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CREST, ENSAE, Université Paris-Saclay, 3, ave. P. Larousse 92245 Malakoff Cedex,

France
e-mail: cristina.butucea@ensae.fr

and

Natalia Stepanova∗

School of Mathematics and Statistics, Carleton University
1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

e-mail: nstep@math.carleton.ca

Abstract: We consider the problem of recovery of an unknown multivari-
ate signal f observed in a d-dimensional Gaussian white noise model of
intensity ε. We assume that f belongs to a class of smooth functions in
L2([0, 1]d) and has an additive sparse structure determined by the parame-
ter s, the number of non-zero univariate components contributing to f . We
are interested in the case when d = dε → ∞ as ε → 0 and the parameter s
stays “small” relative to d. With these assumptions, the recovery problem
in hand becomes that of determining which sparse additive components are
non-zero.

Attempting to reconstruct most, but not all, non-zero components of f ,
we arrive at the problem of almost full variable selection in high-dimensional
regression. For two different choices of a class of smooth functions, we es-
tablish conditions under which almost full variable selection is possible,
and provide a procedure that achieves this goal. Our procedure is the best
possible (in the asymptotically minimax sense) for selecting most non-zero
components of f . Moreover, it is adaptive in the parameter s. In addition
to that, we complement the findings of [17] by obtaining an adaptive exact
selector for the class of infinitely-smooth functions. Our theoretical results
are illustrated with numerical experiments.
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1. Introduction

In recent years, there has been much work done on providing methods for vari-
able selection in high-dimensional settings; refer, for example, to [4, 5, 11, 13, 24]
and references therein. Among a variety of methods proposed, the lasso has
become an important tool for dealing with sparse high-dimensional regression
problems. Motivated by the fact that finding the lasso solutions is computation-
ally demanding, Genovese et al. [11] studied the relative statistical performance
of the lasso and marginal regression, which is also known as simple thresholding
[7] and sure screening [9], for sparse high-dimensional regression problems.

Marginal regression is a simple method for variable selection using compo-
nentwise regression. It shrinks the full model down to a submodel of a smaller
dimension by thresholding the marginal regression coefficients using a tuning
parameter. Namely, let

Y = Zγ + z,

be a sparse linear regression model, where Y = (Y1, . . . , Yn)
� is a vector of

responses, Z is an n×d design matrix with d � n, γ = (γ1, . . . , γd)
� is a vector

of coefficients with many components γj equal to zero, and z = (z1, . . . , zn)
� is

a vector of noisy variables. The problem of variable selection in this context
consists of determining which components of γ are non-zero. Under certain
(more or less standard) conditions on the model, including the normality of
z, and assuming that Z has been standardized, Genovese et al. [11] proposed
the variable selection procedure γ̂ = (γ̂1, . . . , γ̂d)

� where

γ̂j = α̂jI{|α̂j | ≥ t}, j = 1, . . . , d,
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and α̂ = (α̂1, . . . , α̂d)
� = Z�Y . By setting the tuning parameter at level t =

C
√
log d, with a carefully chosen constant C depending on the number of non-

zero components of γ, Genovese et al. [11] found, theoretically and numerically,
that marginal regression provides a good alternative to the lasso and concluded
that their procedure merited further study. Numerical results on the relative
performance of marginal regression and the lasso for variable selection can be
found in Genovese et al. [11] and Ji and Jin [21].

In this work, we are interested in obtaining asymptotically minimax exact
and almost full recovery results for a continuous-time regression model. Our
setting is that of a sparse additive Gaussian white noise model

Xε = f + εW, (1)

where W is a d-dimensional Gaussian white noise on [0, 1]d, ε > 0 is the noise
parameter, and f ∈ Fd ⊂ L2([0, 1]

d) is an unknown function with a certain
additive structure that has to be recovered.

For a number s ∈ {1, . . . , d}, which is referred to as the sparsity parameter,
define the set

Hd,s = {η = (η1, . . . , ηd) : ηj ∈ {0, 1}, 1 ≤ j ≤ d,

d∑
j=1

ηj = s},

and assume that the regression function, or signal, f in model (1) has the form

f(x) =
d∑

j=1

ηjfj(xj), x = (x1, . . . , xd) ∈ [0, 1]d, η = (η1, . . . , ηd) ∈ Hd,s,

where, for all j = 1, . . . , d,
∫ 1

0
fj(x) dx = 0 and fj belongs to space Fσ ⊂ L2[0, 1]

of smooth functions with a known smoothness parameter σ > 0. In the present
paper, two examples of the space Fσ will be considered: (i) the Sobolev class of
σ-smooth functions and (ii) the class of analytic functions containing periodic
functions that can be continued analytically in some strip on the complex plane
of width 2σ.

Thus, the class of s-sparse multivariate signals of interest is

Fd
s,σ =

⎧⎨⎩f : f(x) =

d∑
j=1

ηjfj(xj), fj ∈ Fσ,

∫ 1

0

fj(x) dx = 0, 1 ≤ j ≤ d, η = (ηj) ∈ Hd,s

}
,

where the components satisfy the side condition that guarantees uniqueness, and
the signal recovery problem becomes that of determining which sparse additive
components are non-zero.

We are interested in the regime where both the sparsity parameter s and
the dimension d grow to infinity as ε → 0 in such a way that s/d → 0. This
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assumption includes, as a particular case, a popular choice of s in the form
s = d1−β for some β ∈ (0, 1). In general, the smaller the value of s is, the harder
the problem of identifying the non-zero components of f is.

Let us define a selector as any measurable function η∗ = η∗(Xε) taking
values on {0, 1}d. Following [11] and [17], we judge the quality of a selector
η∗ = (η∗1 , . . . , η

∗
d) of a vector η = (η1, . . . , ηd) ∈ Hd,s by using the Hamming

distance on {0, 1}d, which counts the number of positions at which η∗ and η
differ:

|η∗ − η| =
d∑

j=1

|η∗j − ηj |.

As in [11], we distinguish between exact and almost full recovery, and define the
risk Rf,η(η

∗) of a selector η∗ to be Ef,η|η∗−η| and s−1Ef,η|η∗−η|, respectively.
The goal of this paper is three-fold. First, we establish sharp selection bound-

aries that allow us to separate detectable components of a signal f ∈ Fd
s,σ from

non-detectable ones. Next, assuming that all active (non-zero) components fj
are detectable and that s belongs to some set Sd, which puts mild restrictions
on the range of s, we construct an adaptive (free of s) selector η∗ = η∗(Xε) with
the property

sup
s∈Sd

sup
η∈Hd,s

sup
f∈Fd

s,σ

Rf,η(η
∗) → 0, as ε → 0. (2)

Finally, we show that if at least one of the fj ’s is undetectable, then

lim inf
ε→0

inf
η̃

sup
η∈Hd,s

sup
f∈Fd

s,σ

Rf,η(η
∗) > 0, (3)

that is, exact or almost full recovery is impossible, according to the risk function
used.

Depending on whether Rf,η(η
∗) = Ef,η|η∗−η| or Rf,η(η

∗) = s−1Ef,η|η∗−η|,
the selector η∗ that satisfies (2) is said to provide asymptotically exact recovery
or almost full recovery of a signal f ∈ Fd

s,σ in the continuous-time regression
model (1). If, in addition, inequality (3) holds true, then the respective selec-
tion procedure based on η∗ is called an asymptotically minimax exact selector
or asymptotically minimax almost full selector, according to the risk function
considered. The notion of optimality that we use here is taken from the minimax
hypothesis testing theory.

It is well known that the continuous-time regression model (1) serves as a good
approximation to a more realistic equidistant sampling scheme with discrete
Gaussian white noise. In such an approximation, ε−2 roughly corresponds to the
number n of observations per unit cube. In case of a sparse additive regression
function f , the continuous model in hand is closely related to a sparse additive
model (SpAM), as studied in Ravikumar et al. [25]:

yi =

d∑
j=1

ηjfj(xij) + εi, i = 1, . . . , n,
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in which yi is the response for the ith observation unit and xij is the value of
the jth explanatory variable for the ith observational unit. When d is very large
but it is assumed that only a small subset of the explanatory variables truly
contributes to the model, the objective is to identify those variables as precise
as possible. The SpAM method of Ravikumar et al. [25] aims at estimating a
function by using the so-called general additive models (GAMs).

Note that the selection of methods for variable selection in GAMs is rather
broad. Meier et al. [23] proposed a penalized least-squares estimator for variable
selection and estimation in GAMs and provided conditions under which, with
probability approaching 1, their procedure selects a set of fjs containing the
additive components whose distance from zero in a certain metric is greater than
a specified threshold. However, they do not establish model-selection consistency
of their procedure. In the approach of Ravikumar et al. [25], the penalty is
imposed on the l2-norm of the nonparametric components, as well as the mean
value of the components to ensure identifiability. To be valid, however, their
theoretical results require the condition that the “design matrix” formed from
the basis functions for non-zero components be bounded away from zero and
infinity, and it is not clear whether this condition holds in general. Under less
complicated conditions, the adaptive group lasso applied in Huang et al. [13]
for selecting non-zero components in GAMs was shown to be consistent. More
recent generalized additive model selection (GAMSEL) in Chouldechova and
Hastie [4], a penalized likelihood procedure for fitting sparse GAMs that scales to
high-dimensional data, was numerically compared to several similar procedures
from the literature, including the SpAM method, and was numerically found to
perform very well, especially when some of the underlying effects are linear. For
a brief overview of the topic of variable selection for GAMs, we refer to Huang
et al. [13], Chouldechova and Hastie [4], and references therein.

