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RANDOM SWITCHING BETWEEN VECTOR FIELDS HAVING A
COMMON ZERO1

BY MICHEL BENAÏM AND EDOUARD STRICKLER

Université de Neuchâtel

Let E be a finite set, {F i}i∈E a family of vector fields on R
d leaving

positively invariant a compact set M and having a common zero p ∈ M .
We consider a piecewise deterministic Markov process (X, I) on M × E

defined by Ẋt = FIt (Xt ) where I is a jump process controlled by X:
P(It+s = j |(Xu, Iu)u≤t ) = aij (Xt )s + o(s) for i �= j on {It = i}.

We show that the behaviour of (X, I) is mainly determined by the be-
haviour of the linearized process (Y, J ) where Ẏt = AJt Yt , Ai is the Jacobian
matrix of F i at p and J is the jump process with rates (aij (p)). We introduce
two quantities �− and �+, respectively, defined as the minimal (resp., max-
imal) growth rate of ‖Yt‖, where the minimum (resp., maximum) is taken
over all the ergodic measures of the angular process (�,J ) with �t = Yt‖Yt‖ .

It is shown that �+ coincides with the top Lyapunov exponent (in the sense
of ergodic theory) of (Y, J ) and that under general assumptions �− = �+.
We then prove that, under certain irreducibility conditions, Xt → p expo-
nentially fast when �+ < 0 and (X, I) converges in distribution at an expo-
nential rate toward a (unique) invariant measure supported by M \ {p} × E

when �− > 0. Some applications to certain epidemic models in a fluctuating
environment are discussed and illustrate our results.
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1. Introduction. Let E be a finite set and F = {F i}i∈E a family of C2 globally
integrable vector fields on R

d . For each i ∈ E, we let �i = {�i
t } denote the flow

induced by F i . We assume throughout that there exists a closed set M ⊂ R
d which

is positively invariant under each �i , that is,

�i
t (M) ⊂ M

for all t ≥ 0.
Consider a Markov process Z = (Zt )t≥0,Zt = (Xt , It ), living on M ×E whose

infinitesimal generator acts on functions g : M × E 	→ R, smooth in the first vari-
able, according to the formula

(1) Lg(x, i) = 〈F i(x),∇gi(x)
〉+ ∑

j∈E

aij (x)
(
gj (x) − gi(x)

)
,

where gi(x) stands for g(x, i) and a(x) = (aij (x))i,j∈E is an irreducible rate ma-
trix continuous in x. Here, by a rate matrix, we mean a matrix having nonnegative
off diagonal entries and zero diagonal entries.

In other words, the dynamics of X is given by an ordinary differential equation

(2)
dXt

dt
= FIt (Xt ),

while I is a continuous time jump process taking values in E controlled by X:

P(It+s = j |Ft , It = i) = aij (Xt)s + o(s) for j �= i on {It = i},
where Ft = σ((Xs, Is) : s ≤ t}.

This class of processes belongs to the wider class of Piecewise Deterministic
Markov Processes (PDMPs), a term coined by Davis [23], and has recently been
the focus of much attention. Criteria, based on irreducibility and Hörmander-type
conditions, ensuring uniqueness and absolute continuity of an invariant probabil-
ity measure have been obtained by Bakhtin and Hurth [4] for constant jump rates
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(aij (x) = aij ) and by Benaïm, Le Borgne, Malrieu and Zitt [13] for more gen-
eral rates. Exponential convergence (in total variation) toward this measure and
a support theorem, describing the support of the law of (Zt )z≥0 are also proved
in [13] when M is compact (see also [16]). In the one-dimensional case (i.e.,
d = 1) smoothness properties of the invariant measure are thoroughly investigated
by Bakhtin, Hurth and Mattingly [5]. When irreducibility fails to hold, the sup-
port of invariant probabilities can be determined in terms of invariant control sets
of an associated deterministic control system (see Benaïm, Colonius and Lettau
[8]). When the vector fields are exponentially asymptotically stable in “average,”
exponential convergence toward an invariant measure are obtained for Wassertein
distances by Benaïm, Le Borgne, Malrieu and Zitt [11], Cloez and Hairer [20].
Several examples, either linear (Benaïm, Le Borgne, Malrieu and Zitt [12], Law-
ley, Mattingly and Reed [35], Lagasquie [33]), or nonlinear (Benaïm and Lobry
[14], Malrieu and Hoa Phu [37]) show that the behaviour of the process is not
solely determined by the dynamics of the �i but can be highly sensitive to the
switching rates. We refer the reader to the recent overview by Malrieu [36], de-
scribing these results among others.

In the present paper, we will investigate the behaviour of the process Z under
the following two conditions:

C1 The origin lies in M and is a common equilibrium:

F i(0) = 0 for all i ∈ E.

C2 The set M is compact and locally star shaped at the origin, meaning that
there exists δ > 0 such that

x ∈ M and ‖x‖ ≤ δ ⇒ [0, x] ⊂ M,

where [0, x] = {tx, t ∈ [0,1]}.
Compactness of M is assumed here for simplicity, but some of the (local) results
generalise to noncompact sets. The global results can be extended provided we
can control the behaviour of the process near infinity, for instance with a suitable
Lyapunov function (see Section 3.3).

Briefly put, our main result is that the long term behaviour of the process is
determined by the behaviour of the process obtained by linearization at the origin
and, under suitable irreducibility and hypo-ellipticity conditions, by the top Lya-
punov exponent of the linearized system. If negative, then X = (Xt) converges
almost surely and exponentially fast to zero. If positive, and X0 �= 0, the empirical
occupation measure (resp., the law) of Z converge almost surely (respectively in
total variation at an exponential rate) toward a unique probability measure putting
zero mass on {0} × E. Such a correspondence between the sign of the top Lya-
punov exponent and the behaviour of nonlinear system is reminiscent of the re-
sults obtained by Baxendale [6] and others for Stratonovich stochastic differential
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equations (see [6] and the references therein, and Hening, Nguyen and Yin [30]
for similar recent results in the context of population dynamics).

Our proofs rely, on one hand, on the qualitative theory of PDMPs (as devel-
oped in [4] and [13]) and, on the other hand, on some recent results on stochastic
persistence (Benaïm [15]) strongly inspired by the seminal works of Schreiber,
Hofbauer and their co-authors on persistence, first developed for purely determin-
istic systems (Schreiber [42], Garay and Hofbauer [26], Hofbauer and Schreiber
[32]) and later for certain stochastic systems (Benaïm, Hofbauer and Sandholm
[10], Benaïm and Schreiber [17], Schreiber, Benaïm and Atchade [44], Schreiber
[43], Roth and Schreiber [41]).

Our original motivation was to analyze the behaviour of certain epidemic mod-
els evolving in a fluctuating environment. A famous, and now classical, deter-
ministic model of infection is given by the Lajmanovich and Yorke differential
equation ([34]). This equation leaves positively invariant the unit cube of Rd and
models the evolution of the infection level between d groups. Depending on the
parameters of the model (the environment), either the disease dies out (i.e., all
the trajectories converge to the origin) or stabilizes (i.e., all nonzero trajectories
converge toward a unique positive equilibrium). Deterministic switching between
several environment have been recently considered by Ait Rami, Bokharaie, Ma-
son and Wirth [40]. The results here allow to describe the behaviour of the process
when switching between environment evolves randomly. In particular, we can pro-
duce paradoxical examples for which, although each deterministic dynamics leads
to the extinction (resp., persistence) of the disease, the random switching process
leads to persistence (resp., extinction) of the disease.

1.1. Outline of contents. Section 2 considers the linearized system (Y, J )

where Ẏt = AJt Yt ,A
i = DFi(0) (the Jacobian of F i at 0) and J is the jump pro-

cess with rate matrix (aij ) = (aij (0)). We introduce two quantities �− and �+
respectively defined as the minimal (resp., maximal) growth rate of ‖Yt‖, where
the minimum (resp., maximum) is taken over all the ergodic measures of the an-
gular Markov process (�,J ) with �t = Yt‖Yt‖ . It is shown (Proposition 2.5) that

�+ coincides with the top Lyapunov exponent (in the sense of ergodic theory) of
(Y, J ) and some conditions are given ensuring that �− = �+, first for arbitrary
Ais (Proposition 2.11) and then for Metzler matrices (Proposition 2.13).

The main results of the paper are stated in Section 3.

• If �+ < 0, Xt → 0 exponentially fast, locally (i.e., for ‖X0‖ small enough),
with positive probability. If furthermore 0 is accessible, convergence is global
and almost sure (Theorem 3.1).

• If �− > 0 and X0 �= 0, the process is persistent in the sense that weak limit
points of its empirical occupation measure are almost surely invariant proba-
bilities over M \ {0} × E (Theorem 3.2). If in addition the F is satisfy a cer-
tain Hörmander-type bracket condition at some accessible point, then there is a
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unique invariant probability on M \ {0} × E toward which the empirical occu-
pation measure converges almost surely (Theorem 3.3). Under a strengthening
of the bracket condition, the distribution of the process converges also exponen-
tially fast in total variation (Theorem 3.4).

Section 4 discusses some applications of our results to certain epidemic mod-
els in a fluctuating environment. The focus is on the situation where the F is are
given by Lajmanovich and Yorke-type vector fields [34] (or more generally sub-
homogeneous cooperative systems in the sense of Hirsch [31]). Several examples
are analyzed and a theorem proving exponential convergence of the distribution
(for a certain Wasserstein distance) in absence of the bracket condition is stated
(Theorem 4.12).

Sections 5 and 6 are devoted to the proofs of Theorems 3.1, 3.2, 3.3, 3.4 and
4.12. The proofs of certain results stated in Section 2 are given in the Appendix for
convenience.

1.2. Notation. The following notation will be used throughout: 〈·, ·〉 denotes
the Euclidean inner product in R

d , ‖ · ‖ the associated norm, B(x, r) = {y ∈ R
d :

‖y − x‖ ≤ r} the closed ball centered at x with radius r and Sd−1 = {x ∈ R
d :

‖x‖ = 1} the unit sphere.

Notation for Markov processes. For any polish space X such as M,Sd−1,E,
M ×E, equipped with its Borel sigma-field, we let P(X ) denote the set of (Borel)
probabilities over X . We shall consider below certain Markov processes Z̃ (like
Z) taking values in X with cadlag (right continuous, left limit) paths. Given such
a process and μ ∈ P(X ) we let PZ̃

μ denote the law of Z̃ on the Skorokhod space

D(R+,X ) when Z̃0 has law μ. As usual, PZ̃
z stands for P

Z̃
δz

for all z ∈ X . The

Markov semigroup induced by Z̃, denoted (P Z̃
t )t≥0, acts on bounded measurable

functions f : X 	→R according to the formula

P Z̃
t f (z) = Ez

(
f (Z̃t )

)= ∫ f
(
η(t)

)
dPZ̃

z (η).

By duality, it acts on P(X ) by(
μP Z̃

t

)
f = μ

(
P Z̃

t f
)
,

where here and throughout μf stands for
∫

f dμ. Probability μ ∈ P(X ) is said

invariant for Z̃ provided μP Z̃
t = μ for all t ≥ 0. It is called ergodic if, in addition

of being invariant, the only bounded measurable functions f : X 	→ R for which
supt≥0 μ(|P Z̃

t f − f |) = 0 are μ-almost surely constant.

We let P Z̃
inv ⊂ P(X ) denote the (possibly empty) set of invariant probabilities

of Z̃ and P Z̃
erg ⊂ P Z̃

inv the subset of ergodic probabilities. Recall that P Z̃
erg can also

be defined as the set of extremal points of P Z̃
inv.
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A key property that will be used later without further notice is that whenever
μ ∈ P Z̃

inv (resp., μ ∈ P Z̃
erg), PZ̃

μ is invariant (resp., ergodic), in the sense of ergodic
theory, for the shift � = (�t )t≥0 on D(R+,X ) where

�t (η)(s) = η(t + s).

We refer the reader to Meyn and Tweedie ([38], Chapter 17) for a proof and more
details.

Accessibility. Let F̃ = {F̃ i}i∈E be a family of bounded C1 vector fields on R
d

indexed by E. For instance, F̃ = F. We let co(F̃) denote the compact convex set
valued mapping defined by

co(F̃)(x) =
{∑

j∈E

αj F̃
j (x) : αj ≥ 0,

∑
j∈E

αj = 1
}
.

Given a closed set A ⊂ R
d and B ⊂ R

d we say that A is F̃ -accessible from B if for
every neighborhood U of A and every x ∈ B , there exists a (absolutely continuous)
function η :R+ 	→R

d , solution to the differential inclusion{
η̇(t) ⊂ co(F̃)

(
η(t)

)
,

η(0) = x

such that η(t) ∈ U for some t > 0. An equivalent formulation (see, e.g., Theo-
rem 2.2 in [8]) is that A is reachable from B by the control system⎧⎪⎨

⎪⎩
ẋ =∑

j

F̃ j (x)vj (t),

x(0) = x,

where the control v ∈ D(R+, {ej }j∈E) with {ej }j∈E the canonical basis of R
E .

Note that this notion is what is called D-approachability in [4].

2. The linearized system. Let, for i ∈ E,Ai = DFi(0) denote the Jacobian
matrix of F i at the origin. We let CM ⊂R

d denote the cone defined as

CM = {tx : t ≥ 0, x ∈ M,‖x‖ ≤ δ
}

where δ is like in condition C2. Here, B stands for the closure of B .

REMARK 2.1. One can check that the definition of CM does not depend on
the choice of δ, provided δ satisfies condition C2.

