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Bayesian Nonparametrics for Stochastic
Epidemic Models
Theodore Kypraios and Philip D. O’Neill

Abstract. The vast majority of models for the spread of communicable dis-
eases are parametric in nature and involve underlying assumptions about how
the disease spreads through a population. In this article, we consider the use
of Bayesian nonparametric approaches to analysing data from disease out-
breaks. Specifically we focus on methods for estimating the infection pro-
cess in simple models under the assumption that this process has an explicit
time-dependence.
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1. INTRODUCTION

In this article, we describe some recent develop-
ments in the field of Bayesian nonparametric inference
for stochastic epidemic models. The topic is itself rela-
tively new; methods for fitting epidemic models to data
are overwhelmingly based on parametric approaches,
as described in the other articles in this edition. To clar-
ify our terminology, we shall refer to models as either
parametric or nonparametric, whilst references to para-
metric or nonparametric inference simply refer to in-
ference for the kind of model in question, as opposed
to the inference methods per se. We start by motivat-
ing the nonparametric approach, review some classical
methods, and then give a brief overview of the remain-
der of this article.

1.1 Motivating Nonparametrics for Epidemic
Models

Epidemic models, whether stochastic or determinis-
tic in nature, are almost invariably mechanistic. This
means that such models attempt to describe the pro-
cesses which generate observable quantities, usually
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by making assumptions about the underlying bio-
logical and epidemiological processes involved. For
example, suppose we have data consisting of new
cases of a particular disease on a daily basis. The
modelling approach involves defining a model which
describes how new cases come about, typically by
making assumptions about infection processes be-
tween infected and healthy individuals, and also about
the progression of disease within a typical individ-
ual.

For stochastic models, such underlying assumptions
often involve parametric models of some kind. Com-
mon examples include: (i) assuming a Poisson pro-
cess to describe the times of contacts between in-
dividuals, where the rate parameter is a model pa-
rameter; (ii) assuming that different stages of dis-
ease, such as the latent period or infectious period,
follow specified parametric distributions; and (iii) as-
suming that any vaccinated individual is actually pro-
tected from disease with a probability that may de-
pend on the characteristics of that individual. If such
models are then fitted to data, we can obtain esti-
mates of quantities of interest such as infection rates,
length of infectious period, measures of vaccine effi-
cacy, epidemiological quantities such as the basic re-
production number, mutation rates of viruses, and so
on. Such estimates are often be used for predictive pur-
poses for potential future outbreaks, for example for
estimating the likely size of such an outbreak, estimat-
ing the fraction of a population that should be vac-
cinated to prevent such outbreaks, designing optimal
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control or mitigation strategies, estimating the health-
care resources required for future epidemics, or evalu-
ating the likely efficacy of proposed public health in-
terventions such as travel restrictions or school clo-
sures.

Given an epidemic model, with parametric models
underlying its definition, the typical inference prob-
lem involves estimating the parameters associated with
the parametric models from the data to hand. This in
itself is often a nontrivial exercise, due in large part
to the fact that in the vast majority of real-life infec-
tious diseases we do not actually observe the process
of infection. Thus, on the one hand, we have a model
whose primary function is to describe the infection pro-
cess, but on the other hand the infection process is sel-
dom observed. Methods to overcome this issue are de-
scribed elsewhere in this issue, notable examples in-
cluding the use of computational approaches such as
data-augmented Markov chain Monte Carlo (MCMC)
methods (O’Neill and Roberts, 1999) or Approximate
Bayesian Computation (McKinley, Cook and Deardon,
2009).

From a statistical perspective, it is natural to ask how
far the underlying modelling assumptions influence
the results of any analysis. In practice, this question
might be addressed by considering alternative paramet-
ric models, or sensitivity analyses if some of the under-
lying model parameters are assumed to be known a pri-
ori. An alternative approach is to define the model, or
some parts of the model, in a nonparametric manner.
There are two key reasons to do this. The first is that
such an approach typically makes less rigid assump-
tions than those commonly assumed in epidemic mod-
elling. In contrast to some simple physical systems,
there are many aspects of real-life epidemiology for in-
fectious diseases that are not well-understood. For in-
stance, in human diseases the actual process of poten-
tial infectious contact between individuals is often hard
to precisely describe, as is the detail of variations be-
tween individuals in terms of their susceptibility or in-
fectivity. It is therefore natural to consider models that
try to avoid making potentially restrictive assumptions.
The second motivating reason is that fitting a nonpara-
metric model to data provides, at least informally, some
idea of how appropriate particular parametric assump-
tions are. For example, fitting a nonparametric model
of an infectious period distribution to data might re-
veal that a particular simple parametric form would
provide an adequate model. Within the context of epi-
demic modelling, models themselves are often used

to explore what-if scenarios or predict future poten-
tial outbreaks, and in both settings it is useful to be
able to do so using the simplest possible parametric
model. Nonparametric modelling and inference pro-
vides some way of deciding what such a model should
be.

