1 of Arratia, Barbour and Tavaré (1992)
who used the Darboux lemma (see Theorem of Knuth and Wilf (1989)) and be-
cause Lemmas 4.1 and 4.2 will appear also in the proof of Theorem 4.1.

In Proposition 4.1, θ2/n → 0 is assumed. Our second result in this subsection,
Proposition 4.2, shows that this assumption is necessary for the approximation of
{Cn

j }bj=1 by {Zj }bj=1.

PROPOSITION 4.2. Suppose that there exists a positive integer n0 such that
θ ≥ 1 for all n ≥ n0. In Case A, P(Cn

b = ab) ∼ P(Zb = ab) for any ab with any
fixed positive integer b only if θ2/n → 0.

PROOF. To prove the assertion, we see the case that b = 1. Let f (x) =
exp(−θx), then we have f (k)(x) = (−θ)kf (x). From (4.6), gn−a = [xn−a](1 −
x)−θf (x) equals

f (1)(θ)n−a

(n − a)!
�θ	−1∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a

+ [
xn−a]h(x).

Since

P(T1n = n − a)

P(T0n = n)
= exp(−θ

∑n
j=2 1/j)gn−a

exp(−θ
∑n

j=1 1/j)(θ)n/n!

= n!
(θ)n

(θ)n−a

(n − a)!
�θ	−1∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a

+ o(1)

∼
�θ	−1∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a
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from the proof of Proposition 4.1, it is enough to show that

�θ	−1∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a

→ 1

only if θ2/n → 0.
Since θ is assumed not to decrease as n increases, we study the following three

cases: (i) there exists a positive integer n1 such that θ ≥ 2 for all n ≥ n1; (ii) θ < 2
for all n and there exists a positive integer n2 such that θ > 1 for all n ≥ n2;
(iii) θ ≤ 1 for all n. First, consider (i). Let n be a positive integer such that n ≥ n1.
Then it holds that

�θ	−1∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a

≥
�θ	−2∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a

≥
�θ	−2∑
k=0

θk

k!
(�θ	 − 1 − k)n−a

(�θ	 − 1)n−a

,

where we have used Lemma A.4 for the second inequality. The right-hand side
equals

�θ	−2∑
k=0

θk

k!
(�θ	 − 2)!

(�θ	 − k − 2)!
(�θ	 − 2 − k + n − a)!

(�θ	 − 2 + n − a)!

=
�θ	−2∑
k=0

(�θ	 − 2

k

)
θk 1

(�θ	 − 2 − k + 1 + n − a) · · · (�θ	 − 2 + n − a)

=
�θ	−2∑
k=0

(�θ	 − 2

k

)(
θ

n

)k 1

(1 + �θ	−2−k+1−a
n

) · · · (1 + �θ	−2−a
n

)

≥
�θ	−2∑
k=0

(�θ	 − 2

k

){
θ

n(1 + �θ	−2−a
n

)

}k

.

From the binomial theorem, the right-hand side is equal to{
1 + θ

n(1 + �θ	−2−a
n

)

}�θ	−2
=

[{
1 + θ

n(1 + �θ	−2−a
n

)

}n/θ]θ(�θ	−2)/n

.

The above display is not less than 1 and converges to 1 only if θ2/n → 0. Second,
consider (ii). Let n be a positive integer such that n ≥ n2. Then it holds that

�θ	−1∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a

= 1 + θ(θ − 1)

θ + n − a − 1
,
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which converges to 1 only if θ2/n → 0. Finally, consider (iii). Let n be a positive
integer such that θ = 1. Then it holds that

�θ	−1∑
k=0

θk

k!
(θ − k)n−a

(θ)n−a

= 1.

This completes the proof. �

Thence, we have the following corollary to Propositions 4.1 and 4.2.

COROLLARY 4.1. Suppose that there exists a positive integer n0 such that
θ ≥ 1 for all n ≥ n0. In Case A, P(Cn

b = ab) ∼ P(Zb = ab) for any ab with any
fixed positive integer b if, and only if, θ2/n → 0.

4.2. Total variation asymptotics (Case A). Subsequently, let us derive the re-
sult corresponding to (2.14) following a similar program to Arratia, Stark and
Tavaré (1995). Our result in this subsection, Theorem 4.1, shows that if θ2/n → 0
then the total variation asymptotics obtained by Arratia, Stark and Tavaré (1995)
is still valid.

THEOREM 4.1. Suppose that there exists a positive integer n0 such that θ ≥ 1
for all n ≥ n0. In Case A, if θ2/n → 0, then

(4.11) db(n) = θ − 1

2n
E
[|T0b − θb|]+ o

(
bθ2

n

)

for

(4.12) b = o

(
n

θ2 logn

)
.

In addition, when θ → ∞, it holds that db(n) = o(bθ2/n).

To prove Theorem 4.1, let us prepare some notions and lemmas. It follows from
(2.7) that

db(n) =
∞∑

a=0

P(T0b = a)

(
1 − P(Tbn = n − a)

P(T0n = n)

)+
;

see (50) of Arratia, Stark and Tavaré (1995). First, in Lemma 4.3 via the evaluation
of the large deviation probability for T0b, we see that db(n) can be approximated
by

�Jn�∑
a=0

P(T0b = a)

(
1 − P(Tbn = n − a)

P(T0n = n)

)+
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with

Jn = min
(
bθ logn,b2/3(θn)1/3).

From the definition, if 1 ≤ b ≤ nθ−2(logn)−3 then Jn = bθ logn and otherwise
Jn = b2/3(θn)1/3 = b(θn/b)1/3. In contrast to Arratia, Stark and Tavaré (1995),
Jn includes θ since we consider θ → ∞, but a similar treatment performs well.

LEMMA 4.3. In Case A, with b = o(n/θ2), it holds that

∑
a>Jn

P(T0b = a)

(
1 − P(Tbn = n − a)

P(T0n = n)

)+
≤ P(T0b > Jn) = o

((
b

n

)k)

for any positive k.

PROOF. The first inequality is obvious, so we see the latter one. From
Lemma 8 of Arratia, Stark and Tavaré (1995), for any b ≥ 1,w > 0, it holds that

(4.13) log P(T0b ≥ bw) ≤ log(θe/w)w.

