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NONCONVEX HOMOGENIZATION FOR ONE-DIMENSIONAL
CONTROLLED RANDOM WALKS IN RANDOM POTENTIAL

BY ATILLA YILMAZ∗,†,1 AND OFER ZEITOUNI†,‡,2

Koç University∗, New York University† and Weizmann Institute‡

We consider a finite horizon stochastic optimal control problem for
nearest-neighbor random walk {Xi} on the set of integers. The cost function
is the expectation of the exponential of the path sum of a random station-
ary and ergodic bounded potential plus θXn. The random walk policies are
measurable with respect to the random potential, and are adapted, with their
drifts uniformly bounded in magnitude by a parameter δ ∈ [0,1]. Under natu-
ral conditions on the potential, we prove that the normalized logarithm of the
optimal cost function converges. The proof is constructive in the sense that
we identify asymptotically optimal policies given the value of the parameter
δ, as well as the law of the potential. It relies on correctors from large de-
viation theory as opposed to arguments based on subadditivity which do not
seem to work except when δ = 0.

The Bellman equation associated to this control problem is a second-order
Hamilton–Jacobi (HJ) partial difference equation with a separable random
Hamiltonian which is nonconvex in θ unless δ = 0. We prove that this equa-
tion homogenizes under linear initial data to a first-order HJ equation with a
deterministic effective Hamiltonian. When δ = 0, the effective Hamiltonian
is the tilted free energy of random walk in random potential and it is convex
in θ . In contrast, when δ = 1, the effective Hamiltonian is piecewise linear
and nonconvex in θ . Finally, when δ ∈ (0,1), the effective Hamiltonian is ex-
pressed completely in terms of the tilted free energy for the δ = 0 case and its
convexity/nonconvexity in θ is characterized by a simple inequality involv-
ing δ and the magnitude of the potential, thereby marking two qualitatively
distinct control regimes.
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1. Introduction.

1.1. Controlled random walks in random potential. Let (�,F,P) be a prob-
ability space that is equipped with an ergodic invertible measure-preserving trans-
formation T : � → �. Elements of � are denoted by ω and referred to as environ-
ments. For every n ∈ N= {1,2, . . .} and δ ∈ [0,1], define
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Pn(δ) = {
π = (π0, π1, . . . , πn−1) :

πi = πi(n,ω, y,±1) ∈ [0,1]2 is F-measurable,

πi(n,ω, y,−1) + πi(n,ω, y,1) = 1 and∣∣πi(n,ω, y,1) − πi(n,ω, y,−1)
∣∣ ≤ δ

for every i ∈ [0, n − 1],ω ∈ � and y ∈ Z
}
.

Each π ∈ Pn(δ) is a (Markov) random walk policy whose drift is uniformly
bounded in magnitude by δ. Given any environment ω ∈ � and starting point
x ∈ Z, π induces a probability measure P π,ω

x on the space of paths x0,n =
(x0, x1, . . . , xn) ∈ Z

n+1 with x0 = x and zi+1 = xi+1 − xi ∈ {−1,1}, defined by

P π,ω
x (X0 = x0,X1 = x1, . . . ,Xn = xn) =

n−1∏
i=0

πi(n,ω, xi, zi+1).

Expectation under P π,ω
x is denoted by Eπ,ω

x .
Let V : � → [0,1] be a nonconstant measurable function. V (Tyω) is referred to

as the potential at the point y in the environment ω. Here and throughout, T0 = I ,
Tk = T ◦ Tk−1 and T−k = (Tk)

−1 for k ∈ N. For every n ∈ N, x ∈ Z, ω ∈ �, δ ∈
[0,1], β > 0 and θ ∈ R, let

(1.1) u(n, x,ω | δ,β, θ) = inf
π∈Pn(δ)

logEπ,ω
x

[
eβ

∑n−1
i=0 V (TXi

ω)+θXn
]
.

Note that the left-hand side of (1.1) would not change if we took the infimum
on the right-hand side over the larger set of adapted (but not necessarily Markov)
random walk policies with drifts still uniformly bounded in magnitude by δ. (See
[7], Proposition 11.7.)

1.2. Overview of our results. We show in Section 2.1 that, under natural as-
sumptions, for P-a.e. ω the limit

(1.2) uo(t, x | δ,β, θ) = lim
ε→0

εu
([

ε−1t
]
,
[
ε−1x

]
,ω | δ,β, θ

)
exists for every t > 0 and x ∈ R (where [·] denotes the floor function), and it is of
the form

(1.3) uo(t, x | δ,β, θ) = tH δ,β(θ) + θx.

Hδ,β(θ) := uo(1,0 | δ,β, θ) is a deterministic quantity for which we provide a
formula. In fact, for δ > 0 we express Hδ,β(·) completely in terms of H 0,β(·). The
existence of the latter was already known (see Section 1.4) and can be shown via
subadditivity (see Appendix A). However, there is no subadditivity to be exploited
when δ > 0, so instead we develop a constructive approach. In particular, in Sec-
tion 2.2 we identify asymptotically optimal policies (as n → ∞) for the control
problem in (1.1).
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We make two observations. First, the Bellman equation associated to the control
problem in (1.1) is a second-order Hamilton–Jacobi (HJ) partial difference equa-
tion (see (2.8)). Second, the function uo(t, x) = uo(t, x | δ,β, θ) [given in (1.3)]
satisfies the following first-order HJ equation:

∂uo

∂t
(t, x) = Hδ,β

(
∂uo

∂x
(t, x)

)
.

Due to the limit in (1.2) under an appropriate scaling of time and space, the for-
mer equation (with linear initial data) is said to homogenize to the latter one; see
Section 2.3 for details and also Section 2.4 for related results from the homoge-
nization literature. Therefore, throughout the paper, Hδ,β(θ) will be referred to as
the effective Hamiltonian.

1.3. Assumptions on the potential. Since the potential inside the expectation
on the right-hand side of (1.1) is scaled by β , there is no loss of generality in
assuming that

(1.4) the essential infimum (resp. supremum) of V (ω) under P is 0 (resp., 1).

Our results will further require the existence of arbitrarily long finite intervals
where the potential is uniformly close to its essential infimum (resp., supremum).
In order to make this condition precise, we introduce two terms.

DEFINITION 1.1. For any ω ∈ � and h ∈ (0,1), an interval [k, �] ⊂ Z is said
to be an h-valley (resp., h-hill) if V (Tyω) ≤ h [resp., V (Tyω) ≥ h] for every y ∈
[k, �].

With this terminology, we will assume that

(1.5)
P

([0, �] is an h-valley
)
> 0 and

P
([0, �] is an h-hill

)
> 0 for every h ∈ (0,1) and � ∈ N.

Note that this assumption does not imply that the environment is mixing, as Ex-
ample 1.3 below shows.

EXAMPLE 1.2. Let � = [0,1]Z and F the Borel σ -algebra on �. Define T :
� → � by (T ω)y = ωy+1 for any ω = (ωy)y∈Z ∈ �. Assume that:

(i) P is a probability measure on (�,F) that is stationary and ergodic under
T , and

(ii) there exists a Borel probability measure μ on [0,1] such that the prod-
uct measure

∏
y∈Z μ is absolutely continuous with respect to P on F0,� =

σ {ω0, . . . ,ω�} for every � ∈ N.
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Consider the function V : � → [0,1] given by V (ω) = ω0. Then (1.4) is equivalent
to μ having full support, in which case (1.5) holds by the assumption of absolute
continuity.

EXAMPLE 1.3. With �, F , T and V as in Example 1.2, let {s} ∪ {αk : k ∈ Z}
be an i.i.d. collection of ({0,1}-valued) Bernoulli trials with success probability
1/2. Define ω = (ωy)y∈Z by setting

ωs+2k−1 = ωs+2k = αk

for every k ∈ Z. This induces a probability measure P on (�,F). It is clear that P is
stationary and ergodic under T . (The role of s is precisely to impose stationarity.)
Moreover, (1.4) and (1.5) trivially hold. However, ω is not even weakly mixing
under P, since an elementary computation shows that with A = {ω−1 = ω0} one
has that P(A ∩ T −2kA) = 5/8 for all k �= 0 while (P(A))2 = 9/16.

1.4. Special case: No control. If δ = 0, then Pn(δ) is a singleton whose unique
element satisfies πi(n,ω, y,±1) ≡ 1/2 and induces simple symmetric random
walk (SSRW) on Z. In this case, we simplify the notation and write Px (resp.,
Ex) instead of P π,ω

x (resp., Eπ,ω
x ).

THEOREM 1.4 (No control). Assume (1.4) and (1.5). If δ = 0, β > 0 and θ ∈
R, then for P-a.e. ω the limit in (1.2) exists for every t > 0 and x ∈ R. Moreover,
(1.3) holds and the effective Hamiltonian is given by

(1.6) H 0,β(θ) = �β(θ) := lim
n→∞

1

n
logE0

[
eβ

∑n−1
i=0 V (TXi

ω)+θXn
]
,

the so-called tilted free energy.

The existence of the tilted free energy was shown in several previous works in
much greater generality. Zerner [31] considered nearest-neighbor random walks
(RWs) in i.i.d. random potential on Z

d (with any d ≥ 1) and gave a subadditivity
argument that proves the existence of certain Lyapunov exponents which in turn
imply a large deviation principle (LDP) for the position of the walk. Then Flury
[13] used Zerner’s large deviation result to show the existence of the tilted free
energy in the same setting. These two papers built upon earlier work by Sznitman
[28] on Brownian motion in a Poissonian potential on R

d . By another subadditivity
argument, Varadhan [29] bypassed Lyapunov exponents and directly established a
similar LDP for a closely related model, namely nearest-neighbor RW in stationary
and ergodic (not necessarily i.i.d.) random environment on Z

d . It is easy to adapt
Varadhan’s argument to give a short proof of the existence of the tilted free energy
for RW in random potential on Z

d . We do this in a more general setup in Theo-
rem A.1 of Appendix A for the sake of completeness and with future use in mind.
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There are alternative proofs of Theorem A.1 which provide variational formulas
for the tilted free energy [22–24, 30]; see Remark A.2 for details.

In Section 4, we will take advantage of our one-dimensional setting to present
a self-contained proof of Theorem 1.4 (which is not based on subadditivity) and
give an implicit (nonvariational) formula for the tilted free energy �β(θ). We will
also show some properties of �β(θ) as a function of β and θ (see Proposition 4.8).
In particular, if δ = 0, then the effective Hamiltonian H 0,β(θ) = �β(θ) is convex
in θ for every β > 0.

2. Results.

2.1. The effective Hamiltonian. As we present below, for P-a.e. ω the limit in
(1.2) exists for every t > 0 and x ∈ R under the assumptions (1.4) and (1.5). Recall
from Section 1.4 that the special case of no control (i.e., δ = 0) is studied in detail
in Section 4. The other extreme case is δ = 1, that is, when we can fully control
the trajectory of the particle performing the walk. The analysis of the latter case
involves the same approach as the intermediate case δ ∈ (0,1) but it is technically
simpler, so we present it first.

THEOREM 2.1 (Full control). Assume (1.4) and (1.5). If δ = 1, β > 0 and θ ∈
R, then for P-a.e. ω the limit in (1.2) exists for every t > 0 and x ∈ R. Moreover,
(1.3) holds and the effective Hamiltonian is given by

(2.1) H 1,β(θ) =
{

0 if |θ | < βE
[
V (·)],

βE
[
V (·)] − |θ | if |θ | ≥ βE

[
V (·)].

When δ ∈ (0,1), we can only partially control the trajectory of the particle. In
order to give a tidy formula for Hδ,β(θ), we introduce the parameter

(2.2) c = 1

2
log

(
1 + δ

1 − δ

)
.

See (3.8) for more insight. The comparison of β and log cosh(c) (or equivalently
of

√
1 − e−2β and δ) turns out to play a critical role, giving rise to two qualitatively

distinct regimes to which we will refer below as weak control and strong control.

THEOREM 2.2 (Weak control). Assume (1.4) and (1.5). If δ ∈ (0,1), β ≥
log cosh(c) and θ ∈ R, then for P-a.e. ω the limit in (1.2) exists for every t > 0
and x ∈ R. Moreover, (1.3) holds and the effective Hamiltonian is given by

(2.3) Hδ,β(θ) =
{
β − log cosh(c) if |θ | < c,

�β

(|θ | − c
) − log cosh(c) if |θ | ≥ c.
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THEOREM 2.3 (Strong control). Assume (1.4) and (1.5). If δ ∈ (0,1), β <

log cosh(c) and θ ∈R, then for P-a.e. ω the limit in (1.2) exists for every t > 0 and
x ∈ R. Moreover, (1.3) holds, there exists a unique θ̄ (β, c) ∈ (0, c) such that

�β

(
θ̄ (β, c) − c

) = log cosh(c),

and the effective Hamiltonian is given by

(2.4) Hδ,β(θ) =
{

0 if |θ | < ∣∣θ̄ (β, c)
∣∣,

�β

(|θ | − c
) − log cosh(c) if |θ | ≥ ∣∣θ̄ (β, c)

∣∣.
Substituting c = 0 in (2.3) reproduces the formula in (1.6). Similarly, taking

c → ∞ in (2.4) reproduces the formula in (2.1) by Proposition 4.8(d).

2.2. Asymptotically optimal policies. The proofs of Theorems 2.1, 2.2 and 2.3
are constructive in the sense that we identify RW policies that are asymptotically
optimal in each case. We introduce these policies below.

For every h ∈ (0,1), � ∈ N and P-a.e. ω, we choose an h-valley (recall from
Definition 1.1) of the form [x∗ − �, x∗ + � − 1] with some x∗ ∈ Z that is suitably
close to the starting point of the RW (see Remark 5.1 for details). We define a RW
policy π(x∗,h,�) by setting

(2.5) π
(x∗,h,�)
i (n,ω, y,1) =

⎧⎪⎪⎨
⎪⎪⎩

1 + δ

2
if y < x∗,

1 − δ

2
if y ≥ x∗.

Note that it is a bang-bang policy (see, e.g., [5]). We also consider the spatiotem-
porally constant bang-bang policies ←−π and −→π given by

(2.6) ←−π i(n,ω, y,1) ≡ 1 − δ

2
and −→π i(n,ω, y,1) ≡ 1 + δ

2
.

In each of the three regimes of weak, strong and full control, the graph of
Hδ,β(θ) against θ has a flat region centered at the origin (see Figure 1). When
θ is in this flat region, it will turn out that the infimum in (1.1) can be taken over
the set of π(x∗,h,�) with arbitrarily small h ∈ (0,1) and arbitrarily large � ∈N. Do-
ing so creates a o(n) difference which does not change the limit in (1.2). (When
δ = 1, it suffices to take � = 1.) On the other hand, when θ is to the right (resp.
left) of the flat region centered at the origin, it will turn out that the infimum in
(1.1) is asymptotically attained at ←−π (resp., −→π ) up to a o(n) term as n → ∞.

Even though the regimes of weak and strong control share a common class
of asymptotically optimal policies at (say) θ = 0, namely the policies π(x∗,h,�),
the value of Hδ,β(0) is different in these two cases (see Theorems 2.2 and 2.3),
which is caused by the difference in the large deviation behavior of the walk under
π(x∗,h,�). In this sense, our optimal control problem can be thought of as a two-
person game where the players are (i) the controller and (ii) the particle exhibiting
atypical behavior. This point will become clear in the proofs.
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FIG. 1. Representative graphs of Kδ(θ) (dashed) and Hδ,β(θ) (solid) against θ in each control
regime when β = 1. There is weak control if and only if 0 < log cosh(c) ≤ β = 1 if and only if
0 < δ ≤

√
1 − e−2β ≈ 0.93. (To sketch these graphs, we assumed without loss of generality that

E[V (·)] = 0.5.)

2.3. Homogenization of the Bellman equation. For every n ∈N, x ∈ Z, ω ∈ �,
δ ∈ [0,1], β > 0 and θ ∈ R, we write u(n, x,ω) = u(n, x,ω | δ,β, θ) for notational
brevity and then arrange (1.1) as

eu(n,x,ω) = inf
π∈Pn(δ)

Eπ,ω
x

[
eβ

∑n−1
i=0 V (TXi

ω)+θXn
]
.