LEMMA 2.2. For all t ≥ 0 etAi
CM ⊂ CM .
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PROOF. We set DM = {tx : t ≥ 0, x ∈ M,‖x‖ ≤ δ} and first prove that
etAi

DM ⊂ CM . The lemma will be then induced by continuity of etAi
. Let

x ∈ DM . For ε small enough, by definition of DM and continuity of �i
t at 0

�i
t (εx) ∈ M ∩ B(0, δ). Hence �i

t (εx)

ε
∈ CM and letting ε → 0 this shows that

D�i
t (0)x = etAi

x ∈ CM . �

Define the linearized system of Z at the origin as the “linear” PDMP (Y, J )

living on CM × E whose generator L is given by

Lg(y, i) = 〈Aiy,∇gi(y)
〉+ ∑

j∈E

aij

(
gj (y) − gi(y)

)
,

where

aij = aij (0).

A trajectory (Yt , Jt )t≥0 with initial condition (y, i) is then obtained as a solution
to

(3)

⎧⎨
⎩

dYt

dt
= AJt Yt ,

Y0 = y,

where (Jt ) is a continuous time Markov process on E with jump rates (aij ) based
at J0 = i.

By irreducibility of (aij ), J has a unique invariant probability p = (pi)i∈E ,
characterized by

∀i ∈ E,
∑
j

(pjaji − piaij ) = 0.

Whenever y �= 0, the polar decomposition(
�t = Yt

‖Yt‖ , ρt = ‖Yt‖
)

∈ Sd−1 ∩ CM ×R+

is well defined and (3) can be rewritten as

(4)

⎧⎪⎪⎨
⎪⎪⎩

d�t

dt
= GJt (�t),

dρt

dt
= 〈AJt �t ,�t

〉
ρt ,

where for all i ∈ E Gi is the vector field on Sd−1 defined by

(5) Gi(θ) = Aiθ − 〈Aiθ, θ
〉
θ.
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REMARK 2.3. For stochastic differential equations, the idea of introducing,
this polar decomposition goes back to Hasminskii [29] and has proved to be a
fundamental tool for analyzing linear stochastic differential equations (see, e.g.,
[6]), linear random dynamical systems (see, e.g., Chapter 6 of Arnold [1]) and
more recently certain linear PDMPs in [12, 35] or [33].

With obvious notation, the processes

(�,ρ,J ) = ((�t , ρt , Jt )
)

and

(�,J ) = ((�t , Jt )
)

are two PDMPs respectively living on Sd−1 ∩CM ×R+ ×E and Sd−1 ∩CM ×E.
By compactness of Sd−1 ∩CM and Feller continuity of (�,J ) (see [13], Propo-

sition 2.1), P(�,J )
inv is a nonempty compact (for the topology of weak* convergence)

subset of P(Sd−1 ∩ CM × E).

2.1. Average growth rates. Define, for each μ ∈ P(�,J )
inv , the μ-average growth

rate as

(6) �(μ) =
∫ 〈

Aiθ, θ
〉
μ(dθ di) =∑

i∈E

∫
Sd−1∩CM

〈
Aiθ, θ

〉
μi(dθ),

where μi(·) is the measure on Sd−1 ∩ CM defined by

μi(A) = μ
(
A × {i}).

Note that when μ is ergodic, by equation (4) and Birkhoff ergodic theorem

lim
t→∞

log(ρt )

t
= �(μ)

P
(�,J )
μ almost surely.
Define similarly the extremal average growth rates as the numbers

(7) �− = inf
{
�(μ) : μ ∈ P(�,J )

erg
}

and �+ = sup
{
�(μ) : μ ∈ P(�,J )

erg
}
.

The following rough estimate is a direct consequence of (6). Recall that p =
(pi)i∈E is the invariant probability of J .

LEMMA 2.4.∑
i

piλmin

(
Ai + (Ai)T

2

)
≤ �− ≤ �+ ≤∑

i

piλmax

(
Ai + (Ai)T

2

)
,

where λmin (resp., λmax) denotes the smallest (resp., largest) eigenvalue.

The signs of �− and �+ will play a crucial role for determining the asymp-
totic behaviour of the nonlinear process Z. But before stating our main results, it
is interesting to compare them with the usual Lyapunov exponents given by the
multiplicative ergodic theorem.
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2.2. Relation with Lyapunov exponents. Set 
 = D(R+,E) and for ω ∈ 


and y ∈ R
d , let

t 	→ ϕ(t,ω)y

denote the solution to the linear differential equation

ẏ = Aωt y

with initial condition ϕ(0,ω)y = y.
Then ϕ is a linear random dynamical system over the ergodic dynamical system

(
,PJ
p,�), for which the assumptions of the multiplicative ergodic theorem are

easily seen to be satisfied (see, e.g., [1], Theorem 3.4.1 or Colonius and Mazanti
[21]). Thus, according to this theorem, there exist 1 ≤ d̃ ≤ d , numbers

λ
d̃

< · · · < λ1,

called the Lyapunov exponents of (ϕ,�), a Borel set 
̃ ⊂ 
 with P
J
p(
̃) = 1, and

for each ω ∈ 
̃ distinct vector spaces

{0} = V
d̃+1(ω) ⊂ V

d̃
(ω) ⊂ · · · ⊂ Vi(ω) · · · ⊂ V1(ω) = R

d

(measurable in ω) such that

(8) lim
t→∞

1

t
log
∥∥ϕ(t,ω)y

∥∥= λi

for all y ∈ Vi(ω) \ Vi+1(ω).

PROPOSITION 2.5. For all μ ∈ P(�,J )
erg

�(μ) ∈ {λ
d̃
, . . . , λ1}.

If furthermore CM has nonempty interior, then

�+ = λ1.

REMARK 2.6. The second part of the proposition has already been proven by
Crauel [22], Theorem 2.1 and Corollary 2.2, in a more general setting. We adapt
the arguments of his proof for our specific case.

PROOF. Let μ ∈ P(�,J )
erg . Then, P(�,J )

μ almost surely

lim
t→∞

1

t
log
(‖ϕ(t, J )�0

)‖) = lim
t→∞

1

t

∫ t

0

〈
AJs�s,�s

〉
ds = �(μ)

The first equality follows from (3), (4) and the definition of ϕ(t,ω). The second
follows from Birkhoff ergodic theorem. Therefore, there exists a Borel set B ⊂
(Sd−1 ∩ CM) × 
 such that for all (θ,ω) ∈ B

(9) lim
t→∞

1

t
log
(∥∥ϕ(t,ω)θ

∥∥)= �(μ)
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and P
(�0,J )
μ (B) = 1, where P

(�0,J )
μ (dθ dω) =∑

i∈E P
J
i (dω)μi(dθ) is the law of

(�0, J ) under P(�,J )
μ .

Let 
̃ ⊂ 
 be the set given by the multiplicative ergodic theorem and B̃ =
{(θ,ω) ∈ B : ω ∈ 
̃}. Then P

(�0,J )
μ (Sd−1 ∩ CM × 
̃) = P

J
μ(
̃) = 1. Hence

P
(�0,J )
μ (B̃) = 1 and for all (θ,ω) ∈ B̃ the left-hand side of equality (9) equals

λi for some i.
It remains to show that λ1 = �+. For every ω in the set 
̃ given by the multi-

plicative ergodic theorem, and for all θ ∈ Sd−1 ∩ CM , define

λ(θ,ω) = lim
t→∞

1

t
log
(∥∥ϕ(t,ω)θ

∥∥)= lim
t→∞

1

t

∫ t

0

〈
Aωs�θ

s (ω),�θ
s (ω)

〉
ds,

where

�θ
t (ω) = ϕ(t,ω)θ

‖ϕ(t,ω)θ‖ .

By (8), we have λ(θ,ω) = λ1 for all θ ∈ V1(ω) \V2(ω)∩Sd−1 ∩CM . Let ν denote
the normalised Lebesgue measure on Sd−1 ∩ CM . Because V2(ω) is at most an
hyperplane and CM has nonempty interior, we get that

∫
λ(θ,ω)dν(θ) = λ1 for

all ω ∈ 
̃. In particular,

(10)
∫



∫
Sd−1∩CM

λ(θ,ω)dν(θ) dPJ
p(ω) = λ1.

Moreover, because |〈Aiθ, θ〉| ≤ max‖Ai‖, dominated convergence and (10) imply
that

(11) λ1 = lim
t→∞

1

t

∫



∫
Sd−1∩CM

∫ t

0

〈
Aωs�θ

s (ω),�θ
s (ω)

〉
ds dν(θ) dPJ

p(ω)

Now for all t > 0, define the probability on Sd−1 ∩ CM × E

(12) μt = 1

t

∫ t

0
(ν ⊗ p)P (�,J )

s ds.

By compactness of Sd−1 ∩ CM × E, (μt )t≥0 is tight, and by Feller property of
(�,J ), every weak limit points of μt belongs to P(�,J )

inv (Sd−1 ∩ CM × E). Let
μ be such a limit point, and (tn) such that μtn → μ. Setting f (θ, i) = 〈Aiθ, θ〉,
one has μtnf → μf = �(μ). Now (9), (11) and Fubini’s theorem imply that λ1 =
limμtnf = �(μ), which concludes the proof. �

In the multiplicative ergodic theorem, each Lyapunov exponent λi comes with

an integer di ≥ 1 called its multiplicity and such that
∑d̃

i=1 di = d (see Chapter 3
of [1] for more details). A consequence of Proposition 2.5 is the following inequal-
ity which provides, in some cases, a simple way to prove that �+ > 0, which is
often a sufficient condition to ensure positive recurrence of Z on M \ {0} × E (see
Propositions 2.11 and 2.13 and Theorems 3.2 and 3.3).
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COROLLARY 2.7.

∑
i∈E

pi Tr
(
Ai)= d̃∑

i=1

diλi ≤ d�+.

PROOF. By Jacobi’s formula,

log(det(ϕ(t,ω)))

t
=
∫ t

0 Tr(Aωs ) ds

t
.

By Birkhoff ergodic theorem, the right-hand side of this equality converges, PJ
p

almost surely, as t → ∞, toward
∑

i pi Tr(Ai); and a by product of the multiplica-
tive ergodic theorem (see, e.g., [1], Chapter 3, Corollary 3.3.4) is that the left-hand

side converges PJ
p almost surely, as t → ∞, toward

∑d̃
i=1 diλi . �

REMARK 2.8. If the matrices Ai are Metzler, meaning that they have off diag-
onal nonnegative entries, a result due to Mierczyński ([39], Theorem 1.3) allows
to improve the lower bound given in Corollary 2.7. We will use this estimate in
Section 4, Example 4.11.

REMARK 2.9. Note that in general

�− �= λ
d̃
.

Here is a simple example based on [12]. Assume E = {1,2} and d = 2 (so that
the matrices here are 2 × 2). Let A1,A2 be 2 real matrices having eigenvalues
with negative real parts and such that for some 0 < t < 1, the eigenvalues of (1 −
t)A1 + tA2 have opposite signs. It is not hard to construct such a matrix (see,
e.g., [12], example 1.3). Suppose a12 = βt and a21 = β(1 − t) with β > 0, so
that p1 = (1 − t),p2 = t . Then, by Corollary 2.7, the Lyapunov exponents, λ1, λ2
(counted with their multiplicity) satisfy

λ1 + λ2 = (1 − t)Tr
(
A1)+ t Tr

(
A2)< 0,

while, it follows from Theorem 1.6 of [12], that �+ = �− > 0 for β sufficiently
large. Hence (for large β)

λ2 < 0 < λ1 = �− = �+.

2.3. Uniqueness of average growth rate. In this section, we discuss general
conditions ensuring that

�− = �+ = λ1.

A sufficient condition is given by unique ergodicity of (�,J ), meaning that P(�,J )
inv

has cardinal one. However, whenever CM is symmetric (i.e., CM = −CM ), for
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each μ ∈ P(�,J )
inv there is another (possibly equal) invariant measure μ− given as

the image measure of μ by the map x, i 	→ −x, i. Indeed, it is easy to see that[
μP

�,J
t

]− = μ−P
�,J
t

for all μ ∈ P(Sd−1 ∩ CM × E). This follows from the equivariance property

Gi(−x) = −Gi(x)

satisfied by the Gi [see Equation (5)]. Clearly, �(μ) = �(μ−). Thus, when CM

is symmetric, a (weaker than unique ergodicity) sufficient condition is that the
quotient space P(�,J )

erg / ∼ obtained by identification of μ with μ− has cardinal
one.

EXAMPLE 2.10 (One-dimensional systems). Suppose d = 1 and CM = R.
Thus Sd−1 ∩ CM = {±1} and P(�,J )

erg = {μ,μ−} where μi(1) = μ−,i(−1) =
pi and μi(−1) = μ−,i(1) = 0. Hence �− = �+ = λ1 = ∑

i pia
i where ai =

(F i)′(0).

The two following results complement the previous discussion with practical
conditions.

Set G = {Gi}i∈E,G0 = G,Gk+1 = Gk ∪ {[Gi,V ],V ∈ Gk} where [, ] is the Lie
bracket operation. Following [13], we say that the weak bracket condition holds at
p ∈ Sd−1 provided the vector space spanned by the vectors {V (p) : V ∈⋃k≥0 Gk}
has full rank (i.e., d − 1).

PROPOSITION 2.11. Assume there exists p ∈ Sd−1 ∩ CM such that:

(i) The weak bracket condition holds at p;
(ii) Either p is G-accessible from Sd−1 ∩CM or, CM is symmetric and {−p,p}

is G-accessible from Sd−1 ∩ CM .

Then P(�,J )
inv in the first case, and P(�,J )

erg / ∼ in the second, has cardinal one. In
particular,

�− = �+ = λ1.