If 1 ≤ b ≤ nθ−2(logn)−3 then, by putting w = θ logn, the right-hand side of (4.13)
is

(θ logn)(1 − log logn) ∼ −θ(log logn) logn

which tends to minus infinity faster than −k logn for any positive k. If b ≥
nθ−2(logn)−3 then, by putting w = (θn/b)1/3, the right-hand side of (4.13) is

(
θn

b

)1/3(
1 − 1

3
log

(
n

b

))
∼ −1

3

(
θn

b

)1/3
log

(
n

b

)

which tends to minus infinity faster than −k log (n/b) for any positive k. This
completes the proof. �

The next lemma shows that (|1 − θ |/n)E[(T0b − θb)+1{T0b ≤ Jn}] is approxi-
mately (|1 − θ |/n)E[(T0b − θb)+].

LEMMA 4.4. In Case A, if θ2/n → 0 then it holds that

|1 − θ |
n

E
[|T0b − θb|1{T0b > Jn}] = o

((
b

n

)k)

for b = o(n/θ2) and for any positive k.
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PROOF. From the Schwartz inequality, it follows that

|1 − θ |
n

E
[|T0b − bθ |1{T0b > Jn}]

≤
( |1 − θ |2

n2 E
[
(T0b − θb)2]P(T0b > Jn)

)1/2

≤
( |1 − θ |2

n2 θb2P(T0b > Jn)

)1/2

=
[{ |1 − θ |θ1/2b

n

}2
P(T0b > Jn)

]1/2

≤
[{

(1 + θ)2b

n

}2
P(T0b > Jn)

]1/2
,

where we have used E[(T0b−E[T0b])2] = var(T0b) = ∑b
j=1 j2(θ/j) = θ

∑b
j=1 j ≤

θb2 for the second inequality. Lemma 4.3 yields that P(T0b > Jn) = o((b/n)2k)

for any positive k. This completes the proof. �

PROOF OF THEOREM 4.1. Let n be a positive integer such that n ≥ n0. Since
it follows from Lemma 4.3 that

db(n) =
�Jn�∑
a=0

P(T0b = a)

(
1 − P(Tbn = n − a)

P(T0n = n)

)+
+ o

((
b

n

)k)

for any positive k, we see the first term.
As same as the proof of Proposition 4.1, let gn−a = exp(θ

∑n
j=b+1 1/j)P(Tbn =

n − a). For a ≤ �Jn�, (4.6) and (4.3) yield

gn−a = f (1)(θ)n−a

(n − a)!
{

1 + bθ(θ − 1)

θ + n − a
+ O

(
b2θ4

n2

)}
+ [

xn−a]h(x)

= f (1)(θ)n−a

(n − a)!
{

1 + bθ(θ − 1)

n

(
1 + O

(
a + θ

n

))
+ O

(
b2θ4

n2

)}

+ [
xn−a]h(x).

Here, we should evaluate the last term in the right-hand side for a and b growing
with n.

If b does not diverge, as it is seen in the proof of Proposition 4.1, [xn−a]h(x) =
o(1/n2) since a/n ≤ Jn/n → 0. Thence, we consider the case that b → ∞. Using
Lemma 4.2 with r = 1/b, we have

∣∣[xn−a]h(x)
∣∣ ≤ b

(1 + c1/b)n−a

(
be(1+c2/b)b

2 + c2/b

)θ (2 + c1/b)(2 + c2/b)

(c2 − c1)
.
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Since (1 + c1/b)n−a ∼ e(n−a)c1/b and since (1 + c2/b)b ∼ ec2 , the right-hand side
is asymptotically equal to

bθ+1Aθ
1

exp((n − a)c1/b)
A2

= A2 exp
(
(θ + 1) logb + θ logA1 − (n − a)c1

b

)

= A2 exp
(

n

b

{
b(θ + 1) logn

n

logb

logn
+ bθ

n
logA1 −

(
1 − a

n

)
c1

})
,

where A1 = (exp(ec2))/2 and A2 = 4/(c2 − c1). From (4.12), the right-hand side
is

(4.14)
A2 exp

(
−n

b

(
c1 + o(1)

)) = A2 exp
(
−n(c1 + o(1))

b logn
logn

)

= A2n
− n(c1+o(1))

b logn ,

where we have used a/n ≤ Jn/n → 0. The right-hand side is o(1/nk) for any
positive constant k. After all, we have |[xn−a]h(x)| = o(b/n2) even when b → ∞.

Now gn−a is expanded as

f (1)(θ)n−a

(n − a)!
{

1 + bθ(θ − 1)

n

(
1 + O

(
a + θ

n

))
+ O

(
b2θ4

n2

)}
+ o

(
b

n2

)
.

This expansion, f (1) = exp(−∑b
j=1 1/j),

P(Tbn = n − a) = exp

(
−θ

n∑
j=b+1

1

j

)
gn−a

and (4.8)–(4.10) yield that

P(Tbn = n − a)

P(T0n = n)
= n!(θ)n−a

(n − a)!(θ)n

{
1 + bθ(θ − 1)

n
+ o

(
bθ2

n

)}
+ o(n)o

(
b

n2

)
.

Since aθ/n ≤ aJn/n → 0 and a2/(nb) ≤ J 2
n /(nb) → 0 which follow from

θ/Jn → 0 and (4.12), the binomial expansion and Lemma A.2 yield that

n!(θ)n−a

(n − a)!(θ)n
= (θ)n−a/(n − a)!

(θ)n/n!

= (n − a)θ−1{1 + θ(θ−1)
2(n−a)

+ O(θ4

n2 )}/�(θ)

nθ−1{1 + θ(θ−1)
2n

+ O(θ4

n2 )}/�(θ)

=
(

1 − a

n

)θ−1 {1 + θ(θ−1)
2n

+ O(θ2(a+θ2)

n2 )}
{1 + θ(θ−1)

2n
+ O(θ4

n2 )}
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=
{

1 − a(θ − 1)

n
+ O

(
a2θ2

n2

)}(
1 + O

(
θ2(a + θ2))

n2

))

= 1 − (θ − 1)a

n
+ O

(
θ2(a2 + θ2)

n2

)

= 1 − (θ − 1)a

n
+ o

(
bθ2

n

)
.