Decomposing the expectation in the corresponding expression for eu(n+1,x,ω) with
respect to the first step of the controlled walk and applying the Bellman principle
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gives

u(n + 1, x,ω)

= βV (Txω) + inf
q∈[ 1−δ

2 , 1+δ
2 ]

log
(
qeu(n,x+1,ω) + (1 − q)eu(n,x−1,ω)).(2.7)

Due to linearity in the parameter q and the monotonicity of the logarithm function,
the infimum on the right-hand side of (2.7) is attained at 1−δ

2 or 1+δ
2 . [Therefore,

the infimum in (1.1) can be taken over the set of bang-bang policies. We will
recapitulate and use this in Section 6.1.] Evaluating this infimum, switching to
the parameter c introduced in (2.2) in the case δ ∈ (0,1), and finally subtracting
u(n, x,ω) from both sides of (2.7), we deduce that

∇1u(n, x,ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
�2u(n, x,ω) + log cosh

(∇2u(n, x,ω)
) + βV (Txω)

if δ = 0,
1

2
�2u(n, x,ω) + log cosh

(∣∣∇2u(n, x,ω)
∣∣ − c

)
− log cosh(c) + βV (Txω)

if δ ∈ (0,1),
1

2
�2u(n, x,ω) − ∣∣∇2u(n, x,ω)

∣∣ + βV (Txω)

if δ = 1.

(2.8)

Here, we use the notation

∇1u(n, x,ω) = u(n + 1, x,ω) − u(n, x,ω),

∇2u(n, x,ω) = 1

2

[
u(n, x + 1,ω) − u(n, x − 1,ω)

]
and

�2u(n, x,ω) = u(n, x − 1,ω) + u(n, x + 1,ω) − 2u(n, x,ω)

for these difference operators. Hence, (1.1) solves a second-order HJ partial dif-
ference equation, subject to the linear initial condition u(0, x,ω) = θx, with the
following separable random Hamiltonian:

Hδ,β(θ, x,ω) = Kδ(θ) + βV (Txω),

Kδ(θ) =

⎧⎪⎪⎨
⎪⎪⎩

log cosh(θ) if δ = 0,

log cosh
(|θ | − c

) − log cosh(c) if δ ∈ (0,1),

−|θ | if δ = 1.

(2.9)

For every ε > 0, t ≥ 0, x ∈R and ω ∈ �, let

uε(t, x,ω) = εu
([

ε−1t
]
,
[
ε−1x

]
,ω

)
.
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After appropriate substitutions, (2.8) becomes

(2.10) ∇ε
1uε(t, x,ω) = ε

2
�ε

2uε(t, x,ω) + Hδ,β

(∇ε
2uε(t, x,ω),

[
ε−1x

]
,ω

)
,

where

∇ε
1uε(t, x,ω) = ε−1[

uε(t + ε, x,ω) − uε(t, x,ω)
]
,

∇ε
2uε(t, x,ω) = (2ε)−1[

uε(t, x + ε,ω) − uε(t, x − ε,ω)
]

and

�ε
2uε(t, x,ω) = ε−2[

uε(t, x − ε,ω) + uε(t, x + ε,ω) − 2uε(t, x,ω)
]
.

As we mentioned in Section 1.2, the function uo(t, x) = uo(t, x | δ,β, θ) =
tH δ,β(θ) + θx solves

(2.11)
∂uo

∂t
(t, x) = Hδ,β

(
∂uo

∂x
(t, x)

)
, uo(0, x) = θx.

Our final result combines Theorems 1.4, 2.1, 2.2 and 2.3, and improves the point-
wise convergence (in t > 0 and x ∈ R) in their statements to uniform convergence
on compact sets.

THEOREM 2.4 (Homogenization with linear initial data). Assume (1.4) and
(1.5). If δ ∈ [0,1], β > 0 and θ ∈ R, then for P-a.e. ω the function uε(·, ·,ω)

converges to uo(·, ·) as ε → 0, uniformly on compact subsets of [0,∞) ×R, with
the effective Hamiltonian Hδ,β(θ) given in (1.6), (2.1), (2.3) and (2.4) in the cases
of no, full, weak and strong control, respectively.

In the language of homogenization theory, Theorem 2.4 says that the second-
order HJ partial difference equation in (2.10) with the initial condition uε(0,

x,ω) = θε[ε−1x] homogenizes to the first-order HJ equation in (2.11).
The original Hamiltonian Hδ,β(θ, x,ω) = Kδ(θ) + βV (Txω) [given in (2.9)] is

convex in θ in the case of no control, and it is nonconvex in the cases of weak,
strong and full control. On the other hand, the effective Hamiltonian Hδ,β(θ) is
convex in θ in the cases of no and weak control, and it is nonconvex in the cases
of strong and full control. (See Figure 1.) We summarize this as follows:

(2.12)
Hδ,β(θ) is convex in θ ⇐⇒ log cosh(c) ≤ β

⇐⇒ δ ≤
√

1 − e−2β.

REMARK 2.5. Observe that:

(i) log cosh(c) is equal to the depth of the wells in the graph of Kδ(θ) against
θ , and

(ii) β = sup{βV (Txω) − βV (Tyω) : x, y ∈ Z} for P-a.e. ω [by (1.4)].

Therefore, the first equivalence in (2.12) is a purely geometric characterization of
the convexity of the effective Hamiltonian in terms of the original Hamiltonian.
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2.4. Some previous results on the homogenization of HJ equations. Recall
from Section 1.4 that the existence of the tilted free energy was already shown
for a general class of RWs in random potentials on Z

d with any d ≥ 1 (see [13, 23,
30, 31] and also Remark A.2). In light of Theorem 1.4, this existence result can
be seen as “pointwise homogenization” at (t, x) = (1,0) for a second-order HJ
partial difference equation with linear initial data, where the effective Hamiltonian
is given by the tilted free energy, and hence convex in θ . It is not hard to improve
the pointwise convergence at (t, x) = (1,0) to uniform convergence on compact
subsets of [0,∞)×R (as we do so in Theorems 1.4 and 2.4 in the one-dimensional
case with no control). To the best of our knowledge, there are no other previous
results on the homogenization of second-order HJ partial difference equations.

There is a rich literature on the continuous analog of our discrete setting with
no control and its suitable generalizations. Sznitman’s work [28] on large devia-
tions for Brownian motion in a Poissonian potential on R

d employs the subadditive
ergodic theorem and gives the first example of “pointwise homogenization” of a
second-order HJ partial differential equation (PDE) with linear initial data, where
the random Hamiltonian is quadratic (and hence convex) in θ . Homogenization of
second-order HJ equations (with general uniformly continuous initial data which
is what is meant by default) was later established in [21] (using the subadditive
ergodic theorem) and independently in [17] (using the ergodic and minimax the-
orems) for wide classes of random Hamiltonians that are convex in θ . In fact, as
we mention in Section 1.4 and Remark A.2, the existence of the tilted free en-
ergy for RWs in random potentials on Z

d was shown in [13, 31] and then [23, 30]
by building upon the ideas in [28] and [17], respectively. For further details and
references on the homogenization of (first- and second-order) HJ equations with
random convex Hamiltonians, see [16].

There are also several works that prove homogenization for certain HJ equations
with random nonconvex Hamiltonians in arbitrary dimensions. In the second-order
case (which is relevant to our setting), the work of Fehrman [12] covers a class of
“level-set convex” Hamiltonians, whereas Armstrong and Cardaliaguet [2] con-
sider Hamiltonians that satisfy a finite range of dependence condition and are ho-
mogeneous in θ . The Hamiltonian Hδ,β(θ, x,ω) in our setting (which is given in
(2.9) and is nonconvex in θ when δ ∈ (0,1]) satisfies none of these conditions.

In the first-order case, Armstrong, Tran and Yu [3] prove homogenization for a
HJ equation in arbitrary dimensions, where the Hamiltonian is of the form H(θ)+
V (Txω) with the specific choice H(θ) = (|θ |2 − 1)2. In a subsequent work [4],
the same authors extend this result to any coercive H(θ) in one dimension. They
also notice the relationship between (i) the convexity of the effective Hamiltonian
H(θ) and (ii) the size of the oscillations of V (Txω) in comparison to the depth
of the wells of H(θ) (which is similar to Remark 2.5). Moreover, they give an
implicit formula for H(θ) under additional assumptions (see [4], Lemma 5.2).
The proofs in [4] rely on the existence of sublinear correctors in one dimension
which is parallel to our approach (see Section 3 for a summary of our proofs), but
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are otherwise quite different since they use (first-order) nonlinear PDE techniques.
The main homogenization result in [4] is extended by Gao [14] to general (i.e.,
not necessarily separable) coercive Hamiltonians in one dimension. The corrector-
based method for proving the homogenization of HJ equations is originally due to
[20] where the Hamiltonian is spatially periodic (see [16] for details).

In a recent paper, Davini and Kosygina [9] consider first- and second-order HJ
equations in arbitrary dimensions. Using a variant of the perturbed test function
method which is originally due to Evans [11], they prove that “pointwise homog-
enization” at (t, x) = (1,0) with linear initial data in fact implies homogenization
with general uniformly continuous initial data. We expect that this result can be
adapted to our discrete setting, too, and in particular extend Theorem 2.4 to uni-
formly continuous initial data. However, we did not pursue this direction since our
starting point is controlled RWs in random potential for which the corresponding
initial data is linear.

As an application of their main result in [9], Davini and Kosygina show
homogenization for nonconvex Hamiltonians of the following form in one di-
mension: there exist finitely many θ1, . . . , θn such that the Hamiltonian is con-
stant at these values and it is convex in θ on each of the intervals (−∞, θ1),
(θ1, θ2), . . . , (θn−1, θn), (θn,+∞). Due to the random additive term βV (Txω) in
(2.9), the Hamiltonian Hδ,β(θ, x,ω) in our setting does not have this form.

Finally, Ziliotto [32] proves, by giving a counterexample, that first-order HJ
equations do not always homogenize. His counterexample comes from a zero-
sum differential game in two dimensions. The random Hamiltonian is coercive,
Lipschitz continuous and (of course) nonconvex in θ . The environment is station-
ary and ergodic (in fact, slowly mixing). Even though there are currently no such
counterexamples in the second-order case, Ziliotto’s work suggests that one cannot
prove homogenization results by purely qualitative arguments based on subaddi-
tivity when the Hamiltonian is nonconvex, and some kind of constructive approach
(such as ours in this paper) is needed.

3. Summary of the proofs. In order to convey the essence and strategy of
the proofs of Theorems 1.4, 2.1, 2.2 and 2.3 to the reader at a relatively early
stage in the paper, we provide here an overview without giving full details, proper
justifications or references (which can all be found in the subsequent sections).

3.1. No control. Similar to uo(t, x | δ,β, θ) in (1.2) with δ = 0, we define
�L

β (θ, t, x) and �U
β (θ, t, x) in (4.1) and (4.2) but via lim inf and lim sup, respec-

tively.
For every h ∈ (0,1) and � ∈ N, there is an h-hill of the form [x∗ − �, x∗ + �−1]

that is suitably close to the starting point of the RW. The distance is controlled by a
small parameter a > 0. We consider the event that the particle marches determin-
istically to x∗ and then spends the rest of the time in this h-hill, which gives the
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lower bound

(3.1) �L
β (θ, t, x) ≥ tβ + θx

after taking a → 0, h → 1 and � → ∞.
If �U

β (θ, t, x) = tβ + θx, then

uo(t, x | 0, β, θ) = �L
β (θ, t, x) = �U

β (θ, t, x) = tβ + θx = t�β(θ) + θx

and we are done. Otherwise, we construct a bounded and centered cocycle Fβ,θ :
� × {−1,1} →R (referred to as the corrector) that satisfies

(3.2) eλ = 1

2
eβV (ω)+θ+Fβ,θ (ω,1) + 1

2
eβV (ω)−θ+Fβ,θ (ω,−1)

for some λ > β . The sums
∑

Fβ,θ (Txi
ω, zi+1) over nearest-neighbor paths are

uniformly sublinear in the number of steps. We use these sublinear path sums to
modify the exponential expectations on the right-hand sides of (4.1) and (4.2) with-
out changing the values of �L

β (θ, t, x) and �U
β (θ, t, x). After this modification, it

follows from a repeated application of (3.2) that

uo(t, x | 0, β, θ) = �L
β (θ, t, x) = �U

β (θ, t, x) = tλ + θx = t�β(θ) + θx.

This completes the proof of Theorem 1.4. We also deduce that �β(θ) ≥ β .

3.2. Full control. Similar to uo(t, x | δ,β, θ) in (1.2) with δ ∈ (0,1], we de-
fine H

U

δ,β(θ, t, x) and H
L

δ,β(θ, t, x) in (5.1) and (5.2) but via lim sup and lim inf,
respectively.

For every h ∈ (0,1), there is an h-valley of the form [x∗ − 1, x∗] that is suitably
close to the starting point of the RW. The distance is controlled by a > 0 as in
Section 3.1. Under the policy π(x∗,h,1) [given in (2.5)], the particle marches deter-
ministically to x∗ and is then confined to [x∗ −1, x∗] for the rest of the time, which
gives the upper bound

(3.3) H
U

1,β(θ, t, x) ≤ θx

after taking a → 0 and h → 0. On the other hand, the particle marches determin-
istically to the left and to the right under the policies ←−π and −→π , respectively (see
(2.6)), which gives the upper bound

(3.4) H
U

1,β(θ, t, x) ≤ t
(
βE

[
V (·)] − |θ |) + θx

by the Birkhoff ergodic theorem.
The upper bound in (3.4) is at least as good as the one in (3.3) when θ ≥

βE[V (·)]. In this case, we introduce a bounded and centered cocycle Gβ : � ×
{−1,1} →R (analogous to Fβ,θ in Section 3.1 but simpler) that satisfies

(3.5)
gβ,θ (ω,p) := peβV (ω)+θ+Gβ(ω,1) + (1 − p)eβV (ω)−θ+Gβ(ω,−1)

≥ gβ,θ (ω,0) = eβE[V (·)]−θ
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for every p ∈ [0,1]. The sums
∑

Gβ(Txi
ω, zi+1) over nearest-neighbor paths are

uniformly sublinear in the number of steps. We use these sublinear path sums to
modify the exponential expectation on the right-hand side of (5.2) without chang-

ing the value of H
L

1,β(θ, t, x). Then it follows from the repeated application of
(3.5) that ←−π is optimal and

(3.6) H
L

1,β(θ, t, x) ≥ t
(
βE

[
V (·)] − θ

) + θx.

This lower bound matches the upper bound in (3.4) when θ ≥ βE[V (·)].
When 0 < θ < βE[V (·)], we introduce β̄ = β̄(θ) := θ

E[V (·)] < β and notice that

(3.7) H
L

1,β(θ, t, x) ≥ H
L

1,β̄ (θ, t, x) ≥ t
(
β̄E

[
V (·)] − θ

) + θx = θx,

where the second inequality follows from (3.6) since θ = β̄E[V (·)]. This lower
bound matches the upper bound in (3.3). The last two lower bounds are adapted to
the θ < 0 case by symmetry. The θ = 0 case is easy. This completes the proof of
Theorem 2.1.

3.3. Partial control: Upper bounds. The infima in the definitions of H
U

δ,β(θ,

t, x) and H
L

δ,β(θ, t, x) (see (5.1) and (5.2)) can be restricted to the set of bang-bang
policies which take the values

(3.8)
1 ± δ

2
= e±c

ec + e−c
= 1

2
e±c−log cosh(c)

with the parameter c introduced in (2.2). We use (3.8) to perform a change of

measure and express H
U

δ,β(θ, t, x) and H
L

δ,β(θ, t, x) in terms of expectation with
respect to SSRW (see (6.3) and (6.4)). This gives an alternative formulation of
our control problem where the policies are now exponential tilts denoted by α and
taking the values ±c.