1.2 Classical Approaches

Nonparametric approaches to fitting epidemic mod-
els to data have received relatively little attention in
the literature. We now briefly mention some key pa-
pers in non-Bayesian settings. Both Becker and Yip
(1989) and Becker (1989) describe methods for non-
parametric estimation of the infection rate in the so-
called general epidemic model (i.e., the Susceptible-
Infective-Removed model with infectious periods dis-
tributed according to an exponential distribution) by
allowing the infection rate to depend on time. In do-
ing so, they require that the infection times are known,
which as mentioned above is rarely the case in real-
ity. Conversely, Lau and Yip (2008) assume only re-
moval times are observed, and use a kernel estimator to
estimate the unobserved process of infectives, assum-
ing that the parameter of the exponential infectious pe-
riod distribution is known. Finally, Chen et al. (2008)
use kernel estimation to estimate the infection rate in
a large-scale epidemic model in which the depletion of
susceptibles is ignored.

1.3 Layout of This Article

In this article, we will focus exclusively on Bayesian
nonparametric methods for estimating aspects of the
infection process. In Section 2, we recall relevant back-
ground material. Section 3 reviews some Bayesian
nonparametric continuous-time stochastic epidemic
models and associated methods of inference. In Sec-
tion 4.1, we then develop corresponding models and
methods for discrete-time models. In the context of in-
fectious disease data analysis, discrete-time models are
often very natural since real-life data are invariably dis-
crete in time (e.g., the number of observed cases each
day or week). These methods have not appeared in the
literature before and so we illustrate them with various
examples. We finish with some concluding remarks in
Section 5.

2. PRELIMINARY MATERIAL

2.1 The SIR Model in Continuous Time

In this article, we will focus exclusively on models
of the Susceptible-Infective-Removed (SIR) type, al-
though the methods can be applied to more complex
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epidemic models. The single-population continuous-
time SIR model is defined as follows (see, e.g., Bailey,
1975, Andersson and Britton, 2000).

Consider a population consisting of N individuals.
At any time t ≥ 0, each member of the population is
either susceptible, meaning they are capable of con-
tracting the disease in question, infective, meaning that
they have the disease and can pass it on to others, or
removed, meaning that they are no longer able to in-
fect others and no longer able to be reinfected. The
precise interpretation of the removed state depends on
the disease under consideration, examples including
isolation, recovery, or death. At time t = 0 the pop-
ulation is entirely susceptible apart from a few infec-
tive individuals. Each infective individual remains so
for a period of time, known as the infectious period,
that has a prespecified distribution. In this article, we
will only consider the case where the infectious pe-
riod is exponentially distributed with mean γ −1. At
the end of its infectious period, the individual becomes
removed. The infectious periods of different individ-
uals are assumed to be independent. During its infec-
tious period, a given infective individual has contacts
with any given susceptible in the population at times
given by the points of a Poisson process of rate β .
All such Poisson processes are independent. Any con-
tact that occurs results in the susceptible individual im-
mediately becoming infective. The epidemic contin-
ues until there are no infectives remaining. Thus, at
the end of the epidemic, all individuals are either sus-
ceptible by virtue of having avoided infection, or re-
moved. Finally, the population is assumed to be closed
in the sense that no individuals may enter or leave
during the epidemic. Such an assumption is reason-
able for real-life outbreaks where the epidemic dynam-
ics are much faster than demographic changes such as
births, deaths from causes unrelated to the epidemic,
or movements of individuals in and out of the popula-
tion.

For t ≥ 0, let X(t) and Y(t) denote, respectively, the
numbers of susceptible and infective individuals in the
population at time t . The facts that (i) infections occur
according to independent Poisson processes and (ii) in-
fectious periods are independent exponential distribu-
tions together imply that the process {(X(t), Y (t)) :
t ≥ 0} is a bivariate continuous-time Markov chain
(Andersson and Britton, 2000). Specifically, the tran-
sitions are

P
[(

X(t + δt), Y (t + δt)
) = (x − 1, y + 1)|(

X(t), Y (t)
) = (x, y)

]

= βxyδt + o(δt),

P
[(

X(t + δt), Y (t + δt)
) = (x, y − 1)|(

X(t), Y (t)
) = (x, y)

]
= γyδt + o(δt),

which correspond respectively to an infection and a re-
moval. The parameters β and γ are known as the infec-
tion rate and removal rate, respectively. We will also
refer to βX(t)Y (t) as the incidence rate.

Finally, although the SIR model with exponential in-
fectious periods can be viewed as a Markov chain, this
fact in itself is not important for the Bayesian non-
parametric methods that we describe below. Our fo-
cus on the particular model defined above is only for
ease of exposition; more general non-Markov epidemic
models can also be analysed using the methods we de-
scribe.