Therefore, it holds that

P(Tbn = n − a)

P(T0n = n)

=
{

1 − (θ − 1)a

n
+ o

(
bθ2

n

)}{
1 + bθ(θ − 1)

n
+ o

(
bθ2

n

)}
+ o

(
b

n

)

= 1 −
{
(θ − 1)a

n
− bθ(θ − 1)

n

}
+ o

(
bθ2

n

)
.

From what has already been proved, it holds that

db(n) =
�Jn�∑
a=0

P(T0b = a)

(
(θ − 1)a

n
− bθ(θ − 1)

n

)+
+ o

(
bθ2

n

)

= 1

n

∞∑
a=0

P(T0b = a)
(
(θ − 1)(a − bθ)

)+1{a ≤ Jn} + o

(
bθ2

n

)

= 1

n
E
[(

(θ − 1)(T0b − bθ)
)+1{T0b ≤ Jn}]+ o

(
bθ2

n

)

= 1

n
E
[(

(θ − 1)(T0b − bθ)
)+]+ o

(
bθ2

n

)

= θ − 1

2n
E
[|T0b − bθ |]+ o

(
bθ2

n

)
,

where we have used Lemma 4.4 in the fourth equality and the relation E[(T0b −
bθ)+] = E[|T0b −bθ |]/2, which follows from E[T0b −bθ ] = 0, in the fifth equality.

Finally, consider the case that θ → ∞. It follows from the Jensen inequality that

E
[|T0b − bθ |] ≤

√
E
[|T0b − bθ |2] = O

(
θ1/2b

)
,

which implies db(n) = o(bθ2/n). This completes the proof. �

4.3. Poisson process approximations via the Feller coupling (Case A). Next,
result is the Poisson process approximation via the Feller coupling (see Sec-
tion 2.2) to obtain the leading term of dW

b (n). The following result follows directly
from (2.13).
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PROPOSITION 4.3. Suppose that there exists a positive integer n0 such that
θ ≥ 1 for all n ≥ n0 and θ2/n → 0. In Case A, dW

b (n) → 0 if, and only if, b =
o(n/θ2). In addition, when θ → ∞, it holds that dW

b (n) ∼ bθ2/n.

REMARK 4.3. When θ → ∞, Theorem 4.1 and Proposition 4.3 lead

db(n) = o

(
bθ2

n

)
, dW

b (n) = �

(
bθ2

n

)

for b = o(n/(θ2 logn)), which shows that the asymptotic decay rates of db(n) and
dW
b (n) are different.

As an application of Proposition 4.3, let us show the asymptotic property of the
kth shortest cycle lengths Sk

n defined in (2.15) in a Ewens partition in large θ setup.

COROLLARY 4.2. Let r be a positive integer such that r = o(n/θ2) and let
δr = ∑r

j=1 θ/j . Under the assumption of Proposition 4.3,

P
(
Sk

n ≤ r
) ∼

k−1∑
x=0

e−δr
δx
r

x! .

PROOF. Proposition 4.3 yields that

P
(
Sk

n ≤ r
) = P

(
r∑

j=1

Cn
j < k

)
∼ P

(
r∑

j=1

Zj < k

)
=

k−1∑
x=0

e−δr
δx
r

x! .

This completes the proof. �

REMARK 4.4. Corollary 4.2 yields that, under the assumption of Proposi-
tion 4.3, P(S1

n = 1) ∼ e−θ , so if θ → ∞ then P(S1
n = 1) → 1 and if θ → c < ∞

then P(S1
n = 1) → e−c < 1. Note that when the Pitman sampling formula which is

a generalization of (1.1) and is defined by (17) in Pitman (1995) is considered, the
shortest cycle length converges to 1 in probability except the cases of the symmet-
ric Dirichlet–multinomial distribution and the Ewens sampling formula (see Mano
(2017)).

Moreover, we obtain a bound for dW
n (n), which gives an extension of (2.12) to

large θ setup. Its applications to functional central limit theorems will be presented
in Section 5.

PROPOSITION 4.4. In Case A, it holds that dW
n (n) = O(θ log (1 + θ)).
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PROOF. By using the triangle inequality and (2.11), it holds that

(4.15)

dW
n (n) ≤

n∑
j=1

E
[∣∣Cn

j − C∞
j

∣∣]

≤
b∑

j=1

E
[∣∣Cn

j − C∞
j

∣∣]+
n∑

j=b+1

E
[
Cn

j

]+
n∑

j=b+1

E
[
C∞

j

]

≤ bθ(θ + 1)

θ + n − b
+ 1 + 2θ log

(
n

b

)
,

for any b = 1,2, . . . , n; see the proof of Theorem 2 of Arratia, Barbour and
Tavaré (1992). When θ → ∞, by setting b = �n/θ�, the first and third terms in
the right-hand side of (4.15) are O(θ) and O(θ log θ), respectively. Otherwise,
by setting b = �n/2� the result holds with the bound dW

n (n) = O(1). Hence,
dW
n (n) = O((θ log θ) ∨ 1) = O(θ log (1 + θ)). This completes the proof. �

4.4. On asymptotic independence of Cn
b (Case C). In this subsection, we will

see that the independent process approximation for component counts seems diffi-
cult in Case C.

The probability mass function (1.1) is obtained from the conditioning relation
(2.7) with a sequence of independent Poisson variables with respective means
θ/j . We also get (1.1) from (2.7) with Poisson variables with respective means
(θ/j)(n/θ)j (see, for instance, Watterson (1974a)). The following lemma shows
that in Case C E[Zj ] = (θ/j)(n/θ)j rather fit.

LEMMA 4.5. In Case C, it holds that E[Cn
j ] ∼ θ/j (n/θ)j for j = 1,2, . . . .

Therefore, for j = 2,3, . . ., if θ(n/θ)j → 0, then

(4.16) Cn
j →p 0.

PROOF. It holds that

E
[
Cn

j

] = θ

j

n!
(n − j)!