In this alternative formulation, the policies ←−π and −→π (see (2.6)) correspond to←−α and −→α that are identically equal to −c and c, respectively. Therefore, Theo-
rem 1.4 gives the upper bound

(3.9)
H

U

δ,β(θ, t, x) ≤ t
(
min

{
�β(θ − c),�β(θ + c)

} − log cosh(c)
) + θx

= t
(
�β

(|θ | − c
) − log cosh(c)

) + θx.

For every h ∈ (0,1) and � ∈ N, there is an h-valley of the form [x∗ − �, x∗ +
� − 1] that is suitably close to the starting point of the RW, where the distance is
controlled by a > 0 as in Section 3.1. The policy π(x∗,h,�) (see (2.5)) corresponds
to α(x∗,h,�) that is equal to c at points to the left of x∗ and equal to −c elsewhere.
When θ = c, the combined tilt (of θ and the control) is 2c at points to the left of

x∗ and zero elsewhere, which gives a simple upper bound for H
U

δ,β(c, t, x) (see
(6.6)). We dominate this upper bound using an exponential expectation involving



50 A. YILMAZ AND O. ZEITOUNI

the number of complete left excursions of a reflected RW on [x∗ − �, x∗ + � − 1]
and show that

H
U

δ,β(c, t, x) ≤ t
[
β − log cosh(c)

]+ + cx.

This argument can be adapted to the θ = −c case. Finally, we use convexity to
obtain the upper bound

(3.10) H
U

δ,β(θ, t, x) ≤ t
[
β − log cosh(c)

]+ + θx for θ ∈ [−c, c].
Observe that, in the weak control regime [β ≥ log cosh(c)], the upper bound

in (3.10) is at least as good as the one in (3.9) since, by Proposition 4.8, �β(θ ±
c) − log cosh(c) ≥ β − log cosh(c) = [β − log cosh(c)]+. On the other hand, there
is no such uniform (in θ ∈ [−c, c]) comparison in the strong control regime [β <

log cosh(c)].

3.4. Partial control: Lower bounds. In the alternative formulation, we men-
tioned in Section 3.3, H

L

δ,β(θ, t, x) is expressed in terms of an exponential expec-
tation with respect to SSRW (see (6.4)). Observe that the combined tilt (of θ and
the control) in this expectation defines a martingale. Therefore, we can ignore its
contribution at a small exponential cost by the Azuma–Hoeffding inequality, use
(3.1) which is now applicable, and deduce that

H
L

δ,β(θ, t, x) ≥ t
(
β − log cosh(c)

) + θx.

This lower bound matches the upper bound in (3.10) in the weak control regime
[β ≥ log cosh(c)] when θ ∈ [−c, c], and it also matches the upper bound in (3.9)
when �β(|θ | − c) = β (regardless of weak or strong control).

When θ ≥ 0 and �β(θ − c) > β , we define

gβ,θ−c(ω, ξ) = 1

2
eβV (ω)+ξ+Fβ,θ−c(ω,1) + 1

2
eβV (ω)−ξ+Fβ,θ−c(ω,−1),

where Fβ,θ−c is the corrector we mentioned in Section 3.1. Under the extra as-
sumption that θ > c, we show that

(3.11) gβ,θ−c(ω, θ + c) ≥ gβ,θ−c(ω, θ − c) = e�β(θ−c).

Then, analogous to Sections 3.1 and 3.2, we use the sublinear path sums∑
Fβ,θ−c(Txi

ω, zi+1) to modify the exponential expectation on the right-hand

side of (6.4) without changing the value of H
L

δ,β(θ, t, x). By repeated application
of (3.11), we deduce that ←−α (i.e., ←−π in the original formulation) is optimal and

(3.12) H
L

δ,β(θ, t, x) ≥ t
(
�β(θ − c) − log cosh(c)

) + θx.

This lower bound matches the upper bound in (3.9). It is adapted to the θ < −c

case by symmetry. This completes the proof of Theorem 2.2 (weak control).
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It remains to obtain good lower bounds in the strong control regime [β <

log cosh(c)] when θ ∈ (−c, c) and min{�β(θ − c),�β(θ + c)} > β . [We know
that �β(0) = β .] The upper bound in (3.9) is at least as good as the one in (3.10)
when 0 < θ < c and β < �β(θ −c) ≤ log cosh(c). In this case, we show that (3.11)
continues to hold and it implies (by the same argument) the lower bound in (3.12),
which matches the upper bound in (3.9).

When 0 < θ < c and β < log cosh(c) < �β(θ − c), there exists a unique
θ̄ (β, c) ∈ (0, c) such that

�β

(
θ̄ (β, c) − c

) = log cosh(c)

and a unique β̄ = β̄(θ, c) < β such that θ = θ̄ (β̄, c). Analogous to (3.7) in Sec-
tion 3.2,

H
L

δ,β(θ, t, x) ≥ H
L

δ,β̄(θ, t, x) ≥ t
(
�β̄

(
θ̄ (β̄, c) − c

) − log cosh(c)
) + θx = θx

by (3.12) since β̄ < �β̄(θ − c) = log cosh(c). This lower bound matches the upper
bound in (3.10). The last two lower bounds are adapted to the −c < θ < 0 case
by symmetry. The θ = 0 case is easy. This completes the proof of Theorem 2.3
(strong control).

4. No control.

4.1. The tilted free energy. In this section, we provide a self-contained proof
of Theorem 1.4 (see Section 1.4 for references to the literature on the existence of
the tilted free energy). While doing so, we obtain some intermediate results which
will be central to the proofs of Theorems 2.1, 2.2, 2.3 and 2.4.

We start by recalling an elementary result regarding SSRW.

LEMMA 4.1. For every � ∈ N,

lim
n→∞

1

n
logP0

(
Xi ∈ [−�, � − 1] for every i ∈ [0, n]) = log cos

(
π/(2� + 1)

)
.

PROOF. This follows immediately from the eigenvalues and eigenvectors of
the adjacency matrix of SSRW on [−�, �− 1] with absorbing boundary conditions
(see [27], page 239). �

Assume that (1.4) and (1.5) hold. For every β > 0, θ ∈ R, t > 0 and x ∈ R, let

�L
β (θ, t, x) = lim inf

ε→0
ε logE[ε−1x]

[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]] and(4.1)

�U
β (θ, t, x) = lim sup

ε→0
ε logE[ε−1x]

[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]].(4.2)



52 A. YILMAZ AND O. ZEITOUNI

Strictly speaking, we should write �L
β (θ, t, x,ω) and �U

β (θ, t, x,ω) to indicate
the dependence on ω, too. However, it is clear from the ellipticity of SSRW that
�L

β (θ, t, x,ω) = �L
β (θ, t, x, T1ω) and, therefore, �L

β (θ, t, x) is P-a.s. constant by

the ergodicity assumption. The same reasoning applies to �U
β (θ, t, x). For the pur-

pose of proving the existence of the tilted free energy �β(θ) (see (1.6)), it suffices
to take t = 1 and x = 0. The latter applies to the following lemma, too.

LEMMA 4.2. For every h ∈ (0,1), � ∈ N, a > 0, B > 0 and P-a.e. ω, there
exists an n0 = n0(ω,h, �, a,B) such that, for each x ∈ [−B,B] and n ≥ n0, the
interval [n(x − a), n(x + a)] contains an h-valley (resp., h-hill) of the form [x∗ −
�, x∗ + � − 1] (resp., [x∗ − �, x∗ + � − 1]).

PROOF. Without loss of generality, we may and will assume that a/B ≤ 1. For
every h ∈ (0,1), k, � ∈ N and P-a.e. ω, the number of h-valleys of length 2� − 1
contained in the interval [0, k] (resp., the interval [−k,0]) is kph,� + o(k) by the
Birkhoff ergodic theorem, where

ph,� := P
([0,2� − 1] is an h-valley

)
> 0

by (1.5). Therefore, there exists an n0 = n0(ω,h, �, a,B) such that, for every j ∈
[−B

a
, B

a
−1]∩Z and n ≥ n0, the number of h-valleys of length 2�−1 contained in

the interval [0, nja] is n|j |aph,�(1 ± a/4B). It follows that for such n, the number
of h-valleys of length 2� − 1 contained in [nja,n(j + 1)a] is at least 1

4naph,�. In
particular, it is positive. For every x ∈ [−B,B], the interval [n(x − a), n(x + a)]
contains [nja,n(j + 1)a] for at least one such j , and the desired result follows.
The same argument applies to h-hills of length 2� − 1. �

LEMMA 4.3. �L
β (θ, t, x) ≥ tβ + θx for every β > 0, θ ∈ R, t > 0 and x ∈R.

PROOF. For every h ∈ (0,1), � ∈ N, t > 0, x ∈ R, a ∈ (0, t), P-a.e. ω and
sufficiently small ε > 0, Lemma 4.2 implies the existence of an h-hill of the form
[x∗ − �, x∗ + � − 1] that is contained in the interval [ε−1(x − a), ε−1(x + a)].
Let A[ε−1t](x∗, h, �) be the event that the particle marches deterministically from
[ε−1x] to x∗ and then spends the rest of the [ε−1t] units of time in this h-hill.
Restricting on this event and applying Lemma 4.1, we get the following lower
bound:

E[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
≥ E[ε−1x]

[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]1A[ε−1t](x∗,h,�)

]
≥ e([ε−1t]−ε−1a)βh+θ [ε−1x]−|θ |ε−1aP[ε−1x]

(
A[ε−1t]

(
x∗, h, �

))
≥ e([ε−1t]−ε−1a)βh+θ [ε−1x]−(|θ |+log 2)ε−1a+[ε−1t] log cos(π/(2�+1))+o(ε−1t).
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The desired result is obtained by first taking ε log of both sides, then sending ε →
0, and finally taking a → 0, h → 1 and � → ∞. �

Let τk = inf{i ≥ 0 : Xi = k} denote the first time the particle is at k ∈ Z. For
every λ > β , define

(4.3)
Fλ

β,θ (ω,1) = − logE0
[
eβ

∑τ1−1
i=0 V (TXi

ω)+θXτ1−λτ11{τ1<∞}
]

= − logE0
[
eβ

∑τ1−1
i=0 V (TXi

ω)−λτ11{τ1<∞}
] − θ.

Since 0 ≤ V (·) ≤ 1, we have

(4.4)
Fλ

β,θ (ω,1) ≥ − logE0
[
e(β−λ)τ11{τ1<∞}

] − θ > (λ − β) − θ and

Fλ
β,θ (ω,1) ≤ − logE0

[
e−λτ11{τ1<∞}

] − θ < ∞.

Set Fλ
β,θ (ω,−1) = −Fλ

β,θ (T−1ω,1). Then, decomposing the expectation corre-

sponding to e
−Fλ

β,θ (ω,1) with respect to the first step of the RW, we see that

(4.5) eλ = 1

2
e
βV (ω)+θ+Fλ

β,θ (ω,1) + 1

2
e
βV (ω)−θ+Fλ

β,θ (ω,−1)

for every ω ∈ �.

LEMMA 4.4. If θ ≥ 0 and β < λ < t−1(�U
β (θ, t, x) − θx) for some t > 0 and

x ∈ R, then

E
[
Fλ

β,θ (·,1)
] ≤ λ − t−1(

�U
β (θ, t, x) − θx

)
< 0.

PROOF. Fix θ ≥ 0 and β < λ < t−1(�U
β (θ, t, x) − θx) for some t > 0 and

x ∈ R. Then, for P-a.e. ω, there exist a subsequence εk → 0 and an error o(ε−1
k ),

both possibly depending on β , θ , t , x and ω, so that

(4.6)

e
ε−1
k (�U

β (θ,t,x)−tλ−θx)+o(ε−1
k )

= E[ε−1
k x]

[
e
β

∑[ε−1
k

t]−1
i=0 V (TXi

ω)+θ(X[ε−1
k

t]−[ε−1
k x])−[ε−1

k t]λ]
.

On the other hand, for any ε > 0,

E[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θ(X[ε−1t]−[ε−1x])−[ε−1t]λ]

=
[ε−1t]−1∑

k=0

E0
[
e

∑[ε−1t]−1
i=0 [βV (T[ε−1x]+Xi

ω)−λ]+θX[ε−1t]1{τk<[ε−1t]≤τk+1}
]

≤
[ε−1t]−1∑

k=0

E0
[
e

∑τk−1
i=0 [βV (T[ε−1x]+Xi

ω)−λ]+θ(k+1)
1{τk<[ε−1t]≤τk+1}

]
(4.7)
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≤
[ε−1t]−1∑

k=0

eθE0
[
e

∑τk−1
i=0 [βV (T[ε−1x]+Xi

ω)−λ]+θXτk 1{τk<∞}
]

=
[ε−1t]−1∑

k=0

e
θ−∑[ε−1x]+k−1

j=[ε−1x] Fλ
β,θ (Tjω,1)

.

We now claim that for any η > 0 there is an ε0 = ε0(ω,β, θ, λ, η) so that if ε ≤ ε0
then for all 0 ≤ k ≤ [ε−1t] − 1,

(4.8)

∣∣∣∣∣
[ε−1x]+k−1∑
j=[ε−1x]

Fλ
β,θ (Tjω,1) − kE

[
Fλ

β,θ (·,1)
]∣∣∣∣∣ ≤ ε−1η

(
1 + t + 2|x|).

Combining (4.6)–(4.8), we conclude that 0 < �U
β (θ, t, x)− tλ−θx ≤ −tE[Fλ

β,θ (·,
1)], which completes the proof of the lemma.

It remains to prove (4.8). Note that the Birkhoff ergodic theorem gives an n0 =
n0(ω,β, θ, λ, η) such that n ≥ n0 implies∣∣∣∣∣

n−1∑
j=0

Fλ
β,θ (Tjω,1) − nE

[
Fλ

β,θ (·,1)
]∣∣∣∣∣ ≤ nη.

Hence, for 0 ≤ k ≤ [ε−1t] − 1,

(4.9)

∣∣∣∣∣
[ε−1x]+k−1∑
j=[ε−1x]

Fλ
β,θ (Tjω,1) − kE

[
Fλ

β,θ (·,1)
]∣∣∣∣∣ ≤ ε−1η

(
t + 2|x|)

whenever |[ε−1x]| ≥ n0 and |[ε−1x]+k| ≥ n0. Otherwise, we can shift the indices
of the sum in (4.9) by 2n0 (in the appropriate direction so that the shifted indices
clear the interval [−n0, n0]), recall (4.4) and use the triangle inequality to deduce
that the left-hand side of (4.9) is bounded by ε−1η(t + 2|x|) + 4n0‖Fλ

β,θ (·,1)‖∞.

Choosing ε0 < η/(4n0‖Fλ
β,θ (·,1)‖∞) then gives (4.8). �

LEMMA 4.5. If θ ≥ 0, then the map λ �→ E[Fλ
β,θ (·,1)] is continuous and

strictly increasing for λ > β . Moreover,

lim
λ→∞E

[
Fλ

β,θ (·,1)
] = ∞.

PROOF. Note that Fλ+�λ
β,θ (ω,1) ≥ Fλ

β,θ (ω,1) + �λ, since τ1 ≥ 1. The rest
follows from the uniform (in ω) bounds in (4.4) and the dominated convergence
theorem. �

PROOF OF THEOREM 1.4. Assume without loss of generality that θ ≥ 0.
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If �U
β (θ, t, x) = tβ + θx for every t > 0 and x ∈ R, then Lemma 4.3 gives

(4.10) �L
β (θ, t, x) = �U

β (θ, t, x) = tβ + θx.