In order to better place the present work in the current literature, let us go
back and consider a simpler model

Xj = ηjmj + ξj , j = 1, . . . , d, (4)

where ξ1, . . . , ξd are iid normal N (0, 1) random variables, η = (η1, . . . , ηd) be-
longs to Hd,s and m = (m1, . . . ,md) is an unknown vector of parameters with
mj ≥ a for some a = ad > 0.

In terms of this model, the results in Section 4 of Genovese et al. [11] ob-
tained for a Bayesian marginal regression setup and the stronger necessary and
sufficient conditions for the possibility of successful variable selection established
in Butucea et al. [3] can be stated as follows. For some δ > 0 possessing the
property δ → 0 and δ log d → ∞ as d → ∞, let τ∗ = (τ∗j ) be the selector with

the components τ∗j = I

(
Xj >

√
(2 + δ) log d

)
for j = 1, . . . , d. If the parameter

a = ad is such that

lim inf
d→∞

a√
2 log d+

√
2 log s

> 1, (5)
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then τ∗ provides exact variable selection. Also, if

lim sup
d→∞

a√
2 log d+

√
2 log s

< 1, (6)

then exact variable selection is impossible, and thus τ∗ is the asymptotically
minimax exact selector.

For the same δ > 0 as above, let τ̂ = (τ̂j) be the selector with the components

τ̂j = I

(
Xj >

√
2 log(d/s) + δ log d

)
for j = 1, . . . , d. If

lim inf
d→∞

a√
2 log(d/s)

> 1, (7)

then almost full variable selection is achieved by means of τ̂ . At the same time,
if

lim sup
d→∞

a√
2 log(d/s)

< 1, (8)

then almost full selection is impossible, and hence τ̂ is the asymptotically mini-
max almost full selector. Relations (5)–(8) yield a partition of the set of possible
values of (s, a) into three regions where (i) exact variable selection is possible
(asymptotically), (ii) almost full variable selection is possible (asymptotically),
and (iii) successful variable selection is impossible. Such a “phase diagram”, in
somewhat different terms, has been first obtained in Genovese et al. [11]. Later
on, the same phase diagram appeared in Ji and Jin [21] in the regression settings
that are somewhat different but, overall, less general than the ones considered
in this work.

Back to the continuous-time regression model (1), the first question of in-
terest is how to measure the signal strength, that is, what quantity should be
considered in place of the value a in the Gaussian vector model (4), and also
what statistic should be used instead of the observation Xj in the definition of
the selectors τ∗j and τ̂j? A natural candidate for the signal strength is the total
energy, that is, the L2-norm of a signal.

A close correspondence between sharp detection boundaries in the nonpara-
metric problem of signal detection and sharp selection boundaries in the problem
of variable selection in model (1) has been for the first time established in Ingster
and Stepanova [17]. Handling the problem of exact recovery for Sobolev classes
Fσ of smoothness σ > 0, they constructed an asymptotically exact selector that
compares a certain chi-square type statistic with a threshold

√
(2 + δ) log d, the

same as in τ∗j . The sharp selection boundaries turned out to be strongly con-
nected to the respective sharp detection boundaries for smooth nonparametric
alternatives with an L2-ball removed. Indeed, only those components fj of a sig-
nal f in Fd

s,d that are detectable are also significant in the problem of variable
selection.

Ingster and Stepanova [17] obtained an adaptive procedure that provides
asymptotically minimax exact reconstruction of a σ-smooth signal f ∈ Fd

s,σ
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observed in a d-dimensional Gaussian white noise model. Their adaptive proce-
dure is based on the idea of aggregation of tests, which is often used in adaptive
testing.

A similar result for the space of infinitely-smooth functions is stated in this
paper in Section 3 (see Theorems 1 and 2). Although the selector in Section 3
is based on somewhat different statistics as compared to the one in [17], both
selectors have one common feature that their thresholds do not depend the
sparsity parameter s. Therefore the aggregation of selectors does provide an
adaptive method for exact variable selection.

Almost full selectors that are introduced in Section 4 are also based on certain
chi-square type statistics. These selectors make a decision on whether or not
the jth component of f is active by comparing the respective statistic to the
threshold

√
2 log(d/s) + δ log d, the same as for the selector τ̂j in the Gaussian

vector model (4). In this paper, we first consider the case of known parameter
s, and then modify the obtained procedure for the case of unknown s. The
asymptotically minimax almost full selector proposed in Section 4.1 has both
the statistic and the threshold defining the selector dependent on s, and hence it
does not solve the more intricate problem of almost full recovery for unknown s.
A natural step to take next would be to aggregate the selectors. Unfortunately,
in the case of high sparsity with very few active signals fj , this approach fails
to give an optimal (asymptotically minimax) procedure. Therefore, in Section
4.2 we propose a new selection procedure that is similar to the Lepski method
of adaptive estimation of smooth signals, as introduced in Lepski [22]. Our
procedure provides asymptotically minimax almost full selectors for both spaces
of smooth functions under consideration.

The paper is organized as follows. In Section 2, we first translate the problem
to an equivalent problem in terms of the Fourier coefficients, then describe two
function spaces of our interest, and also present briefly the results of nonpara-
metric hypothesis testing theory that are required to construct our selectors.
In Section 3, in order to complete the picture of exact variable selection, we
introduce an adaptive selection procedure that gives exact reconstruction for
the space of analytic functions. In Section 4, we obtain almost full selectors
for a known sparsity parameter s for both function spaces in hand. Then, we
construct a more involved adaptive almost full selector and state our main re-
sults. The main results, as stated in Sections 3 and 4, are proved in Section 7. In
Section 5, a good (optimal) performance of the newly proposed selectors is illus-
trated numerically. Section 6 contains concluding remarks and outlines possible
extensions of the present study.

2. Building blocks

Before stating and proving our main results, we translate the statement of the
problem to that for the equivalent model of sparse additive Gaussian sequences,
and define the smoothness classes Fσ, σ > 0, that we consider here. Then,
we shall briefly present some important tools of minimax hypothesis testing
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that will be used in the subsequence sections. For a complete exposition of the
subject, see [18] and the review papers [14, 15, 16].

2.1. Sparse additive Gaussian sequence model

A Gaussian sequence model is equivalent to the corresponding Gaussian white
noise model but is more convenient to deal with as it is written in terms of
the Fourier coefficients. In what follows, {φk(x)}k∈Z is the orthonormal basis of
L2[0, 1] given by

φ0(x) = 1, φk(x) =
√
2 cos(2πkx), φ−k(x) =

√
2 sin(2πkx), k > 0. (9)

For the index l ∈ Zd whose jth component is equal to k and the other compo-
nents are equal to zero, define the functions

φj,k(x) = φl(x) = φk(xj), x = (x1, . . . , xd) ∈ [0, 1]d, 1 ≤ j ≤ d, k ∈ Z,

and denote by θj,k = (f, φj,k) =
∫ 1

0
φk(x)fj(x) dx the kth Fourier coefficient

of the jth component fj . Then, the sequence space model that corresponds to
model (1) takes the form

Xj,k = ηjθj,k + εξj,k, ξj,k
iid∼ N (0, 1), 1 ≤ j ≤ d, k ∈ Z, (10)

where Xj,k = Xε(φj,k) are the empirical Fourier coefficients and the collection
(η1θ1, . . . , ηdθd) consists of sequences ηjθj = {ηjθj,k}k∈Z such that the index
variables ηj sum up to s and that {θj,k}k∈Z belong to l2(Z).

From the theory of communication viewpoint, representation (10) corre-
sponds to the transmission of a message fj , 1 ≤ j ≤ d, by converting it into
an infinite series of coefficients θj,k which are translated by linearly modulated
signals with a Gaussian white noise. In this paper we have chosen to deal with
model (10), which is technically more convenient. Although the set of θjs in-
volves an orthogonal system in L2([0, 1]

d), the results on minimax errors and
risks do not depend on the choice of this orthogonal system because the random
variables Xj,k, which generate a sufficient σ-algebra for f ∈ Fd

s,σ, are inde-
pendent normal N (ηjθj,k, ε

2). Thus the distribution of {Xj,k} depends on the
Fourier coefficients θj,k of f with respect to the system {φj,k} but not on the
choice of {φj,k}. Using a suitable finite collection of the random variables Xj,k

as defined in (10), we wish to construct asymptotically minimax selection pro-
cedures that are adaptive in s. The main results presented in Sections 3 and 4
are formulated in terms of the observations Xj,k as given in (10).