�(n + θ − j)

�(n + θ)

which is (2.18) of Watterson (1974a). Since the Stirling formula �(x) =√
2πxx−1/2e−x + O(xx−3/2/ex) as x → ∞ yields that �(x − c)/�(x) ∼ x−c

as x → ∞ for any c < x, it holds that

E
[
Cn

j

] ∼ θ

j
nj 1

(n + θ)j
∼ θ

j

(
n

θ

)j

.

Hence, the result (4.16) follows from Cn
j ≥ 0. This completes the proof. �
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REMARK 4.5. Since

n!
(n − j)!nj

≤ n!
(n − j)!(n − j + 1)j

= 1

and

�(n − j + θ)θj

�(n + θ)
= θj

(n − j + θ)j
≤ 1,

it holds that

(4.17)
E[jCn

j ]
θ(n/θ)j

= n!
(n − j)!nj

�(n − j + θ)θj

�(n + θ)
≤ 1

for j = 1,2, . . . , n.

According to Lemma 4.5, it may be natural to consider that the distributions of
Cn

j and Poisson variable with mean (θ/j)(n/θ)j are asymptotically similar, but
Proposition A.3 indicates that, except Case C3, an independent process approxi-
mation by Poisson variables with means (θ/j)(n/θ)j seems difficult in the sense
of the joint distribution. Actually, the following theorem shows that in Case C2 the
linear relation n − (Cn

1 + 2Cn
2 ) ⇒ 0 between Cn

1 and Cn
2 asymptotically remains.

THEOREM 4.2. (i) In Case C2, it holds that(
Cn

1 − n,Cn
2
) ⇒ (−2Pc/2,Pc/2),

where c = limn,θ (n
2/θ), and

∑n
j=3 |Cn

j | ⇒ 0.
(ii) In Case C3, it holds that

∑n
j=1 |Cn

j − n1{j = 1}| ⇒ 0.

PROOF. (i) It follows from (4.17) that

E

[
n∑

j=3

jCn
j

]
≤

n∑
j=3

θ

(
n

θ

)j

= n3

θ2

1 − (n/θ)n−2

1 − n/θ
,

which implies that n − (Cn
1 + 2Cn

2 ) = ∑n
j=3 jCn

j →p 0. It yields that∑n
j=3 |Cn

j | →p 0 and so Kn − (Cn
1 + Cn

2 ) →p 0. Hence, Kn − n + Cn
2 →p 0,

which implies that

Kn − n −
(
θ log

(
1 + n

θ

)
− n

)
+ Cn

2 +
(
θ log

(
1 + n

θ

)
− n

)

= Kn − θ log
(

1 + n

θ

)
+ Cn

2 −
(
n − θ log

(
1 + n

θ

))

→p 0.
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We conclude from (2.5), which means Kn − θ log(1 + n/θ) ⇒ c/2 − Pc/2, that

Cn
2 −

(
n − θ log

(
1 + n

θ

))
= Cn

2 − n2

2θ
+ o(1) ⇒ Pc/2 − c

2
,

hence that Cn
2 ⇒ Pc/2. Moreover, from what has already been proved, we obtain

n − Cn
1 ⇒ 2Pc/2.

(ii) Since

E
[∣∣n − Cn

1

∣∣] = E
[
n − Cn

1
] = n − n

1 + (n − 1)/θ
= n2

θ
+ O

(
n3

θ2

)
,

Lemma 4.5 yields the result. This completes the proof. �

As direct applications of Theorem 4.2, we show the following corollaries which
represent properties of the shortest cycle length Sn = S1

n (recalling that Sk
n is

defined in (2.15)) and the longest cycle length Ln in a Ewens partition, where
Ln = sup(j : Cn

j ≥ 1). These extreme sizes are of interest in the combinatorial
context; see, for instance, Mano (2017).

COROLLARY 4.3. In Case C2 or C3, it holds that P(Sn = 1) → 1.

PROOF. In Case C3, the conclusion is obvious, so we see Case C2. It follows
from Theorem 4.2 that

P(Sn ≥ 2) = P
(
Cn

1 = 0
) = P

(
n − Cn

1 ≥ n
) ∼ P(2Pc/2 ≥ n) → 0.

This completes the proof. �

COROLLARY 4.4. In Case C2, for a positive integer r

P(Ln ≤ r) →
{
e−c/2 (r = 1),

1 (r ≥ 2).

PROOF. For r = 1, it follows from Theorem 4.2 that

P(Ln ≤ 1) = P
(
Cn

1 = n
) = P

(
n − Cn

1 = 0
) → P(Pc/2 = 0) = e−c/2.

For r ≥ 2, it follows from Theorem 4.2 that

P(Ln ≤ r) ≥ P(Ln ≤ 2) = P

(
n∑

j=3

Cn
j = 0

)
→ 1.

This completes the proof. �



1218 K. TSUKUDA

REMARK 4.6. Since the marginal distribution of Cn
1 is given by

P
(
Cn

1 = k
) = θk

k!
{

n−k∑
j=0

(−1)j
θj

j !
(n + 1 − k − j)k+j

(n + θ − k − j)k+j

}

for k = 0,1, . . . , n, Corollary 4.4 when r = 1 directly follows from

P
(
Cn

1 = n
) = θn

(θ)n
= 1

1

1 + 1/θ
· · · 1

1 + (n − 1)/θ
= 1 − 1

θ

n(n − 1)

2
+ o(1)

= e−n2/(2θ) + o(1).

5. Functional central limit theorems. In this section, our first result is The-
orem 5.1 which slightly extend the functional central limit theorems for the Ewens
sampling formula proved by Hansen (1990) and Tsukuda (2018) in which θ is
assumed to be fixed.

THEOREM 5.1. (i) In Case A, if

(5.1)
θ

logn
(log θ)2 → 0,

then the random process X1
n(·) defined in (2.16) converges weakly to a standard

Brownian motion (B(u))0≤u≤1 in D[0,1].
(ii) In Case A, if

(5.2)
θ log logn

logn
(log θ)2 → 0,

then both of the random processes X2
n(·) and X3

n(·), which are defined in (2.17)
and (2.18), respectively, converge weakly to (B(u)/

√
u)0<u<1 in L2(0,1).

REMARK 5.1. It follows from Theorem 5.1 (i) that if (5.1) holds then (2.1)
holds. But as it is stated in (2.5), the asymptotic normality of Kn holds for far
larger θ .