2.2 The SIR Model in Discrete Time

A discrete-time version of the SIR model can be de-
fined similarly to the continuous-time version. At any
time t = 0,1,2, . . . , the population is divided into sus-
ceptibles, infectives and removed individuals. The in-
fectious period distribution is a positive integer-valued
random variable. An individual who becomes infective
at time t and whose infectious period is of k time units
becomes removed at time t + k. At any time t , each
susceptible individual independently avoids infection
with probability exp{−βY(t)}. Those failing to avoid
infection become infective at time t + 1. The epidemic
continues until no infectives remain.

Note that the infection process in this model arises
by approximating the Poisson process assumption in
the continuous-time model. Specifically, in the lat-
ter the probability of a given susceptible avoiding
infection for one time unit is exp{−βY(t)}, assum-
ing that no other events occur. Thus, the discrete-
time model provides a good approximation to the
continuous-time model if the time units are sufficiently
small.

2.3 Time-Dependent Infection Process

A natural generalisation of the SIR model is to sup-
pose that the infection rate β is time-dependent. This
could be done to describe genuine changes in popula-
tion mixing over time, or as a proxy for some unob-
served heterogeneity in the population that gives rise
to an apparent change in infection rate over time (see,
e.g., Lekone and Finkenstädt, 2006, Pollicott, Wang
and Weiss, 2012, Smirnova and Tuncer, 2014).
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In terms of inference, we may therefore wish to
estimate β(t) for all time points t . If we assume
a parametric model for β(t), then this typically in-
troduces a small number of extra model parameters.
However, if we adopt a nonparametric approach in
which we do not impose a particular parametric struc-
ture, then estimating β(t) for all t amounts to esti-
mating an uncountably-infinite-dimensional object in
the continuous-time case; and a finite- or countably-
infinite-dimensional object in the discrete-time case,
depending on whether or not the infectious period dis-
tribution has finite support.

An alternative kind of generalisation is to allow
the incidence rate to be time-dependent, so that we
replace βX(t)Y (t) with β(t), or more realistically
β(t)χ{X(t)Y (t)≥1}, where χA is the indicator function
of the event A. The latter formulation ensures that
new infections can only occur if there is at least one
infective and one susceptible in the population. The
motivation for such a model is to relax the usual as-
sumption that infections occur at a rate proportional
to X(t)Y (t), which itself essentially arises by as-
suming that the individuals in the population mix to-
gether homogeneously. Another motivation for this
kind of model is that it can act as a baseline case in
any analysis that involves comparing different mod-
els.

2.4 Bayesian Inference for the Standard
Continuous-Time SIR Model

The nonparametric methods described in the next
section involve appropriate modifications of a common
approach to inference for the parametric SIR model.
For this reason, we now recall the latter, as described
in O’Neill and Roberts (1999).

The basic problem is to infer the infection and re-
moval rates in an SIR model, given that only removals
are observed. However, even for the SIR model with
fixed infection rate the likelihood of observed removals
given the model parameters is intractable in all but the
simplest cases. This is because calculating the likeli-
hood involves integrating over the space of all possible
infection times. Although in principle this is possible,
in practice it is a very cumbersome and computation-
ally expensive approach. An attractive alternative is to
use data augmentation in an MCMC setting, specifi-
cally including the unobserved infection times as extra
variables.

Consider a continuous-time SIR model with infec-
tion rate β , removal rate γ , a population of N indi-
viduals, and one initial infective. Suppose we observe
removals at times r1, . . . , rn, where r1 < r2 < · · · <

rn < T , so that we observe the epidemic until time T .
Denote by i1, . . . , im the ordered unobserved infection
times in (−∞, T ], where m ≥ n, so that i1 < i2 <

· · · < im. Define r = (r1, . . . , rn) and i = (i2, . . . , im).
Then the augmented likelihood of infection and re-
moval times is

π(i, r|i1, β, γ )

=
m∏

j=2

βX(ij−)Y (ij−)

n∏
j=1

γ Y (rj−)(1)

· exp
{
−

∫ T

i1

βX(t)Y (t) + γ Y (t) dt

}
,

where X(ij−) = lims↑ij X(s), etc.
A brief explanation for (1) is as follows (for more de-

tailed accounts, see Andersson and Britton (2000) for
SIR models, or Andersen et al. (1993) for more gen-
eral counting process models, of which the SIR model
is a special case). First note that in a small time interval
[t, t + δt), the probabilities of an infection, a removal,
and no event are approximately βX(t)Y (t)δt , γ Y (t)δt

and 1− (βX(t)Y (t)+γ Y (t))δt , respectively. By split-
ting the time interval (i1, T ] into a large number of
such small intervals, the probability of the observed
process is thus given by a product of such probabilities,
all but m + n − 1 of which correspond to no event oc-
curring. Note here that we do not include the infection
at time i1, since this is an assumed initial condition,
so there is no contribution to the likelihood. As δt ↓ 0,
and moving from probability to density, the terms that
remain are (i) two product terms corresponding to the
infection and removal events, and (ii) an exponential
term which arises since 1 − (βX(t)Y (t) + γ Y (t))δt ≈
exp{−(βX(t)Y (t) + γ Y (t))δt}.