2.2. Two examples of the function space Fσ

The following two examples of a smooth function space Fσ are very common in
the literature on nonparametric estimation and hypothesis testing; we use these
examples of Fσ to handle the problem of variable selection in nonparametric
sparse regression. As before, {φk(x)}k∈Z is an orthonormal basis in L2[0, 1] given
by (9).
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Example 1. Let Fσ with σ > 0 denote the Sobolev class of σ-smooth 1-periodic
functions on R. Define the norm ‖ · ‖σ on Fσ by the formula

‖f‖2σ =
∑
k∈Z

θ2kc
2
k, c2k = c2k(σ) = (2π|k|)2σ, (11)

where θk is the kth Fourier coefficient of f with respect to {φk(x)}k∈Z. If σ is
an integer, then under the periodic constraints (when the function admits 1-
periodic [σ]-smooth extension on the real line) the norm as in (11) corresponds
to

‖f‖2σ =

∫ 1

0

(
f (σ)(x)

)2

dx.

Here, Fσ is the space of 1-periodic functions f in L2[0, 1] having ‖f‖σ < ∞.

The next example of Fσ is also well known in the context of minimax esti-
mation and hypothesis testing.

Example 2. Let Fσ with σ > 0 be the class of analytic 1-periodic functions f
on R admitting a continuation to the strip Sσ = {z = x + iy : |y| ≤ σ} ⊂ C

such that f(x+ iy) is analytic on the interior of Sσ, bounded on Sσ and∫ 1

0

|f(x± iσ)|2 dx < ∞.

Let the norm ‖ · ‖1,σ on Fσ be given by (see, for example, [12])

‖f‖21,σ =

∫ 1

0

(Ref(x+ iσ))
2
dx.

In terms of the Fourier coefficients, the squared norm ‖f‖21,σ takes the form

‖f‖21,σ =
∑
k∈Z

θ2kc
2
k, c2k = c2k(σ) = cosh2(2πσk).

In view of the relations

exp(|x|) ≤ 2 cosh(x) ≤ 2 exp(|x|), x ∈ R,

we may also consider an equivalent norm ‖ · ‖σ defined as

‖f‖2σ =
∑
k∈Z

θ2kc
2
k, ck = ck(σ) = exp(2πσ|k|). (12)

We have chosen to deal with the norm given by (12) rather than with the norm
‖f‖1,σ as it is easier to study. Here, Fσ is the space of 1-periodic functions f in
L2[0, 1] having ‖f‖σ < ∞.
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2.3. Minimax hypothesis testing for nonparametric alternatives

As demonstrated in [17], a natural condition that accounts for the signal strength
is obtained by connecting the problem in hand to that of hypothesis testing. This
is done as follows.

For each component fj of a signal f ∈ Fd
s,σ, consider testing the hypothesis

of no signal H0j : fj = 0 versus the alternative H1j : fj ∈ Fσ(rε), where for a
positive family rε → 0

Fσ(rε) = {g ∈ Fσ : ‖g‖σ ≤ 1, ‖g‖2 ≥ rε}, (13)

and ‖ · ‖σ is a norm on Fσ. In this problem, a precise demarcation between the
signals that can be detected with error probabilities tending to 0 and the signals
that cannot be detected is given in terms of a detection boundary, or separation
rate, r∗ε → 0 as ε → 0. For various function classes that are frequently used
in minimax hypothesis testing, sharp asymptotics for r∗ε are available (see, for
example, [14]). The hypothesesH0j andH1j separate asymptotically (that is, the
minimax error probability tends to zero) if rε/r

∗
ε → ∞ as ε → 0. The hypotheses

H0j and H1j merge asymptotically (that is, the minimax error probability tends
to one) if rε/r

∗
ε → 0 as ε → 0.

When H0j and H1j separate asymptotically, we say that fj is detectable. If
the hypotheses H0j and H1j separate (merge) asymptotically when

lim inf
ε→0

rε/r
∗
ε > 1 (lim sup

ε→0
rε/r

∗
ε < 1),

the detection boundary r∗ε is said to be sharp. The knowledge of a sharp detection
boundary r∗ε allows us to have a meaningful problem of testing H0j : fj = 0
versus H1j : fj ∈ Fσ(rε) by choosing rε so that lim infε→0 rε/r

∗
ε > 1. Otherwise,

the function fj will be too “small” to be noticeable.
The quantity that is crucial for establishing sharp selection boundaries turns

out to be exactly the quantity that defines sharp detection boundaries (in the
previous testing problem). Therefore, below we provide details on the extremal
problem whose value yields the required quantity. For the two examples of el-
lipsoids under study below, more details on the solution of this problem will be
presented in the next section.

Let {φk(x)}k∈Z be the orthonormal basis in L2[0, 1] given by (9). If g ∈
L2[0, 1], then g(x) =

∑
k∈Z

θkφk(x), where θk = (g, φk) is the kth Fourier coef-
ficient of g, and ‖g‖22 =

∑
k∈Z

θ2k. Let Fσ be a function space depending on a
parameter σ > 0 that is a subset of L2[0, 1]. Suppose that g ∈ Fσ ⊂ L2[0, 1] is
observed in a univariate Gaussian white noise of intensity ε, and we wish to test
the null hypothesis H0 : g = 0 versus the alternative (more precisely, a family
of alternatives) H1 : g ∈ Fσ(rε), where the set Fσ(rε) is given by (13). For the
two function spaces of our interest, the norm of an element g is expressed as
‖g‖2σ =

∑
k∈Z

c2kθ
2
k with the coefficients c2k = c2k(σ) specified by formulas (11)

and (12). In the sequence space of Fourier coefficients, the set Fσ(rε) corre-
sponds to the ellipsoid in the space l2(Z) with semi-axes ck = ck(σ) and a small
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neighbourhood of the point θ = 0 removed:

Θσ(rε) =

{
θ = (θk)k∈Z ∈ l2(Z) :

∑
k∈Z

c2kθ
2
k ≤ 1,

∑
k∈Z

θ2k ≥ r2ε

}
. (14)

Consider the problem of minimizing (2ε4)−1
∑

k∈Z
θ4k over all θ ∈ Θσ(rε).

Denote by θ∗(rε) = (θ∗k(rε))k∈Z the solution to this extreme problem:

1

2ε4

∑
k∈Z

(θ∗k(rε))
4 = inf

θ∈Θσ(rε)

1

2ε4

∑
k∈Z

θ4k, (15)

and let u2
ε(rε) = u2

ε(Θσ(rε)) be the value of the problem, that is,

u2
ε(rε) =

1

2ε4

∑
k∈Z

(θ∗k(rε))
4
. (16)

The function u2
ε(rε) plays a key role in the minimax theory of hypothesis testing.

It controls the minimax total error probability and is used to set a cut-off point
of the asymptotically minimax test procedure. The detection boundary r∗ε in
the problem of testing H0 : θ = 0 versus H1 : θ ∈ Θσ(rε) is determined by
the relation uε(r

∗
ε) � 1. The function uε(rε) is a non-decreasing function of the

argument rε which possesses a kind of ‘continuity’ property. Namely, for any
ε > 0 there exist Δ > 0 and ε0 > 0 such that for any δ ∈ (0,Δ) and ε ∈ (0, ε0),

uε(rε) ≤ uε((1 + δ)rε) ≤ (1 + ε)uε(rε). (17)

These and some other facts about u2
ε(rε) can be found in [14, Sec. 3.2] and [18,

Sec. 5.2.3]. In the context of variable selection, the knowledge of uε(rε) makes it
possible to establish the necessary and sufficient conditions for the possibility of
variable selection in the exact and almost full regimes (see Section 4 for details).

For some standard function spaces with the norm ‖g‖σ defined (under the
periodic constraints) in terms of the Fourier coefficients as ‖g‖2σ =

∑
k∈Z

θ2kc
2
k,

the form of the extremal sequence (θ∗k(rε)k∈Z in problem (15) as well as the
sharp asymptotics for uε(rε) are available. For the standard spaces of smooth
functions, θ∗k(rε) vanishes when k exceeds Kε, where Kε grows to infinity and
depends on the function space under study.

2.4. Sharp testing constants for two examples of the space Fσ

Below we detail asymptotic equivalents of the solutions of the extremal problem
(15) for the Sobolev space of periodic σ-smooth function on R (see Example 1
in Section 2.2) and the space of periodic functions on R that admit an analytic
continuation to the strip of width 2σ around the real line (see Example 2 in
Section 2.2). They are used to construct our selectors.

First, we consider the function space of Example 1. Let Fσ with σ > 0 be the
Sobolev space of σ-smooth 1-periodic functions, as introduced in Section 2.2.
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For a function f ∈ Fσ consider testing the hypothesis H0 : f = 0 versus the
alternative H1 : f ∈ Fσ(rε), where for a positive family rε → 0

Fσ(rε) = {f ∈ Fσ : ‖f‖σ ≤ 1, ‖f‖2 ≥ rε}.