The second result of this section is weak convergences of X4
n(·) and X5

n(·)

THEOREM 5.2. (i) In Case A, if (5.1) holds then the random process X4
n(·)

defined in (2.19) converges weakly to a standard Brownian bridge (B◦(u))0≤u≤1

in D[0,1].
(ii) In Case A, if (5.2) holds then the random process X5

n(·) defined in (2.20)
converges weakly to (B◦(u)/

√
u(1 − u))0<u<1 in L2(0,1).
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Before proving these results, let us prepare the following lemma which will
appear in the proof of Theorem 5.1. This lemma states the error bounds of Poisson
process approximations in the sense of the expectation of the error in the supremum
norm and in the L2 norm.

LEMMA 5.1. In Case A,

(5.3) E

[
sup

u∈[0,1]

∣∣∣∣∣
�nu�∑
j=1

(Cn
j − C∞

j )√
θ logn

∣∣∣∣∣
]

= O

(√
θ

logn
log (1 + θ)

)

and

(5.4) E
[[∫ 1

0

{∑�nu�
j=1 (Cn

j − C∞
j )√∑�nu�

j=1 θ/j

}2
du

]1/2]
= O

(√
θ log logn

logn
log (1 + θ)

)
.

PROOF. The desired result (5.3) follows from

E

[
sup

u∈[0,1]

∣∣∣∣∣
�nu�∑
j=1

(Cn
j − C∞

j )√
θ logn

∣∣∣∣∣
]

≤ E

[
sup

u∈[0,1]

�nu�∑
j=1

|Cn
j − C∞

j |√
θ logn

]

=
∑n

j=1 E[|Cn
j − C∞

j |]√
θ logn

,

and the proof of Proposition 4.4. The other result (5.4) follows from

∫ 1

0

∣∣∣∣
∑�nu�

j=1 (Cn
j − C∞

j )√∑�nu�
j=1 θ/j

∣∣∣∣2 du

≤ 2( 1
log 2 − log log 2 + log logn)

θ logn

(
n∑

j=1

∣∣Cn
j − C∞

j

∣∣)2

(for this evaluation see the proof of Lemma 3.1 of Tsukuda (2018)) and the proof
of Proposition 4.4. This completes the proof. �

Next, we prove Theorems 5.1 and 5.2.

PROOF OF THEOREM 5.1. (i) From (5.3) and the assumption (5.1), it follows
that

(5.5)

sup
u∈[0,1]

∣∣∣∣∣
�nu�∑
j=1

(Cn
j − C∞

j )√
θ logn

∣∣∣∣∣ ≤ sup
u∈[0,1]

�nu�∑
j=1

|Cn
j − C∞

j |√
θ logn

=
n∑

j=1

|Cn
j − C∞

j |√
θ logn

→p 0.



1220 K. TSUKUDA

By using the functional central limit theorem for Poisson processes in D[0,1], the
random process

(∑�nu�
j=1 C∞

j −∑�nu�
j=1 θ/j√∑n

j=1 θ/j

)
0≤u≤1

converges weakly to a standard Brownian motion (B(u))0≤u≤1 in D[0,1] (see the
Proof of Theorem 5 of Arratia and Tavaré (1992a)). Since

sup
u∈[0,1]

∣∣∣∣∣
�nu�∑
j=1

θ

j
− uθ logn

∣∣∣∣∣ = O(θ),

the random process

(5.6)
(∑�nu�

j=1 C∞
j − uθ logn√
θ logn

)
0≤u≤1

converges weakly to (B(u))0≤u≤1 in D[0,1] because of the assumption (5.1).
From (5.5) and the weak convergence of (5.6), Theorem 2.7(iv) of van der Vaart
(1998) yields the result.

(ii) First, we argue X2
n(·). From (5.4) and (5.2), it follows that

∫ 1

0

∣∣∣∣
∑�nu�

j=1 (Cn
j − C∞

j )√∑�nu�
j=1 θ/j

∣∣∣∣2 du →p 0.

It holds that

(5.7)

(∑�nu�
j=1 C∞

j −∑�nu�
j=1 θ/j√∑�nu�

j=1 θ/j

)
0<u<1

=d

(N1(
∑�nu�

j=1 θ/j) −∑�nu�
j=1 θ/j√∑�nu�

j=1 θ/j

)
0<u<1

,

where (N1(t))t≥0 is a homogeneous Poisson process with unit intensity satisfying
N1(θ

∑�t�
j=1 1/j) = ∑�t�

j=1 C∞
j for all t > 0. Since

sup
u∈(0,1)

|∑�nu�
j=1 θ/j − uθ logn|

θ logn
→ 0

and the other hypotheses hold with λ = 1, sn(u) = ∑�nu�
j=1 θ/j and f (n) = θ logn

(see Section 6.2 of Tsukuda (2018)) Lemma A.5 in the Appendix implies that (5.7)
converges weakly to (B(u)/

√
u)0<u<1 in L2(0,1). From what has been already

proved, Theorem 2.7(iv) of van der Vaart (1998) yields the result.
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Next, we argue X3
n(·). It follows that∫ ε

logn

0

(N1(uθ logn) − uθ logn)2

uθ logn
du →p 0,

∫ 1

ε
logn

{∑�nu�
j=1 (Cn

j − C∞
j )}2

uθ logn
du →p 0,

∫ 1

ε
logn

(
∑�nu�

j=1 C∞
j − N1(uθ logn))2

uθ logn
du →p 0,

from the almost same argument as the proof of Theorem 7.1 of Tsukuda (2018) by
the assumption (5.2). So, we have∫ 1

0

(
X3

n(u) − N1(uθ logn) − uθ logn√
uθ logn

)2
du →p 0.