If �U
β (θ, t ′, x′) > t ′β + θx′ for some t ′ > 0 and x′ ∈ R, then Lemmas 4.4

and 4.5 (and the intermediate value theorem) imply the existence of a unique
λ ≥ (t ′)−1(�U

β (θ, t ′, x′)−θx′) such that E[Fλ
β,θ (·,1)] = 0. Then Fλ

β,θ is a bounded
and centered cocycle (see Definition B.1 in Appendix B). Therefore, for every
t > 0, x ∈ R and P-a.e. ω,

E[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
= E0

[
e

∑[ε−1t]−1
i=0 [βV (T[ε−1x]+Xi

ω)+θZi+1+Fλ
β,θ (T[ε−1x]+Xi

ω,Zi+1)]]
eθ [ε−1x]+o(ε−1t)

= e[ε−1t]λ+θ [ε−1x]+o(ε−1t) = eε−1(tλ+θx)+o(ε−1t).

Here, Zi+1 = Xi+1 −Xi , the first equality follows from the uniformly sublinear (in
[ε−1t]) growth of sums (over nearest-neighbor paths of length [ε−1t]) of bounded
and centered cocycles (see Lemma B.2), and the last equality is obtained by the
repeated application of (4.5). Taking ε log of both sides and sending ε → 0, we
conclude that

(4.11) �L
β (θ, t, x) = �U

β (θ, t, x) = tλ + θx.

The existence of the limit in (1.2) and the validity of the identity in (1.3) follow
immediately from (4.10) and (4.11). Finally, setting t = 1 and x = 0, we deduce
(1.6). �

4.2. The corrector and an implicit formula. When θ > 0 and �β(θ) > β , we

will henceforth write Fβ,θ = F
�β(θ)

β,θ to simplify the notation in the previous sec-
tion. We extend this definition to the θ < 0 case and recapitulate it as follows:

(4.12)

Fβ,θ (ω,1) = − logE0
[
eβ

∑τ1−1
i=0 V (TXi

ω)−�β(θ)τ11{τ1<∞}
] − θ and

Fβ,θ (ω,−1) = −Fβ,θ (T−1ω,1) if θ > 0 and �β(θ) > β;

Fβ,θ (ω,−1) = − logE0
[
eβ

∑τ−1−1
i=0 V (TXi

ω)−�β(θ)τ−11{τ−1<∞}
] + θ and

Fβ,θ (ω,1) = −Fβ,θ (T1ω,−1) if θ < 0 and �β(θ) > β.

Note that this definition leaves out θ = 0 because �β(0) = β (see Proposi-
tion 4.8(c)). We record the following results for future reference.

PROPOSITION 4.6. Assume (1.4), (1.5), and that θ is such that �β(θ) > β .
Then Fβ,θ : � × {−1,1} →R, defined in (4.12), satisfies

(4.13) E
[
Fβ,θ (·,±1)

] = 0,
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that is, it is a centered cocycle (see Definition B.1 in Appendix B). Moreover, for
every ω ∈ �,

0 < �β(θ) − β < |θ | + Fβ,θ

(
ω, sgn(θ)

)
(4.14)

≤ − logE0
[
e−�β(θ)τ11{τ1<∞}

]
< ∞ and

e�β(θ) = 1

2
eβV (ω)+θ+Fβ,θ (ω,1) + 1

2
eβV (ω)−θ+Fβ,θ (ω,−1).(4.15)

PROOF. The equality (4.13) follows from the definition of �β(θ), building on
the proof of Theorem 1.4. When θ > 0, the desired results (4.14) and (4.15) have
been shown in (4.4) and (4.5), respectively. When θ < 0, the proofs are identical
since the law of the underlying SSRW is symmetric. �

In light of the exact equality in (4.15), Fβ,θ is referred to as the corrector. We
will say more about this choice of terminology in Appendix C (see Remark C.2)
where we present and analyze two variational formulas for �β(θ). The following
result gives an implicit (nonvariational) formula for �β(θ).

PROPOSITION 4.7. Assume (1.4) and (1.5). Then �β(θ) ≥ β for every θ ∈ R.
Moreover,

(4.16) E
[
logE0

[
eβ

∑τ1−1
i=0 V (TXi

ω)−�β(θ)τ11{τ1<∞}
]] + |θ | = 0

whenever �β(θ) > β .

PROOF. We already know from Lemma 4.3 (with t = 1 and x = 0) that
�β(θ) ≥ β . The symmetry of the law of SSRW implies that �β(θ) is even in θ .
(We will list various properties of the tilted free energy in Proposition 4.8 below.)
Therefore, (4.16) follows from (4.12) and (4.13) whenever �β(θ) > β . �

4.3. Some properties of the tilted free energy.

PROPOSITION 4.8. Assume (1.4) and (1.5). Then the following hold:

(a) �β(θ) is increasing in β , and even and convex in θ .
(b) �β(θ) ≥ max{β,βE[V (·)] + log cosh(θ)} for every θ ∈ R.
(c) If |θ | ≤ β(1 − E[V (·)]), then �β(θ) = β . Hence, {θ ∈ R : �β(θ) = β} is a

symmetric and closed interval with nonempty interior.
(d) �β(θ) − log cosh(θ) → βE[V (·)] as |θ | → ∞.
(e) The map θ �→ �β(θ) is continuously differentiable on the complement of

{θ ∈R : �β(θ) = β}.
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PROOF. (a) These three properties follow from V (·) ≥ 0, the symmetry of the
law of SSRW and a standard application of Hölder’s inequality, respectively.

(b) Consider the nearest-neighbor RW with probability p(θ) = eθ/(eθ + e−θ )

of jumping to the right. It induces a probability measure P̂ θ
0 on paths starting at 0.

Let Êθ
0 denote expectation under P̂ θ

0 . Note that

E
[
p(θ)f (T1·) + (

1 − p(θ)
)
f (T−1·)] = p(θ)E

[
f (T1·)] + (

1 − p(θ)
)
E

[
f (T−1·)]

= E
[
f (·)]

for every bounded and F -measurable function f : � → R. In other words, under
P̂ θ

0 , the probability measure P is invariant for the so-called environment Markov
chain (TXi

ω)i≥0, and hence ergodic (with respect to temporal shifts) by Kozlov’s
lemma (see [18] for details). Therefore,

�β(θ) = lim
n→∞

1

n
logE0

[
eβ

∑n−1
i=0 V (TXi

ω)+θXn
]

= lim
n→∞

1

n
log Êθ

0
[
eβ

∑n−1
i=0 V (TXi

ω)] + log cosh(θ)

≥ lim
n→∞βÊθ

0

[
1

n

n−1∑
i=0

V (TXi
ω)

]
+ log cosh(θ) = βE

[
V (·)] + log cosh(θ)

by Jensen’s inequality, the Birkhoff ergodic theorem and the bounded convergence
theorem. Recalling the first part of Proposition 4.7, we get the desired lower bound.

(c) If |θ | ≤ β(1 − E[V (·)]), then, with the o(·) notation denoting error terms
that may depend on ω,

en�β(θ)+o(n) = E0
[
eβ

∑n−1
i=0 V (TXi

ω)+θXn
] ≤ E0

[
enβ+(|θ |−β(1−E[V (·)]))|Xn|+o(|Xn|)]

≤ enβ+o(n)

for P-a.e. ω by the Birkhoff ergodic theorem and the observation that the parti-
cle visits each x between 0 and Xn at least once. Therefore, �β(θ) ≤ β and one
concludes by appealing to part (b).

(d) Similar to part (c), if |θ | ≥ β(1 −E[V (·)]), then

en�β(θ)+o(n) ≤ E0
[
enβ+(|θ |−β(1−E[V (·)]))|Xn|+o(|Xn|)]

≤ enβ+n log cosh(|θ |−β(1−E[V (·)]))+o(n)

for P-a.e. ω. Therefore,

βE
[
V (·)] ≤ �β(θ) − log cosh(θ)

≤ β + log cosh
(|θ | − β

(
1 −E

[
V (·)])) − log cosh(θ)

by part (b), and the desired result follows.
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(e) Recall from (4.3) that

Fλ
β,θ (ω,1) = − logE0

[
eβ

∑τ1−1
i=0 V (TXi

ω)−λτ11{τ1<∞}
] − θ

for every ω ∈ �, θ > 0 and λ > β . Since 0 ≤ V (·) ≤ 1, it follows from an appli-
cation of the dominated convergence theorem (DCT) that the map λ �→ Fλ

β,θ (ω,1)

is differentiable. By a second application of the DCT, we deduce that the map
λ �→ E[Fλ

β,θ (·,1)] is differentiable and

(4.17)
∂

∂λ
E

[
Fλ

β,θ (·,1)
] = E

[
E0[τ1e

β
∑τ1−1

i=0 V (TXi
ω)−λτ11{τ1<∞}]

E0[eβ
∑τ1−1

i=0 V (TXi
ω)−λτ11{τ1<∞}]

]
> 0.

Resorting to the DCT for a third time, we see that λ �→ E[Fλ
β,θ (·,1)] is in fact

continuously differentiable. The map θ �→ E[Fλ
β,θ (·,1)] is linear, and hence con-

tinuously differentiable, too. Recall from (4.13) that

(4.18) E
[
F

�β(θ)

β,θ (·,1)
] = E

[
Fβ,θ (·,1)

] = 0

whenever θ > 0 and �β(θ) > β . Thus, by the implicit function theorem, the map
θ �→ �β(θ) is continuously differentiable on the set {θ ∈ R : θ > 0 and �β(θ) >

β}. Since �β(−θ) = �β(θ) and �β(0) = β by parts (a) and (c), this concludes the
proof. �

Proposition 4.8 does not answer the question of whether θ �→ �β(θ) is differen-
tiable at the endpoints of the interval {θ ∈ R : �β(θ) = β}. We provide a negative
answer to this question in Appendix D under a very mild additional assumption on
the potential (see Theorem D.3 for the precise statement). This nondifferentiability
is reflected in the sketches in Figure 1, but it is not actually used anywhere in the
paper.

5. Full control. For every δ ∈ (0,1], β > 0, θ ∈ R, t ≥ 0 and x ∈ R, let

H
U

δ,β(θ, t, x) = lim sup
ε→0

inf
π∈P[ε−1t](δ)

ε

(5.1)

× logE
π,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]] and

H
L

δ,β(θ, t, x) = lim inf
ε→0

inf
π∈P[ε−1t](δ)

ε

(5.2)

× logE
π,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]].
In this section, we assume that (1.4) and (1.5) hold, take δ = 1, provide matching

upper and lower bounds for (5.1) and (5.2), respectively, and prove Theorem 2.1.
In fact, we go beyond Theorem 2.1 and obtain error bounds for the limit in (1.2)
which will be used in the proof of Theorem 2.4.
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5.1. Upper bounds. For every h ∈ (0,1), t ≥ 0, x ∈R, a > 0, P-a.e. ω and suf-
ficiently small ε > 0, Lemma 4.2 implies the existence of an h-valley of the form
[x∗ −1, x∗] that is contained in the interval [ε−1(x −a), ε−1(x +a)]. Consider the
policy π(x∗,h,1) [given in (2.5)] with this specific choice of x∗ (see Remark 5.1).
Under this policy, the particle marches deterministically to x∗ and is then confined
to the h-valley [x∗ − 1, x∗] for the rest of the [ε−1t] units of time (if it gets to x∗).
This gives the following bound:

(5.3)

ε logE
π(x∗,h,1),ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
≤ ε

[
ε−1t

]
βh + ε

[
ε−1a

](
β + |θ |) + εθ

[
ε−1x

]
≤ tβh + a

(
β + |θ |) + θx + ε|θ |.

Sending ε → 0, h → 0 and a → 0 in this order, we deduce that

(5.4) H
U

1,β(θ, t, x) ≤ θx.

REMARK 5.1. In Section 2.2, we introduced the RW policy π(x∗,h,�) using an
h-valley of the form [x∗ − �, x∗ + � − 1]. When the walk starts at the origin [e.g.,
in (5.1) with x = 0], we can work with a fixed x∗ = x∗(ω,h, �) for all sufficiently
small ε > 0. However, when the walk starts at [ε−1x] with some x �= 0, we need
to take x∗ = x∗(ω,h, �, x, a, ε) as in Lemma 4.2. In particular, the policy π(x∗,h,�)

depends on ε in the latter case.

When θ ≥ 0, consider the policy ←−π [given in (2.6)] under which the particle
marches deterministically to the left for [ε−1t] units of time:

ε logE
←−π ,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]

= ε

[ε−1t]−1∑
i=0

(
βV (T[ε−1x]−iω) − θ

) + εθ
[
ε−1x

]

= ε
[
ε−1t

](
βE

[
V (·)] − θ

) + εθ
[
ε−1x

]

+ ε

[ε−1t]−1∑
i=0

(
βV (T[ε−1x]−iω) − βE

[
V (·)])

≤ t
(
βE

[
V (·)] − θ

) + θx

+ ε

[ε−1t]−1∑
i=0

(
βV (T[ε−1x]−iω) − βE

[
V (·)]) + εθ.

(5.5)
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By the Birkhoff ergodic theorem, we deduce the following bound: for P-a.e. ω,

H
U

1,β(θ, t, x) ≤ lim sup
ε→0

ε logE
←−π ,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
= t

(
βE

[
V (·)] − θ

) + θx.

(5.6)

5.2. Lower bounds when θ ≥ 0.

5.2.1. Lower bound when θ ≥ βE[V (·)]. Define Gβ : � × {−1,1} →R by

(5.7)
Gβ(ω,−1) = −βV (ω) + βE

[
V (·)] and

Gβ(ω,1) = −Gβ(T ω,−1) = βV (T ω) − βE
[
V (·)].

Then E[Gβ(·,±1)] = 0, and Gβ is a bounded and centered cocycle (see Defini-
tion B.1 in Appendix B). Analogous to Fβ,θ (see Proposition 4.6) in the case of no
control, Gβ will serve as the corrector in the case of full control.

For every p ∈ [0,1], let

gβ,θ (ω,p) = peβV (ω)+θ+Gβ(ω,1) + (1 − p)eβV (ω)−θ+Gβ(ω,−1).

LEMMA 5.2. If θ ≥ βE[V (·)], then

(5.8) gβ,θ (ω,p) ≥ gβ,θ (ω,0) = eβE[V (·)]−θ

for every p ∈ [0,1] and ω ∈ �.

PROOF. Since V (·) ≥ 0, we have

2θ ≥ 2βE
[
V (·)] ≥ −βV (ω) + βE

[
V (·)] − βV (T ω) + βE

[
V (·)]

= Gβ(ω,−1) − Gβ(ω,1).

Therefore, βV (ω)+ θ +Gβ(ω,1) ≥ βV (ω)− θ +Gβ(ω,−1), and the inequality
in (5.8) follows. The equality in (5.8) follows from direct substitution. �

For every t ≥ 0, x ∈ R and π ∈ P[ε−1t](1), use Lemmas B.2 and 5.2 to give the
following bound, where the o([ε−1t]) error terms depend on (ω, t, x,β) but not
on π :

E
π,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]

= E
π,ω
0

[
e

∑[ε−1t]−1
i=0 [βV (T[ε−1x]+Xi

ω)+θZi+1+Gβ(T[ε−1x]+Xi
ω,Zi+1)]]

× eθ [ε−1x]+o([ε−1t])

= E
π,ω
0

[
e

∑[ε−1t]−2
i=0 [βV (T[ε−1x]+Xi

ω)+θZi+1+Gβ(T[ε−1x]+Xi
ω,Zi+1)]
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× gβ,θ

(
T[ε−1x]+X[ε−1t]−1

ω,π[ε−1t]−1
([

ε−1t
]
,ω,

[
ε−1x

] + X[ε−1t]−1,1
))]

× eθ [ε−1x]+o([ε−1t])

≥ E
π,ω
0

[
e

∑[ε−1t]−2
i=0 [βV (T[ε−1x]+Xi

ω)+θZi+1+Gβ(T[ε−1x]+Xi
ω,Zi+1)]]

× e(βE[V (·)]−θ)+θ [ε−1x]+o([ε−1t]).

Iterating, one obtains

E
π,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
≥ · · · ≥ e[ε−1t](βE[V (·)]−θ)+θ [ε−1x]+o([ε−1t]).

(5.9)

First, taking ε log of both sides, then taking infimum over π ∈ P[ε−1t](1), and fi-
nally sending ε → 0, we conclude that

(5.10) H
L

1,β(θ, t, x) ≥ t
(
βE

[
V (·)] − θ

) + θx.