Switching from Sobolev balls {f ∈ Fσ : ‖f‖σ ≤ 1} to Sobolev ellipsoids {θ ∈
l2(Z) :

∑
k∈Z

c2kθ
2
k ≤ 1} leads to the problem of testing H0 : θ = 0 versus

H1 : θ ∈ Θσ(rε). The test procedure that does the best in distinguishing between
the two latter hypotheses is obtained by solving the extreme problem (15) with
the semi-axes ck defined as in (11); see Section 3 of [14] for details. The extremal
sequence (θ∗k(rε)k∈Z satisfies (see, for example, [14, § 3.2] and Theorem 2 in [19]):

(θ∗k(rε))
2 ∼ π(1 + 2σ)

2σ(1 + 4σ)1/(2σ)
r2+1/σ
ε

(
1− (|k|/Kε)

2σ
)
+
, (18)

where the notation aε ∼ bε means limε→0 aε/bε = 1, x+ = max(x, 0), and

Kε = 
(4σ + 1)1/(2σ)(2π)−1r−1/σ
ε �. (19)

The sharp asymptotics for uε(rε) defined by formula (16) are of the form (see
[18, § 4.3.2] and Theorems 2 and 4 in [19])

uε(rε) ∼ C(σ)r2+1/(2σ)
ε ε−2, ε → 0, (20)

where (see, for example, p. 707 of [8] and p. 104 of [14])

C2(σ) = π(1 + 2σ)(1 + 4σ)−1−1/(2σ).

Similar results are available for the class Fσ of 1-periodic analytic functions,
as introduced in Example 2 of Section 2.2. In this case, the ball {f ∈ Fσ : ‖f‖σ ≤
1} corresponds to the ellipsoid {θ ∈ l2(Z) :

∑
k∈Z

c2kθ
2
k ≤ 1} with the semi-axes

ck defined as in (12). Thus, translating the problem of testing H0 : f = 0
versus H1 : f ∈ Fσ(rε) to the one in terms of Fourier coefficients brings us
to testing H0 : θ = 0 versus H1 : θ ∈ Θσ(rε). The asymptotically minimax
test procedure that distinguishes between these two hypotheses is obtained by
solving the extreme problem (15) with the semi-axes ck defined as in (12). The
elements of the extremal sequence (θ∗k(rε)k∈Z in problem (15) with the semi-axis
ck as above may be taken as constants (independent of k) satisfying as ε → 0
(see, for example, p. 707 of [8] and p. 104 of [14])

θ∗k(rε) ∼
√
πσ rε log

−1/2(r−1
ε ) (1− exp(4π(|k| −K)))+ , (21)

where

Kε = 
(2πσ)−1 log(r−1
ε )�, (22)

and for the function uε(rε) defined in (16) we have

uε(rε) ∼
(rε
ε

)2 (πσ/2)1/2

log1/2(r−1
ε )

. (23)

Formulas (21)–(23), as well as formulas (18)–(20), will be employed to con-
struct exact and almost full selectors for the two examples of Fσ under study.
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3. Adaptive exact variable selection for analytic functions

The problem of adaptive reconstruction of sparse additive functions in the Gaus-
sian white noise model was studied in the only case of Sobolev σ-smooth func-
tions, see [17]. Before handling the problem of almost full variable selection in
adaptive settings, we complement the findings in [17] by presenting an adaptive
exact selector for the space of analytic functions. The strategy is similar to the
one suggested in [17] for σ-smooth functions, but the parameters of our statistics
and the condition on the growth of the dimension d are different.

Consider the sequence space model that corresponds to the Gaussian white
noise model with f from the class of analytic functions Fσ as defined in Sec-
tion 2.2. Let 1 < s1 < s1 < . . . < sM < d be the grid of points as in (34). For
any m = 1, . . . ,M , let the parameter r∗ε,m > 0 be determined by the equation

uε(r
∗
ε,m)

√
2 log d+

√
2 log sm

= 1.

Consider weighted chi-square type statistics

tj,m =
∑

1≤|k|≤Kε

ωk(r
∗
ε,m)

[(Xj,k

ε

)2

− 1

]
, j = 1, . . . , d, m = 1, . . . ,M,

with weight functions

ωk(r
∗
ε,m) =

1

2ε2
(θ∗k(r

∗
ε,m))2

uε(r∗ε,m)

obeying the normalization condition
∑

k∈Z
ω2
k(r

∗
ε,m) = 1/2. Next, for all j =

1, . . . , d and m = 1, . . . ,M , set

ηj,m = I

(
tj,m >

√
(2 + δ)(log d+ logM)

)
,

and define an adaptive exact selector η∗∗ of a vector η ∈ Hd,s by the formula
(see formula (18) in [17])

η∗∗ = (η∗∗1 , . . . , η∗∗d ), η∗∗j = max
1≤m≤M

ηj,m, j = 1, . . . , d. (24)

The idea behind the selector η∗∗ is as follows. The jth component of a signal
is viewed active if at least one of the statistics tj,m, m = 1, . . . ,M , detects it.
Therefore, thinking of ηj,m and η∗∗j as test functions, we get that the probability
of having θj incorrectly undetected does not exceed the respective probability
with the ηj,m test, where sm is close to the true (but unknown) value of s.
Furthermore, the probability that η∗∗j incorrectly detects θj is less than the sum
of the respective probabilities for the ηj,m tests over all m = 1, . . . ,M, and is
small by the choice of a threshold.

Let the set Θσ,d(rε) be as in (38) with the coefficients ck given by (12). The
following two theorems, whose proofs are similar to those of Theorems 3 and 4
in [17], hold true.
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Theorem 1. Let s ∈ {1, . . . , d} be such that s = o(d). Assume that log d =
o(log ε−1) and that the quantity rε = rε(s) > 0 satisfies

lim inf
ε→0

uε(rε)√
2 log d+

√
2 log s

> 1. (25)

Then as ε → 0

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

Eη,θ|η − η∗∗| → 0,

where η∗∗ is the selector of vector η as defined in (24).

Theorem 2. Let s ∈ {1, . . . , d} be such that s = o(d). Assume that log d =
o(log ε−1) and that the quantity rε = rε(s) > 0 satisfies

lim sup
ε→0

uε(rε)√
2 log d+

√
2 log s

< 1. (26)

Then

lim inf
ε→0

inf
η̃

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

Eη,θ|η − η̃| > 0,

where the infimum is over all selectors η̃ of a vector η in model (10).

Remark 1. Let us comment on the statements of Theorems 1 and 2. Inequal-
ities (25) and (26) describe the sharp exact selection boundary that indicates
whether or not we are in a position to proceed with exact variable selection; this
boundary is determined in terms of the function uε(rε) whose sharp asymptotics
for the two examples of Fσ are given by (20) and (23). The use of uε(rε) instead
of rε makes it easier to build a bridge between variable selection in Gaussian
white noise setting and variable selection in regression setting as studied in
Section 4 of [11]. Indeed, the comparison of inequalities (25) and (26) with
the respective inequalities (5) and (6) shows that uε(rε) does the same job in
the space of Fourier coefficients as the parameter a does in a Gaussian vector
model: namely, it controls the strength of a signal. In addition, using uε(rε)
instead of rε makes the statement of detectability condition precise. By ‘con-
tinuity’ of uε(rε) as cited in (17), the conditions (25) and (26) that separate
detectable components from undetectable ones can be written in the usual form
lim infε→0 rε/r

∗
ε > 1 paired with lim supε→0 rε/r

∗
ε < 1, where for Sobolev ellip-

soids the sharp detection boundary r∗ε is found explicitly from (20), and for the
ellipsoids of analytic functions it is obtained from (23). A similar remark applies
to Theorems 3–6 stated in Section 4.2. In this case, we can see the close cor-
respondence between inequalities (39) and (40) that establish the sharp almost
full selection boundary and inequalities (7) and (8). Thus, in the nonparamet-
ric case, inequalities (25)–(26) and (39)–(40) altogether partition the parameter
space of the problem into the same three regions of (i) exact variable selection,
(ii) almost full variable selection, and (iii) no variable selection, as inequalities
(5)–(8) do in the parametric case.
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4. Almost full variable selection

In this section, we first discuss almost full variable selection for known sparsity s.
Next, when s is unknown, we introduce the almost full selector that is adaptive
in s and prove that, with a suitable choice of the parameters, both adaptive
and non-adaptive selectors are asymptotically minimax over the corresponding
smoothness classes.

4.1. Non-adaptive almost full variable selection

We first consider a non-adaptive setup when the sparsity parameter s is known.
When dealing with the problem of variable selection in model (10), we make use
of the statistics, cf. asymptotically minimax test statistics in Section 3.1 of [14],

tj = tj(s) =
∑

1≤|k|≤Kε

ωk(r
∗
ε(s))

[(
Xj,k

ε

)2

− 1

]
, j = 1, . . . , d, (27)

where for any rε > 0 the weight functions ωk(rε) are given by the formula

ωk(rε) =
1

2ε2
(θ∗k(rε))

2

uε(rε)
, 1 ≤ |k| ≤ Kε,

and the number r∗ε(s) > 0 is the solution of the equation

uε(r
∗
ε(s))√

2 log(d/s)
= 1. (28)

For both function spaces of interest, the quantities Kε, θ
∗
k(rε), and uε(rε) in

formula (27) are specified in Section 2.4. The sparsity parameter s ∈ {1, 2, . . . , d}
is assumed to be small relative to d, that is, s = o(d). Note that the weights
ωk(rε) are normalized to have

∑
1≤|k|≤Kε

ω2
k(rε) = 1/2.