The object of interest is the augmented joint poste-
rior density of β , γ and the unobserved infection times.
From Bayes’ theorem, we have

(2) π(i, i1, β, γ |r) ∝ π(i, r|i1, β, γ )π(β, γ, i1).

Samples from the target density can be obtained via
MCMC, as follows. In practice, we usually assign in-
dependent prior distributions to β , γ and i1. If β and
γ are assigned gamma prior distributions, it follows
from (1) and (2) that both have gamma-distributed full
conditional distributions. This in turn means that both
parameters can be updated using Gibbs steps within
an MCMC algorithm. To assign a prior distribution
for i1, observe that i1 < r1 and assign a prior distri-
bution to r1 − i1. If this distribution is exponential,
then the full conditional distribution for i1 is tractable,
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which again means that i1 can be updated using a Gibbs
step.

Finally, the infection times i2, . . . , im can be up-
dated using Metropolis–Hastings steps. These consist
of adding, deleting and moving infection times, al-
though if the epidemic is known to have ceased by time
T then m = n and only the third of these updates is
needed. In practice, it is useful to perform a number of
such updates during each iteration of the MCMC algo-
rithm, in order to improve the mixing of the Markov
chain. Each individual update involves proposing to
add, delete or move an infection time, where new
infections or moves might involve proposing times
uniformly on the range of possible values, and then
evaluating the usual Metropolis–Hastings acceptance
probability using (2). Full details of such an algo-
rithm, which technically speaking is a reversible-jump
MCMC algorithm, are given in O’Neill and Roberts
(1999).

3. NONPARAMETRICS FOR CONTINUOUS-TIME
SIR MODELS

In this section, we describe several approaches to
Bayesian nonparametric modelling for parameters as-
sociated with the infection process in an SIR model.
Specifically, we consider models in which either the
infection rate β or the incidence rate βX(t)Y (t) is
replaced by a time-dependent quantity. This quan-
tity can be assigned a prior model in various differ-
ent ways as described below, and this assignment in
turn determines the kind of MCMC algorithm that
is required for inference. In each case, it is assumed
that the data to hand consist of removal times, and
that infectious periods are exponentially distributed.
For ease of exposition, we also assume that the epi-
demic has been completed during the observation pe-
riod, so that the number of unobserved infections (m)
equals the number of observed removals (n). We may
also set T = rn since no further events occur after
time rn.

To begin with, suppose we replace the infection rate
β in the SIR model with the time-dependent version
β(t). The modified likelihood corresponding to (1) is

π(i, r|i1, β, γ )

=
n∏

j=2

β(ij−)X(ij−)Y (ij−)

n∏
j=1

γ Y (rj−)(3)

· exp
{
−

∫ rn

i1

β(t)X(t)Y (t) + γ Y (t) dt

}
,

where now β denotes the function whose value at t is
β(t). The difficulty that now arises is that the integral
term in (3) involves the infinite-dimensional object β ,
and is hence intractable if we do not assume a particu-
lar parametric form for β .

Methods for overcoming this problem depend on the
prior structure we impose on β . For instance, if we
model β using a step function, it can then be defined
using only finitely many values, which in turn yields a
tractable MCMC scheme to infer β . Conversely if we
impose a Gaussian Process prior structure then there
is no such dimensionality reduction, and we need an
alternative method, as we now describe.

3.1 Background on Gaussian Process Methods

We first present relevant facts concerning Gaus-
sian Processes (GPs). A comprehensive account can
be found in Rasmussen and Williams (2006). Recall
that a Gaussian Process (GP) is a stochastic process
whose realisations consist of Gaussian random vari-
ables indexed by some set. In our case, the latter will
be the set of times t in some interval. A GP is com-
pletely specified by its mean and covariance function.
In Bayesian nonparametrics, GPs are commonly used
as prior models for functions. For example, assigning a
GP prior to a function f : [0,∞] → R means that for
any x1, . . . , xn ≥ 0, the vector (f (x1), . . . , f (xn)) has
a multivariate Gaussian distribution with mean vector
μ(x1, . . . , xn) and covariance matrix �(x1, . . . , xn). In
many situations, it is common to use zero-mean GPs,
since offsets can often easily be removed before mod-
elling starts.

In our setting, we wish to assign a prior to the time-
dependent infection rate β . Since β(t) ≥ 0, we cannot
do this directly since a GP model would assign pos-
itive probability to the event β(t) < 0. We therefore
use a transformation, the details of which are given be-
low.

As described in Xu, Kypraios and O’Neill (2016),
one way to deal with the intractable integral in (3) is
to exploit the fact that a time-inhomogeneous Pois-
son process can be constructed using a suitable thinned
homogeneous Poisson process. This approach is used
in Adams, Murray and MacKay (2009) to provide a
method for Bayesian nonparametric inference for a
time-inhomogeneous Poisson process. We now recall
the details of the latter.