PROOF. Existence of an invariant probability follows from compactness and
Feller continuity. By Theorem 1 in [4] or Theorem 4.4 in [13] Condition (i), and
accessibility of p imply that such a measure is unique (and absolutely continuous
with respect to dx ⊗∑i δi ). In case CM is symmetric and {−p,p} accessible, let
Sd−1 ∩ CM/ ∼ be the projective space obtained by identifying each point x with
the antipodal point −x and π : Sd−1 ∩ CM 	→ Sd−1 ∩ CM/ ∼ the quotient map.
The PDMP (�,J ) induces a PDMP (π�,J ) = (π(�t), Jt ) on Sd−1 ∩CM/ ∼ ×E

for which π(p) is accessible and at which the weak bracket condition holds. The
preceding results applies again. �
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EXAMPLE 2.12 (Two-dimensional systems). Suppose d = 2,CM = R
2 and

that one of the two following conditions is verified:

(a) At least one matrix, say A1, has no real eigenvalues; or
(b) at least two matrices, say A1,A2 have no (nonzero) common eigenvector.

Then the assumptions, hence the conclusions, of Proposition 2.11 hold.
Indeed, under condition (a), the flow induced by G1 is periodic on S1 so that

every point p ∈ S1 satisfies the assumptions of Proposition 2.11. Under condition
(b), let α ≤ β be the eigenvalues of G1 and u, v ∈ S1 corresponding eigenvectors.
If α < β {v,−v} is an attractor for the flow induced by G1 whose basin is S1 \
{u,−u}. Since G2(u) �= 0, {−v, v} is {G1,G2} accessible and since G2(v) �= 0
assumption (i) of Proposition 2.11 is satisfied at point v. If α = β , every trajectory
of the flow induced by G1 converges either to v or −v and the preceding reasoning
still applies.

The next proposition will be useful in Section 4 for analyzing random switching
between cooperative vector fields and certain epidemiological models. In case the
matrices Ai are irreducible, this proposition follows from the Random Perron–
Frobenius theorem as proved by Arnold, Demetrius and Gundlach in [2]. However,
to handle the weaker assumption (iii), the proof needs to be adapted, but relies on
the same ideas. Details are given in the Appendix. Recall (see Remark 2.8) that a
Metzler matrix is a matrix with nonnegative off-diagonal entries. We say that such
a matrix is irreducible if adding a sufficiently large multiple of the identity, the
obtained matrix is a nonnegative irreducible matrix in the usual sense.

PROPOSITION 2.13. Assume that:

(i) CM = R
d+,

(ii) For each i ∈ E, Ai is Metzler,
(iii) There exists α ∈ P(E) (i.e αi ≥ 0,

∑
i∈E αi = 1) such that

A =∑
i∈E

αiA
i

is irreducible.

Then P(�,J )
inv has cardinal one. In particular,

�− = �+ = λ1.

2.4. Average growth rate under frequent switching. The definition of average
growth rates [see equations (6) and (7)] involve the invariant measures of (�,J )

whose explicit computation may prove highly difficult if not impossible. However,
when switchings occur frequently, such measures can, by a standard averaging
procedure, be estimated by the invariant measures of the mean vector field; that is,
the vector field obtained by averaging.

More precisely, we have the following lemma.
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LEMMA 2.14. Assume the switching rates are constant and depend on a small
parameter ε : aε

i,j = ai,j /ε where (ai,j ) is an irreducible matrix with invariant
probability p. Denote by (�ε, J ε) the associated PDMP given by (4), and for any
ε > 0, let με be an element of P(�ε,J ε)

inv . Then every limit point of (με)ε>0, in the
limit ε → 0, is of the form ν ⊗ p, where ν is an invariant probability measure of
the flow induced by Gp :=∑i piG

i .

The proof of this lemma follows from standard averaging results. Details are
given in the Appendix. An immediate corollary is the following.

COROLLARY 2.15. With the hypotheses of Lemma 2.14, assume that the flow
induced by Gp admits a unique invariant measure ν on Sd−1 ∩CM . Denote by �+

ε

and �−
ε the extremal growth rates of (�ε, J ε). Then

lim
ε→0

�+
ε = lim

ε→0
�−

ε =∑
i∈E

pi

∫
Sd−1∩CM

〈
Aiθ, θ

〉
ν(dθ).

In particular, if Ap :=∑i piA
i is Metzler and irreducible, then it admits a unique

eigenvector θp on Sd−1 ∩R
d+ and

lim
ε→0

�+
ε = lim

ε→0
�−

ε = 〈Apθp, θp〉= λmax
(
Ap).

3. The nonlinear system: Main results.

3.1. Extinction. The first result is an extinction result.

THEOREM 3.1. Assume �+ < 0. Let 0 < α < −�+. Then there exists a
neighborhood U of 0 and η > 0 such that for all x ∈ U and i ∈ E,

P
Z
x,i

(
lim sup
t→∞

1

t
log
(‖Xt‖)≤ −α

)
≥ η.

If furthermore 0 is F-accessible from M , then for all x ∈ M and i ∈ E,

P
Z
x,i

(
lim sup
t→∞

1

t
log
(‖Xt‖)≤ �+

)
= 1.

3.2. Persistence. The next results are persistence results obtained under the
assumption that �− > 0.

We let

�t = 1

t

∫ t

0
δZs ds ∈ P(M × E)

denote the empirical occupation measure of the process Z. For every Borel set
A ⊂ M × E,

�t(A) = 1

t

∫ t

0
1{Zs∈A} ds

is then the proportion of the time spent by Z in A up to time t .
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We let M∗ = M \ {0}.

THEOREM 3.2. Assume �− > 0. Then the following assertions hold:

(i) For all ε > 0 there exists r > 0 such that for all x ∈ M∗, i ∈ E, PZ
x,i almost

surely,

lim sup
t→∞

�t

(
B(0, r) × E

)≤ ε.

In particular, for all x ∈ M∗, PZ
x,i almost surely, every limit point (for the weak*

topology) of (�t) belongs to PZ
inv ∩P(M∗ × E).

(ii) There exist positive constants θ,K such that for all μ ∈ PZ
inv ∩P(M∗ ×E)

∑
i∈E

∫
‖x‖−θμi(dx) ≤ K.

(iii) Let ε > 0 and τ ε be the stopping time defined by

τ ε = inf
{
t ≥ 0 : ‖Xt‖ ≥ ε

}
.

There exist ε > 0, b > 1 and c > 0 such that for all x ∈ M∗ and i ∈ E,

E
Z
x,i

(
bτε )≤ c

(
1 + ‖x‖−θ ).

Set F0 = F = {F i}i∈E and Fk+1 = Fk ∪ {[F i,V ],V ∈ Fk} where [, ] is the Lie
bracket operation. We say (compare to Section 2.3) that the weak bracket condition
holds at p ∈ M provided the vector space spanned by the vectors {V (p) : V ∈⋃

k≥0 Fk} has full rank. We let Leb denote the Lebesgue measure on R
d .

THEOREM 3.3. In addition to the assumption �− > 0, assume that there ex-
ists a point p ∈ M∗ F-accessible from M∗ at which the weak bracket condition
holds. Then:

(i) The set PZ
inv ∩P(M∗ × E) reduces to a single element, denoted �;

(ii) � is absolutely continuous with respect to Leb ⊗ (
∑

i∈E δi);
(iii) For all x ∈ M∗ and i ∈ E,

lim
t→∞�t = �

P
Z
x,i almost surely.

In order to get a convergence in distribution of the process (Zt )t≥0, the weak
bracket condition needs to be strengthened. Set F0 = {F i − Fj : i, j = 1, . . .m}
and Fk+1 = Fk ∪ {[F i,V ] : V ∈ Fk}. We say that the strong bracket condition
holds at p ∈ M provided the vector space spanned by the vectors {V (p) : V ∈⋃

k≥0 Fk} has full rank.
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Given μ,ν ∈ P(M ×E), the total variation distance between μ and ν is defined
as

‖μ − ν‖TV = sup
∣∣μ(A) − ν(A)

∣∣
where the supremum is taken over all Borel sets A ⊂ M × E.

THEOREM 3.4. Under the conditions of the preceding theorem, assume fur-
thermore that one the two following holds:

(i) The weak bracket condition is strengthened to the strong bracket condition;
or

(ii) There exist α1, . . . , αN ∈ R with
∑

αi = 1 and a point e� ∈ M∗ F-accessible
from M∗ such that

∑
αiF

i(e�) = 0.

Then there exist κ, θ > 0 such that for all x ∈ M∗ and i ∈ E,∥∥PZ
x,i(Zt ∈ ·) − �

∥∥
TV = ∥∥δx,iP

Z
t − �

∥∥
TV ≤ const.

(
1 + ‖x‖−θ )e−κt .

3.3. The noncompact case. We briefly discus here the situation where M is not
compact. First, note that all the results given in Section 2 still hold, because they
only deal with the linearised system. Next, local statements remain true without
additional assumption by a localisation argument. Namely, we have the following.

THEOREM 3.5. 1. Assume �+ < 0. Let 0 < α < −�+. Then there exists a
neighborhood U of 0 and η > 0 such that for all x ∈ U and i ∈ E

P
Z
x,i

(
lim sup
t→∞

1

t
log
(‖Xt‖)≤ −α

)
≥ η.

2. Assume �− > 0. Then there exist ε > 0, b > 1 and c > 0 such that for all
x ∈ M∗ and i ∈ E,

E
Z
x,i

(
bτε )≤ c

(
1 + ‖x‖−θ ).

To extend the global results stated above, we make the additional assumption
that the jumps rates are bounded and that there exists a Lyapunov function, con-
trolling the behaviour of the process at infinity.

HYPOTHESIS 3.6. The jumps rate are bounded:

sup
x∈M

max
i,j

aij (x) < ∞.

For a function f : M × E →R, we denote by �f the function defined by

�f (x, i) = ∑
j∈E

aij (x)
(
f (x, j) − f (x, i)

)2
.

We also let C1
c denote the space of functions f : M × E → R that are constant

outside a compact set and C1 in the first variable.
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HYPOTHESIS 3.7. There exists a continuous function W : M ×E →R+ with
lim‖x‖→∞ W(x, i) = ∞, a continuous function LW : M × E → R+, α > 0 and
C ≥ 0 such that:

(i) For every compact set K ⊂ M , there exists WK ∈ C1
c such that

(a) W |K = WK |K and LWK |K = LW |K ,
(b) For all x ∈ M , sup{Pt(�WK), t ≥ 0,K compact} < ∞

(ii)

LW ≤ −αW + C.

THEOREM 3.8. Under Hypotheses 3.7 and 3.6, Theorems 3.1, 3.2 and 3.3 are
still valid. Moreover, Theorem 3.4 is true, but with the following estimate:∥∥δx,iP

Z
t − �

∥∥
TV ≤ const.

(
1 + W(x) + ‖x‖−θ )e−κt .

EXAMPLE 3.9. We consider a random switching between two linear systems
given by 2 × 2 Metzler matrices A0 and A1, with transition rate ai,1−i (x). We
assume that A0 has two distinct positive eigenvalues λ1 > λ2 and is irreducible,
whereas A1 is of the form

A1 =
(−c 0

0 −d

)
,

with 0 < c < d . Since the eigenvalues of A0 are positive, there is no invariant
compact set for �0, nor for the PDMP. Moreover, A0 and A1 being Metzler, M =
R

2+ is positively invariant for (Xt)t≥0. If the jump rates were constant in x, the
process would either converge to 0 or to infinity. To ensure positive recurrence on
M∗, we assume that the transition rates are such that, near the origin, It spends
more time in state 0:

(13) a10(0) − d

λ2
a01(0) > 0.

While near infinity, it spends more time in state 1:

(14) lim sup
‖x‖→∞

(
a10(x) − c

λ1
a01(x)

)
< 0.

More precisely, we have the following.

PROPOSITION 3.10. Assume that the jumps rates are bounded and that con-
ditions (13) and (14) hold. Then there exists a unique invariant probability � ∈
P(M∗ × E) and there exists κ, θ, q > 0 such that for all x ∈ M∗ and i ∈ E,∥∥PZ

x,i(Zt ∈ ·) − �
∥∥

TV ≤ const.
(
1 + ‖x‖q + ‖x‖−θ )e−κt .
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PROOF. By Theorem 2.13, �+ = �− := �, and by Corollary 2.7,

� ≥ 1

2

(
p0 Tr

(
A0)+ p1 Tr

(
A1))≥ λ2p0 − dp1.

Moreover, it is easy to check that p0 = a10(0)
a10(0)+a01(0)

and p1 = a01(0)
a10(0)+a01(0)

. Hence,

if a10(0) > d
λ2

a01(0), then � > 0. Now we show that we can construct a Lyapunov
function at infinity. Let q > 0 and β0, β1 > 0 and define, for all (x, i) ∈ M × E,
Wq(x, i) = βi‖x‖q . Formally, we have

LWq(x, i) = qβi〈Aix, x〉‖x‖p−2 + ai,1−i (x)(β1−i − βi)‖x‖q .

By assumption on A0 and A1, 〈A0x, x〉 ≤ λ1‖x‖2 and 〈A1x, x〉 ≤ −c‖x‖2. Hence,

LWq(x, i) ≤ (−α(i)qβi + ai,1−i (x)(β1−i − βi)
)‖x‖q,

where α(0) = −λ1 and α(1) = c. First, we prove that we can choose β0 and
β1 such that Wq satisfies point (ii) of Hypothesis 3.7 for all q small enough.
Then we prove that we can choose q such that point (i-b) holds. By assump-
tion (14), there exists ε > 0 and K > 0 such that, for all x ∈ M with ‖x‖ ≥ K ,
a10(x) ≤ c

λ1
a01(x) − ε. This implies that, for q small enough, there exists αq such

that a10(x)(
αq

λ1
+ q) − ( c

λ1
− αq

λ1
)a01(x) − qαq + cq2 ≤ 0, which yields

sup
‖x‖≥K

a01(x) + αq

a01(x) − λ1q
≤ inf‖x‖≥K

−αq + cq

a10(x)
+ 1.