Now we define a non-adaptive almost full selector to be

η̌ = (η̌1, . . . , η̌d), η̌j = I

(
tj >

√
2 log(d/s) + δ log d

)
, j = 1, . . . , d, (29)

where δ = δε > 0 satisfies

δ → 0 and δ log d → ∞, as ε → 0. (30)

The arguments as in the proof of Theorem 1 show that for Sobolev ellipsoids,
under the conditions, cf. (32),

log d = o(ε−2/(2σ+1)), lim inf
ε→0

uε(rε)√
2 log(d/s)

> 1,

the selector η̌ reconstructs almost all relevant components of a vector η ∈ Hd,s,
and hence asymptotically provides almost full recovery of a signal f ∈ Fd

s,σ in
model (1).
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To illustrate the difference between exact and almost full reconstruction in
adaptive settings, assume that Fσ is the Sobolev space. In this case, a selector
(see Section 3.1 of [17] with s in place of d1−β)

η∗ = (η∗1 , . . . , η
∗
d), η∗j = I

(
t∗j >

√
(2 + δ) log d

)
, j = 1, . . . , d, (31)

where the statistics t∗j are defined similar to the tjs as in (27) with the relation

uε(r
∗
ε(s))√

2 log d+
√
2 log s

= 1

instead of (28), turns out to be a non-adaptive exact selector as long as

log d = o(ε−2/(2σ+1)) and lim inf
ε→0

uε(rε)√
2 log d+

√
2 log s

> 1. (32)

Under the above conditions, the procedure based on η∗ selects correctly all non-
zero components of a vector η ∈ Hd,s, and hence provides exact recovery of a
signal f ∈ Fd

s,σ in model (1).
Contrasting with formula (31), the threshold in (29) is set at a lower level and

is dependent on the parameter s. The latter fact makes the idea of adaptation
suggested in [17] for the exact recovery case not applicable in the case of almost
full recovery.

4.2. Adaptive almost full variable selection

In this section, we consider a more realistic problem when the sparsity parameter
s is unknown. We derive conditions under which almost full variable selection
is possible, and construct a selector for which the Hamming distance is much
smaller than the number of relevant components (see Theorems 3 and 5). Our
selector is adaptive in the sparsity parameter s and is unimprovable in the
asymptotically minimax sense (see Theorems 4 and 6). It is obtained by using
Lepski’s method.

4.2.1. Construction of the almost full selector in the adaptive case

In this subsection, the selector η̌ as in (29) will be used to obtain the corre-
sponding adaptive procedure. To avoid losses due to adaptation, we will have
to limit the range of the possible values of s. Namely, we assume that for some
constants 0 < c < C < 1

c ≤ lim inf
d→∞

(log s/ log d) ≤ lim sup
d→∞

(log s/ log d) ≤ C, (33)

and define the set

Sd = {s ∈ {1, . . . , d} is such that condition (33) holds}
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over which the adaptive selector that we propose yields almost full selection.
The restriction on s as in (33) is relatively mild. For instance, any s = d1−β

with β ∈ [b, B] for some constants 0 < b < B < 1 belongs to Sd.
To construct the desired selector, for some Δ = Δd > 0 and M = �(C −

c)/Δ�+ 1, pick grid points over the interval (1, d):

s1 = dc, sm = sm−1d
Δ = s1d

(m−1)Δ, 2 ≤ m ≤ M, (34)

and assume that

Δ → 0, Δlog d → 0, as d → ∞, (35)

yielding dΔ ≤ const for all large enough d. For each m = 1, . . . ,M , let the
parameter r∗ε(sm) > 0 be determined by the equation, cf. (28),

uε(r
∗
ε(sm))√

2 log(d/sm)
= 1,

where, depending on a type of the ellipsoid Θσ(rε) we are dealing with, the
function uε(rε) satisfies either (20) or (23).

Similar to the case of known s, consider weighted chi-square type statistics,
cf. (27),

tj(sm) =
∑

1≤|k|≤Kε

ωk(r
∗
ε(sm))

[(Xj,k

ε

)2

− 1

]
, j = 1, . . . , d, m = 1, . . . ,M,

with weight functions

ωk(r
∗
ε(sm)) =

1

2ε2
(θ∗k(r

∗
ε(sm))2

uε(r∗ε(sm))
, 1 ≤ |k| ≤ Kε,

possessing the property
∑

1≤|k|≤Kε
ω2
k(r

∗
ε(sm)) = 1/2. The values of θ∗k(r

∗
ε(s))

andKε depend on the function space under consideration. For the Sobolev space
in hand, θ∗k(r

∗
ε(s)) and Kε are as in (18) and (19); for the space of analytic

functions, θ∗k(r
∗
ε(s)) and Kε are as in (21) and (22).

Next, for all j = 1, . . . , d and m = 1, . . . ,M , set

η̂j(sm) = I

(
tj(sm) >

√
2 log(d/sm) + δ log d

)
,

where δ = δε > 0 satisfies (30), and define an adaptive selector of a vector
η ∈ Hd,s by the formula

η̂(sm̂) = (η̂1(sm̂), . . . , η̂d(sm̂)), (36)

where m̂ is chosen by Lepski’s method (see Section 2 of [22]) as follows:

m̂ = min {1 ≤ m ≤ M : |η̂(sm)− η̂(si)| ≤ vi for all i ≥ m} , (37)
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and m̂ = M if the set in (37) is empty. Here the quantities vi = vi,d are set to
be

vi = si/τd, m ≤ i ≤ M,

with a sequence of numbers τd → ∞ satisfying (recall that d = dε → ∞ and
δ log d → ∞ as ε → 0)

τd = o
(
min(log d, dδ/2)

)
, as ε → 0.

The idea behind Lepski’s procedure is as follows. Each estimator η̂(si) is
associated with the interval of a size proportional to its standard deviation.
When, in the process of iteration, for some index m an estimator η̂(sm) is found
to be far enough from the previous ones, this means that we have detected a
bias change, indicating that we are probably close to the true value of s.

Algorithmically, Lepski’s procedure for choosing m̂ works as follows. We start
by setting m̂ = M and attempt to decrease the value of m̂ from M to M − 1. If
|η̂(sM−1)− η̂(sM )| ≤ vM , we set m̂ = M − 1; otherwise, we keep m̂ equal to M .
In case m̂ is decreased to M−1, we continue the process attempting to decrease
it further. If |η̂(sM−2)− η̂(sM−1)| ≤ vM−1 and |η̂(sM−2)− η̂(sM )| ≤ vM , we set
m̂ = M − 2; otherwise, we keep m̂ equal to M − 1; and so on. Notice that by
construction vM ≥ vM−1 ≥ . . . ≥ v1.

In connection with formula (37), let us note that vi, m ≤ i ≤ M , are real
numbers such that vi = o(si) = o(sM ) and

vi = si/τd ≥ s1 max
(
(log d)−1, d−δ/2

)
≥ dc−δ/2 → ∞

as d → ∞. As the random variables |η̂(sm) − η̂(si)| =
∑d

j=1 |η̂j(sm) − η̂j(si)|,
m ≤ i ≤ M , take on integer values, the use of the integer part [vi] instead of vi
would also be possible yet more complicated in terms of notation. As we shall
see in the next theorems, our selector η̂(sm̂) with m̂ as in (37) achieves almost
full selection adaptively.

4.2.2. Sobolev smooth functions

Consider the set Θσ(rε) as in (14) with the coefficients ck given by (11), and
define the set

Θσ,d(rε) =

{
θ = (θj) : θj = (θj,k) ∈ l2(Z),

∑
k∈Z

c2kθ
2
j,k ≤ 1,

∑
k∈Z

θ2j,k ≥ r2ε , 1 ≤ j ≤ d

}
. (38)

Let η̂(sm̂) be the selector given by (36) based on the statistics tj(sm) as in (27),
where the quantities θ∗k(rε), Kε, and uε(rε) are specified by formulas (18), (19),
and (20), respectively. The following theorem holds.
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Theorem 3. Let s ∈ {1, . . . , d} be such that (33) holds true. Assume that
log d = o(ε−2/(2σ+1)) and that the quantity rε = rε(s) > 0 satisfies

lim inf
ε→0

uε(rε)√
2 log(d/s)

> 1. (39)

Then as ε → 0

sup
s∈Sd

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η̂(sm̂)− η| → 0.

Theorem 3 says that if all the hypotheses H0j : θj ≡ 0 and H1j : θj ∈ Θσ(rε),
j = 1, . . . , d, separate asymptotically, then the selection procedure based on
η̂(sm̂) reconstructs almost all non-zero components of a vector η ∈ Hd,s, and
thus provides almost full recovery of (η1θ1, . . . , ηdθd), uniformly in Sd, Hd,s, and
Θσ,d(rε).

The next result shows that if the detectability condition (39) is not met,
almost full selection is impossible.