Suppose we observe a set of points s = (s1, . . . , sK)

from a Poisson process with time-dependent intensity
λ(t) during [0, T ]. The likelihood of these observations
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is

π(s|λ) =
K∏

k=1

λ(sk−) exp
{
−

∫ T

0
λ(t) dt

}
,

and as for the epidemic case the integral is intractable.
The key idea is that the original process can be

viewed as a thinned homogeneous Poisson process of
rate λ∗, where λ(t) ≤ λ∗ for all 0 ≤ t ≤ T , in which a
point at time t is retained with probability λ(t)/λ∗. We
may thus augment the observed data with the unob-
served thinned points, s̃ = (s̃1, . . . , s̃M), say, yielding
an augmented likelihood

π
(
s,M, s̃|λ,λ∗)
= (

λ∗)M+K exp
{−λ∗T

}

·
K∏

k=1

λ(sk−)

λ∗

·
M∏

m=1

(
1 − λ(s̃m−)

λ∗
)
.

This new likelihood can evidently be computed with
only finitely many evaluations of the function λ.

Next, suppose we wish to impose a GP prior on
λ. Since λ ≥ 0 this cannot be done directly, and so
instead we use the transformation λ(t) = λ∗σ(g(t)),
where σ(z) = (1 + e−z)−1, and assign a GP prior dis-
tribution to g. This prior distribution is specified by as-
suming a particular form of covariance function with
parameter vector θ , and placing a prior distribution
on θ .

Let gM+K = (g(s1−), g(s2−), . . . , g(sK−), g(s̃1−),

g(s̃2−), . . . , g(s̃M−)). Then from Bayes’ theorem the
augmented posterior density of interest is

π
(
g,λ∗,M, s̃, θ |s)
∝ (

λ∗)M+K exp
{−λ∗T

}

·
K∏

k=1

σ
(
g(sk−)

)

·
M∏

m=1

σ
(−g(s̃m−)

)

· π(gM+K |θ)π
(
λ∗)

π(θ),

where π(gM+K |θ) is the density of a multivariate
Gaussian random variable, and π(λ∗) and π(θ) are re-
spectively, the prior density functions of λ∗ and θ , as-
suming prior independence. The posterior density can

be explored using MCMC methods, and since λ is
specified by g and λ∗, we may hence obtain posterior
samples for λ.

3.2 Gaussian Process Methods for the SIR Model

Xu, Kypraios and O’Neill (2016) describe how to
adapt the ideas above to the SIR model in continuous
time, as follows. With notation as before, we observe
removal times r and wish to infer the infection rate
function β and the removal rate parameter γ . As for
the parametric case, we introduce the initial infection
time i1 and subsequent infection times i.

The key idea is to observe that the rate of infec-
tions at time t is β(t)X(t)Y (t), and the infection pro-
cess can be constructed by thinning a bounding pro-
cess of rate β∗X(t)Y (t), provided β(t) ≤ β∗ for all t .
To make this precise, we may clearly construct a re-
alisation of the epidemic by generating a sequence of
inter-event times and event types. Suppose an event
has just occurred at time t , and (X(t), Y (t)) = (x, y).
First, simulate the potential time until the next removal
event, τR say, which has an exponential distribution
with mean (γy)−1. Next, construct the potential time
until the next infection event, τI , by simulating a Pois-
son process of rate β∗xy, thinning it by independently
retaining each point at time s with probability β(s)/β∗,
and setting τI as the time until the first retained point
appears. Finally, min(τR, τI ) is the time until the next
event in the epidemic, which is an infection if τI < τR

and a removal otherwise. Iterating this procedure pro-
vides a realisation of the epidemic, ending as soon as
Y(t) = 0.

The above construction enables us to write down
the joint likelihood of the bounding process and the
resulting realisation, since the ingredients just consist
of homogeneous Poisson processes and Bernoulli tri-
als. Specifically, consider the likelihood of what occurs
during (t, t + τ ], where as above an event has just oc-
curred at time t , and τ is the time until the next event.
Suppose that thinned events occur in (t, t + τ) at times
s1, . . . , sm, where m = 0 if no thinned events occur.
These events give a likelihood contribution

m∏
j=1

β∗X(sj )Y (sj )
(
1 − β(sj )/β

∗)
(4)

· exp
(
−

∫ t+τ

t
β∗X(u)Y (u)du

)
,

where the product term equals 1 if m = 0. Next, if
the event at t + τ is an infection then this gener-
ates (i) the additional product term β∗X(t + τ)Y (t +
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τ)(β(t + τ)/β∗) which corresponds to a nonthinned
event and (ii) the probability that τR > τ , namely
exp(− ∫ t+τ

t γ Y (u) du). Note that here we are essen-
tially integrating out the value of τR from the con-
struction, that is, the observed event at t + τ could
have arisen for any value of τR greater than τ . Fi-
nally, if the event at t + τ is a removal then this gen-
erates the likelihood contribution that τR = τ , namely
γ Y (t + τ) exp(− ∫ t+τ

t γ Y (u) du). Note that we do not
require any further term for the infection process, since
the exponential term in (4) essentially integrates out all
possible τI > τ .