From Lemma A.5 in the Appendix with λ = 1, sn(u) = uf (n) and f (n) = θ logn,
it holds that the random process(

N1(uθ logn) − uθ logn√
uθ logn

)
0<u<1

converges weakly to (B(u)/
√

u)0<u<1 in L2(0,1). Consequently, the desired re-
sult follows. This completes the proof. �

PROOF OF THEOREM 5.2. (i) Since it holds that

X4
n(u) = θ logn

Kn

(∑�nu�
j=1 Cn

j − uKn√
θ logn

)

= θ logn

Kn

{(1 − u)
∑�nu�

j=1 Cn
j − u

∑n
j=�nu�+1 Cn

j√
θ logn

}

for any u ∈ [0,1], it is sufficient to show

(5.8)
Kn

θ logn
→p 1

and

(5.9)
((1 − u)

∑�nu�
j=1 Cn

j − u
∑n

j=�nu�+1 Cn
j√

θ logn

)
0≤u≤1

⇒ (
B◦(u)

)
0≤u≤1

in D[0,1]. First, (5.8) holds because the assumption (5.1) yields that log θ/

logn → 0 and because it follows from (2.6) that

Kn

θ logn
= Kn

θ log (n/θ)(1 + log θ
log (n/θ)

)
→p 1.
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Next, we show (5.9). Since it follows from Proposition 4.4 and from the assump-
tion (5.1) (see (5.5)) that

sup
u∈[0,1]

∣∣∣∣
∑�nu�

j=1 Cn
j −∑�nu�

j=1 C∞
j√

θ logn

∣∣∣∣ ≤
∑n

j=1 |Cn
j − C∞

j |√
θ logn

→p 0

and that

sup
u∈[0,1]

∣∣∣∣
∑n

j=�nu�+1 Cn
j −∑n

j=�nu�+1 C∞
j√

θ logn

∣∣∣∣ ≤
∑n

j=1 |Cn
j − C∞

j |√
θ logn

→p 0,

the triangle inequality yields that

sup
u∈[0,1]

∣∣∣∣(1 − u)
∑�nu�

j=1 Cn
j − u

∑n
j=�nu�+1 Cn

j√
θ logn

− P ◦
4 (u)

∣∣∣∣ →p 0,

where

(
P ◦

4 (u)
)
0≤u≤1 =

(∑�nu�
j=1 C∞

j − u
∑n

j=1 C∞
j√

θ logn

)
0≤u≤1

.

By using the functional central limit theorem for Poisson processes in D[0,1],
P ◦

4 (·) converges weakly to (B◦(u))0≤u≤1 in D[0,1].
(ii) By the same reason as (i), it is sufficient to show (5.8) and

(5.10)

((1 − u)
∑�nu�

j=1 Cn
j − u

∑n
j=�nu�+1 Cn

j√
u(1 − u)θ logn

1
{

ε

logn
< u < 1 − ε

logn

})
0<u<1

⇒
(

B◦(u)√
u(1 − u)

)
0<u<1

in L2(0,1). Here, we show (5.10). First, it holds that

(5.11)

∫ 1− ε
logn

ε
logn

(1 − u)2{∑�nu�
j=1 (Cn

j − C∞
j )}2

u(1 − u)θ logn
du

≤
∫ 1

ε
logn

(
∑�nu�

j=1 |Cn
j − C∞

j |)2

uθ logn
du

≤
∫ 1

ε
logn

(
∑n

j=1 |Cn
j − C∞

j |)2

uθ logn
du

≤ log logn − log ε

θ logn

(
n∑

j=1

∣∣Cn
j − C∞

j

∣∣)2

,
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and that

(5.12)

∫ 1− ε
logn

ε
logn

u2{∑n
j=�nu�+1(C

n
j − C∞

j )}2

u(1 − u)θ logn
du

≤
∫ 1− ε

logn

0

(
∑n

j=�nu�+1 |Cn
j − C∞

j |)2

(1 − u)θ logn
du

≤ log logn − log ε

θ logn

(
n∑

j=1

∣∣Cn
j − C∞

j

∣∣)2

.

These right-hand sides of (5.11) and (5.12) converge to 0 in probability because the
expectations of their square root converge to 0 by the assumption (5.2). Second, it
follows from

E
[(

N1(uθ logn) − uN1(θ logn)
)2] = var

(
N1(uθ logn) − uN1(θ logn)

)
= (1 − u)2uθ logn + u2(1 − u)θ logn

= u(1 − u)θ logn

that ∫ ε
logn

0

(N1(uθ logn) − uN1(θ logn))2

u(1 − u)θ logn
du →p 0,

and that ∫ 1

1− ε
logn

(N1(uθ logn) − uN1(θ logn))2

u(1 − u)θ logn
du →p 0,

where (N1(t))t≥0 is defined in the proof of Theorem 5.1. Third, it holds that∫ 1− ε
logn

ε
logn

1

u(1 − u)θ logn

×
{�nu�∑

j=1

C∞
j − u

n∑
j=1

C∞
j − (

N1(uθ logn) − uN1(θ logn)
)}2

du

=
∫ 1− ε

logn

ε
logn

1

u(1 − u)θ logn

[
(1 − u)

(�nu�∑
j=1

C∞
j − N1(uθ logn)

)

− u

{
n∑

j=�nu�+1

C∞
j − (

N1(θ logn) − N1(uθ logn)
)}]2

du

≤
∫ 1− ε

logn

ε
logn

2(1 − u)2

u(1 − u)θ logn

(�nu�∑
j=1

C∞
j − N1(uθ logn)

)2

du
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+
∫ 1− ε

logn

ε
logn

2u2

u(1 − u)θ logn

×
{

n∑
j=�nu�+1

C∞
j − (

N1(θ logn) − N1(uθ logn)
)}2

du

≤
∫ 1

ε
logn

2(
∑�nu�

j=1 C∞
j − N1(uθ logn))2

uθ logn
du

+
∫ 1− ε

logn

0

2{∑n
j=�nu�+1 C∞

j − (N1(θ logn) − N1(uθ logn))}2

(1 − u)θ logn
du.

The distributions of the first term and second term in the right-hand side are equal
to

∫ 1

ε
logn

2(N1(θ(
∑�nu�

j=1 1/j − u logn)))2

uθ logn
du

and

∫ 1− ε
logn

0

2(N1(θ(
∑n

j=1 1/j − logn)) − N1(θ(
∑�nu�

j=1 1/j − u logn))))2

(1 − u)θ logn
du,

respectively. Both of them converge to 0 in probability because their expectations
tend to 0 from the assumption (5.2). Thus, the triangle inequality yields that

∫ 1

0

∣∣X5
n(u) − P ◦

5 (u)
∣∣2 du →p 0,

where

(
P ◦

5 (u)
)
0<u<1 =

(
N1(θu logn) − uN1(θ logn)√

u(1 − u)θ logn

)
0<u<1

.