Theorem 4. Let s ∈ {1, . . . , d} be such that s = o(d). Assume that log d =
o(ε−2/(2σ+1)) and that the quantity rε = rε(s) > 0 satisfies

lim sup
ε→0

uε(rε)√
2 log(d/s)

< 1. (40)

Then
lim inf
ε→0

inf
η̃

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η − η̃| > 0,

where the infimum is over all selectors η̃ of a vector η in model (10).

4.2.3. Analytic functions

The results similar to Theorems 3 and 4 hold true for the space of analytic
functions. Namely, consider the sets Θσ(rε) and Θσ,d(rε) as in (14) and (38)
with the coefficients ck given by (12). Again, let η̂(sm̂) be the selector defined
by (36) based on the statistics tj(sm) as in (27), but the quantities θ∗k(rε), Kε,
and uε(rε) are now as in (21), (22), and (23), respectively. The following results
hold true.

Theorem 5. Let s ∈ {1, . . . , d} be such that (33) holds true. Assume that
log d = o(log ε−1) and that the quantity rε = rε(s) > 0 satisfies

lim inf
ε→0

uε(rε)√
2 log(d/s)

> 1.

Then as ε → 0

sup
s∈Sd

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η̂(sm̂)− η| → 0.



2340 C. Butucea and N. Stepanova

Theorem 6. Let s ∈ {1, . . . , d} be such that s = o(d). Assume that log d =
o(log ε−1) and that the quantity rε = rε(s) > 0 satisfies

lim sup
ε→0

uε(rε)√
2 log(d/s)

< 1.

Then
lim inf
ε→0

inf
η̃

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η − η̃| > 0,

where the infimum is over all selectors η̃ of a vector η in model (10).

Remark 2. We should remark that the best selection procedure yields exact

variable selection only if the condition lim infε→0
uε(rε)√

2 log d+
√
2 log s

> 1 holds; at

the same time, the best selection procedure gives almost full variable selection

if a milder condition lim infε→0
uε(rε)√
2 log(d/s)

> 1 is met.

5. Numerical implementation

In this section, we illustrate numerically the behaviour of the proposed almost
full selector, as defined in (36), for Sobolev smooth functions with σ = 1. Note
that this setup is among the least favorable setups, as the rates are faster for
larger values of σ and for analytic functions.

Let us note that our thresholding procedure is invariant with respect to any
permutation of the component functions. Therefore, without loss of generality,
we choose the first s components to contain a signal and let the other compo-
nents be empty.

Let s = 5 and let d belong to {50, 100, 500, 1000, 5000, 10000, 50000}, ε =
0.01, σ = 1. Then the ratio s/d belongs to {0.1, 0.05, 0.01, 5 · 10−3, 10−3, 5 ·
10−4, 10−4}. The condition log d < ε−2/(2σ+1) in Theorem 3 is verified.

We pick five active component functions, all defined on [0, 1], as follows:

f1(x) = x2 (2x−1 − (x− 0.5)2) ex − 0.4752,

f2(x) = x2 (2x−1 − (x− 1)5)− 0.4494,

f3(x) = 15x2 2x−1 cos(15x)− 0.5068,

f4(x) = x− 0.5,

f5(x) = 5(x− 0.7)3 + 0.29,

where, up to four decimal places,
∫ 1

0
fj(x)dx = 0 for all j = 1, . . . , 5. These

functions are plotted on Figure 1. Their L2-norms (total energies) are evaluated
numerically:

‖fj‖2, j = 1, . . . , 5 : 0.6110 0.2409 3.7886 0.2887 0.4601.

First, we implement the procedure η̂(s) that utilizes the true value of s. Then,
we run the procedure with the estimated sparsity sm̂, where sm̂ is one of the
grid points in (34) and the index m̂ is chosen in accordance with (37):

sm̂ = s1 = d0.15, Δ = 0.1 and M = 7.
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Fig 1. Plots of the signal functions

For example, for different values of d, the grid points sm, m = 1, . . . , 7, are:

d s1 s2 s3 s4 s5 s6 s7
50 1 2 3 5 8 12 18
100 1 3 5 7 12 19 31
500 2 4 8 16 30 56 105
1000 2 5 11 22 44 89 177
5000 3 8 19 46 108 253 594
10000 3 10 25 63 158 398 1000
50000 5 14 44 130 384 1133 3343

Then, we use formula (36) to compute η̂(sm̂) with the obtained value of sm̂.
The study is based on K = 500 independent cycles of simulations. We esti-

mate the Hamming error s−1E(|η̂(sm̂)− η|) of almost full recovery by means of
the selector η̂(sm̂), which is free of s, by the quantity

err =
1

sK

K∑
k=1

|η̂(s(k)m̂ )− η|,

where s
(k)
m̂ is the value of sm̂ obtained for the kth repetition of the experiment,

k = 1, . . . ,K. Due to the equality ‖η̂(sm̂) − η‖ = |η̂(sm̂) − η|, the quantity err
also estimates the risk s−1E‖η̂(sm̂)− η‖.

The adaptive procedure that produces our simulation results is amazingly
fast and the obtained results are most encouraging, as seen from Table 5. The
procedure never detects a signal if there is none.

As seen from Table 5, although the estimated error gets slightly larger as d
increases, it is remarkably stable even for very small values of the ratio s/d.

The next table, Table 5, reports the values of the probability P(sm̂ ≤ s) of
underestimating the true sparsity parameter s. With high probability sm̂, with
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s/d 0.1 0.05 0.01 5 · 10−3 10−3 5 · 10−4 10−4

err(η̂(sm̂)) 0.1272 0.1420 0.1616 0.1856 0.2156 0.2248 0.2340

Table 1

Estimated error of almost full selection as s/d tends to zero, s = 5.

s/d = 5/d 0.1 0.05 0.01 5 · 10−3 10−3 5 · 10−4 10−4∑K
k=1 I(s

(k)
m̂

≤ s)/K 0.886 0.896 0.918 0.840 0.838 0.904 0.866
Table 2

Estimated probability of underestimating s for almost full selection as s/d tends to zero,
s = 5.

m̂ as in (37), underestimates the true value of s, and the situation remains the
same across different values of d.

Now we numerically study the question of how the signal strength effects the
global risk of our selector. To this end, we modify the function f5(x) as follows:

f5,l(x) = l
(
(x− 0.7)3 + 0.058

)
, l ∈ {0.01, 0.5, 1, 2, 3, 4, 5}.

The function f5,l(x) has the L2-norm that is proportional to l. For the adaptive
selector in hand, Table 5 provides the norm of f5,l(x) and the estimated error
of almost full recovery for different values of d. We note that, while being very
stable, the error decreases when l is between 3 and 4 (or when ‖f5,l‖2 is between
0.2761 and 0.3681). This is expected by the theory because, as ‖f5,l‖2 increases
with l, the upper boundary for selection is achieved and hence variable selection
becomes easier. Moreover, starting from l equal to 4, the error of selection of
the 5th component decays to zero very fast, which explains why starting from
this value the selection error is stabilized.

l 0.01 0.5 1 2
‖f5,l‖2 0.0009 0.0460 0.0920 0.1841

err(η̂(sm̂)), d = 1000 0.3856 0.3684 0.3892 0.3924
err(η̂(sm̂)), d = 5000 0.3992 0.3948 0.4092 0.3916

l 3 4 5 6 7
‖f5,l‖2 0.2761 0.3681 0.4601 0.5522 0.6442

err(η̂(sm̂)), d = 1000 0.3620 0.1844 0.1848 0.1856 0.1684
err(η̂(sm̂)), d = 5000 0.3976 0.2064 0.2044 0.1992 0.1948

Table 3

Estimated error of the adaptive almost full selector for different choices of l, s = 5.

Next, we take s = 10 and the same values of d, ε, and σ as before. When

s/d = 10/d 0.2 0.1 0.02 0.01 2 · 10−3 10−3 2 · 10−4

err(η̂(sm̂)) 0.1320 0.1456 0.1562 0.1890 0.2054 0.2254 0.2298

Table 4

Estimated error for almost full selection as s/d tends to zero, s = 10.
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comparing the values of the estimated error of almost full selection in Table 5
with those in Table 5, we conclude that for fixed s/d these values are smaller
for larger s and d, whereas for fixed d they are slightly larger for larger s.

Finally, let us examine how the risk varies depending on the L2-norm of the
same component function f5,l(x). Computed values of the estimated error are

l 0.01 0.5 1 2
err(η̂(sm̂)), d = 1000 0.2850 0.2690 0.2798 0.2772
err(η̂(sm̂)), d = 5000 0.2946 0.2942 0.3038 0.2932

l 3 4 5 6 7
err(η̂(sm̂)), d = 1000 0.2626 0.1798 0.1768 0.1850 0.1690
err(η̂(sm̂)), d = 5000 0.2960 0.1974 0.2024 0.1946 0.1942

Table 5

Estimated error of the adaptive almost full selector for different choices of l, s = 10.

presented in Table 5 (s = 10). These values are smaller than the corresponding
values in Table 5 (s = 5). This can be explained by the fact that, in the case of
s = 10 active component functions, changes that occur in the 5th component
have less effect on the risk than in the case of s = 5 active components.