5.2.2. Lower bound when 0 < θ < βE[V (·)]. We use scaling properties. Let
β̄ = β̄(θ) = θ

E[V (·)] < β . Then

(5.11)
ε logE

π,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]

≥ ε logE
π,ω

[ε−1x]
[
e
β̄

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
and

(5.12) H
L

1,β(θ, t, x) ≥ H
L

1,β̄ (θ, t, x) ≥ t
(
β̄E

[
V (·)] − θ

) + θx = θx

for every t ≥ 0 and x ∈ R. Here, the first inequality uses the fact that V (·) ≥ 0, and
the second inequality follows from (5.10) which is applicable since θ = β̄E[V (·)].

5.2.3. Lower bound when θ = 0. Since V (·) ≥ 0, we have

(5.13)
ε logE

π,ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
= ε logE

π,ω

[ε−1x]
[
eβ

∑[ε−1t]−1
i=0 V (TXi

ω)] ≥ 0

for every ε > 0, t ≥ 0 and x ∈ R. Taking ε → 0, we conclude that

(5.14) H
L

1,β(0, t, x) ≥ 0.
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5.3. The effective Hamiltonian.

PROOF OF THEOREM 2.1. If 0 ≤ θ < βE[V (·)], then the bounds (5.4), (5.12)
and (5.14) match for every t > 0 and x ∈ R,

(5.15) H
L

1,β(θ, t, x) = H
U

1,β(θ, t, x) = θx,

and taking the infimum in (1.1) over the set {π(x∗,h,1) : 0 < h < h0} for any h0 > 0
does not change the limit in (1.2). (Regarding the choice of x∗, see Remark 5.1.)

If θ ≥ βE[V (·)], then the bounds (5.6) and (5.10) match for every t > 0 and
x ∈ R,

(5.16) H
L

1,β(θ, t, x) = H
U

1,β(θ, t, x) = t
(
βE

[
V (·)] − θ

) + θx,

and ←−π is asymptotically optimal as ε → 0.
If θ < 0, the analogous results follow from symmetry. The existence of the limit

in (1.2) and the validity of the identity in (1.3) follow immediately from (5.15) and
(5.16). Finally, setting t = 1 and x = 0, we deduce (2.1). �

6. Partial control: Alternative formulation and upper bounds. In this sec-
tion, we consider the case δ ∈ (0,1) under the assumptions (1.4) and (1.5).

6.1. Alternative formulation. Recall from our discussion in Section 2.3 [cf.
(2.7)] that the infimum in (1.1) can be taken over

PBB
n (δ) =

{
π ∈ Pn(δ) : πi(n,ω, y,1) = 1 ± δ

2
for every i ∈ [0, n − 1],

ω ∈ � and y ∈ Z

}
,

that is, the set of bang-bang policies. For every π ∈ PBB
n (δ), define α =

(α0, . . . , αn−1) by setting

αi = αi(n,ω, y) = 1

2
log

(
πi(n,ω, y,1)

πi(n,ω, y,−1)

)

=

⎧⎪⎪⎨
⎪⎪⎩

c if πi(n,ω, y,1) = 1 + δ

2
,

−c if πi(n,ω, y,1) = 1 − δ

2
.

The parameter c was introduced in (2.2). Note that

πi(n,ω, y,±1) = e±αi(n,ω,y)

ec + e−c
.
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We perform a change of measure: for every x ∈ Z,

Eπ,ω
x

[
eβ

∑n−1
i=0 V (TXi

ω)+θXn
]

= Ex

[
e

∑n−1
i=0 [βV (TXi

ω)+(θ+αi(n,ω,Xi))Zi+1]]eθx−n log cosh(c).

Then (1.1) becomes

(6.1)
u(n, x,ω | δ,β, θ) = inf

α∈An(c)
logEx

[
e

∑n−1
i=0 [βV (TXi

ω)+(θ+αi(n,ω,Xi))Zi+1]]
+ θx − n log cosh(c),

where the infimum is taken over

(6.2)
An(c) = {

α = (α0, . . . , αn−1) : αi = αi(n,ω, y) = ±c

for every i ∈ [0, n − 1],ω ∈ � and y ∈ Z
}
.

Similarly, (5.1) and (5.2) become

H
U

δ,β(θ, t, x) = lim sup
ε→0

inf
α∈A[ε−1t](c)

ε

× logE[ε−1x]
[
e

∑[ε−1t]−1
i=0 [βV (TXi

ω)+(θ+αi([ε−1t],ω,Xi))Zi+1]](6.3)

+ θx − t log cosh(c) and

H
L

δ,β(θ, t, x) = lim inf
ε→0

inf
α∈A[ε−1t](c)

ε

× logE[ε−1x]
[
e

∑[ε−1t]−1
i=0 [βV (TXi

ω)+(θ+αi([ε−1t],ω,Xi))Zi+1]](6.4)

+ θx − t log cosh(c).

6.2. General upper bound. The policies ←−π ,−→π ∈ PBB
n (δ) [given in (2.6)] cor-

respond to ←−α ,−→α ∈ An(c) with
←−α i(n,ω, y) ≡ −c and −→α i(n,ω, y) ≡ c,

respectively. For every θ ∈ R, t > 0 and x ∈ R, substituting each of these poli-
cies (with n = [ε−1t]) in the expectation on the right-hand side of (6.3) and using
Theorem 1.4, we deduce the following bound:

(6.5) H
U

δ,β(θ, t, x) ≤ t
(
min

{
�β(θ − c),�β(θ + c)

} − log cosh(c)
) + θx.

6.3. Upper bound when |θ | ≤ c. For every h ∈ (0,1), � ∈ N, x ∈ R and a > 0,
the RW policy π(x∗,h,�) ∈ PBB

n (δ) [given in (2.5)] corresponds to α(x∗,h,�) ∈ An(c)

with x∗ as in (2.5) and

α
(x∗,h,�)
i (n,ω, y) =

{
c if y < x∗,
−c if y ≥ x∗.
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When the walk starts at [ε−1x] with a sufficiently small ε > 0, recall from
Lemma 4.2 and Remark 5.1 that [x∗ − �, x∗ + � − 1] ⊂ [ε−1(x − a), ε−1(x + a)].
Assume without loss of generality that x∗ = [ε−1x], that is, [[ε−1x] − �, [ε−1x] +
� − 1] is an h-valley. (Starting the walk from x∗ instead of [ε−1x] changes the
right-hand side of (5.1) by at most a(log 2 + β + 2|θ | + 2c), which goes to 0 as
a → 0.) When θ = c, substituting α(x∗,h,�) in the expectation on the right-hand
side of (6.3), we get

H
U

δ,β(c, t, x) ≤ lim sup
ε→0

ε logE0
[
e

∑[ε−1t]−1
i=0 [βV (T[ε−1x]+Xi

ω)+2cZi+11{Xi<0}]]
+ cx − t log cosh(c),

(6.6)

where we shifted the starting point of the RW (Xi)i≥0 to the origin.
Due to each complete left excursion starting from the origin, the

∑
2cZi+1 ×

1{Xi<0} term in the exponent inside the expectation on the right-hand side of (6.6)
increases precisely by 2c, and this sum does not increase (but it can decrease)
due to an incomplete left excursion. On the other hand, complete and incomplete
right excursions starting from the origin have no effect on this sum. We deduce
that

(6.7)
E0

[
e

∑[ε−1t]−1
i=0 [βV (T[ε−1x]+Xi

ω)+2cZi+11{Xi<0}]]
≤ E0

[
e
β

∑[ε−1t]−1
i=0 V (T[ε−1x]+Xi

ω)+2cL0(X0,[ε−1t])],
where

(6.8) L0(x0,n) =
n∑

i=1

1{xi−1=−1,xi=0}

counts the number of complete left excursions of a nearest-neighbor path x0,n with
x0 = 0 and n ∈ N.

For every j, k ∈ N ∪ {0}, let Sj = ∑j
i=1 1{−�≤Xi≤�−1}, σk = inf{j ≥ 0 : Sj = k}

and Y �
k = Xσk

. It is easy to see that (Y �
k )k≥0 is a Markov process on [−�, � − 1]

starting from the origin, and it has the following transition probabilities:

P0
(
Y �

k = y − 1 | Y �
k−1 = y

) = P0
(
Y �

k = y + 1 | Y �
k−1 = y

) = 1/2

if y ∈ [−� + 1, � − 2],
P0

(
Y �

k = −� | Y �
k−1 = −�

) = P0
(
Y �

k = −� + 1 | Y �
k−1 = −�

) = 1/2, and

P0
(
Y �

k = � − 1 | Y �
k−1 = � − 1

) = P0
(
Y �

k = � − 2 | Y �
k−1 = � − 1

) = 1/2.

(6.9)

In words, (Y �
k )k≥0 is a reflected RW on [−�, � − 1] and subject to geometric hold-

ing times (with rate 1/2) at −� and � − 1. With this notation and observations, we
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control the right-hand side of (6.7) as follows:

E0
[
e
β

∑[ε−1t]−1
i=0 V (T[ε−1x]+Xi

ω)+2cL0(X0,[ε−1t])]

=
[ε−1t]∑
m=1

E0
[
e
β

∑[ε−1t]−1
i=0 V (T[ε−1x]+Xi

ω)+2cL0(X0,[ε−1t])1{S[ε−1t]=m}
]

≤
[ε−1t]∑
m=1

E0
[
e

2cL0(X0,[ε−1t])1{S[ε−1t]=m}
]
emhβ+([ε−1t]−m)β

=
[ε−1t]∑
m=1

E0
[
e

2cL0(Y
�
0,m)1{S[ε−1t]=m}

]
emhβ+([ε−1t]−m)β(6.10)

≤
[ε−1t]∑
m=1

E0
[
e

2cL0(Y
�
0,m)]

emhβ+([ε−1t]−m)β

≤
[ε−1t]∑
m=1

emJ�(2c)+mhβ+([ε−1t]−m)β+o(m)

= e[ε−1t]max{β,J�(2c)+hβ}+o([ε−1t]).
Here,

J�(2c) := lim sup
m→∞

1

m
logE0

[
e

2cL0(Y
�
0,m)]

.

The proof of the following proposition is deferred to Appendix E.

PROPOSITION 6.1. For every c ∈ (0,∞), the limit

J (2c) := lim
n→∞

1

n
logE0

[
e2cL0(X0,n)]

exists. Moreover,

lim
�→∞J�(2c) = J (2c) = log cosh(c).

Putting together (6.6), (6.7) and (6.10) (and adapting the same argument to the
θ = −c case), we get

H
U

δ,β(±c, t, x)

≤ lim inf
h→0

lim inf
�→∞ lim sup

ε→0
ε logE

π(x∗,h,�),ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)±cX[ε−1t]]
≤ lim

h→0
lim

�→∞ t
(
max

{
β,J�(2c) + hβ

} − log cosh(c)
) ± cx

= t
[
β − log cosh(c)

]+ ± cx.

(6.11)
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Note that the inequality given by the first and the last lines of (6.11), namely

H
U

δ,β(±c, t, x) ≤ t[β − log cosh(c)]+ ± cx, follows from (6.5). The novelty here

is that this inequality is achieved through the policies π(x∗,h,�) for both −c and c.
Finally, for any θ ∈ [−c, c], let r = θ+c

2c
∈ [0,1]. Then θ = (1 − r)(−c) + rc is

a convex combination. For every h ∈ (0,1) and � ∈ N, Hölder’s inequality gives

E
π(x∗,h,�),ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]

≤ (
E

π(x∗,h,�),ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)−cX[ε−1t]])(1−r)

× (
E

π(x∗,h,�),ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+cX[ε−1t]])r .
Therefore, by (6.11),

(6.12)

H
U

δ,β(θ, t, x) ≤ lim inf
h→0

lim inf
�→∞ lim sup

ε→0
ε

× logE
π(x∗,h,�),ω

[ε−1x]
[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+θX[ε−1t]]
≤ t

[
β − log cosh(c)

]+ + θx.

7. Partial control: Lower bounds and the effective Hamiltonian. As in the
previous section, we consider the case δ ∈ (0,1) under the assumptions (1.4) and
(1.5).

7.1. Uniform lower bound. For every ε > 0, t > 0, x ∈ R, ω ∈ �, θ ∈ R and
α ∈A[ε−1t](c) (see (6.2)),

Mj = Mj(ω, θ,α) :=
j−1∑
i=0

(
θ + αi

([
ε−1t

]
,ω,Xi

))
Zi+1

defines a martingale (Mj )0≤j≤[ε−1t] under P[ε−1x], with |Mj − Mj−1| ≤ |θ | + c.
Therefore, for every b > 0,

P[ε−1x]
(
M[ε−1t] ≤ −[

ε−1t
]
b
) ≤ e

− [ε−1t]b2

2(|θ |+c)2

by the Azuma–Hoeffding inequality (see [15], Section 12.2).
For every h ∈ (0,1), � ∈ N, a ∈ (0, t), P-a.e. ω and sufficiently small ε > 0,

we know by Lemma 4.2 that there exists an h-hill of the form [x∗ − �, x∗ + � −
1] contained in [ε−1(x − a), ε−1(x + a)]. Recall from the proof of Lemma 4.3
that A[ε−1t](x∗, h, �) is the event that the particle marches deterministically from
[ε−1x] to x∗ (which takes less than ε−1a many steps) and then spends the rest of
the [ε−1t] units of time in this h-hill. It follows from Lemma 4.1 that

P[ε−1x]
(
A[ε−1t]

(
x∗, h, �

)) ≥ e[ε−1t] log cos(π/(2�+1))−ε−1a log 2+o(ε−1t).
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Take a ∈ (0, t) sufficiently small and � ∈ N sufficiently large (both depending on
b from the previous paragraph, which at this point is arbitrary) so that

t
∣∣log cos

(
π/(2� + 1)

)∣∣ + a log 2 <
tb2

2(|θ | + c)2 .

Then

P[ε−1x]
(
A[ε−1t]

(
x∗, h, �

) \ {
M[ε−1t] ≤ −[

ε−1t
]
b
})

≥ e[ε−1t] log cos(π/(2�+1))−ε−1a log 2+o(ε−1t).

Restricting the expectation on the right-hand side of (6.4) on this set difference
gives

E[ε−1x]
[
e

∑[ε−1t]−1
i=0 [βV (TXi

ω)+(θ+αi([ε−1t],ω,Xi))Zi+1]]
≥ E[ε−1x]

[
e
β

∑[ε−1t]−1
i=0 V (TXi

ω)+M[ε−1t]1A[ε−1t](x∗,h,�)\{M[ε−1t]≤−[ε−1t]b}
]

≥ e[ε−1t](βh+log cos(π/(2�+1))−b)−ε−1a(βh+log 2)+o(ε−1t).

Taking ε log of both sides, then sending ε → 0, a → 0, h → 1, � → ∞, and finally
taking b → 0, we get the following uniform lower bound:

(7.1) H
L

δ,β(θ, t, x) ≥ t
(
β − log cosh(c)

) + θx.

7.2. Lower bounds when θ ≥ 0 and �β(θ − c) > β . We begin with a prelimi-
nary computation. For every ξ ∈ R, let

gβ,θ−c(ω, ξ) = 1

2
eβV (ω)+ξ+Fβ,θ−c(ω,1) + 1

2
eβV (ω)−ξ+Fβ,θ−c(ω,−1),

where Fβ,θ−c is the corrector defined in (4.12).

LEMMA 7.1. If �β(θ − c) > β , then

(7.2) gβ,θ−c(ω, θ − c) = e�β(θ−c)

for every ω ∈ �. Moreover, the following equivalence holds:

(7.3)
gβ,θ−c(ω, θ + c) ≥ gβ,θ−c(ω, θ − c)

⇐⇒ θ + Fβ,θ−c(ω,1) ≥ −θ + Fβ,θ−c(ω,−1).