Following the methods of inference for inhomoge-
neous Poisson processes described above, we then as-
sign a prior model for β by setting β(t) = β∗σ(g(t)).
Here, g is a random function drawn from a GP with
a specified covariance function with parameter θ . We
require additional variables, namely the number of
thinned events, M ; their locations, ĩ = (ĩ1, . . . , ĩM);
the g function values at the infection times, gn =
(g(i2−), . . . , g(in−)), and the g function values at the
thinned event times, gM = (g(ĩ1−), . . . , g(ĩM−)). The
augmented likelihood is

π
(
i, r,M, ĩ|β∗, θ, γ, i1,gn,gM

)
=

n∏
j=2

β∗X(ij−)Y (ij−)σ
(
g(ij−)

)

·
M∏

j=1

β∗X(ĩj−)Y (ĩj−)σ
(−g(ĩj−)

)

·
n∏

j=1

γ Y (rj−)

· exp
(
−

∫ rn

i1

β∗X(t)Y (t) + γ Y (t) dt

)
,

and the posterior target density is

π
(
g,β∗, γ, i, i1,M, ĩ, θ |r)
∝ π

(
i, r,M, ĩ|β∗, θ, γ, i1,gn,gM

)
(5)

· π(gn,gM |θ)π(θ)π
(
β∗)

π(γ )π(i1),

assuming prior independence for the model param-
eters. Samples from (5) can be obtained using an
MCMC algorithm similar to that described above for
the parametric SIR case, but now incorporating the ad-
ditional parameters associated with the thinned points
and the GP. Full details can be found in Xu, Kypraios
and O’Neill (2016).

As mentioned above, instead of modelling the infec-
tion rate in a nonparametric manner, one could also
model the incidence rate. In this case, βX(t)Y (t) is re-
placed by a single function β(t)χ{X(t)Y (t)≥1}. The GP
approach described above can easily be adapted to this
setting.

3.3 Step-Function and B-Spline Methods

Another way to assign a prior to the infection or inci-
dence rate functions is to use step functions. Knock and
Kypraios (2016) do this by assuming that the incidence
rate function is of the form β(t)χ{X(t)Y (t)≥1}, where β

is a step function with change-points s1 < s2 < · · · <

sk , so that

β(t) =
k∑

j=0

βjχ{sj≤t<sj+1}

where s0 = i1 and sk+1 = rn. Under this assumption,
the integral in (1) can be easily evaluated and so the
augmented likelihood is tractable. Note that the num-
ber of change-points is itself not assumed to be known.
The inference problem for β thus reduces to estima-
tion of the number and location of the change-points,
and the function values β0, . . . , βk . The posterior target
density is

π(β, k, s, γ, i, i1|r)
∝ π(i, r|β, k, s, γ, i1)π(β, k, s, γ, i1),

where β and s denote respectively the function val-
ues and change-point locations. Options for assign-
ing prior distributions are described in Knock and
Kypraios (2016); for the function values these include
independent priors for each βj , and also sequentially
dependent priors in which E[βj+1|βj ] = βj . The latter
essentially gives some element of smoothing to the in-
cidence rate function and is thus similar in spirit to the
GP methods described above.

A related approach described in Knock and Kypraios
(2016) is to assume that the incidence rate is piece-
wise quadratic, specifically that it can be modelled as
a second-order B-spline. As for the step function case,
this yields a tractable augmented likelihood, and infer-
ence involves estimating the parameters of the B-spline
function.

4. NONPARAMETRICS FOR DISCRETE-TIME SIR
MODELS

In this section, we show how to adapt the Gaussian
process methods described above to the scenario of a
discrete-time epidemic model. We illustrate the meth-
ods with some examples.
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4.1 Methods

Consider a discrete-time SIR model in which the in-
fection rate at integer time t is denoted β(t), and in
which infectious periods have a distribution with prob-
ability mass function p(k|η), k = 1,2, . . . , where η

is the parameter vector of the distribution. Suppose
we observe removals at integer times r = (r1, . . . , rn),
where r1 ≤ r2 ≤ · · · ≤ rn and we label the correspond-
ing individuals 1, . . . , n. Let ij denote the time that in-
dividual j starts being infective. This means that if in-
dividual j is susceptible at time t and fails to avoid
infection, they become infective at time t + 1 and so
ij = t + 1. Since they are removed at time rj , their
infectious period is rj − ij . Let κ denote the label of
the initial infective individual, that is, iκ < ij for all
j �= κ . We only allow one initial infective, although
this assumption could be relaxed. For simplicity in ex-
position, we also assume that the epidemic is known to
have finished, so that i1, . . . , in are the only infection
times.