Now we choose β1 = 1 and β0 such that

sup
‖x‖≥K

a01(x) + αp

a01(x) − λ1q
≤ β0 ≤ inf‖x‖≥K

−αq + cq

a10(x)
+ 1.

Thus, for ‖x‖ ≥ K , −α(i)qβi + ai,1−i (x)(β1−i − βi) ≤ −αq . In particular, for all
for ‖x‖ ≥ K , LWq(x, i) ≤ −αqWq(x, i). Since LWq is bounded for ‖x‖ ≤ K ,
then LWq ≤ −αqWq +C for some constant C > 0 (depending on q > 0). This has
the consequence (see [15], Theorem 2.1) that for all t ≥ 0,

(15) PtWq ≤ e−αq t

(
Wq − C

αq

)
+ C

αq

.

The computation of � gives

�Wq(x, i) = ai,1−i (x)(β0 − β1)
2‖x‖2q,

hence

�Wq ≤ C̃qW2q

for some constant C̃q > 0. Hence, choosing p small enough so that (15) holds for
2q , one has

sup
t≥0

Pt(�Wq) ≤ C̃q sup
t≥0

PtW2q ≤ W2q,
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which proves (i-b). It remains to show that there exist accessible points at which
the strong bracket condition holds. Set F 0(x) = A0x and F 1(x) = A1x the vector
fields associated to A0 and A1. There exist α,β, γ, δ, with β,γ > 0 such that
F 0(x, y) = (αx + βy,γ x + δy). Straightforward computations show that

det
(
F 0 − F 1,

[
F 0,F 1])(x, y) = (d − c)

(
2βγ xy + β(d + δ)y2 + γ (α + c)x2).

Since β,γ > 0, this polynomial is nonidentically null. To conclude, we prove
that there exists an open set of accessible points. Let v ∈ R

2++ be the Perron
eigenvector associated with A0. We claim that R+v and, therefore, γ +

1 (R+v) =⋃
t≥0 �1

t (R+v) are accessible. One can check that for all y ∈ R+v and all ε > 0,
there exists η > 0 such that for all x ∈ M∗ with ‖x‖ < η, there exists t ≥ 0 such
that ‖�0

t (x)−y‖ < ε. Since 0 is accessible following F 1, this makes y accessible.
Hence, γ +

1 (R+v) is accessible and Theorem 3.8 applies. �

4. Epidemic models in fluctuating environment. We discuss here some im-
plications of our results to certain epidemics models evolving in a randomly fluc-
tuating environment.

Forty years ago, Lajmanovich and Yorke in a influential paper [34], proposed
and analyzed a deterministic SIS (susceptible-infectious-susceptible) model of in-
fection, describing the evolution of a disease that does not confer immunity, in a
population structured in d groups. The model is given by a differential equation on
[0,1]d (the unit cube of Rd ) having the form

(16)
dxi

dt
= (1 − xi)

(
d∑

j=1

Cijxj

)
− Dixi, i = 1, . . . d,

where C = (Cij ) is an irreducible matrix with nonnegative entries and Di > 0.
Here, 0 ≤ xi ≤ 1 represents the proportion of infected individuals in group i; Di is
the intrinsic cure rate in group i and Cij ≥ 0 is the rate at which group i transmits
the infection to group j . Irreducibility of C implies that each group indirectly
affects the other groups. By a classical mean field approximation procedure, (16)
can be derived from a finite population model, in the limit of an infinite population
(see Benaïm and Hirsch [9]).

Here and throughout, for any matrix A we let λ(A) denote the largest real part
of the eigenvalues of A. A matrix A is called Hurwitz provided λ(A) < 0. Laj-
manovich and Yorke [34] prove the following result.

THEOREM 4.1 (Lajmanovich and Yorke, [34]). Let A = C − diag(D).
If λ(A) ≤ 0, 0 is globally asymptotically stable for the semiflow induced by (16)

on [0,1]d .
If λ(A) > 0, there exists another equilibrium x∗ ∈ ]0,1[d whose basin of attrac-

tion is [0,1]d \ {0}.
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In this epidemiological framework, 0 is called the disease-free equilibrium, and
the point x∗, when it exists, the endemic equilibrium. It turns out that such a di-
chotomic behaviour is very robust to the perturbations of the model and can be
obtained under a very general set of assumptions, using Hirsch’s theory of coop-
erative differential equations.

We let Rd++ denote the interior of the nonnegative orthant Rd+. For x, y ∈ R
d ,

we write x ≤ y (or y ≥ x) if y − x ∈ R
d+;x < y if x ≤ y and x �= y; and x � y if

y − x ∈ R
d++.

Following [9] (especially Section 3), we call a map F : [0,1]d 	→ R
d an epi-

demic vector field if it is continuously differentiable2 and satisfies the following
set of conditions:

E1 F(0) = 0;
E2 xi = 1 ⇒ Fi(x) < 0;
E3 F is cooperative, that is, the Jacobian matrix DF(x) is Metzler for all x ∈

[0,1]d ;
E4 F is irreducible on [0,1)d , that is, DF(x) is irreducible for all x ∈ [0,1)d ;
E5 F is strongly sub-homogeneous on (0,1)d , that is, F(λx) � λF(x) for all

λ > 1 and x ∈ (0,1)d .

It is easy to verify that the Lajmanovich and Yorke vector field [given by the right-
hand side of (16)] satisfies these conditions.

Let � = {�t } denote the local flow induced by F . Condition E3 has the impor-
tant consequence that for all t ≥ 0 �t is monotone for the partial ordering ≤. That
is, �t(x) ≤ �t(y) if x ≤ y. In particular, by E1, �t(x) ≥ 0 for all x ≥ 0. Combined
with E2 this shows that [0,1]d is positively invariant under � .

The following result shows that trajectories of � behave exactly like the trajec-
tories of the Lajmanovich and Yorke system. The first assertion was stated in ([9],
Theorem 3.2) but its proof is a consequence of more general results due to Hirsch
(in particular Theorems 3.1 and 5.5 in [31]).

THEOREM 4.2. Let F be an epidemic vector field and � = {�t }t≥0 the in-
duced semiflow on [0,1]d . Then:

(i) (Hirsch, [31]) Either 0 is globally asymptotically stable for �; or there
exists another equilibrium x∗ ∈ ]0,1[d whose basin of attraction is [0,1]d \ {0}.

(ii) Let A = DF(0). Then 0 is globally asymptotically stable if and only if
λ(A) ≤ 0.

PROOF. As already mentioned, (i) follows from [31], Theorems 3.1 and 5.5.
We detail the proof of (ii). If λ(A) < 0, then 0 is linearly stable, hence globally sta-
ble by (i). If λ(A) > 0, there exists, by irreducibility and Perron–Frobenius theo-
rem, x0 � 0 such that Ax0 = λ(A)x0 � 0. Hence F(εx0) � 0 for ε small enough,

2By this we mean that F can be extended to a C1 vector field on R
d .
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because F(εx0)
ε

→ Ax0 as ε → 0. Consequently, {x : x ≥ εx0} is positively invari-
ant and 0 cannot be asymptotically stable.

It remains to show that 0 is asymptotically stable when λ(A) = 0. Suppose the
contrary. By (i), there exists another equilibrium x∗ � 0. Set y∗ = x∗/2. By strong
sub-homogeneity, 0 = F(x∗) � 2F(y∗). Let Fε(x) = F(x)−εx. For all ε > 0, Fε

is an epidemic vector field and 0 is linearly stable for Fε [because λ(DFε(0)) =
−ε]. On the other hand, for ε small enough, 0 � Fε(y

∗) so that the set {y : y ≥ y∗}
is positively invariant by Fε . A contradiction. �

4.1. Fluctuating environment. We consider a PDMP Z = (X, I) as defined in
Section 1, under the assumptions that:

E′1 M = [0,1]d ;
E′2 For all i ∈ E, Ai = DFi(0) is Metzler;
E′3 There exists α ∈ P(E) such that the convex combination A =∑i∈E αiA

i

is irreducible.

Observe that these conditions are automatically satisfied if F = {F i}i∈E consists
of epidemic vector fields but are clearly much weaker.

Relying on Proposition 2.13, we let λ1 = �+ = �− denote the top Lyapunov
exponent of the linearized system.

THEOREM 4.3. Assume λ1 < 0 and that one of the following two conditions
holds:

(a) The jump rates are constant (i.e aij (x) = aij ) and the F i are epidemic; or
(b) There exists β ∈ P(E) such that F =∑i βiF

i is epidemic and

λ

(∑
i

βiA
i

)
≤ 0.

Then for all x ∈ M∗ and i ∈ E,

P
Z
x,i

(
lim sup

log(‖Xt‖)
t

≤ λ1

)
= 1.

PROOF. We first prove the result under condition (a). Recall (see Section 2.2)
that 
 stands for D(R+,E). For each ω ∈ 
 and x ∈ [0,1]d , let

t 	→ �(t,ω)(x)

be the solution to the nonautonomous differential equation

ẏ = Fωt (y),

with initial condition y(0) = x. By conditions E3 and E5, each flow �i is mono-
tone and sub-homogenous (see, e.g., [31], Theorem 3.1). The composition of
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monotone sub-homogeneous mappings being monotone and subhomogeneous,
�(t,ω) is monotone and sub-homogeneous for all t ≥ 0 and ω ∈ 
. Thus, for
all ε > 0 and ‖x‖ > ε

(17) �(t,ω)(x) ≤ ‖x‖
ε

�(t,ω)

(
ε

‖x‖x

)
.

Under the assumption that the jump rates are constant, PZ
x,i is the image measure

of PJ
i by the map

ω 	→ (
ω,
(
�(t,ω)(x)

)
t≥0

)
.

Therefore, by Theorem 3.1, there exists η, ε > 0 such that for all x ∈ B(0, ε)

(18)

P
Z
x,i

(
lim sup
t→∞

log(‖Xt‖)
t

≤ λ1

)

= P
J
i

(
lim sup
t→∞

log(‖�(t,ω)(x)‖)
t

≤ λ1

)
≥ η.

Combined with (17), this proves that (18) holds true not only for x ∈ B(0, ε) but
for all x ∈ [0,1]d . A standard application of the Markov property then implies the
result.

Under condition (b), it follows from Theorem 4.2, that 0 is F-accessible from
M , and the result follows from Theorem 3.1. �

REMARK 4.4. The assumption made in case (a) that the F i are epidemic can
be weakened. The proof shows that irreducibility of F i is unnecessary and that
strong sub-homogeneity can be weakened to sub-homogeneity.

REMARK 4.5. Case (a) (and its proof) can be related with the results ob-
tained by Chueshov in [19], for SIS models with random coefficients (see [19],
Section 5.7.2) and, more generally, for monotone sub-homogeneous random dy-
namical systems. Note, however, that in comparison with Chueshov’s approach, in
case (b), there is no assumption that the F is are monotone nor sub-homogeneous.

EXAMPLE 4.6 (Fluctuations may promote cure). We give here a simple ex-
ample consisting of two Lajmanovich–Yorke vector fields modeling the evolution
of an endemic disease (each vector field possesses an endemic equilibrium) but
such that a random switching between the dynamics leads to the extinction of the
disease.

Suppose d = 2,E = {0,1}. Let F 0,F 1 be the Lajmanovich–Yorke vector fields
respectively given by

C0 =
(

2 1
1 1

)
, D0 =

(
6
1

)
,
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FIG. 1. Example 4.6, phase portrait of F 0 and F 1.

and

C1 =
(

1 1
1 3

)
, D1 =

(
1
7

)
.

One can easily check that

λ
(
A0)= λ

(
A1)= √

5 − 2 > 0,

so that for each F i , there is an endemic equilibrium and the disease-free equilib-
rium is a repellor. On the other hand,

λ

(
A0 + A1

2

)
= −1 < 0,

so that the disease free equilibrium is a global attractor of the average vector field
F = 1

2(F 1 + F 2). Consider now the PDMP given by constant switching rates

a0,1 = a1,0 = β, a0,0 = a1,1 = 0.

By Corollary 2.15, this implies that λ1 < 0 provided β is sufficiently large. Thus
the conclusion of Theorem 4.3 holds.

EXAMPLE 4.7 (Fluctuations may promote infection). We give here another
simple example consisting of two Lajmanovich–Yorke vector fields for which the
disease dies out, but such that a random switching between the dynamics leads to
the persistence of the disease.

With the notation of Example 4.6, assume now that

C0 =
⎛
⎝ 1 4

1

16
1

⎞
⎠ , D0 =

(
2
2

)
,

and

C1 =
⎛
⎝2

1

16
4 2

⎞
⎠ , D1 =

(
3
3

)
.
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FIG. 2. Example 4.6, some trajectories of (Xt ) for β = 20.

Straightforward computation shows that

λ
(
A0)= λ

(
A1)= −1/2 < 0,

λ

(
A0 + A1

2

)
= 33/32 > 0,

and that the endemic equilibrium of F is the point x� = (33/113,33/113). Then x�

is F -accessible and one can easily check that the strong bracket condition holds at
x�. Thus, for β sufficiently large, this implies by Corollary 2.15 and Theorem 3.4
the exponential convergence in total variation of the distribution of Zt (whenever
X0 �= 0) towards a unique distribution � absolutely continuous with respect to
Leb ⊗∑

i∈E δi and satisfying the tail condition given by Theorem 3.2(ii). Fur-
thermore, it follows from ([13], Proposition 3.1) that the topological support of �

writes � × E where � is a compact connected set containing both 0 and x�, and
whose interior is dense in �.