PROOF. The equality in (7.2) is immediate from (4.15). The equivalence in
(7.3) is shown as follows:

gβ,θ−c(ω, θ + c) ≥ gβ,θ−c(ω, θ − c)
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⇐⇒ 1

2
e(θ+c)+Fβ,θ−c(ω,1) + 1

2
e−(θ+c)+Fβ,θ−c(ω,−1)

≥ 1

2
e(θ−c)+Fβ,θ−c(ω,1) + 1

2
e−(θ−c)+Fβ,θ−c(ω,−1)

⇐⇒ eθ+Fβ,θ−c(ω,1)

(
ec − e−c

2

)
≥ e−θ+Fβ,θ−c(ω,−1)

(
ec − e−c

2

)

⇐⇒ θ + Fβ,θ−c(ω,1) ≥ −θ + Fβ,θ−c(ω,−1). �

7.2.1. Lower bound when θ > c and �β(θ − c) > β . For every ω ∈ �,

θ +Fβ,θ−c(ω,1) > c > 0 > −c > −(
θ +Fβ,θ−c(T−1ω,1)

) = −θ +Fβ,θ−c(ω,−1)

holds by (4.14). Hence,

(7.4) gβ,θ−c(ω, θ + c) ≥ gβ,θ−c(ω, θ − c) = e�β(θ−c)

by Lemma 7.1. Therefore, for every ε > 0, t > 0, x ∈ R, α ∈ A[ε−1t](c) and P-
a.e. ω,

E[ε−1x]
[
e

∑[ε−1t]−1
i=0 [βV (TXi

ω)+(θ+αi([ε−1t],ω,Xi))Zi+1]]

= E0

[
exp

([ε−1t]−1∑
i=0

[
βV (T[ε−1x]+Xi

ω)

+ (
θ + αi

([
ε−1t

]
,ω,

[
ε−1x

] + Xi

))
Zi+1 + Fβ,θ−c(T[ε−1x]+Xi

ω,Zi+1)
])]

× eo(ε−1t)

= E0

[
exp

([ε−1t]−2∑
i=0

[
βV (T[ε−1x]+Xi

ω)

+ (
θ + αi

([
ε−1t

]
,ω,

[
ε−1x

] + Xi

))
Zi+1 + Fβ,θ−c(T[ε−1x]+Xi

ω,Zi+1)
])

× gβ,θ−c

(
T[ε−1x]+X[ε−1t]−1

ω,θ + α[ε−1t]−1
([

ε−1t
]
,ω,

[
ε−1x

] + X[ε−1t]−1
))]

× eo(ε−1t)

≥ E0

[
exp

([ε−1t]−2∑
i=0

[
βV (T[ε−1x]+Xi

ω)

+ (
θ + αi

([
ε−1t

]
,ω,

[
ε−1x

] + Xi

))
Zi+1 + Fβ,θ−c(T[ε−1x]+Xi

ω,Zi+1)
])]
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× e�β(θ−c)+o(ε−1t)

≥ · · · ≥ e[ε−1t]�β(θ−c)+o(ε−1t).

Here, the first equality follows from Lemma B.2 (in Appendix B). Recalling (6.4),
we conclude that

(7.5) H
L

δ,β(θ, t, x) ≥ t
(
�β(θ − c) − log cosh(c)

) + θx.

7.2.2. Lower bound when 0 < θ < c and β < �β(θ − c) ≤ log cosh(c). For
every ω ∈ �,

(θ − c) − Fβ,θ−c(ω,−1) ≥ logE0
[
e−�β(θ−c)τ11{τ1<∞}

]
≥ logE0

[
e− log cosh(c)τ11{τ1<∞}

]
= log

(
cosh(c) −

√
cosh2(c) − 1

) = −c.

Here, the first inequality follows from (4.14), and the first equality is shown in
(E.1) (in Appendix E). Therefore,

θ − Fβ,θ−c(ω,−1) ≥ 0 ≥ −(
θ − Fβ,θ−c(T1ω,−1)

) = −θ − Fβ,θ−c(ω,1),

and (7.4) follows from Lemma 7.1. Hence, the argument immediately below (7.4)
is applicable, and

E[ε−1x]
[
e

∑[ε−1t]−1
i=0 [βV (TXi

ω)+(θ+αi([ε−1t],ω,Xi))Zi+1]] ≥ e[ε−1t]�β(θ−c)+o(ε−1t)

for every ε > 0, t > 0, x ∈ R, α ∈ A[ε−1t](c) and P-a.e. ω. Recalling (6.4) as
before, we conclude that

(7.6) H
L

δ,β(θ, t, x) ≥ t
(
�β(θ − c) − log cosh(c)

) + θx.

7.2.3. Lower bound when 0 < θ < c and β < log cosh(c) < �β(θ − c). It
follows from Proposition 4.8(a,b,c) and the intermediate value theorem that there
exists a unique θ̄ (β, c) ∈ (0, c) such that

�β

(
θ̄ (β, c) − c

) = log cosh(c).

By Proposition 4.8(a), the map β �→ θ̄ (β, c) is increasing for β ∈ (0, log cosh(c)),
with θ̄ (0+, c) = 0. For every θ ∈ (0, θ̄ (β, c)), there is a unique β̄ = β̄(θ, c) ∈ (0, β)

such that θ = θ̄ (β̄, c). Using these quantities, we get the following bound: for every
t > 0 and x ∈ R,

(7.7)
H

L

δ,β(θ, t, x) ≥ H
L

δ,β̄(θ, t, x) ≥ t
(
�β̄(θ − c) − log cosh(c)

) + θx

= t
(
�β̄

(
θ̄ (β̄, c) − c

) − log cosh(c)
) + θx = θx.

Here, the first inequality uses the fact that V (·) ≥ 0, and the second inequality
follows from (7.6) which is applicable since β̄ < �β̄(θ − c) = log cosh(c).
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7.2.4. Lower bound when θ = 0. Since V (·) ≥ 0, it is clear from (5.2) that, for
every t > 0 and x ∈ R,

(7.8) H
L

δ,β(0, t, x) ≥ 0.

7.3. The effective Hamiltonian.

PROOF OF THEOREM 2.2. If 0 ≤ θ ≤ c, then the bounds (6.12) and (7.1)
match for every t > 0 and x ∈ R,

(7.9) H
L

δ,β(θ, t, x) = H
U

δ,β(θ, t, x) = t
(
β − log cosh(c)

) + θx,

and taking the infimum in (1.1) over the set {π(x∗,h,�) : 0 < h < h0, � > �0} for any
h0 > 0 and �0 ∈ N does not change the limit in (1.2). (Regarding the choice of x∗,
see Remark 5.1.)

If θ ≥ 0 and �β(θ − c) = β , then the bounds (6.5) and (7.1) match for every
t > 0 and x ∈ R,

(7.10) H
L

δ,β(θ, t, x) = H
U

δ,β(θ, t, x) = t
(
β − log cosh(c)

) + θx,

and ←−π is asymptotically optimal as ε → 0.
If θ > c and �β(θ − c) > β , then the bounds (6.5) and (7.5) match for every

t > 0 and x ∈ R,

(7.11) H
L

δ,β(θ, t, x) = H
U

δ,β(θ, t, x) = t
(
�β(θ − c) − log cosh(c)

) + θx,

and ←−π is asymptotically optimal as ε → 0.
If θ < 0, the analogous results follow from symmetry. The existence of the limit

in (1.2) and the validity of the identity in (1.3) follow immediately from (7.9),
(7.10) and (7.11). Finally, setting t = 1 and x = 0, we deduce (2.3). �

PROOF OF THEOREM 2.3. Recall from Section 7.2.3 that there exists a unique
θ̄ (β, c) ∈ (0, c) such that

�β

(
θ̄ (β, c) − c

) = log cosh(c).

If 0 ≤ θ < θ̄(β, c), then the bounds (6.12), (7.7) and (7.8) match for every t > 0
and x ∈ R,

(7.12) H
L

δ,β(θ, t, x) = H
U

δ,β(θ, t, x) = θx,

and taking the infimum in (1.1) over the set {π(x∗,h,�) : 0 < h < h0, � > �0} for any
h0 > 0 and �0 ∈ N does not change the limit in (1.2). (Regarding the choice of x∗,
see Remark 5.1.)

If θ ≥ 0 and �β(θ − c) = β , then the bounds (6.5) and (7.1) match for every
t > 0 and x ∈ R,

(7.13) H
L

δ,β(θ, t, x) = H
U

δ,β(θ, t, x) = t
(
β − log cosh(c)

) + θx,

and ←−π is asymptotically optimal as ε → 0.
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If θ ≥ θ̄ (β, c) and �β(θ − c) > β , then the bounds (6.5), (7.5) and (7.6) match
for every t > 0 and x ∈ R,

(7.14) H
L

δ,β(θ, t, x) = H
U

δ,β(θ, t, x) = t
(
�β(θ − c) − log cosh(c)

) + θx,

and ←−π is asymptotically optimal as ε → 0.
If θ < 0, the analogous results follow from symmetry. The existence of the limit

in (1.2) and the validity of the identity in (1.3) follow immediately from (7.12),
(7.13) and (7.14). Finally, setting t = 1 and x = 0, we deduce (2.4). �

8. Homogenization of the Bellman equation. We start with a lemma which
excludes the full control regime.

LEMMA 8.1. For every ω ∈ �, δ ∈ [0,1), β > 0 and θ ∈ R, the function
u(·, ·,ω) = u(·, ·,ω | δ,β, θ) [defined in (1.1)] satisfies the following Lipschitz con-
dition: for every m,n ∈ N and x, y ∈ Z,

(8.1)

∣∣u(n, x,ω) − u(m,y,ω)
∣∣

≤ (
β + |θ |)|n − m| +

(
β + |θ | − log

(
1 − δ

2

))
|x − y|.

PROOF. It follows easily from (1.1) that
∣∣u(n, x,ω) − u(m,x,ω)

∣∣ ≤ (
β + |θ |)|n − m| and

u
(
m + |x − y|, x,ω

) − u(m,y,ω) ≥ log
(

1 − δ

2

)
|x − y|

for every m,n ∈ N and x, y ∈ Z. The second inequality is obtained by consider-
ing the event that the particle marches from x to y in |x − y| steps. A suitable
combination of these inequalities gives (8.1). �

PROOF OF THEOREM 2.4. If δ ∈ [0,1], β > 0 and θ ∈R, then for P-a.e. ω,

lim
ε→0

uε(t, x,ω) = uo(t, x) = tH δ,β(θ) + θx

for every t > 0 and x ∈ R by Theorems 1.4, 2.1, 2.2 and 2.3. Moreover, at t = 0,

lim
ε→0

uε(0, x,ω) = lim
ε→0

εθ
[
ε−1x

] = θx = uo(0, x).

It remains to improve this pointwise limit on [0,∞) × R to a uniform limit on
compact subsets of [0,∞) ×R.
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If δ ∈ [0,1), then Lemma 8.1 gives the following bounds: for every ε > 0, s, t ≥
0 and x, y ∈R,∣∣uε(t, x,ω) − uε(s, y,ω)

∣∣ ≤ ε
(
β + |θ |)∣∣[ε−1t

] − [
ε−1s

]∣∣
+ ε

(
β + |θ | − log

(
1 − δ

2

))∣∣[ε−1x
] − [

ε−1y
]∣∣

≤ (
β + |θ |)|t − s| +

(
β + |θ | − log

(
1 − δ

2

))
|x − y|

+ ε

(
2β + 2|θ | − log

(
1 − δ

2

))
.

(8.2)

For every ε′ > 0, tmax > 0 and B > 0, partition the rectangle [0, tmax] × [−B,B]
into finitely many (say N ) identical squares with side length ε′

12(β + |θ | −
log(1−δ

2 ))−1. Fix a point (si, yi) in the ith square. By pointwise convergence,

there exists an εi > 0 such that εi(2β + 2|θ | − log(1−δ
2 )) < ε′

6 and |uε(si, yi,ω) −
uo(si, yi)| < ε′/3 whenever 0 < ε < εi . If (t, x) is any point in the ith square, then∣∣uε(t, x,ω) − uo(t, x)

∣∣ ≤ ∣∣uε(t, x,ω) − uε(si, yi,ω)
∣∣ + ∣∣uε(si, yi,ω) − uo(si, yi)

∣∣
+ ∣∣uo(si, yi) − uo(t, x)

∣∣
<

(
ε′

12
+ ε′

12
+ ε′

6

)
+ ε′

3
+

(
ε′

12
+ ε′

12
+ ε′

6

)
= ε′

by (8.2). Taking ε0 = min{ε1, . . . , εN } concludes the proof of uniform convergence
on [0, tmax] × [−B,B].

If δ = 1, then the walk under bang-bang policies is not elliptic and Lemma 8.1 is
not applicable. Therefore, we prove the desired uniform convergence by revisiting
Sections 5.1 and 5.2 where we obtained upper and lower bounds for uε(t, x,ω)

with error bounds. Fix tmax > 0 and B > 0.

• For every h ∈ (0,1), a > 0, P-a.e. ω and sufficiently small ε > 0 (depending on
ω, h, a, B), (5.3) gives

uε(t, x,ω) ≤ θx + tmaxβh + a
(
β + |θ |) + ε|θ |

uniformly for (t, x) ∈ [0, tmax]×[−B,B]. Here, the uniformity in x comes from
Lemma 4.2.

• When θ ≥ 0, for P-a.e. ω, (5.5) gives

uε(t, x,ω) ≤ t
(
βE

[
V (·)] − θ

) + θx − ε

[ε−1t]−1∑
i=0

Gβ(T[ε−1x]−iω,−1) + εθ

= t
(
βE

[
V (·)] − θ

) + θx + εo
(
ε−1tmax

) + εθ



NONCONVEX HOMOGENIZATION FOR 1-D CONTROLLED RW 73

uniformly for (t, x) ∈ [0, tmax]×[−B,B]. Here, the uniformity in x comes from
Lemma B.2 (in Appendix B) which is applicable since Gβ [defined in (5.7)] is
a bounded and centered cocycle.

• When θ ≥ βE[V (·)], for P-a.e. ω, (5.9) gives

uε(t, x,ω) ≥ ε
[
ε−1t

](
βE

[
V (·)] − θ

) + εθ
[
ε−1x

] + εo
(
ε−1tmax

)
≥ t

(
βE

[
V (·)] − θ

) + θx + εo
(
ε−1tmax

) − εθ

uniformly for (t, x) ∈ [0, tmax] × [−B,B]. Again, the uniformity in x comes
from Lemma B.2.

• When 0 < θ < βE[V (·)], (5.11) and the lower bound in the previous case give

uε(t, x,ω | δ,β, θ) ≥ uε(t, x,ω | δ, β̄, θ)

≥ t
(
β̄E

[
V (·)] − θ

) + θx + εo
(
ε−1tmax

) − εθ

= θx + εo
(
ε−1tmax

) − εθ

uniformly for (t, x) ∈ [0, tmax] × [−B,B].
• When θ = 0, (5.13) gives

uε(t, x,ω) ≥ 0

uniformly for (t, x) ∈ [0,∞) ×R.

Combining these upper and lower bounds (whose analogs hold by symmetry when
θ < 0), uniform convergence on [0, tmax] × [−B,B] follows. �

APPENDIX A: PROOF OF EXISTENCE OF THE TILTED FREE ENERGY
VIA SUBADDITIVITY

With future use in mind, we consider a more general model of RW in random
potential on Z

d with d ≥ 1. The proof of Theorem A.1 that we give below fol-
lows [29], Section 2 closely and does not require any additional effort due to this
generality.

Denote by (Xi)i≥0 the SSRW on Z
d with Zi+1 := Xi+1 − Xi ∈ U :=

{±e1, . . . ,±ed}. Let (�,F,P) be a probability space on which a collection
{Tz : � → �}z∈U of invertible measure-preserving transformations act ergodically.
Fix a bounded and measurable function � : � × U → R. For every n ∈ N ∪ {0},
x, y ∈ Z

d and ω ∈ �, define

f (n, x, y,ω) = Ex

[
e

∑n−1
i=0 �(TXi

ω,Zi+1)1{Xn=y}
]

and

F(n, x,ω) = Ex

[
e

∑n−1
i=0 �(TXi

ω,Zi+1)
]
.