The augmented likelihood corresponding to (1) is

π(i, r|iκ , κ,β, η)

= ∏
j �=κ

(
1 − exp

{−β(ij − 1)Y (ij − 1)
})

(6)

· exp

{
−

rn−1∑
t=iκ

β(t)Y (t)X(t + 1)

}

·
n∏

j=1

p(rj − ij |η).

The methods described above using Gaussian pro-
cesses can be readily extended to this situation, as fol-
lows. First, we assume a priori that β = exp(g(t)),
where g is drawn from a zero-mean GP prior whose
covariance function has parameter vector θ . Set g =
(g(iκ), . . . , g(rn − 1)). The posterior density of inter-
est is then

π(g, η, i, iκ , κ|r)
∝ π(i, r|iκ , κ,g, η)π(g|θ)π(θ)π(η)π(iκ)π(κ),

where the likelihood π(i, r|iκ , κ,g, η) is obtained by
replacing β(t) with exp(g(t)) in (6). This target density
can then be explored using MCMC methods.

4.2 Examples

We now illustrate the methods using both simulated
data and real data. We assume that the infectious pe-

riod distribution is geometric with mean γ −1, this
being the discrete analogue of the exponential infec-
tious periods adopted for the continuous-time mod-
els in Section 3. Let γ ∼ Beta(λγ , νγ ) a priori, and
for simplicity we fix the GP covariance function pa-
rameter θ . We assign a uniform prior distribution on
{1, . . . , n} to κ , and an improper uniform distribution
on {t : t = r1 − 1, r1 − 2, . . .} to iκ . The target density
of interest is thus

π(g, γ, i, iκ, κ|r)
∝ ∏

j �=κ

(
1 − exp

{−β(ij − 1)Y (ij − 1)
})

(7)

· exp

{
−

rn−1∑
t=iκ

β(t)Y (t)X(t + 1)

}
γ n+λγ −1

· (1 − γ )
∑n

j=1(rj−ij )−n+νγ −1
π(g|θ).

MCMC Algorithm. An MCMC algorithm which
produces samples from the target density defined at
(7) can be obtained by specifying update mechanisms
for each of the parameters. The algorithm itself then
proceeds by sampling the parameters in turn. In prac-
tice it is usually beneficial to perform several updates
for the unknown infection times during each iteration
of the algorithm, in order to improve the mixing of
the Markov chain. We now describe the parameter up-
dates.

First note that, from (7), the full conditional distribu-
tion for γ is

γ |g, i, iκ , κ, r

∼ Beta

(
n + λγ ,

n∑
j=1

(rj − ij ) − n + νγ

)

and so γ can be updated by drawing from this distribu-
tion.

We update infection times as follows. First, an in-
dividual j is chosen uniformly at random from the
n infectives. Next, we propose a new infection time
ĩj = rj − W , where W has a geometric distribution
with mean γ −1. Note that if ĩj < iκ then j is also pro-
posed as the new initial infective, that is, κ̃ = j ; oth-
erwise, κ̃ = κ . If j �= κ and ĩj = iκ then the move
is immediately rejected, since it has zero likelihood
under the assumption that there is exactly one ini-
tial infective. The move is accepted with probability
min{1, h(ĩ, ĩκ , κ̃;g)/h(i, iκ , κ;g)}, where ĩ denotes the
proposed set of infection times (i.e., with ij replaced by
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ĩj ), and

h(i, iκ , κ;g)

= ∏
j �=κ

(
1 − exp

{−β(ij − 1)Y (ij − 1)
})

· exp

{
−

rn−1∑
t=iκ

β(t)Y (t)X(t + 1)

}
.

Finally, g is updated by proposing a new value

g̃ = (√
1 − ε2

)
g + εV,

where V denotes an n-dimensional Gaussian random
variable with mean zero and covariance matrix �(θ),

and 0 < ε < 1 is a tuning parameter. This so-called
under-relaxed proposal method is described in Adams,
Murray and MacKay (2006). The proposed new value
is accepted with probability min{1, h(i, iκ , κ; g̃)/

h(i, iκ , κ;g)}.
Simulated Data. We used the MCMC algorithm de-

scribed above to infer the infection rate function in
two scenarios: one where the infection rate decreases
slowly over time (Scenario 1), and one where it is pe-
riodic (Scenario 2). One data set, consisting of a set
of removal times, was generated for each scenario by
simulation from the true model. The data sets shown in
the results below were both typical outbreaks. In both

FIG. 1. Results for simulated data in Scenario 1 using β(t) = (0.01) exp(−t1/3), γ = 0.5, N = 500, and GP prior covariance function
values ω = 10, l = 6. Plots (b) and (c) are obtained using the known true infection times, and plot (d) only uses the removal data. The shaded
regions in (c) and (d) are 95% posterior credible intervals for β . The ML estimates are shown as crosses in (c) and (d) for comparison.
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scenarios, we set the covariance matrix of the GP to be
� = (K(xi, xj )) where K is the squared-exponential
function