FIG. 3. Example 4.7, Phase portrait of F 0 and F 1.
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FIG. 4. Example 4.7, some trajectories of (Xt ) for β = 20.

REMARK 4.8. In [16], we show that the previous example can be generalised
in the following way. Assume that F 0 and F 1 are two epidemic vector fields in
dimension 2 such that:

1. λ(A0) < 0 and λ(A1) < 0;
2. There exists s ∈ (0,1) such that λ(As) > 0, where As = sA1 + (1 − s)A0.

Then [16], Lemma 3.7, show that there exists an accessible point at which the weak
bracket condition holds. Moreover, since λ(As) > 0, Theorem 4.2 implies that
condition (ii) of Theorem 3.4 is satisfied. Thus, by this theorem, we can conclude
that there is convergence in total variation to a unique invariant probability measure
provided λ1 > 0. This happens for example with switching rates of the form

a0,1 = sβ, a1,0 = (1 − s)β, a0,0 = a1,1 = 0

for β large enough (by Corollary 2.15.)

REMARK 4.9. In the preceding example, the matrices Ai are Metzler and
Hurwitz but λ1 > 0 because the convex hull of the {Ai} contains a non- Hurwitz
matrix. This leads to the natural question of finding examples for which

λ1 > 0 and every matrix in the convex hull of the {Ai} is Hurwitz.

For arbitrary (i.e., non-Metzler) matrices, such and example has been given in
dimension 2 in [35] and more recently in [33].

Now, if we restrain ourselves to Metzler matrices, a result from Gurvits, Shorten
and Mason ([27], Theorem 3.2) proves that, in dimension 2, when every matrix
in the convex hull is Hurwitz, then 0 is globally asymptotically stable for any
deterministic switching between the linear systems. In particular, this implies that
λ1 cannot be positive.
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FIG. 5. Simulation of Yt for β = 10.

However, they show that it is possible in some higher dimension to construct
an example where all the matrices in the convex hull are Hurwitz, and for which
there exists a periodic switching such that the linear system explodes. Later, an
explicit example in dimension 3 was given by Fainshil, Margaliot and Chiganski
[24]. Precisely, consider the matrices

A0 =
⎛
⎝−1 0 0

10 −1 0
0 0 −10

⎞
⎠ , A1 =

⎛
⎝−10 0 10

0 −10 0
0 10 −1

⎞
⎠ .

It is shown in [24] that every convex combination of A0 and A1 is Hurwitz, and
yet a switch of period 1 between A0 and A1 yields an explosion. Some simulations
made on Scilab (see Figure 5) let us think that this result is still true for a random
switching, with rates

a0,1 = a1,0 = β, a0,0 = a1,1 = 0.

Here, β has to be chosen neither too small nor too big. Using the formula,

lim
t→∞E

(
1

t

∫ t

0

〈
AJs�s,�s

〉
ds

)
= λ1(β),

and Monte-Carlo simulations we can estimate numerically λ1(β). The results are
plotted in Figure 6 and show (although we did not prove it) that λ1 > 0 for 3 ≤
β ≤ 30, providing a positive answer to the question raised at the beginning of the
remark.

EXAMPLE 4.10 (Fluctuations may promote infection, continued). Remark 4.9
can be used to produce two Lajmanovich–Yorke vector fields F 0,F 1 on [0,1]3

such that:
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FIG. 6. Approximation of λ1(β) by Monte-Carlo method.

(i) For all 0 ≤ t ≤ 1, the disease free equilibrium is a global attractor of the
vector field F t = (1 − t)F 0 + tF 1;

(ii) A random switching between the dynamics leads to the persistence of the
disease.

Observe that F t is the Lajmanovich–Yorke vector field with infection matrix Ct =
(1 − t)C0 + tC1 and cure rate vector Dt = (1 − t)D0 + tD1.

To do so, one just has to choose C0,C1,D0,D1 in such way that Ai = Ci −Di .
For the simulation given here, we have chosen

D0 =
⎛
⎝11

11
20

⎞
⎠ ,

and

D1 =
⎛
⎝20

20
11

⎞
⎠ .

When (see Figure 6) β is such that λ1 > 0, then by Theorem 4.12 below, Z

admits a unique invariant measure � on M∗ × E. Moreover, by Theorem 3.2,
there exists θ > 0 such that∑

i∈E

∫
‖x‖−θ�i(dx) < ∞.

Figure 7 and 8 illustrate this persistence of the infection. In Figure 8, we have
plotted ‖Xt‖1 = X1

t + X2
t + X3

t .
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FIG. 7. Example 4.10: Simulation of Xt for β = 10.

4.2. Exponential convergence without bracket condition. Throughout this sec-
tion, we assume that the vector fields F i are epidemic and that the jump rates are
constant. Recall (see proof of Theorem 4.3) that this implies that for all ω ∈ 
 and
t > 0, �(t,ω) is monotone and strongly sub-homegeneous. A very useful conse-
quence of this fact is the strict nonexpansivity of �(t,ω) on R

d++ with respect to
the Birkhoff part metric p, the definition of which is recalled below. Now if we as-
sume that λ1 > 0, we have a Lyapunov function and nonexpansivity, so we might
expect uniqueness of the invariant measure on [0,1]d \ {0} × E and convergence
in law of (Zt ) towards it. Here, we prove that this is indeed the case, and even
that we have an exponential rate of convergence towards this invariant measure
for a certain Wasserstein distance, thanks to a weak form of Harris’ theorem given
by Hairer, Mattingly and Scheutzow [28]. But before to do so, we explain briefly

FIG. 8. Example 4.10: Simulation of ‖Xt‖1 for β = 10.
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why we cannot expect to have convergence in total variation without additional
assumptions with the following simple example.

EXAMPLE 4.11. Suppose d = 2,E = {0,1}. Let F 0,F 1 be the Lajmanovich–
Yorke vector fields, respectively, given by

C0 =
(

1 3
2 4

)
, D0 =

(
2
3

)
,

and

C1 =
(

6 2
7 3

)
, D1 =

(
4
5

)
.

One can easily check that the point x∗ = (1/2,1/2) is a common equilibrium of
F 1 and F 2. In particular, � = δx∗ ⊗ (δ0 + δ1)/2 is an invariant probability of Z.
Moreover, for all x �= x∗, i ∈ E and t ≥ 0, one has P

Z
x,i(Zt ∈ {x∗} × E) = 0 so

‖δx,iP
Z
t − �‖TV = 1 for all t ≥ 0. Now let us quickly show that Xt converges al-

most surely exponentially fast to x∗, for all switching rates. Let λ1(0) = λ1 [resp.,
λ1(x

∗)] denote the top Lyapunov exponent of the linearized system at the origin
(resp., at x∗). By Proposition 2.13, this exponent coincides with the unique aver-
age growth rate of the corresponding linearized system. We claim that λ1(0) > 0
and λ1(x

∗) < 0. The first inequality follows from the Kolotilina-type lower esti-
mate for the top Lyapunov exponent mentioned in Remark 2.8 due to Mierczyński
([39], Theorem 1.3). In our setting, this estimate ensures that

λ1(0) ≥ 1

2

∑
i

pi Tr
(
Ai)+∑

i

pi

√
Ai

12A
i
21,

which is positive because Tr(A0) = Tr(A1) = 0 and the other terms are positive.
Let Bi = DFi(x∗). Then the second estimate follows from Lemma 2.4 because
one can easily check that λmax(B

1 +(B1)T ) ≤ λmax(B
0 +(B0)T ) < 0. So applying

Theorem 3.1, we have a neighborhood U of x∗ and η > 0 such that for all x ∈ U
and i ∈ E,

(19) P
Z
x,i

(
lim sup
t→∞

1

t
log
(∥∥Xt − x∗∥∥)≤ λ1(x

∗)
2

)
≥ η.

On the other hand, because λ1(0) > 0, there exists by Theorem 3.2 ε > 0 such that
for all x �= 0,

(20) P
Z
x,i(τ < ∞) = 1,

where τ = inf{t ≥ 0 : ‖Xt | ≥ ε}. Finally, because x∗ is a linear stable equilibrium
for F 0 with basin of attraction contains M∗, one can show that there exists a con-
stant c > 0 such that for all x ∈ M with ‖x‖ ≥ ε,

(21) P
Z
x,i(Zt ∈ U × E) ≥ c.
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Combining (19), (20), (21) and the Markov property implies that

P
Z
x,i

(
lim sup
t→∞

1

t
log
(∥∥Xt − x∗∥∥)≤ λ1

(
x∗))= 1,

for all (x, i) ∈ M∗ ×E (see [14], Theorem 3.1, for details on a very similar proof).

Before stating our theorem, recall the definition of the Wasserstein distance. Let
Y be a Polish space, and d be a distance-like function on Y . That is d satisfies
the axioms of a distance, except for the triangle inequality. Then the Wasserstein
distance associated to d is defined for every μ,ν ∈ P(Y) by

Wd(μ, ν) = inf
π∈C(μ,ν)

∫
X 2

d(x, y) dπ(x, y),

where C(μ,ν) is the set of all the coupling of μ and ν. When d is a distance, so is
Wd , and in every case, Wd(μ, ν) = 0 if and only if μ = ν.

Set Y = [0,1]d \ {0} × E.

THEOREM 4.12. Assume the F i are epidemic vector fields, (aij ) are constant
and λ1 > 0. Then there exists a distance-like function d̃ , t0 ≥ 0 and r > 0, such
that:

(i) for all t ≥ t0, for all μ,ν ∈P(Y),

W
d̃

(
μP Z

t , νP Z
t

)≤ e−rtW
d̃
(μ, ν).

(ii) (P Z
t ) has a unique invariant measure � on Y , and for all μ ∈ P(Y),

W
d̃

(
μP Z

t ,�
)≤ e−rtW

d̃
(μ,�).

5. Proofs of Theorems 3.1–3.4: A stochastic persistence approach. As indi-
cated in the Introduction, the proofs will be deduced from the qualitative properties
of PDMPs combined with general results on stochastic persistence proved in [15]
along the lines of the seminal results obtained by Schreiber, Hofbauer and their
co-authors for deterministic systems.

5.1. An abstract stochastic persistence result. The results in [15] concern cer-
tain Markov processes on a (possibly) noncompact metric space satisfying a weak
version of the Feller property. Here, for simplicity, we shall state a simpler version
of these results tailored for Feller processes on a compact space.

Let X be a compact metric space and Z̃ a cadlag Markov process on X . To
shorten notation, we write Px,Pμ, (Pt )t≥0,Pinv,Perg in place of PZ̃

x ,PZ̃
μ , (P Z̃

t )t≥0,

P Z̃
inv, P Z̃

erg. We let

�t = 1

t

∫ t

0
δ
Z̃s

ds
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denote the empirical occupation measure of Z̃. We let C(X ) denotes the space of
real valued continuous functions on X equipped with the uniform norm ‖f ‖ =
supx∈X |f (x)|.

We assume that (Pt )t≥0 is Feller. That is,

(a) For all t ≥ 0 Pt maps C(X ) into itself,
(b) For all f ∈ C(X ) limt→0 ‖Ptf − f ‖ = 0.

We let L denote the infinitesimal generator of (Pt ) and D its domain. Recall that
D is defined as the set of f ∈ C(X ) such that 1

t
(Ptf −f ) converges in C(X ), and,

for such an f , Lf denotes the limit. We let D2 ⊂ D denote the set of f ∈ D such
that f 2 ∈ D. For f ∈ D2 the Carré du champ of f is defined as

(22) �(f ) = Lf 2 − 2fLf.

We assume that

HYPOTHESIS 5.1. there exists a nonempty compact set X0 ⊂ X called the
extinction set which is invariant under (Pt )t≥0. That is,

Pt1X0 = 1X0

where 1X0 stands for the indicator function of X0.

We set

X+ = X \X0,

Pinv(X+) = Pinv ∩P(X+),Pinv(X0) = Pinv ∩P(X0), etc.
Extinction of Z̃ amounts to say that trajectories of (Z̃t ) converge almost surely

to X0. Let X ε
0 be the ε-neighborhood of X0. Using a terminology borrowed to

Schreiber [43] and Chesson [18], we say that Z̃ is stochastically persistent (or
almost surely persistent), respectively, persistent in probability, provided

lim
ε→0

lim sup
t→∞

�t

(
X ε

0
)= 0

Px almost surely for all x ∈ X+. Respectively,

lim
ε→0

lim sup
t→∞

Px

(
Zt ∈ X ε

0
)= 0

for all x ∈ X+.
General criteria ensuring extinction or persistence are given by the existence of

a suitable average Lyapunov function V as defined now.
In addition to Hypothesis 5.1, we assume the following.

HYPOTHESIS 5.2. There exist continuous maps V : X+ 	→ R
+ and H : X 	→

R enjoying the following properties:
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(a) For all compact K ⊂ X+, there exists VK ∈ D2 with V |K = VK |K and
(LVK)|K = H |K ;

(b) sup{K:K⊂X+,K compact} ‖�(VK)|K‖ < ∞;
(c) limx→X0 V (x) = ∞;
(d) Jumps of V (Z̃t ) are bounded: ∃� > 0 such that |V (Z̃t ) − V (Z̃t−)| ≤ �;

Let Perg(X0) = Perg ∩P(X0). Define the H -exponents of the processes as

�+(H) = − inf
μ∈Perg(X0)

μH and �−(H) = − sup
μ∈Perg(X0)

μH.

We call the process H -persistent if �−(H) > 0 and H -nonpersistent if
�+(H) < 0.