Here, Ex stands for expectation with respect to the law of (Xi)i≥0 when X0 = x.
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THEOREM A.1. For P-a.e. ω, the limit

(A.1) �(�) = lim
n→∞

1

n
logF(n,0,ω)

exists. Moreover, �(�) is a deterministic quantity.

PROOF. Assume without loss of generality that � : �×U → [ψo,0] for some
ψo > −∞. [Otherwise, we can subtract an appropriate constant from � , take the
limit in (A.1), and add the constant back.] For every c > 0, t ≥ 0, x, y ∈ Z

d and
ω ∈ �, define

(A.2) fc(t, x, y,ω) = sup
n≥0

[
f (n, x, y,ω)e−c|n−t |].

We make several observations. First,

(A.3) −∞ < logfc(t, x, y,ω) ≤ 0

since �(·, ·) ≤ 0. Second, it is clear from (A.2) that

logfc(t, x, y,ω) = logfc(t,0, y − x,Txω) and(A.4) ∣∣logfc(t, x, y,ω) − logfc

(
t ′, x, y,ω

)∣∣ ≤ c
∣∣t − t ′

∣∣.(A.5)

Third, for every z, z′ ∈ U and a, b ∈ {0,1},
fc

(
t, x + az, y + bz′,ω

) = sup
n≥0

[
f

(
n,x + az, y + bz′,ω

)
e−c|n−t |]

≥ sup
n≥0

[
f

(
n + a + b, x + az, y + bz′,ω

)
e−c|n+a+b−t |]

≥
(

eψo

2d

)a+b

sup
n≥0

[
f (n, x, y,ω)e−c|n+a+b−t |]

≥
(

eψo−c

2d

)a+b

fc(t, x, y,ω)

since the probability of moving from x + z to x (resp., from y to y + z′) in one
step is equal to 1

2d
. Therefore, there exists a constant c′ = c + |ψo| + log(2d) > 0

such that

(A.6)
∣∣logfc(t, x, y,ω) − logfc

(
t, x′, y′,ω

)∣∣ ≤ c′(∣∣x − x′∣∣
1 + ∣∣y − y′∣∣

1

)
,

where | · |1 denotes the �1-norm on R
d . Fourth,

(A.7) logfc(t + s,0, y,ω) ≥ logfc(t,0, x,ω) + logfc(s, x, y,ω)
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since

fc(t + s,0, y,ω) = sup
n≥0

[
f (n,0, y,ω)e−c|n−(t+s)|]

= sup
n,m≥0

[
f (n + m,0, y,ω)e−c|(n−t)+(m−s)|]

= sup
n,m≥0

[∑
x′

f
(
n,0, x′,ω

)
f

(
m,x′, y,ω

)
e−c|(n−t)+(m−s)|

]

≥ sup
n,m≥0

[
f (n,0, x,ω)f (m,x, y,ω)e−c|n−t |−c|m−s|]

= fc(t,0, x,ω)fc(s, x, y,ω).

It follows from [29], Theorem 2.1 (which is in turn based on Liggett’s subadditive
ergodic theorem [19], Theorem 1.10) that (A.3)–(A.7) ensure the existence of a
deterministic, Lipschitz continuous and concave function λc :Rd → (−∞,0] such
that

(A.8)
P

(
lim

n→∞
1

n
logfc(n,0, xn,ω) = λc(ξ) for every ξ ∈ R

d

and (xn)n≥1 such that
xn

n
→ ξ

)
= 1.

We are ready to establish upper and lower bounds that will imply the existence
of the limit in (A.1). For every c > 0 and P-a.e. ω,

lim sup
n→∞

1

n
logF(n,0,ω) = lim sup

n→∞
1

n
log

∑
y∈Zd :|y|1≤n

f (n,0, y,ω)

= lim sup
n→∞

sup
y∈Zd :|y|1≤n

1

n
logf (n,0, y,ω)

≤ lim sup
n→∞

sup
y∈Zd :|y|1≤n

1

n
logfc(n,0, y,ω)

= sup
ξ∈Rd :|ξ |1≤1

λc(ξ).

Here, the last equality follows from (A.8) and the continuity of ξ �→ λc(ξ) as in
the proof of Varadhan’s integral lemma (see [10], Theorem 4.3.1). It is clear from
(A.2) that fc(·, ·, ·, ·) decreases as c increases, and so does λc(ξ). Therefore,

λ(ξ) := lim
c→∞λc(ξ) = inf

c>0
λc(ξ) ∈ [−∞,0]

exists. Moreover, c �→ λc(ξ) is convex since it is the limit of the supremum of
a collection of linear functions. Using Sion’s minimax theorem (see [26], Corol-
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lary 3.5), we deduce the following upper bound:

lim sup
n→∞

1

n
logF(n,0,ω) ≤ inf

c>0
sup

ξ∈Rd :|ξ |1≤1
λc(ξ) = sup

ξ∈Rd :|ξ |1≤1
inf
c>0

λc(ξ)

= sup
ξ∈Rd :|ξ |1≤1

λ(ξ) =: �(�) ≤ 0.

Obtaining a matching lower bound is equivalent to showing that

(A.9) lim inf
n→∞

1

n
logF(n,0,ω) ≥ λ(ξ)

for every ξ ∈ R
d such that |ξ |1 ≤ 1. There is nothing to prove if λ(ξ) = −∞. (In

fact, this case can be ruled out.) Assume λ(ξ) = −� > −∞. Fix an arbitrary ε > 0
and choose c ≥ (� + 1)ε−1. Then λc(ξ) ≥ −� by monotonicity in c. Recalling
(A.2) and (A.8), we see that

sup
m≥0

[
f (m,0, xn,ω)e−c|m−n|] ≥ e−n�+o(n)

for P-a.e. ω and every (xn)n≥1 such that xn

n
→ ξ . If |m − n| ≥ nε, then

f (m,0, xn,ω)e−c|m−n| ≤ e−ncε ≤ e−n(�+1).

Therefore,

e−n�+o(n) ≤ sup
m≥0:|m−n|<nε

[
f (m,0, xn,ω)e−c|m−n|] ≤ sup

m≥0:|m−n|<nε

F (m,0,ω).

Observe that | logF(m,0,ω) − logF(n,0,ω)| ≤ |m − n||ψo|, which gives

F(n,0,ω) ≥ e−n�−nε|ψo|+o(n).

Since ε > 0 is arbitrary, the desired lower bound (A.9) follows. �

REMARK A.2. There are alternative proofs of Theorem A.1. One of the au-
thors established in [30] a so-called level-2 LDP from the point of view of the par-
ticle performing nearest-neighbor random walk in random environment (RWRE)
on Z

d , from which the existence of the limit in (A.1) follows as a corollary by
Varadhan’s integral lemma. That paper built upon the Ph.D. thesis of Rosenbluth
[25] who in turn adapted the work of Kosygina, Rezakhanlou and Varadhan [17]
on the homogenization of second-order HJ equations with random convex Hamil-
tonians. This approach is certainly more technical than the short and subadditivity-
based proof we gave above, but it has the advantage of providing two variational
formulas for �(�) (see Appendix C for these formulas in our setting). This re-
sult was subsequently generalized in [23] to random walks with arbitrary set of
allowed steps (including directed walks). In the latter setting, Rassoul-Agha and
Seppäläinen [22] also gave a proof of existence via subadditivity. Finally, assum-
ing the existence of �(�), several variational formulas for it were given in [24]
via a potential-theoretic approach which results in much shorter proofs than those
in [23, 25, 30].
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APPENDIX B: CENTERED COCYCLES AND SUBLINEARITY OF
PATH SUMS

DEFINITION B.1. A function F : � × {−1,1} → R is said to be a cocycle if
F(·,1) is F -measurable and F(ω,−1) = −F(T−1ω,1) for every ω ∈ �. F is said
to be a centered cocycle if E[F(·,1)] = 0.

The set of centered cocycles is denoted by K0.

LEMMA B.2. If F ∈K0 is bounded, then for every B > 0 and P-a.e. ω,

lim
n→∞

1

n
sup

{∣∣∣∣∣
n−1∑
i=0

F(Txi
ω, zi+1)

∣∣∣∣∣ :

|x| ≤ B,x0 = [nx], zi+1 = xi+1 − xi = ±1

}
= 0.

PROOF. For every y ∈ Z, define

f (ω,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y−1∑
i=0

F(Tiω,1) if y > 0,

0 if y = 0,
−1∑
i=y

F (Tiω,1) if y < 0.

Since F is bounded, there exists a K > 0 such that

(B.1)
∣∣f (ω,y) − f

(
ω,y′)∣∣ ≤ K

∣∣y − y′∣∣
for every y, y′ ∈ Z. Since F is centered, f (ω,y) = o(|y|) for P-a.e. ω by the
Birkhoff ergodic theorem. Hence, for every ε,B > 0 and k ∈ N, there exists an
n0(ω, ε,B, k) such that

(B.2)
1

n

∣∣∣∣f
(
ω,

jn(B + 1)

k

)∣∣∣∣ < ε

for every integer j ∈ [−k, k] and n ≥ n0. Combining (B.1) and (B.2), we deduce
that

(B.3) lim
n→∞

1

n
sup

{∣∣f (ω,y)
∣∣ : |y| ≤ n(B + 1)

} = 0.

Since F is a cocycle, telescoping gives
∑n−1

i=0 F(Txi
ω, zi+1) = f (ω,xn) −

f (ω, [nx]) for any nearest-neighbor path x0,n with x0 = [nx]. Note that |xn| ≤
|[nx]| + n ≤ n(B + 1). Therefore, the desired result follows from (B.3). �
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APPENDIX C: VARIATIONAL FORMULAS FOR THE TILTED
FREE ENERGY

We present here two variational formulas for the tilted free energy [defined
in (1.6)] in our one-dimensional nearest-neighbor setting. These are provided for
completeness and are not used elsewhere in the paper, except that some notation is
used also in Appendix D.

The variational formulas are

�β(θ) = inf
F∈K0

P- ess sup
ω

{
βV (ω)

(C.1)

+ log
(

1

2
eθ+F(ω,1) + 1

2
e−θ+F(ω,−1)

)}
and

�β(θ) = sup
(q,φ)

∫ [
βV (ω) − I

(
q(ω) | p(θ)

)]
φ(ω)dP(ω) + log cosh(θ).(C.2)

In (C.2), p(θ) = eθ/(eθ + e−θ ),

I (q | p) = q log(q/p) + (1 − q) log
(
(1 − q)/(1 − p)

)
,

and the supremum is taken over all F -measurable q : � → (0,1) and φ : � →
(0,∞) such that E[φ(·)] = 1 and

q(T−1ω)φ(T−1ω) + (
1 − q(T1ω)

)
φ(T1ω) = φ(ω)

for P-a.e. ω. The last equality implies that the probability measure φ dP is invari-
ant for the so-called environment Markov chain (TXi

ω)i≥0 induced by the RWRE
with probability q(Txω) of jumping to the right at the point x in the environ-
ment ω. These variational formulas follow, for example, from [30], Theorem 2.1.
See Remark A.2 for further references.

When �β(θ) > β , the variational problems in (C.1) and (C.2) are solved as fol-
lows. Assume without loss of generality that θ > 0. (Recall from Proposition 4.8(c)
that �β(0) = β .) Define

qβ,θ (ω) = 1

2
eβV (ω)+θ+Fβ,θ (ω,1)−�β(θ).

Then (4.15) readily implies

1 − qβ,θ (ω) = 1

2
eβV (ω)−θ+Fβ,θ (ω,−1)−�β(θ) and

rβ,θ (ω) := 1 − qβ,θ (ω)

qβ,θ (ω)
= e−2θ−Fβ,θ (T−1ω,1)−Fβ,θ (ω,1).

Note that

(C.3) 0 <
(
E0

[
e−�β(θ)τ11{τ1<∞}

])2 ≤ rβ,θ (ω) < e2(β−�β(θ)) < 1
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by (4.14). We consider the RWRE with probability qβ,θ (Txω) of jumping to the

right at the point x in the environment ω. It induces a probability measure P̂
β,θ,ω
0

on nearest-neighbor paths starting at 0. Ê
β,θ,ω
0 denotes expectation under P̂

β,θ,ω
0 .

With this notation, it is clear from (C.3) that E[Êβ,θ,ω
0 [τ1]] < ∞. Therefore,

ψβ,θ (ω) :=
∞∑
i=0

P̂
β,θ,ω
0 (Xi = 0)

satisfies E[ψβ,θ (·)] < ∞ (see [30], Theorem 5.17) and we define

φβ,θ (ω) = ψβ,θ (ω)

E[ψβ,θ (·)] .

PROPOSITION C.1. Assume (1.4) and (1.5). If θ > 0 and �β(θ) > β , then:

(a) the infimum in (C.1) is attained at Fβ,θ , and
(b) the supremum in (C.2) is attained at (qβ,θ , φβ,θ ).

PROOF. (a) This follows immediately from (4.15).
(b) It is easy to show that

qβ,θ (T−1ω)φβ,θ (T−1ω) + (
1 − qβ,θ (T1ω)

)
φβ,θ (T1ω) = φβ,θ (ω)

for P-a.e. ω (see [30], Theorem 5.17). By Kozlov’s lemma (see [18], Chapter 1,
Lemma 1), the probability measure φβ,θ dP is ergodic for the RWRE defined by

qβ,θ . Therefore, for P-a.e. ω and P̂
β,θ,ω
0 -a.s.,∫ [

qβ,θ (ω)Fβ,θ (ω,1) + (
1 − qβ,θ (ω)

)
Fβ,θ (ω,−1)

]
φβ,θ (ω)dP(ω)

= lim
n→∞

1

n

n−1∑
i=0

Fβ,θ (TXi
ω,Zi+1) = 0.

(C.4)

Here, the first equality holds by the Birkhoff ergodic theorem, and the second
equality follows from Lemma B.2. We use (C.4) to deduce that∫ [

βV (ω) − I
(
qβ,θ (ω) | p(θ)

)]
φβ,θ (ω)dP(ω) + log cosh(θ)

=
∫ [

βV (ω) − qβ,θ (ω)
{
βV (ω) + Fβ,θ (ω,1) − �β(θ) + log cosh(θ)

}
− (

1 − qβ,θ (ω)
){

βV (ω) + Fβ,θ (ω,−1) − �β(θ) + log cosh(θ)
}]

× φβ,θ (ω)dP(ω) + log cosh(θ)

= �β(θ) −
∫ [

qβ,θ (ω)Fβ,θ (ω,1) + (
1 − qβ,θ (ω)

)
Fβ,θ (ω,−1)

]
× φβ,θ (ω)dP(ω)

= �β(θ). �
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REMARK C.2. The components of (1
2eβV (ω)+θ−�β(θ), 1

2eβV (ω)−θ−�β(θ)) do
not add up to 1. Fβ,θ is called the corrector precisely because it enables us to
modify this vector and obtain the transition kernel (qβ,θ (ω),1 − qβ,θ (ω)). The
sublinearity in Lemma B.2 ensures that this modification does not alter the asymp-
totics in the 1

n
log scale. We refer to [6], Section 2, Remark 2, for a discussion of

the relation between these type of correctors and the classical Kipnis–Varadhan
correctors used to construct martingales in the proofs of invariance principles for
Markov processes.

APPENDIX D: NONDIFFERENTIABILITY AT THE ENDPOINTS OF
{θ ∈R : �β(θ) = β}

Recall the notation from the previous section. When θ > 0 and λ = �β(θ) > β ,
the equality in (4.17) can be expressed as follows:

∂

∂λ
E

[
Fλ

β,θ (·,1)
]∣∣∣∣

λ=�β(θ)

= E
[
E0

[
τ1e

β
∑τ1−1

i=0 V (TXi
ω)−�β(θ)τ11{τ1<∞}

]
eθ+Fβ,θ (ω,1)]

= E
[
E0

[
τ1e

∑τ1−1
i=0 {βV (TXi

ω)+θZi+1+Fβ,θ (TXi
ω,Zi+1)−�β(θ)}1{τ1<∞}

]]
= E

[
Ê

β,θ,ω
0 [τ11{τ1<∞}]],

(D.1)

where the second equality is due to telescoping. Define

Sβ,θ (ω) = 1 +
∞∑

n=1

n∏
j=1

rβ,θ (Tjω).