6. Concluding remarks

The present work has been in part motivated by the results of Genovese et
al. [11] and Ingster and Stepanova [17], as outlined in the Introduction, who
examined the effectiveness of simple thresholding, as opposed to the lasso, in
high-dimensional problems of variable selection. In the context of variable se-
lection in high dimensions, in both regression and white noise settings, simple
thresholding provides plausible alternative to the lasso for a large range of prob-
lems. As a statistical tool, thresholding strategy is simple in nature and is not
as computationally demanding as the lasso, especially in very high dimensional
problems. At the same time, it is capable of doing at least as good as the lasso,
or even better (see our Theorems 1 to 6, Theorems 9 to 11 in [11], and Theo-
rems 1 and 2 in [17] for details). In light of these facts, we support the viewpoint
of Genovese et al. [11] that for sparse high-dimensional regression problems a
simple thresholding procedure merits further investigation.

In most publications on variable selection in high-dimensional settings, selec-
tion procedures are first proposed using certain heuristic arguments and their
properties are then investigated. The approach employed in this paper is differ-
ent. We first connect the problem of variable selection to that of signal detection.
Then, we use some fundamental results of the minimax hypothesis testing the-
ory, such as asymptotically exact conditions of distinguishability for alternatives
described by function sets of certain degree of smoothness with some neighbour-
hood of the null hypothesis removed, to construct optimal selection procedures.

The use of the hypothesis testing methodology makes it possible to obtain
sharp selection boundaries. These boundaries describe the variable selection
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problem as a whole rather than a particular method. Therefore they can serve
as benchmarks for practitioners who need to design experiments. The condi-
tions for the possibility of successful variable selection involve the notion of a
detection boundary and are stated in a way that makes a close correspondence
between the obtained selection boundaries and the ones available for a linear
regression model (see Remark 1 in Section 3 for details). Finally, to make the
obtained selectors adaptive to the amount of signal contained in the data, we
apply Lepski’s method of adaptation. We do that because, unlike the case of
exact variable selection (see [17] and Section 3 of this work), a common strat-
egy of achieving adaptation by means of aggregation of test procedures fails to
work in the almost full recovery regime when the data are highly sparse. The
method of Lepski was originally introduced and used for problems of nonpara-
metric estimation; its use here in a variable selection context turns out to be
very effective.

To conclude our study, we point out possible directions for extending the
results obtained in this paper. For the two examples of the function classes Fσ

at hand, it might be of interest to produce asymptotically exact and almost
full selectors in very high dimensional settings when the conditions log d =
o
(
ε−2/(2σ+1)

)
and log d = o(log ε−1) on the growth of d as a function of ε are

not valid.
In the present work, we have studied the problem of variable selection in a

sparse additive model when an unknown regression function belongs to “dense”
ellipsoids (corresponding to the Sobolev classes and the classes of analytic func-
tions). It is also interesting to consider functions from “sparse” ellipsoids such
as, for example, Lq-balls with 0 < q ≤ 1. Another problem of interest is that
of detecting signals with significant (large enough) Lp-norms when the signals
belong to Besov classes Bσ

r,q of σ-smooth functions with 1 ≤ p, r, q ≤ ∞ and
(2σ + 1)r ≤ p (“sparse” case). We expect that for such kind of signals, i.e., the
signals that admit sparse representations in some bases (e.g., wavelet bases),
our selection procedure, with proper modifications, will also work.

Furthermore, handling the problem of variable selection in a sequence space
model, general ellipsoids {θ ∈ l2(Z) :

∑
k∈Z

c2kθ
2
k ≤ 1} in l2(Z), with semi-axes ck

decreasing fast enough, could be studied. A more complicated model, in which
a d-variate regression function f admits a decomposition to a sum of s-variate
components, with 2 ≤ s ≤ d and only a small number of these components
being non-zero, also deserves some attention. The corresponding signal detection
problem was solved in [20]. Specifically, the results on sharp detection boundaries
obtained in [20] may serve as a basis for solving a more intricate problem of
variable selection which extends the problem in hand in the following way. For
1 ≤ k ≤ d, let u = (j1, . . . , jk) ⊂ {1, . . . , d}, 1 ≤ j1 < . . . < jk ≤ d, Uk,d =
{u : u ⊂ {1, . . . , d}, |u| = k}, and xu = (xj1 , . . . , xjk) ∈ R

k. Rather than dealing

with a sparse additive signal f(x) =
∑d

j=1 ηjfj(xj), x ∈ [0, 1]d, with s active
components fj , we may instead assume that

f(x) =
∑

u∈Us,d

ηufu(xu),
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where s = sd → ∞ and s = o(d), ηu = 1 for some u ∈ Us,d and zero otherwise,

in which case the role of d is taken by |Us,d| =
(
d
s

)
. Technically, this problem

is more challenging, especially in case of an unknown parameter s, and will be
treated elsewhere.

To pursue more practical goals, one can try to translate the results obtained
for an additive s-sparse Gaussian white noise model to the related discrete re-
gression model for which the corresponding signal detection problem was solved
in [1].

7. Proofs

We first consider the question of determining the conditions on d as a function
of ε under which almost full variable selection is possible. Violation of these
conditions will lead to entirely different selection strategies.

7.1. Conditions for almost full variable selection

In the sequence space of Fourier coefficients, consider testing the null hypothesis
H0j : θj = 0 versus the alternative H1j : θj ∈ Θσ(rε), where the set Θσ(rε) is
given by (14). It is easy to see that, under the null hypothesis H0j , we have (see,
for example, Section 4.1 of [17])

E0(tj) = 0, Var0(tj) = 1,

while under the alternative H1j , where for all sufficiently small ε a small pa-
rameter rε > 0 satisfies rε/r

∗
ε(s) > 1,

Eθj (tj) = ε−2
∑

1≤|k|≤Kε

ωk(r
∗
ε(s))θ

2
j,k ≥ uε(r

∗
ε(s)), (41)

Varθj (tj) = 1 +O(Eθj (tj) max
1≤|k|≤Kε

ωk(r
∗
ε(s))).

Furthermore, under the above restrictions on rε and the detection boundary
r∗ε(s), the following result holds (in case of Sobolev spaces, see Proposition 7.1
in [10] and Lemma 1 in [17]; in case of the space Fσ of analytic functions, the
proof is similar to that for Sobolev spaces).

Let the quantity T = Tε → −∞ and the weight functions ωk(r
∗
ε(s)) as in

(27) be such that as ε → 0

T max
1≤|k|≤Kε

ωk(r
∗
ε(s)) → 0 and Eθj (tj(s)) max

1≤|k|≤Kε

ωk(r
∗
ε(s)) → 0. (42)

Then as ε → 0

P0(tj ≤ T ) ≤ exp

(
−T 2

2
(1 + o(1))

)
, (43)
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and for all j = 1, . . . , d, uniformly in θj ∈ Θσ(rε),

Pθj (tj −Eθj (tj) ≤ T ) ≤ exp

(
−T 2

2
(1 + o(1))

)
. (44)

For both function classes Fσ of our interest, the exponential bounds (43) and

(44) will be applied below to the quantity T = Tε → −∞ of order O(log1/2 d).
This observation, together with (28) and (41), transforms requirement (42) into

log1/2 d max
1≤|k|≤Kε

ωk(r
∗
ε(s)) → 0, ε → 0, (45)

Condition (45) gives a restriction on the growth of d = dε ensuring that the
selection procedure works as designed. Indeed, as shown in Section 4.1 in [17],
for the Sobolev space of σ-smooth functions, one has

ωk(rε) � r1/(2σ)ε for 1 ≤ |k| ≤ Kε,

and

r∗ε(s) � (ε log d)
σ/(4σ+1)

.

Here and below, the notation aε � bε means that 0 < lim infε→0(aε/bε) ≤
lim supε→0(aε/bε) < ∞. Therefore, condition (45) is fulfilled when

log d = o(ε−2/(2σ+1)) (46)

In case of the class Fσ of analytic functions, one has

ωk(rε) � log−1/2(r−1
ε ) for 1 ≤ |k| ≤ Kε, (47)

and, in view of (23) and (28), the quantity r∗ε(s) satisfies

log1/2 d �
(
r∗ε(s)

ε

)2

log−1/2
(
(r∗ε(s))

−1
)
,

implying

r∗ε(s) � ε log1/4(d) log1/4((r∗ε(s))
−1).

Therefore log
(
(r∗ε(s))

−1
)
∼ log(ε−1), and (see (47))

ωk(r
∗
ε(s)) � log−1/2(ε−1).

From this, the technical condition (45) holds true when, cf. formula (46),

log d = o(log(ε−1)), ε → 0. (48)
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7.2. Proofs of theorems

In this section, we prove Theorems 3 and 4. The proofs of Theorems 5 and 6
go along the same lines and therefore are omitted. Throughout the proof, the
exponential bounds (43) and (44) on the tail probabilities of the statistics tj(s)
will frequently be used.