Since

(
P ◦

5 (u)
)
0<u<1 =

(∫ θ logn

0

1{t ≤ uθ logn} − u√
u(1 − u)θ logn

dN1(t)

)
0<u<1

=
(∫ θ logn

0

1{t ≤ uθ logn} − u√
u(1 − u)θ logn

(
dN1(t) − dt

))
0<u<1

,

Theorem 4 of Tsukuda (2017a) yields that (P ◦
5 (u))0<u<1 ⇒ (B◦(u)/

√
u)0<u<1 by

setting Hs = 1 with d = 1, λs = 1 and T = θ logn. Consequently, we have (5.10).
This completes the proof. �
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APPENDIX. AUXILIARY RESULTS

A.1. Asymptotic evaluations associated with {pj } and {qj }. Let us show
some asymptotic evaluations associated with {pj }∞j=1 and {qj }∞j=1 defined in (3.1).

PROPOSITION A.1. (i) It holds that

(A.1)
n

2(θ + n)
≤

n∑
j=1

pj − θ log
(

1 + n

θ

)
≤ n

θ + n

and that

(A.2) 0 ≤
n∑

j=1

p2
j − nθ

n + θ
≤ 1.

Especially, in Case A, it holds that
∑n

j=1 pj ∼ θ log(1 + n/θ), and that if θ → ∞
then

∑n
j=1 p2

j ∼ θ .
(ii) It holds that

(A.3)
n(n − 1)

2(θ + n)
≤

n∑
j=1

qj ≤ n(n − 1)

2θ

and that

(A.4)
n(n − 1)(2n − 1)

6(θ + n)2 ≤
n∑

j=1

q2
j ≤ n(n − 1)(2n − 1)

6θ2 .

Especially, in Case C, it holds that
∑n

j=1 qj ∼ n2/(2θ) and
∑n

j=1 q2
j ∼ n3/(3θ2).

PROOF. (i) Since x �→ 1/x is convex, it holds for any j = 1,2, . . . that∫ θ+j

θ+j−1

dx

x
≤ 1

2

(
1

θ + j − 1
+ 1

θ + j

)
,

which is equivalent to

1

2

(
1

θ + j − 1
− 1

θ + j

)
≤ 1

θ + j − 1
−

∫ θ+j

θ+j−1

dx

x
.

It yields that

1

2

n∑
j=1

(
1

θ + j − 1
− 1

θ + j

)
≤

n∑
j=1

1

θ + j − 1
−

∫ θ+n

θ

dx

x
.

On the other hand, it holds that
n∑

j=1

1

θ + j − 1
−

∫ θ+n

θ

dx

x
≤

n∑
j=1

(
1

θ + j − 1
− 1

θ + j

)
.
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These inequalities lead

1

2

n

θ(θ + n)
≤

n∑
j=1

1

θ + j − 1
− log

(
θ + n

θ

)
≤ n

θ(θ + n)

and so the result (A.1) holds. Since∫ θ+n

θ

dx

x2 ≤
n∑

j=1

1

(θ + j − 1)2 ≤ 1

θ2 +
∫ θ+n

θ

dx

x2 ,

the result (A.2) holds.
(ii) From

j − 1

θ + n
≤ qj ≤ j − 1

θ

and from

(j − 1)2

(θ + n)2 ≤ q2
j ≤ (j − 1)2

θ2 ,

the results (A.3) and (A.4) follow, respectively. This completes the proof. �

PROPOSITION A.2. In Case A, it holds that

(A.5)
n∑

j=1

pj − θ
(
logn − ψ(θ)

) = O

(
θ2

n

)
.

PROOF. It follows from

(A.6)
n∑

j=1

pj = θ
(
ψ(n + θ) − ψ(θ)

)

that the left-hand side of (A.5) is θ(ψ(n + θ) − logn). Since ψ(n + θ) = −γ −
1/(n + θ) + (n + θ)

∑∞
j=1 1/{j (n + θ + j)} and logn = ∑n

j=1 1/j − γ + O(1/n)

as n → ∞ where γ is the Euler constant, it holds that

ψ(n + θ) − logn = −
n∑

j=1

1

j
+

∞∑
j=1

(
1

j
− 1

n + θ + j

)
+ O

(
1

n

)

≤ −
n∑

j=1

1

j
+

∞∑
j=1

(
1

j
− 1

n + �θ� + 1 + j

)
+ O

(
1

n

)

=
n+�θ�+1∑
j=n+1

1

j
+ O

(
1

n

)
.

In Case A, the first term in the right-hand side is O(θ/n). This completes the proof.
�
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REMARK A.2. As it is stated in (2.3), Yamato (2013) discussed the asymp-
totic normality of Kn standardized by θ(logn−ψ(θ)), which means that ψ(n+θ)

is approximated by logn from (A.6). If θ3/(n2 log(n/θ)) → ∞, the bound in
(A.5) is meaningless to discuss CLT. On the other hand, if θ2/n → 0 the cen-
tering by θ(logn − ψ(θ)) is better than centering by θ log(1 + n/θ), which was
used in Corollary 2 of Tsukuda (2017b), because

∑n
j=1 pj − θ log(1 + n/θ) =

�(n/(n + θ)).

PROPOSITION A.3. In Case C, it holds that

n∑
j=1

pj −
n∑

j=1

θ

j

(
n

θ

)j

= O

(
n2

θ

)
.

PROOF. The triangle inequality yields that∣∣∣∣∣
n∑

j=1

{
pj − θ

j

(
n

θ

)j}∣∣∣∣∣
≤

∣∣∣∣∣
n∑

j=1

pj − θ log
(

1 + n

θ

)∣∣∣∣∣+
∣∣∣∣θ log

(
1 + n

θ

)
− log

(
1 − n

θ

)−θ ∣∣∣∣
+

∣∣∣∣∣log
(

1 − n

θ

)−θ

−
n∑

j=1

θ

j

(
n

θ

)j
∣∣∣∣∣.