Then

E
[
Sβ,θ (·)] < 1 +

∞∑
n=1

n∏
j=1

e2(β−�β(θ)) = (
1 − e2(β−�β(θ)))−1

< ∞

by (C.3). Therefore, the law of large numbers holds for this RWRE and the limiting
velocity vβ,θ satisfies

(vβ,θ )
−1 = E

[
Ê

β,θ,ω
0 [τ11{τ1<∞}]] = E

[(
1 + rβ,θ (·))Sβ,θ (·)]

(see [1], Theorem 4.1). Recalling (D.1) and the proof of Proposition 4.8(e), we

deduce by the implicit function theorem (together with d/dθ(E[F�β(θ)

β,θ (·,1)]) = 0

due to (4.18) and ∂/∂θ(Fλ
β,θ (ω,1)) = −1 due to (4.3)) that

(D.2)

d

dθ
�β(θ) =

(
∂

∂λ
E

[
Fλ

β,θ (·,1)
]∣∣∣∣

λ=�β(θ)

)−1

= vβ,θ = (
E

[(
1 + rβ,θ (·))Sβ,θ (·)])−1

.
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In order to prove that θ �→ �β(θ) is not differentiable at ±θb defined by

θb := sup
{
θ ∈ R : �β(θ) = β

} = inf
{
θ ∈ R : θ > 0 and �β(θ) > β

}
,

it suffices to obtain an upper bound for E[(1 + rβ,θ (·))Sβ,θ (·)] that is uniform in
θ > θb. To this end, observe that

rβ,θ (ω) = e−2θ−Fβ,θ (T−1ω,1)−Fβ,θ (ω,1) ≤ e−θ−Fβ,θ (ω,1)

= E0
[
eβ

∑τ1−1
i=0 V (TXi

ω)−�β(θ)τ11{τ1<∞}
]

= E0
[
eβ

∑τ1−1
i=0 V (TXi

ω)−�β(θ)τ11{τ1=1}
]

(D.3)

+ E0
[
eβ

∑τ1−1
i=0 V (TXi

ω)−�β(θ)τ11{2≤τ1<∞}
]

≤ 1

2
eβV (ω)−�β(θ) + 1

2
≤ 1

2

[
eβ(V (ω)−1) + 1

] =: r̄β(ω).

Since V takes values in [0,1], we have r̄β(ω) ≤ 1 for every ω ∈ �. Moreover, (1.4)
implies that E[r̄β(·)] < 1. As the proof of the following warm-up result demon-
strates, the advantage of working with r̄β(ω) instead of rβ,θ (ω) is that the former
does not depend on θ and it depends on the potential only through V (ω).

PROPOSITION D.1. If (V (Tjω))j∈Z are i.i.d. under P, then

E
[(

1 + rβ,θ (·))Sβ,θ (·)] ≤ 1 +E[r̄β(·)]
1 −E[r̄β(·)] < ∞

for every θ > θb. Hence, θ �→ �β(θ) is not differentiable at ±θb.

PROOF. Since r̄β(ω) is a function of V (ω), the random variables (r̄β(Tjω))j∈Z
are i.i.d. under P, too. Therefore, using that rβ,θ (·) ≤ r̄β(·) by (D.3),

E
[(

1 + rβ,θ (·))Sβ,θ (·)] ≤ E

[(
1 + r̄β(·))

(
1 +

∞∑
n=1

n∏
j=1

r̄β(Tj ·)
)]

= E
[
1 + r̄β(·)] ∞∑

n=0

(
E

[
r̄β(·)])n = 1 +E[r̄β(·)]

1 −E[r̄β(·)] < ∞

whenever θ > θb. We use (D.2) to deduce that

(D.4) inf
{

d

dθ
�β(θ) : θ > θb

}
≥ 1 −E[r̄β(·)]

1 +E[r̄β(·)] > 0.

Recall Proposition 4.8. If the even and convex map θ �→ �β(θ) were differen-
tiable at ±θb, it would be continuously differentiable (by the monotonocity of the
derivative and an application of Darboux’s theorem). However, the latter is ruled
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out by (D.4) and the fact that the derivative vanishes on the nonempty interior of
the closed interval {θ ∈ R : �β(θ) = β}. This concludes the proof. �

We can relax the i.i.d. assumption in Proposition D.1. To this end, let

Ah = {
ω ∈ � : V (ω) ≤ h

} = {
ω ∈ � : r̄β(ω) ≤ a(β,h)

}
for every h ∈ (0,1), where

a(β,h) := 1

2

[
eβ(h−1) + 1

]
< 1.

We can use this event to introduce a stationary discrete point process N = N(ω) =
(Nn(ω))n≥0 with N0(ω) = 0 and Nn(ω) = ∑n

j=1 1Ah
(Tjω). For every k ≥ 0, de-

fine

Rh,k = min{n ≥ 0 : Nn = k} and th,k+1 = Rh,k+1 − Rh,k.

In particular,

th,1 = min
{
j ≥ 1 : V (Tjω) ≤ h

}
.

LEMMA D.2. E[th,1] = 1
2P(Ah)E[th,1(th,1 + 1) | Ah] and E[th,k] ≤ P(Ah) ×

E[t2
h,1 | Ah] for every k ≥ 2.

PROOF. The sequence (th,k)k≥1 is stationary under P(· | Ah). Moreover,

E
[
g
(
N(·))] = P(Ah)E

[th,1−1∑
j=0

g
(
N(Tj ·)) ∣∣∣ Ah

]

for any nonnegative measurable function g of the point process N = (Nn)n≥0 (see
[8], Theorem 13.3.I). Therefore,

E[th,1] = P(Ah)E

[th,1−1∑
j=0

(th,1 − j)
∣∣∣ Ah

]
= 1

2
P(Ah)E

[
th,1(th,1 + 1) | Ah

]
and

E[th,k] = P(Ah)E

[th,1−1∑
j=0

th,k

∣∣∣ Ah

]
= P(Ah)E[th,1th,k | Ah]

≤ P(Ah)
√
E

[
t2
h,1 | Ah

]
E

[
t2
h,k | Ah

] = P(Ah)E
[
t2
h,1 | Ah

]
for every k ≥ 2. �

THEOREM D.3. If E[th,1] < ∞ for some h ∈ (0,1), then θ �→ �β(θ) is not
differentiable at ±θb.
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PROOF. If E[th,1] < ∞ for some h ∈ (0,1), then

E[th,k] ≤ P(Ah)E
[
t2
h,1 | Ah

] ≤ 2E[th,1] < ∞
for every k ≥ 2 by Lemma D.2. Therefore,

1

2
E

[(
1 + rβ,θ (·))Sβ,θ (·)] ≤ E

[(
1 +

∞∑
n=1

n∏
j=1

r̄β(Tj ·)
)]

= 1 +
∞∑

n=1

E

[
n∏

j=1

r̄β(Tj ·)
]

≤
∞∑

n=0

E
[
a(β,h)Nn

] =
∞∑

n=0

n∑
k=0

a(β,h)kP(Nn = k)

=
∞∑

k=0

a(β,h)k
∞∑

n=k

P(Nn = k)

=
∞∑

k=0

a(β,h)k
∞∑

n=k

E[1{Rh,k≤n<Rh,k+1}]

=
∞∑

k=0

a(β,h)kE

[ ∞∑
n=k

1{Rh,k≤n<Rh,k+1}
]

=
∞∑

k=0

a(β,h)kE[th,k+1] ≤ 2E[th,1]
1 − a(β,h)

< ∞

whenever θ > θb, where (D.3) was used in the first inequality. The rest of the proof
is identical to that of Proposition D.1. �

APPENDIX E: LARGE DEVIATION ESTIMATES FOR THE NUMBER OF
LEFT EXCURSIONS OF RWS

Let (Xi)i≥0 denote SSRW on Z. Similar to τy = inf{i ≥ 0 : Xi = y} with y ∈ Z,
define

τy−1,y = inf{i ≥ 1 : Xi−1 = y − 1,Xi = y}.
LEMMA E.1. For every λ ≥ 0,

E0
[
e−λτ11{τ1<∞}

] = eλ −
√

e2λ − 1 and(E.1)

E0
[
e−λτ−1,01{τ−1,0<∞}

] = 1 − √
1 − e−2λ

1 + √
1 − e−2λ

.(E.2)

PROOF. The desired equalities clearly hold when λ = 0. For λ > 0 and x ∈ Z,
let vλ(x) = Ex[e−λτ01{τ0<∞}]. Then

(E.3) vλ(x) = 1

2
e−λ(

vλ(x − 1) + vλ(x + 1)
)

for x �= 0,
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vλ(0) = 1, and lim|x|→∞ vλ(x) = 0. We substitute vλ(x) = e−a|x| into (E.3) and
find after an elementary computation that e±a = eλ ± √

e2λ − 1. Consequently,
(E.1) follows and

E0
[
e−λτ−1,01{τ−1,0<∞}

] = E0
[
e−λτ−11{τ−1<∞}

]
E−1

[
e−λτ01{τ0<∞}

]

= e−2a = 1 − √
1 − e−2λ

1 + √
1 − e−2λ

. �

PROOF OF PROPOSITION 6.1. Recall from (6.8) that L0(X0,n) counts the
number of complete left excursions of SSRW starting from the origin, up to time
n. For every ξ ≥ 0, define

I (ξ) = − lim
n→∞

1

n
logP0

(
L0(X0,n) ≥ nξ

)
.

It is clear that I (0) = 0 and I (ξ) = ∞ if ξ > 1/2. For ξ ∈ (0,1/2], with τ i−1,0
denoting independent copies of τ−1,0, we have

(E.4)

I (ξ) = − lim
n→∞

1

n
logP0

(
nξ∑
i=1

τ i−1,0 ≤ n

)

= −ξ lim
n→∞

1

nξ
logP0

(
1

nξ

nξ∑
i=1

τ i−1,0 ≤ 1

ξ

)

= ξ inf
0≤a≤ 1

ξ

sup
λ∈R

{−λa − logE0
[
e−λτ−1,01{τ−1,0<∞}

]}

= ξ inf
0≤a≤ 1

ξ

sup
λ≥0

{−λa − logE0
[
e−λτ−1,01{τ−1,0<∞}

]}

= − inf
λ≥0

{
λ + ξ logE0

[
e−λτ−1,01{τ−1,0<∞}

]}
by Cramér’s theorem (see [10], Theorem 2.2.3). We substitute the expression on
the right-hand side of (E.2) into the last expression in (E.4), check that the infimum
there is attained when

√
1 − e−2λ = 2ξ , and obtain the following formula (with the

convention 0 log 0 = 0):

I (ξ) =
(

1 − 2ξ

2

)
log(1 − 2ξ) +

(
1 + 2ξ

2

)
log(1 + 2ξ) > 0.

Note that I is continuous and strictly increasing on [0,1/2]. Set I (ξ) = ∞ for
every ξ < 0. It follows that (P0(

1
n
L0(X0,n) ∈ ·))n≥1 satisfies the large deviation

principle with rate function I : R→ [0,∞]. Finally,

J (2c) = lim
n→∞

1

n
logE0

[
e2cL0(X0,n)] = sup

0≤ξ≤1/2

{
2cξ − I (ξ)

} = log cosh(c)
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by Varadhan’s integral lemma (see [10], Theorem 4.3.1) and a routine computa-
tion.

Recall from Section 6.3 that (Y �
k )k≥0 is a reflected RW on [−�, �− 1] subject to

geometric holding times (with rate 1/2) at −� and �−1. Its transition probabilities
are given in (6.9). For y ∈ Z, let

τ̃ �
y = inf

{
k ≥ 0 : Y �

k = y
}

and τ̃ �
y−1,y = inf

{
k ≥ 1 : Y �

k−1 = y − 1, Y �
k = y

}
.

For λ > 0, let ṽ�
λ(x) = Ex[e−λτ̃ �

0 1{τ̃ �
0 <∞}]. Then, similar to (E.3),

ṽ�
λ(x) = 1

2
e−λ(

ṽ�
λ(x − 1) + ṽ�

λ(x + 1)
)

for x ∈ [−� − 1,−1] ∪ [1, � − 2],
ṽ�
λ(0) = 1, and ṽ�

λ(x) ≤ e−λ|x| for x ∈ [−�, � − 1]. By the maximum principle,
ṽ�
λ(x) − vλ(x) → 0 as � → ∞. Therefore,

lim
�→∞E0

[
e
−λτ̃ �−1,01{τ̃ �−1,0<∞}

] = lim
�→∞

(
E0

[
e−λτ̃ �−11{τ̃ �−1<∞}

]
E−1

[
e−λτ̃ �

0 1{τ̃ �
0 <∞}

])
= E0

[
e−λτ−11{τ−1<∞}

]
E−1

[
e−λτ01{τ0<∞}

]
= E0

[
e−λτ−1,01{τ−1,0<∞}

]
.

We record this as follows: for every λ > 0,

ϕ�(λ) := logE0
[
e
−λτ̃ �−1,01{τ̃ �−1,0<∞}

]
and ϕ(λ) := logE0

[
e−λτ−1,01{τ−1,0<∞}

]
satisfy

(E.5) lim
�→∞ϕ�(λ) = ϕ(λ).

For every �,m ∈ N and λ > 0,

E0
[
e
−ϕ�(λ)L0(Y

�
0,m)] =

[m/2]∑
k=0

e−kϕ�(λ)P0
(
L0

(
Y �

0,m

) = k
)

=
[m/2]∑
k=0

e−kϕ�(λ)P0

(
k∑

i=1

τ̃
�,i
−1,0 ≤ m <

k+1∑
i=1

τ̃
�,i
−1,0

)

≤
[m/2]∑
k=0

e−kϕ�(λ)+mλE0
[
e
−λ

∑k
i=1 τ̃

�,i
−1,01{∑k

i=1 τ̃
�,i
−1,0≤m<

∑k+1
i=1 τ̃

�,i
−1,0}

]

≤
[m/2]∑
k=0

e−kϕ�(λ)+mλE0
[
e
−λ

∑k
i=1 τ̃

�,i
−1,01{∑k

i=1 τ̃
�,i
−1,0<∞}

]

=
[m/2]∑
k=0

e−kϕ�(λ)+mλ+kϕ�(λ) = (
1 + [m/2])emλ,
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where τ̃
�,i
−1,0 are independent copies of τ̃ �−1,0. Therefore,

J�

(−ϕ�(λ)
) = lim sup

m→∞
1

m
logE0

[
e
−ϕ�(λ)L0(Y

�
0,m)] ≤ λ.

It follows from (E.2) that ϕ(log cosh(c)) = −2c. Since J� is clearly Lipschitz con-
tinuous with Lipschitz constant 1/2,

J�(2c) ≤ J�

(−ϕ�

(
log cosh(c)

)) + 1

2

∣∣ϕ�

(
log cosh(c)

) − ϕ
(
log cosh(c)

)∣∣
≤ log cosh(c) + 1

2

∣∣ϕ�

(
log cosh(c)

) − ϕ
(
log cosh(c)

)∣∣.
Recalling (E.5), we deduce that

(E.6) lim sup
�→∞

J�(2c) ≤ log cosh(c).

On the other hand, it is clear from the definition of (Y �
k )k≥0 = (Xσk

)k≥0 that
L0(Y

�
0,m) ≥ L0(X0,m) for every m ≥ 1 and every realization of the SSRW path

X0,m. Therefore,

(E.7)
J�(2c) = lim sup

m→∞
1

m
logE0

[
e

2cL0(Y
�
0,m)] ≥ lim

m→∞
1

m
logE0

[
e2cL0(X0,m)]

= J (2c) = log cosh(c)

for every � ∈ N. Combining (E.6) and (E.7) concludes the proof. �
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