By the Ergodic decomposition theorem, note that �−(H) > 0 [resp., �+(H) >

0] if and only if μH < 0 (resp., > 0) for all μ ∈ Perg(X0).
We say that A ⊂X is accessible from B ⊂ X if for every neighborhood U of A

and x ∈ B there exists t ≥ 0 such that Pt1U(x) > 0.
We call a point p ∈ X a Doeblin point provided there exists a neighborhood U

of p, a bounded (positive) measure ν on X and some number s > 0 such that

δxPs ≥ ν

for all x ∈ U . The following theorem is a consequence of Theorems 4.4 and 4.10
and Proposition 8.2 in [15].

THEOREM 5.3. Suppose that the process is H -persistent. Then:

(i) The process is stochastically persistent. In particular, for all x ∈ X+, Px

almost surely, every limit point of {�t } lies in Pinv(X+) = Pinv ∩P(X+).
(ii) There exist 0 < ρ < 1 and positive constants θ > 0,K > 0, T such that

PT

(
eθV )≤ ρeθV + K;

(iii) Let ε > 0 and τ ε be the stopping time defined by

τ ε = inf
{
t ≥ 0 : Z̃t ∈ X ε

0
}
.

Then there exists ε > 0 such that for all 1 < b < 1
ρ

, there exists c > 0 such that for

all x ∈ X+

Ex

(
bτ )≤ c

(
1 + eθV (x));

(iv) If, furthermore, there exists a Doeblin point x ∈ X+ accessible from X+
then Pinv(X+) reduces to a single measure � and for all x ∈ X+,

‖δxPt − �‖TV ≤ const.
(
1 + eθV (x))e−κt

for some κ > 0.
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The next result is a general extinction result.

THEOREM 5.4. Suppose that the process is H -nonpersistent. Then

(i) For all 0 < α < −�+(H), there exists a neighborhood U of X0 and η > 0
such that

Px

(
lim inf
t→∞

V (Z̃t )

t
≥ α

)
≥ η

for all x ∈ U ;
(ii) If furthermore X0 is accessible from X ,

Px

(
lim inf
t→∞

V (Z̃t )

t
≥ −�+(H)

)
= 1

for all x ∈X .

PROOF. Since the proof is very similar to the one given in [14], Theorem 3.1,
we only give a sketch of it. Let 0 < α < −�+(H). The proofs of Propositions
8.2 and 8.3 in [15] (see also [14], Lemma 3.5) adapt verbatim in the nonpersistent
case to prove that there exist T > 0, θ > 0, ε > 0 and 0 < ρ < 1 such that, for all
z ∈X ε

0 \X0:

(i) PT V (z) − V (z) ≥ αT ,
(ii) PT e−θV (z) ≤ ρe−θV (z).

Here and throughout this proof, X ε
0 = {z ∈ X+ : V (z) > − log(ε)} ∪ X0. We set

τε = inf{k ≥ 0 : Z̃kT /∈ X ε
0 }. We claim that:

1. There exists η > 0 such that for all z ∈ X ε/2
0 , Pz(τε = ∞) ≥ η;

2. On the event {τε = ∞}, and for all z ∈ X ε/2
0 , lim inft→∞ V (Z̃t )

t
≥ α.

In particular, this implies point (i) of the Theorem with U = X ε/2
0 . Point (ii) easily

follows by Markov property. We prove the first claim. We set for k ≥ 0, Wk =
e−θV (Z̃kT ). Due to point (ii) above, (Wk∧τε )k≥0 is a supermartingale. In particular,

for all z ∈ X ε/2
0 \X0,

Ez(Wk∧τε1τε<∞) ≤ e−V (z) ≤
(

ε

2

)θ

.

By dominated convergence, this gives

εθ
Pz(τε < ∞) ≤

(
ε

2

)θ

,
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which proves the first point with η = 1−2−θ . We now prove the second claim. We
set Mn =∑n

k=1 PT V (Z̃(k−1)T )−V (Z̃kT ). The sequence (Mn)n≥1 is a martingale,

and on the event {τε = ∞} and for all z ∈ X ε/2
0 \X0,

Mn

n
≥ α − V (Z̃nT )

n
.

Hence the strong law of large numbers for martingales implies that, on the event
{τε = ∞} and for all z ∈X ε/2

0 \X0,

(23) lim inf
n→∞

V (Z̃nT )

T
≥ α.

Now, Lemma 7.4 in [15] implies that for all z ∈ X+, the process

MV
t = V (Z̃t ) − V (z) −

∫ t

0
H(Z̃s) ds

is a martingale such that, almost surely, limt→∞ MV
t

t
= 0. Since H is bounded, this

implies that for all t ∈ [0, T ],

lim
n→∞

V (Z̃nT +t ) − V (Z̃t )

n
= 0.

This, together with (23) proves the second claim. �

5.2. Proofs of Theorems 3.1–3.8. In order to apply the results of the previous
section, we rewrite the dynamics of Z = (X, I) in polar coordinates. Let � : M∗ ×
E →R

∗+ × Sd−1 × E be defined by �(x, i) = (‖x‖, x
‖x‖ , i) and

X+ = �
(
M∗ × E

)
.

Whenever X0 ∈ M∗, the process Z̃t = �(Zt) = (ρt ,�t , It ) ∈X+ satisfies the sys-
tem

(24)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dρt

dt
= 〈�t, F̃

It (ρt ,�t)
〉
ρt ,

d�t

dt
= F̃ It (ρt ,�t) − 〈�t, F̃

It (ρt ,�t)
〉
�t,

P(It+s = j |Ft ) = aij (ρt�t )s + o(s) for i �= j on {It = i},
where

F̃ i(ρ, θ) = F i(ρθ)

ρ

for all ρ > 0 and θ ∈ Sd−1. By C2 continuity of F i , the map F̃ i extends to a C1

map F̃ i :R+ × Sd−1 	→R
d by setting

F̃ i(0, θ) = Aiθ.
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Thus, using this extension, (24) extends to the state space

X := X+ = X+ ∪X0

where X0 = {0} × (Sd−1 ∩ CM) × E.
This induces a PDMP (still denoted Z̃) on X , whose infinitesimal generator L̃

acts on functions f :X →R smooths in (ρ, θ) according to

(25)

L̃f (ρ, θ, i) = ∂f i

∂ρ
(ρ, θ)

〈
θ, F̃ i(ρ, θ)

〉
ρ + 〈∇θf

i(ρ, θ), G̃i(ρ, θ)
〉

+ ∑
j∈E

aij (ρθ)
(
f j (ρ, θ) − f i(ρ, θ)

)
,

where G̃i(ρ, θ) = F̃ i(ρ, θ)−〈θ, F̃ i(ρ, θ)〉θ . By [13], Proposition 2.1, Z̃ is Feller.
Moreover by equation (24), Hypothesis 5.1 is verified. The following lemma gives
V and H that fulfil Hypothesis 5.2.

LEMMA 5.5. For all (ρ, θ, i) ∈ X , set H(ρ, θ, i) = −〈F̃ i(ρ, θ), θ〉, and for
ρ �= 0, V (ρ, θ, i) = − log(ρ). Then V and H satisfy Hypothesis 5.2.

PROOF. The definition of L̃ and V imply that L̃V (ρ, θ, i) = H(ρ, θ, i) for
all (ρ, θ, i) ∈ X+. For all K ⊂ X+ compact, there exists ε > 0 such that ρ ≥ ε

on K . Let logε : R 	→ R be a smooth function coinciding with log on [ε,∞[. Set
VK(ρ, θ, i) = − logε(ρ). Then (a) is satisfied, and because VK doesn’t depend on
i �(VK) = 0 so that (b) is also satisfied. (c) and (d) are clearly satisfied. �

Now we link the H -exponents of Z̃ with the extremal average growth rates of Z.

LEMMA 5.6. With the notation of the previous sections,

�+(H) = �+ and �−(H) = �−.

In particular, Z̃ is H -persistent if and only if �− > 0 and H -nonpersistent if and
only if �+ < 0.

PROOF. On X0, Z̃t = (0,�t , Jt ) where (�t , Jt ) is the process given in Sec-
tion 2. Now, 〈Aiθ, θ〉 = −H(0, θ, i), and the result easily follows from the defini-
tions of �+/−,�+/−(H) �

Thanks to these lemmas and theorems of the previous sections, we can now
prove our main results.

PROOF OF THEOREM 3.1. Here, we assume �+ < 0, thus by Lemma 5.6 Z̃ is
H - nonpersistent. Theorem 5.4(i) then gives exactly the first part of Theorem 3.1
because V (Z̃t ) = − log(ρt ) = − log(‖Xt‖) for all x �= 0.
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Assume furthermore that 0 is F - accessible from M . By [13], Proposition 3.14,
this implies that {0} × E is accessible from M × E for the process Z and thus
that X0 is accessible from X for the process Z̃. Then Theorem 5.4(ii) proves the
second assertion of Theorem 3.1. �

To show the other theorems, we use the following lemma for which the proof is
omitted. Here, ϕ denotes �−1.

LEMMA 5.7. The map

P Z̃
inv(X+) −→ PZ

inv
(
M∗ × E

)
,

� 	−→ � ◦ ϕ−1

is a bijection. Moreover, for all (x, i) ∈ M∗ × E, and all t ≥ 0

�
x,i
t = �̃

�(x,i)
t ◦ ϕ−1.

Thus, by bi-continuity of � , �
x,i
t converges almost surely to some � if and only if

�̃
�(x,i)
t converges to � ◦ �−1.

PROOF OF THEOREM 3.2. Here, we assume �− > 0, thus by Lemma 5.6 Z̃

is H - persistent. Then Theorem 5.3(i) and Lemma 5.7 imply (i) of Theorem 3.2.
Moreover, by Theorem 5.3(ii), we have for some positive θ,K,T

P̃T

(
eθV )≤ ρeθV + K.

Let μ̃ ∈ P Z̃
inv(X+) and set W̃ = eθV . Then integrating the previous inequality

against μ̃ gives μ̃W̃ ≤ ρμ̃W̃ + K , thus

(26) μ̃W̃ ≤ K

1 − ρ
.

Now let μ ∈ PZ
inv(M

∗ × E) and set W(x, i) = ‖x‖−θ . Then μW = (μ ◦ �−1 ◦
�)W = (μ ◦ �−1)(W ◦ �−1). By Lemma 5.7, μ ◦ �−1 ∈ P Z̃

inv(X+), and because
W ◦ �−1 = W̃ , (26) proves (ii) of Theorem 3.2. Point (iii) is immediate from (iii)
of Theorem 5.3. �

PROOF OF THEOREM 3.3. By Theorem 3.2, PZ
inv(M

∗ × E) is nonempty. So
the weak bracket condition implies by [13], Theorem 4.5, uniqueness of � and
the absolute continuity. Moreover, for all (x, i) ∈ M∗ × E, (�

x,i
t )t≥0 is tight and

admits a unique limit point �, so that �
x,i
t converges almost surely to �. �

PROOF OF THEOREM 3.4. Assume that the weak bracket condition holds at a
point p that is F -accessible from M∗ and that condition (i) or (ii) of Theorem 3.4
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holds. Then [13], Theorem 4.2, in case (i) (resp., [16], Theorem 2.6, in case (ii))
implies that for all i, �(p, i) [resp., �(e�, i)] is a Doeblin point, which is ac-
cessible for the process Z̃ from X+. Thus by point (iv) of Theorem 5.3, for all
z = (ρ, θ, i) ∈ X+, ∥∥δzP̃t − � ◦ �−1∥∥

TV ≤ c
(
1 + W̃ (z)

)
e−κt .

Now, for all A ∈ B(M × E) and all (x, i) ∈ M∗ × E, δx,iPt (A) − �(A) =
δ�(x,i)P̃t (�(A)) − � ◦ �−1(�(A)), so that

‖δx,iPt − �‖TV = ∥∥δ�(x,i)P̃t − � ◦ �−1∥∥
TV

≤ c
(
1 + W̃

(
�(x, i)

))
e−κt

= c
(
1 + W(x, i)

)
e−κt .

Then Theorem 3.4 is proved. �

PROOF OF THEOREM 3.8. It suffices to show that Theorems 5.3 and 5.4 re-
main valid under Assumptions 3.6 and 3.7. For Theorem 5.3, we show that Hy-
pothesis 3 in [15] holds. That is, we have to check that there exists a continuous
function W : M × E → R+ with lim‖x‖→∞ W(x, i) = ∞, a continuous function
LW : M × E →R+, α > 0 and C ≥ 0 such that:

(i) For every compact set K ⊂ M , there exists WK ∈ D2 such that

(a) W |K = WK |K and LWK |K = LW |K ,
(b) For all x ∈ M , sup{Pt(�WK), t ≥ 0,K compact} < ∞

(ii)

LW ≤ −αW + C.

The only difference with Hypothesis 3.7 is that here WK has to be in D2. so we
are done if we prove that C1

c ⊂ D2, which is equivalent to C1
c ⊂ D. Here, we use

the weaker notion of domain given in [15]: a function f is in D if:

1. Lf (x, i) = limt→0
Ptf (x,i)−f (x,i)

t
exists for all (x, i) ∈ M × E;

2. Lf is continuous bounded;
3. sup0<t≤1

1
t
‖Ptf − f ‖ < ∞.