The first term is O(n/(n + θ)) = O(n/θ), the second term is θ log(1 − n2/θ2) =
O(n2/θ), and from log (1 − x)−1 = x + x2/2 + · · · as x → 0 the third term is

∞∑
j=n+1

θ

j

(
n

θ

)j

≤ θ

n

∞∑
j=n+1

(
n

θ

)j

= θ

n

(n/θ)n+1

1 − n/θ
= O

((
n

θ

)n)
.

This completes the proof. �

A.2. Technical lemmas.

LEMMA A.2. In Case A, if θ2/n → 0 then

(A.7) �(θ)
(θ)n

n! = nθ−1
{

1 + θ(θ − 1)

2n

}
+ O

(
nθ−1 θ4

n2

)
.

PROOF. The left-hand side of (A.7) equals �(n + θ)/(n�(n)). By us-
ing the asymptotic series expansion �(x) = √

2πe−xxx−1/2{1 + 1/(12x)} +
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O(e−xxx−5/2) as x → ∞, it holds that

�(n + θ)

= √
2πe−(n+θ)(n + θ)n+θ−1/2

{
1 + 1

12(n + θ)

}

+ O
(
e−(n+θ)(n + θ)n+θ−5/2)

= √
2πe−(n+θ)nn+θ−1/2

(
1 + θ

n

)n+θ−1/2(
1 + 1

12n
+ O

(
θ

n2

))

and that

n�(n) = n
√

2πe−nnn−1/2
(

1 + 1

12n

)
+ O

(
e−nnn−5/2)

= √
2πe−nnn+1/2

(
1 + 1

12n

)(
1 + O

(
1

n2

))
.

Hence, the left-hand side of (A.7) is

(A.8)

nθ−1e−θ

(
1 + θ

n

)n(
1 + θ

n

)θ−1/2(
1 + O

(
θ

n2

))(
1 + O

(
1

n2

))

= nθ−1e−θ

(
1 + θ

n

)n(
1 + θ

n

)θ−1/2(
1 + O

(
θ

n2

))

and, from the asymptotic expansion (1 + 1/x)x = e(1 − 1/(2x) + O(x−2)) as
x → ∞ it follows that(

1 + θ

n

)n

= eθ

(
1 − θ

2n
+ O

(
θ2

n2

))θ

.

Therefore, (A.8) is

nθ−1
(

1 − θ

2n
+ O

(
θ2

n2

))θ(
1 + θ

n

)θ(
1 + θ

n

)−1/2(
1 + O

(
θ

n2

))

= nθ−1
(

1 + θ

2n
+ O

(
θ2

n2

))θ(
1 + θ

n

)−1/2(
1 + O

(
θ

n2

))

= nθ−1
(

1 + θ2

2n
+ O

(
θ4

n2

))(
1 − θ

2n
+ O

(
θ2

n2

))(
1 + O

(
θ

n2

))

= nθ−1
{

1 + θ(θ − 1)

2n
+ O

(
θ4

n2

)}(
1 + O

(
θ

n2

))

= nθ−1
{

1 + θ(θ − 1)

2n
+ O

(
θ4

n2

)}
.

This completes the proof. �
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LEMMA A.3. Let b be an positive integer. For a > 1, it holds that

b∑
j=1

aj

j
≤ logb + ab.

PROOF. It holds that

b∑
j=1

aj

j
=

b∑
j=1

∫ a

0
tj−1 dt =

b∑
j=1

(
1

j
+

∫ a

1
tj−1 dt

)
≤ 1 + logb +

∫ a

1

b∑
j=1

tj−1 dt.

As for the last term, it holds that

∫ a

1

b∑
j=1

tj−1 dt ≤
∫ a

1
btb−1 dt = ab − 1.

This completes the proof. �

LEMMA A.4. For any a > 0 and any positive integer b, (x − a)b/(x)b is in-
creasing with respect to x > a.

PROOF. The proof is by induction on b. When b = 1, (x − a)/x = 1 − a/x

is increasing. Let x1 and x2 satisfy a < x1 < x2. If the conclusion of the lemma is
true for b, then the conclusion is also true for b + 1 because

(x2 − a)b+1

(x2)b+1
= x2 + b − a

x2 + b

(x2 − a)b

(x2)b

>
x2 + b − a

x2 + b

(x1 − a)b

(x1)b

>
x1 + b − a

x1 + b

(x1 − a)b

(x1)b

= (x1 − a)b+1

(x1)b+1
.

This completes the proof. �

LEMMA A.5. Let (Nt)t≥0 be a homogeneous Poisson process with inten-
sity λ > 0 satisfying N0 = 0. Define the nondecreasing function (n,u) �→ sn(u)

with respect to 0 ≤ u ≤ 1 and with respect to n = 1,2, . . . which satisfies
infu∈(τ,1) sn(u) > 0 for all 0 < τ < 1,

(A.9) lim
n→∞

(supu∈(0,1) |sn(u) − uf (n)|
f (n)

)
= 0
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with n �→ f (n) an increasing function of n satisfying limn→∞ f (n) = ∞, and

lim
n→∞

{∫ 1

0

du

(sn(u))δ

}
= 0

for some δ > 0. Then the random process(
Nsn(u) − λsn(u)√

λsn(u)

)
0<u<1

converges weakly to (B(u)/
√

u)0<u<1 in L2(0,1) as n → ∞.

REMARK A.3. Lemma A.5 is a slight generalization of Lemma 2.1 of
Tsukuda (2018). The only difference is the condition (A.9), where corresponding
condition (2.1) of Tsukuda (2018) is the case that f (n) = K logn with a positive
constant K . To show Lemma A.5, the equation

lim
n→∞

(
sn(u) ∧ sn(v)√

sn(u)sn(v)

)
= lim

n→∞

(
K((u logn) ∧ (v logn))√

K2 lognu lognv

)
= u ∧ v√

uv

in the proof of Lemma 2.1 of Tsukuda (2018) should be replaced by

lim
n→∞

(
sn(u) ∧ sn(v)√

sn(u)sn(v)

)
= lim

n→∞

{
(uf (n)) ∧ (vf (n))√

uf (n)vf (n)

}
= u ∧ v√

uv
,

and the other part has no need to change.
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