K(xi, xj ) = ω exp
{
−1

2

(
xi − xj

l

)2}
,

where ω and l were chosen to provide reasonably
vague prior information for g in each setting. Note
that l, usually called the length scale, controls the ex-
tent to which the GP can vary over time. Roughly
speaking, small values of l allow the GP to vary
rapidly, while larger values only allow slower varia-
tion. In the context of epidemic modelling, we might

set l to be the time period over which we might reason-
ably expect to see little variation in the infection rate.
Conversely, ω controls the variance of the GP at a given
input point, akin to variance of a Gaussian prior distri-
bution on a univariate parameter. Thus, larger values
correspond to vague prior assumptions in this respect.

We first analysed each simulated data set by assum-
ing that the infection times were also known. Although
this assumption is not very realistic in practice, we do
so here to illustrate some features of the inference prob-
lem. With fixed infection times we can easily obtain a
maximum likelihood estimate of β(t) on each day of
the outbreak, since the known number of new infec-

FIG. 2. Results for simulated data in Scenario 2 using β(t) = (0.002) exp{−(x − 10)2/18} + (0.002) exp{−(x − 55)2/18}, γ = 0.1,
N = 500, and GP prior covariance function values ω = 8, l = 5. Plots (b) and (c) are obtained using the known true infection times, and plot
(d) only uses the removal data. The shaded regions in (c) and (d) are 95% posterior credible intervals for β . The ML estimates are shown as
crosses in (c) and (d) for comparison.
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tions each day follows a Binomial distribution. These
estimates can be plotted against the true β(t), and this
gives some indication of how feasible it is to estimate
the infection rate function. Estimating β using our non-
parametric approach here (i.e., the MCMC algorithm,
but with infection times fixed at the known values) then
illustrates that our GP prior introduces an element of
smoothing compared to the ML estimation. Finally, we
then analysed the data without assuming known infec-
tion times.

The results are illustrated in Figures 1 and 2. The
methods appear to perform reasonably well in prac-
tice. In all cases, we see larger credible intervals for
β at the very start and at end of the outbreak. This
is to be expected, since in these times there are typ-
ically fewer infections from which to infer the value
of β .

Smallpox Data. Our final example uses a classical
data set collected during an outbreak of smallpox in the
Nigerian town of Abakaliki in 1967 (Thompson and
Foege, 1968). These data have been considered by nu-
merous authors, almost always to illustrate new statisti-
cal methodology, and are usually taken to consist of the
symptom-appearance times of 30 individuals among a
homogeneously mixing susceptible population of 120
individuals. More extensive analyses of the full data
set, which includes information on population struc-
ture, vaccination and other aspects, can be found in
Eichner and Dietz (2003) and Stockdale, Kypraios and
O’Neill (2017). The results are shown in Figure 3, the
key finding of which is that there is no evidence to sug-
gest any material variation in the infection rate during
the outbreak. For comparison with a continuous-time
analysis, we include a figure from Xu (2015) which

FIG. 3. Results for the Abakaliki smallpox data (a), (b). Here N = 120 and GP prior covariance function values are ω = 5, l = 14. The
shaded region in plot (b) shows the 95% credible interval for β . The figure in (c) is taken from a continuous-time analysis described in Xu
(2015) and shows the posterior mean and 95% credible interval for β .
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uses the methods described in Section 3.2, so that the
infection rate has a transformed GP prior. It is clear that
this approach gives similar results to our discrete-time
approach.

5. CONCLUDING COMMENTS

We have briefly described recently developed meth-
ods for nonparametric Bayesian modelling and infer-
ence for epidemic models, specifically focussing on in-
fection or incidence rate functions in SIR models. The
methods themselves can easily be extended to other
situations, including epidemic models in which there
are several types of individuals with potentially differ-
ent infectivity of susceptibility characteristics, or more
complex models that include features such as latent pe-
riods or more realistic population structure. Some of
these extensions are described in Xu (2015) and Xu,
Kypraios and O’Neill (2016).

Other aspects of epidemic models could also be
modelled nonparametrically. Boys and Giles (2007) es-
sentially do this by replacing the removal rate γ Y (t)

by a more flexible time-varying function modelled by
a step function. One motivation for doing this is to
investigate the usual assumption that infectious peri-
ods are identically distributed. Another possibility is to
model population structure nonparametrically. In gen-
eral this appears to be a challenging problem, since it
involves defining a suitable prior for population struc-
ture, which could itself be described by a network or
random graph model. An approach involving the so-
called Indian Buffet Process (IBP) is described in Ford
(2014), in which the IBP is used as a model for a bipar-
tite graph on which an epidemic spreads. However, the
resulting inference problem generates many computa-
tional challenges.
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