Let f ∈ C1
c . Since the jumps rates are bounded, the proof of [13], Proposition 2.1,

adapts verbatim to the noncompact case provided the derivative of f vanish outside
a compact set—which is the case by definition of C1

c . For Theorem 5.4, we note
that point (i) and (ii) in its proof are still valid since in our case, the set X0 is
compact (see Propositions 8.2 and 8.3 in [15]). Thus, point (i) of Theorem 5.4 can
be shown by the same argument even if X is not compact. Now, the existence of
a Lyapunov function implies that there exists a compact set K ⊂ M containing 0,
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such that, for all (x, i) ∈ M × E, P(x,i)(TK < ∞) = 1, where TK is the hitting
time of K . Moreover, due to the accessibility of 0, for all neighborhood U of 0,
there exists δ > 0 such that, for all (x, i) ∈ K × E, P(x,i)(TU < ∞) ≥ δ. Hence,
by Markov property, P(x,i)(TU < ∞) ≥ δ for all (x, i) ∈ M × E and point (ii) of
Theorem 5.4 follows. �

6. Proof of Theorem 4.12. Before proving our convergence theorem, we first
recall the definition of the Birkhoff part metric and some properties of monotone
and sub-homogeneous random dynamical systems given in the book of Chueshov
[19]. Let D be a nonempty subset of {1, . . . , d} and let Rd++,D be the subset of
x ∈ R

d+ such that xi > 0 if i ∈ D and xi = 0 otherwise. Then R
d++,D is called a

part. The Birkhoff part metric is defined, for all x, y ∈R
d+ by

p(x, y) = max
i∈D

∣∣log(xi) − log(yi)
∣∣

if x and y are both in the same part Rd++,D for some D, and p(x, y) = +∞ other-
wise. By monotony and strong sub-homogeneity of � , [19], Lemma 4.2.1, ensures
that � is nonexpansive under the part metric on every part and strictly nonexpan-
sive on R

d++. In other words, for all t ≥ 0, for all ω ∈ 
, for all D ⊂ {1, . . . , d},
for all x, y ∈ R

d++,D ,

p
(
�(t,ω, x),�(t,ω, y)

)≤ p(x, y),

and the inequality is strict if D = {1, . . . , d}, x �= y and t > 0. We would like
to have a contraction, meaning that there exist α ∈ (0,1) such that p(�(t,ω, x),

�(t,ω, y)) ≤ αp(x, y). The following crucial lemma states that this is true if we
restrain ourselves to compact subset of Rd++.

LEMMA 6.1. Let ϕ :Rd+ →R
d+ be a C2 monotone strongly sub-homogeneous

map and K be a compact subset contained in R
d++. Then ϕ is a contraction for p

on K , that is,

τK(ϕ) := sup
x,y∈K,x �=y

p(ϕ(x), ϕ(y))

p(x, y)
< 1.

PROOF. First, note that for all x, y ∈ K , with x �= y, one has p(ϕ(x),ϕ(y))
p(x,y)

< 1.
In particular, by continuity of p and ϕ, for all ε > 0 there exists α < 1 such that

(27) sup
x,y∈�ε(K)

p(ϕ(x), ϕ(y))

p(x, y)
≤ α,

where �ε(K) = {(x, y) ∈ K2 : p(x, y) ≥ ε} is compact. It remains to prove that
such a bound holds when x and y are close, uniformly in x ∈ K . To do so, we use
the following fact: a monotone map ϕ is strongly sublinear if and only if, for all
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x � 0, Dϕ(x)x � ϕ(x) (see, e.g., [19], Proposition 4.1.1, or [17], Proposition 6).
Componentwise, this means that for all i,

(28)
〈∇ϕi(x), x〉

ϕi(x)
< 1.

By Taylor expansion, for all i and all x, y ∈ K ,

logϕi(y) − logϕi(x) = 〈∇ϕi(x), y − x〉
ϕi(x)

+ Ri(x, y)‖x − y‖2,

where Ri is continuous, thus uniformly bounded on K2 by some constant C.
Moreover, one can easily check that for all 1

2M
≤ u ≤ 2M , one has

|u − 1| ≤ e| logu| − 1 ≤ | logu|(1 + M| logu|).
Now there exists M such that for all x, y ∈ K and k, 1

2M
≤ yk/xk ≤ 2M . Thus, for

all k,

(29) |yk − xk| ≤ xk

(
1 + Mp(x, y)

)
p(x, y).

For all x, y ∈ R
d++ and x �= y, there exists i such that

p(ϕ(x),ϕ(y))

p(x, y)
= |〈∇ϕi(x),y−x〉

ϕi(x)
+ Ri(x, y)‖x − y‖2|
p(x, y)

≤ |〈∇ϕi(x), y − x〉|
ϕi(x)p(x, y)

+ ∣∣Ri(x, y)
∣∣‖x − y‖2

p(x, y)

Now by (29) and nonnegativity of ∇ϕi(x) (recall ϕ is monotone), we have for all
x, y ∈ K , for all x �= y,

p(ϕ(x),ϕ(y))

p(x, y)
≤ 〈∇ϕi(x), x(1 + Mp(x, y))〉

ϕi(x)
+ C

‖x − y‖2

p(x, y)
.

Inequality (28), continuity of ϕ and compactness of K imply that there exists a
constant τ < 1 such that, for all x ∈ K and all i,

〈∇ϕi(x), x〉
ϕi(x)

≤ τ,

and thus

p(ϕ(x),ϕ(y))

p(x, y)
≤ τ

(
1 + Mp(x, y)

)+ C
‖x − y‖2

p(x, y)
.

By compactness of K , p(x, y) and ‖x−y‖2

p(x,y)
converges to 0 uniformly in x ∈ K when

y converges to x. Thus, we can find ε > 0 such that τ ′ = supx∈K,y∈BK(x,ε)\{x} τ(1+
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Mp(x, y)) + C
‖x−y‖2

p(x,y)
< 1, where BK(x, ε) is the intersection of the ball of center

x and radius ε with K . In other words,

(30) sup
x,y∈�c

ε(K)

p(ϕ(x), ϕ(y))

p(x, y)
≤ τ ′.

Combining (27) and (30) gives the result with τK(ϕ) = max(α, τ ′) < 1. �

Recall that Y = [0,1]d \ {0}×E and set d : Y2 → [0,1] the distance defined by

d
(
(x, i), (y, j)

)= 1i �=j + 1i=j

(
p(x, y)

C
∧ 1
)
,

where C is a constant to be chosen later and p(x, y) is the Birkhoff part metric.
Define also V : Y → R+ with V (x, i) = ‖x‖−θ where θ is given in Theorem 3.2
and the function d̃ : Y2 →R+ by

d̃(z, z̃) =
√

d(z, z̃)
(
1 + V (z) + V (z̃)

)
.

As already mentioned, Theorem 4.12 is a consequence of the weak form of Har-
ris’ theorem due to Hairer, Mattingly and Scheutzow [28], Theorem 4.8 and re-
mark 4.10. More precisely, it states that point (i) of Theorem 4.12 holds, provided
the three following assumptions are verified (here we let Pt denoted P Z

t ):

A1 V is a Lyapunov function for Pt , that is, there exists CV ,γ,KV , t0 > 0 such
that for all t ≥ t0, for all z ∈X ,

PtV (z) ≤ CV e−γ tV (x) + KV ;
A2 There exists t∗ > t∗ > 0 such that for all t ∈ [t∗, t∗], the level set AV = {z ∈

X : V (x) ≤ 4KV } are d-small for Pt , meaning that there exists ε > 0 such that for
all z, z̃ ∈ AV ,

Wd(δzPt , δz̃Pt ) ≤ 1 − ε;
A3 For all t ∈ [t∗, t∗], Pt is contracting on AV , meaning that there exists α ∈

(0,1) such that for all z, z̃ ∈ AV with d(z, z̃) < 1,

Wd(δzPt , δz̃Pt ) ≤ αd(z, z̃).

Moreover, Pt is nonexpansive on X , that is for all z, z̃ ∈X ,

Wd(δzPt , δz̃Pt ) ≤ d(z, z̃).

REMARK 6.2. In [28], Theorem 4.8, Hypotheses A1 and A3 are a little bit
stronger: A1 should holds for every t ≥ 0, and the contraction in A3 should holds
on the whole space X for d(z, z̃) < 1. However, a quick look at the proof given
in [28] shows that it is enough to have the Lyapunov function for t large, and that
when z, z̃ are such that 1 + V (z) + V (z̃) ≥ 4KV , the proof “Far from the origin”
is true independently from the fact that d(z, z̃) < 1 or d(z, z̃) ≥ 1.
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To prove Theorem 4.12 it is thus sufficient to show that A1 to A3 are satisfied.
For A1, it is a consequence of a stochastic persistence lemma. For A2, we show
that a good choice of the constant C appearing in the definition of d is sufficient
to have the small set. Finally, A3 is a consequence of the contracting properties of
�(t,ω).

PROOF OF THEOREM 4.12. A1. We have the following lemma.

LEMMA 6.3. For 0 < α < λ1, there exists T > 0, ε > 0 and C > 0 such that,
for all t ∈ [T ,3T/2], for all z ∈ Yε

0 ,

PtV (z) ≤ eθt ( t
T

−1)αV (z),

where θ = α
CT

, Yε
0 = {(x, i) ∈ Y : ‖x‖ < ε} and V (x, i) = ‖x‖−θ .

PROOF. Follows the lines of the proof given in [14], Lemma 3.5. �

In particular, putting γ = θα
4 , then for all t ∈ [T ,3T/2], for all z ∈ Yε

0 ,

PtV (z) ≤ eγ tV (z).

Now by Feller continuity of Pt and compactness of [T ,3T/2] ×Y \Yε
0

C̃ = sup
(t,z)∈[T ,3T/2]×Y\Yε

PtV (z) − V (z) < ∞,

and, for all t ∈ [T ,3T/2] and all z ∈ Y ,

PtV (z) ≤ eγ tV (z) + C̃.

If t ≥ 2T , then there exists s ∈ [T ,3T/2] and n ≥ 1 such that t = ns. Thus

PtV (z) = PnsV (z) ≤ eγnsV (z) +
n−1∑
k=0

eγ ksC̃,

proving A1 with t0 = 2T and KV = 1
1−e−γ T C̃.

A2. Set MV = {x ∈ [0,1]d \ {0} : ‖x‖−θ ≤ 4KV }. We first prove that for all t∗ >

t∗ > 0, there exists a compact set contained in R
d++ such that for all t ∈ [t∗, t∗],

and all ω ∈ 
, �(t,ω,MV ) is included in this compact. For this, let SMV
denotes

the set of all the solutions of the differential inclusion{
η̇(t) ⊂ co(F̃)

(
η(t)

)
,

η(0) = x,

with x ∈ MV . Then because MV is compact, SMV
is a nonavoid compact subset

of C(R+,Rd) (see, e.g., Aubin and Cellina [3], Section 2.2, Theorem 1). This im-
plies that �[t∗,t∗](MV ) = {ηt : t ∈ [t∗, t∗], η ∈ SMV

} is a compact set of [0,1]d .
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Moreover, by strong monotony of ηt , �[t∗,t∗](MV ) is included in (0,1]d and
for all t ∈ [t∗, t∗], ω ∈ 
, �(t,ω,Mv) ⊂ �[t∗,t∗](MV ). Now by compactness of
�[t∗,t∗](MV ) and continuity of p, there exist K > 0 such that for all t ∈ [t∗, t∗],
(31) sup

x,y∈Mv;ω,ω′∈


p
(
�(t,ω, x),�

(
t,ω′, y

))≤ sup
a,b∈�[t∗,t∗](MV )

p(a, b) = K.

To prove A2, for any (z, z̃) = ((x, i), (y, j)) ∈ Y2, we consider the coupling
(Zt , Z̃t ) = ((Xt , It ), (Yt , Jt )) of δzPt and δz̃Pt construct as follows. If i = j , then
It = Jt for all t ≥ 0. If i �= j , then It and Jt evolves independently until the first
meeting time T and then are stick together for ever. In other words,

Pi,j (It �= Jt ) = Pi,j (T > t).

This is the coupling considered in [11]. As stated in [11], Lemma 2.1, we easily
control the above probability: there exists ρ > 0 such that for all i, j ∈ E and all
t ≥ 0,

Pi,j (It �= Jt ) = Pi,j (T > t) ≤ e−ρt .

Let (z, z̃) = ((x, i), (y, j)) ∈ A2
V and t ∈ [t∗, t∗]. Then

Wd(δzPt , δz̃Pt ) ≤ E(z,z̃)

(
d(Zt , Z̃t )

)
≤ Pi,j (It �= Jt ) +E(z,z̃)

(
p(Xt , Yt )

C

)

≤ e−ρt + K

C
,

where the last inequality comes from (31). Thus, choosing C = K
1−2e−ρt∗ , one has

Wd(δzPt , δz̃Pt ) ≤ 1 + e−ρt − 2e−ρt∗ ≤ 1 − e−ρt∗,

proving A2 with ε = e−ρt∗ .
A3. We first prove that Pt is nonexpansive on Y . Is suffices to show the result

for (z, z̃) such that d(z, z̃) < 1, the bound being trivial otherwise. In particular,
i = j where z = (x, i) and z̃ = (y, j), and d(z, z̃) = p(x,y)

C
< 1, which implies that

x and y are in the same part. We consider the same coupling (Zt , Z̃t ) as above.
Then because i = j , It = Jt , and thus Xt = �(t,ω, x) and Yt = �(t,ω, y), and so
by nonexpansivity of �(t,ω) on every part, one has p(�(t,ω, x),�(t,ω, y)) ≤
p(x, y), which gives the result for Pt .

Now we prove that Pt is a contraction on AV . Let t ∈ [t∗, t∗] and (z, z̃) ∈ A2
V

such that d(z, z̃) < 1. In addition with the consequences cited above, this also
implies that x, y ∈ MV . Choose 0 < t0 < t∗, then one has

p
(
�(t,ω, x),�(t,ω, y)

)
= p

(
�(t − t0 + t0,ω, x),�(t − t0 + t0,ω, y)

)
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≤ p
(
�(t − t0,�t0ω)�(t0,ω, x),�(t − t0,�t0ω)�(t0,ω, y)

)
≤ τ� t0 (MV )

(
�(t − t0,�t0ω)

)
p
(
�(t0,ω, x),�(t0,ω, y)

)
≤ τ� t0 (MV )

(
�(t − t0,�t0ω)

)
p(x, y),

where τ� t0 (MV )(�(t − t0,�t0ω)) < 1 is the contraction constant given by

Lemma 6.1 on the compact � t0(MV ) ⊂ R
d++. Because τ� t0 (MV )(�(t − t0,

�t0ω)) < 1 for every ω, then

α = max
i

Ei

[
τ� t0 (MV )

(
�(t − t0,�t0ω)

)]
< 1,

and

Wd(δzPt , δz̃Pt ) ≤ E(x,i),(y,j)

(
p(�(t,ω, x),�(t,ω, y))

C

)

≤ α
p(x, y)

C
= αd(z, z̃),

proving A3 and the (i) of the theorem.
Because λ1 > 0, Theorem 3.2 insures existence of an invariant measure for Pt

on Y . The uniqueness of the invariant measure and thus point (ii) follows immedi-
ately from point (i). �

APPENDIX

A.1. Proof of Proposition 2.13. Recall (see Section 4) that Rd++ denotes the
interior of R

d+, (i.e., the cone of positive vectors). Set Sd−1+ = Sd−1 ∩ R
d+ and

Sd−1++ = Sd−1 ∩ R
d++. The principal tool is the projective or Hilbert metric dH on

R
d++ (see Seneta [45]) defined by

dH (x, y) = log
max1≤i≤d xi/yi

min1≤i≤d xi/yi

.

Note that

(32) dH

(
x

‖x‖ ,
y

‖y‖
)

= dH (x, y)

so that dH is not a distance on R
d++; however, its restriction to Sd−1++ is. Further-

more, for all x, y ∈ Sd−1++ ,

(33) ‖x − y‖ ≤ edH (x,y) − 1.

Let M+ denote the set of d × d Metzler matrices having positive diagonal entries,
and let M++ ⊂ M+ denote the set of matrices having positive entries. By a theo-
rem of Garret Birkhoff, there exists a continuous map τ : M++ 	→ ]0,1[ such that
for all T ∈ M++, and all x, y ∈ R

d++,

(34) dH (T x,T y) ≤ τ [T ]dH (x, y)
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The number τ [T ] is usually called the Birkhoff’s contraction coefficient of T , and
is given by an explicit formulae (see, e.g., [45], Section 3.4) which is unneeded
here.

We extend τ to a measurable map τ : M+ 	→]0,1] by setting τ [T ] = 1 for all
T ∈ M+ \M++. By density of M++ in M+ and continuity of dH on R

d++, it is
easy to see that (34) extends to M+.

For each ω ∈ 
, the map t 	→ ϕ(t,ω) is solution to the matrix valued differential
equation

(35) ∀t ≥ 0,
dM

dt
= Aωt M, M0 = Id .

Thus,

ϕ(t,ω) ∈ M+
for all t ≥ 0. Indeed, for all i ∈ E and r > 0 large enough Ai + rId ∈ M+, so that
etAi = e−rt et (Ai+rId ) ∈ M+.

We claim that there exists a Borel set 
̃ ⊂ 
 with P
J
i (
̃) = 1 for all i ∈ E, and

such that for all ω ∈ 
̃:

(i) ∃n ∈ Nϕ(n,ω) ∈M++;
(ii) ∀n ∈ N lim supt→∞

log τ [ϕ(t,�n(ω))]
t

< 0.

Before proving these assertions, let us show how they imply the result to be proved.
For all ω ∈ 
̃ and n given by (i),

ϕ(t + n,ω) = ϕ
(
t,�n(ω)

)
ϕ(n,ω) ∈ M++

as the product of an element of M+ with an element of M++. Thus, by (ii), for
all ω ∈ 
̃ and x, y ∈ R

d+ \ {0},

(36) lim sup
t→∞

1

t
logdH

(
ϕ(t + n,ω)x,ϕ(t + n,ω)y

)
< 0.

For x ∈ Sd−1+ , set

�(t,ω)x = ϕ(t,ω)x

‖ϕ(t,ω)x‖ .

Let f : Sd−1+ × E → R be a continuous map. It follows from (36), (32), (33) and
the continuity of f that∣∣f (�(t,ω)x,ωt

)− f
(
�(t,ω)y,ωt

)∣∣→ 0

for all x, y ∈ Sd−1+ and ω ∈ 
̃. Moreover,

P
(�,J )
t f (x, i) = E

J
i

(
f
(
�(t,ω)x,ωt

))
,
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and thus

lim
t→∞P

(�,J )
t f (x, i) − P

(�,J )
t f (y, i)

= lim
t→∞E

J
i

(
f
(
�(t,ω)x,ωt

)− f
(
�(t,ω)y,ωt

))= 0

by dominated convergence. Now take μ, ν ∈ P(�,J )
inv . Then one has

(37) lim
t→∞

∑
i

pi

∫
(Sd−1+ )2

(
P

(�,J )
t f (x, i) − P

(�,J )
t f (y, i)

)
μ(dx|i)ν(dy|i) = 0,

where μ(·|i) = μi(·)/pi . But by invariance of μ and ν, the left-hand side of (37)
equals μf − νf for all t , giving μf = νf for all continuous f . This proves unique
ergodicity of (�,J ).

We now pass to the proofs of assertions (i) and (ii) claimed above.
Irreducibility of A implies that eA ∈ M++. Let U ⊂ M++ be a compact neigh-

borhood of eA. Since A.M ∈ co(Ai)(M), it follows from the support theorem
([13], Theorem 3.4), applied to the PDMP (35), that for all i ∈ E,

P
J
i

{
ω ∈ 
 : ϕ(1,ω) ∈ U

}
> 0.

Thus, by the Markov property or the conditional version of the Borel–Cantelli
lemma, for PJ

i almost all ω, ϕ(1,�n(ω)) ∈ U for infinitely many n, and conse-
quently, for n large enough,

ϕ(n,ω) = ϕ(1,�n−1ω) . . . ϕ(1,ω) ∈ M++.

This proves assertion (i). By the co-cycle property and Birkhoff ergodic theorem,
for PJ

p (hence P
J
i ) almost all ω,

lim sup
t→∞

1

t
log
(
τ
[
ϕ(t,ω)

])

≤ lim sup
n→∞

1

n
log
(
τ
[
ϕ(n,ω)

])≤ lim sup
n→∞

1

n

n∑
k=1

log
(
τ
[
ϕ
(
1,�k−1(ω)

)])

= EJ
p

(
log
(
τ
[
ϕ(1,ω)

]))≤ sup
M∈U

log
(
τ [M])PJ

p

(
ω ∈ 
 : ϕ(1,ω) ∈ U

)
< 0.

Replacing ω par �n(ω) proves assertion (ii).

A.2. Proof of Lemma 2.14. Before proving Lemma 2.14, we prove the fol-
lowing lemma, which is a consequence of results from Freidlin and Wentzell [25].

LEMMA A.4. Assume the switching rates are constant and depend on a small
parameter ε: aε

i,j = ai,j /ε where (ai,j ) is an irreducible matrix with invariant
probability p. Denote by (Xε, J ε) the PDMP associated with aε

i,j given by (2). Let
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� denote the flow induced by the average vector field Fp :=∑i piF
i Then for all

δ > 0 and all T > 0,

(38) lim
ε→0

P(x,i)

(
max

0≤t≤T

∣∣Xε
t − �t(x)

∣∣> δ
)

= 0,

uniformly in (x, i) ∈ M × E.

PROOF. According to [25], Chapter 2, Theorem 1.3, it suffices to show that
for all δ > 0 and all T > 0,

(39) lim
ε→0

P
J
i

(∣∣∣∣
∫ t0+T

t0

(
FJε

t (x) − Fp(x)
)
dt

∣∣∣∣> δ

)
= 0,

uniformly in t0 > 0 and (x, i) ∈ M × E. Note that∣∣∣∣
∫ t0+T

t0

(
FJε

t (x) − Fp(x)
)
dt

∣∣∣∣=
∣∣∣∣
∫ t0+T

t0

(∑
j

F j (x)1J ε
t =j −∑

j

pjF
j (x)

)
dt

∣∣∣∣
≤∑

j

∥∥Fj
∥∥∞
∣∣∣∣
∫ t0+T

t0

(1J ε
t =j − pj ) dt

∣∣∣∣,
so (39) is proven if we show that

∫ t0+T
t0

1J ε
t =j dt converges in probability to

pjT uniformly in t0 > 0. By Fubini’s theorem and invariance of p,
E

J
p(
∫ t0+T
t0

1J ε
t =j dt) = pjT , so Bienaym–Tschebischev inequality gives

P
J
i

(∣∣∣∣
∫ t0+T

t0

(1J ε
t =j − pj ) dt

∣∣∣∣> δ

)
≤ V J

p (
∫ t0+T
t0

(1J ε
t =j dt)

δ
,

where V J
p is the variance associated to E

J
p . Hence we can conclude if

E
J
p[(∫ t0+T

t0
1J ε

t =j dt)2] converges to (pjT )2 uniformly in t0 > 0.
Denote by Q the intensity matrix of J 1, then for all ε > 0, the intensity matrix

of J ε is Q/ε and for all i, j ∈ E and t ≥ 0,

Pi

(
J ε

t = j
)= (e t

ε
Q)

i,j .

By ergodicity of J ε
t , the above quantity goes to pj when t → ∞ so also for every

fixed t when ε goes to 0. Now we have

EJ
p

[(∫ t0+T

t0

1J ε
t =j dt

)2]
= 2

∫ t0+T

t0

∫ t

t0

Pp

(
J ε

u = j ;J ε
t = j

)
dudt

= 2
∫ t0+T

t0

∫ t

t0

Pj

(
J ε

t−u = j
)
pj dudt

= 2
∫ t0+T

t0

∫ t

t0

(
e

t−u
ε

Q)
j,jpj dudt,
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where the second inequality resulted from the Markov property. Now because for
all t0, t − u ∈ [0, T ], (e

t−u
ε

Q)j,j converges almost everywhere to pj and thus the
lemma is proven by dominated convergence. �

With the notation of the preceding lemma, let

με ∈ P(Xε,J ε)
inv , νε =∑

i

μi,ε.

The proof of the next lemma is similar to the proof of [7], Corollary 3.2.

LEMMA A.5. Let ν a limit point of (νε) when ε → 0. Then ν is an invariant
measure of Fp .

PROOF. For notational convenience, we assume that νε converges to ν.
Let g : M →R be a continuous map, then for all t > 0 and all ε > 0,∣∣∣∣
∫

g(�t) dν −
∫

g dν

∣∣∣∣
≤
∣∣∣∣
∫

g(�t) dν −
∫

g dνε

∣∣∣∣+
∣∣∣∣
∫

g dνε −
∫

g dν

∣∣∣∣
≤
∣∣∣∣
∫

g(�t) dν −
∫

g(�t) dνε

∣∣∣∣+
∣∣∣∣
∫

g(�t) dνε −
∫

E
(
g
(
�ε

t

))
dνε

∣∣∣∣
+
∣∣∣∣
∫

g dνε −
∫

g dν

∣∣∣∣,
where we have use invariance of ν and νε . The first and the last term of the right-
hand side converge to 0 by definition of ν, and the second one also converges to 0
by Lemma A.4. �

Now let μ be a limit point of (με). For notational convenience, we assume that
με converges to μ. We prove that μ = ν ⊗ p, which implies Lemma 2.14. For
every continuous f : M × E →R, every t ≥ 0 and ε > 0, one has

μεf − μf

=
∫
M×E

E(x,i)

(
fJε

t

(
Xε

t

))
dμε(x, i) −∑

j

pj

∫
M

fj

(
�t(x)

)
dν(x)

=
∫
M×E

E(x,i)

(
fJε

t

(
Xε

t

))
dμε(x, i) −

∫
M×E

E(x,i)

(
fJε

t
(�t )

)
dμε(x, i)

+
∫
M×E

E(x,i)

(
fJε

t
(�t )

)
dμε(x, i) −∑

j

pj

∫
M×E

fj

(
�t(x)

)
dμε(x, i)
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+∑
j

pj

∫
M×E

fj

(
�t(x)

)
dμε(x, i) −∑

j

pj

∫
M

fj

(
�t(x)

)
dν(x)

= A + B + C.

We have

sup
(x,i)∈M×E

E(x,i)|fJε
t

(
Xε

t

)− fJε
t
(�t )| ≤ max

j
sup

(x,i)∈M×E

E(x,i)

(
fj

(
Xε

t

)− fj (�t)
)
,

where the right-hand side converges to 0 when ε goes to 0 thanks to Lemma A.4,
so A converges to 0. Next,

|B| ≤∑
j

∫
M×E

∣∣Pi

(
J ε

t = j
)− pj

∣∣∣∣fj

(
�t(x)

)∣∣dμε(x, i),

because E(x,i)(fJ ε
t
(�t )) =∑

j Pi (J
ε
t = j)fj (�t(x)). Thus B converges to 0 be-

cause |Pi (J
ε
t = j)−pj | converges to 0 uniformly in i and j . Finally, by definition

of νε

C =
∫
M

∑
j

pjfj

(
�t(x)

)
dμ1,ε(x, i) −

∫
M

∑
j

pjfj

(
�t(x)

)
dν(x),

proving that C converges to 0 by definition of ν, and thus the lemma.
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