Proof of Theorem 3. Let m0 ∈ {2, . . . ,M} be such that

sm0−1 ≤ s < sm0 ,

which implies that sm0/s < dΔ. Then, using the definition of the selector η̂(sm̂),
we can write

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η̂(sm̂)− η|

≤ sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ (|η̂(sm̂)− η||m̂ < m0)Pη,θ (m̂ < m0)

+ sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ (|η̂(sm̂)− η||m̂ ≥ m0)Pη,θ (m̂ ≥ m0)

≤ sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ (|η̂(sm̂)− η||m̂ < m0)Pη,θ (m̂ < m0)

+ sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

(d/s)Pη,θ (m̂ ≥ m0) =: I1 + I2. (49)

To complete the proof, we need to show that I1 and I2 are both negligibly small
when ε is small.

Consider the term I1 and observe that for all η ∈ Hd,s and θ ∈ Θσ,d(rε),

s−1Eη,θ (|η̂(sm̂)− η||m̂ < m0)Pη,θ (m̂ < m0)

≤ s−1Eη,θ (|η̂(sm̂)− η̂(sm0)| m̂ < m0)

+s−1Eη,θ (|η̂(sm0)− η||m̂ < m0)Pη,θ (m̂ < m0)

≤ s−1vm0 + s−1Eη,θ|η̂(sm0)− η|,

where by (35) and the choice of the sequences τd and Δ = Δd

s−1vm0 = τ−1
d (sm0/s) < τd

−1dΔ = o(1).

Next, by definition of the set Hd,s of s-sparse d-dimensional vectors η, we have

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η̂(sm0)− η|

≤ (d/s)P0

(
t1(sm0) >

√
2 log(d/sm0) + δ log d

)
+ sup

θ1∈Θσ(rε)

Pθ1

(
t1(sm0) ≤

√
2 log(d/sm0) + δ log d

)
(50)
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where by (43) the first summand in the above expression satisfies

(d/s)P0

(
t1(sm0) >

√
2 log(d/sm0) + δ log d

)
≤ (d/s) exp (− (log(d/sm0) + (δ/2) log d) (1 + o(1)))

= O
(
(sm0/s)d

−δ/2
)
= O

(
dΔ−δ/2

)
= o(1),

and the last equality is due to (30) and (35).
To treat the second term on the right side of (50), recall that 1 < sm0/s < dΔ.

Then, by the assumption on the parameter rε = rε(s) and the ‘continuity’ of
the function uε(rε) as stated in (17), using the fact that Δ log d → 0 as d → ∞,
one can find a constant δ1 > 0 such that for all sufficiently small ε

rε ≥ r∗ε(sm0)(1 + δ1).

From this, using Proposition 4.1 in [10] and recalling formula (41),

inf
θ1∈Θσ(rε)

Eθ1 (t1(sm0)) ≥ inf
θ1∈Θσ(r∗ε (sm0 )(1+δ1))

Eθ1 (t1(sm0))

≥ (1 + δ1)
2 inf
θ1∈Θσ(r∗ε (sm0 ))

Eθ1 (t1(sm0)) ≥ (1 + δ1)
2uε(r

∗
ε(sm0))

= (1 + δ1)
2
√

2 log(d/sm0) >
√

2 log(d/sm0) + δ log d, (51)

where the last inequality follows from the fact that dc ≤ sm0 < dC , which
implies δ log d = o(log(d/sm0)). Thus as ε → 0√

2 log(d/sm0) + δ log d− inf
θ1∈Θσ(rε)

Eθ1 (t1(sm0)) → −∞. (52)

Now (44) in combination with (51) and (52) gives, uniformly in θ1 ∈ Θσ(rε),

Pθ1

(
t1(sm0) ≤

√
2 log(d/sm0) + δ log d

)
≤ Pθ1

(
t1(sm0)−Eθ1 (t1(sm0)) ≤

√
2 log(d/sm0) + δ log d

− inf
θ1∈Θσ(rε)

Eθ1 (t1(sm0))

)
≤ Pθ1

(
t1(sm0)−Eθ1 (t1(sm0)) ≤ −

√
2 log(d/sm0)

[
(1 + δ1)

2 − 1 + o(1)
])

≤ exp
(
− log(d/sm0)

[
(1 + δ1)

2 − 1 + o(1)
]2

(1 + o(1))
)

= O
(
(sm0/d)

[(1+δ1)
2−1]

2)
= o(1).

Putting everything together, we conclude that the first term on the right side
of (49) satisfies

I1 = o(1), ε → 0. (53)
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Let us now show that as ε → 0

I2 = sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

(d/s)Pη,θ (m̂ ≥ m0) = o(1).

By definition of m̂, for all η ∈ Hd,s and all θ ∈ Θσ,d(rε),

Pη,θ (m̂ ≥ m0) =

M∑
k=m0

Pη,θ (m̂ = k)

=

M∑
k=m0

Pη,θ (∃ i ∈ {k, . . . ,M} : |η̂(sk−1)− η̂(si)| > vi)

≤
M∑

k=m0

M∑
i=k

Pη,θ (|η̂(sk−1)− η̂(si)| > vi)

=
M∑

k=m0

M∑
i=k

Pη,θ

⎛⎝ d∑
j=1

|η̂j(sk−1)− η̂j(si)| > vi

⎞⎠ .

Now, we introduce independent events

Aj(s) =
{
tj(s) ≤

√
2 log(d/s) + δ log d

}
, j = 1, . . . , d,

and denote by Aj(s) the complement of Aj(s). Observing that for all m0 ≤ k ≤
i ≤ M the quantity |η̂j(sk−1)−η̂j(si)| is non-zero only if either Aj(sk−1)∩Aj(si)

or Aj(sk−1) ∩Aj(si) occurs, we may continue

Pη,θ (m̂ ≥ m0)

≤
M∑

k=m0

M∑
i=k

Pη,θ

⎛⎝ d∑
j=1

[
I

(
Aj(sk−1) ∩Aj(si)

)
+ I

(
Aj(sk−1) ∩Aj(si)

)]
> vi

⎞⎠ .

To bound this sum, we apply Bernstein’s inequality saying that if X1, . . . ,Xd

are independent random variables such that for all j = 1, . . . , d and for some
H > 0

E(Xj) = 0 and
∣∣E(Xm

j )
∣∣ ≤ E(X2

j )

2
Hm−2m! < ∞, m = 2, 3, . . . , (54)

then (see, for example, pp. 164–165 of [2])

max {P (Sd ≥ t) ,P (Sd ≤ −t)} ≤
{

exp
(
−t2/4B2

d

)
if 0 ≤ t ≤ B2

d/H,
exp (−t/4H) if t ≥ B2

d/H,

(55)

where Sd =
∑d

j=1 Xj and B2
d =

∑d
j=1 E(X2

j ). Observe that for independent
random variables X1, . . . ,Xd with the property

E(Xj) = 0 and |Xj | ≤ M, j = 1, . . . , d,
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for some M > 0, the Bernstein condition (54) holds with H = M/3. Below we
will use Bernstein’s inequality in the case of t ≥ B2

d/H.
To do this, let us introduce random variables Xj = Xj(sk−1, si), 1 ≤ j ≤ d,

m0 ≤ k ≤ M , k ≤ i ≤ M , by the formula

Xj = I

(
Aj(sk−1) ∩Aj(si)

)
+ I

(
Aj(sk−1) ∩Aj(si)

)
−
[
Pη,θ

(
Aj(sk−1) ∩Aj(si)

)
+Pη,θ

(
Aj(sk−1) ∩Aj(si)

)]
,

and observe that |Xj | ≤ 4, j = 1, . . . , d, and for all η ∈ Hd,s and θ ∈ Θσ,d(rε)

Eη,θ(Xj) = 0, j = 1, . . . , d.

Before applying Bernstein’s inequality, we show that for all η ∈ Hd,s and θ ∈
Θσ,d(rε), and for all m0 ≤ k ≤ M and k ≤ i ≤ M

d∑
j=1

[
Pη,θ

(
Aj(sk−1) ∩Aj(si)

)
+Pη,θ

(
Aj(sk−1) ∩Aj(si)

)]
= o(vi). (56)

We have, for all η in Hd,s and all θ in Θσ,d(rε):

d∑
j=1

[
Pη,θ

(
Aj(sk−1) ∩Aj(si)

)
+Pη,θ

(
Aj(sk−1) ∩Aj(si)

)]
= (d− s)

[
P0

(
A1(sk−1) ∩A1(si)

)
+P0

(
A1(sk−1) ∩A1(si)

)]
+s sup

θ1∈Θσ(rε)

[
Pθ1

(
A1(sk−1) ∩A1(si)

)
+Pθ1

(
A1(sk−1) ∩A1(si)

)]
≤ d

[
P0

(
t1(sk−1) >

√
2 log(d/sk−1) + δ log d

)
+P0

(
t1(si) >

√
2 log(d/si) + δ log d

)]
+s sup

θ1∈Θσ(rε)

[
Pθ1

(
t1(sk−1) ≤

√
2 log(d/sk−1) + δ log d

)
+ Pθ1

(
t1(si) ≤

√
2 log(d/si) + δ log d

)]
=: J1(sk−1, si) + J2(sk−1, si). (57)

Recalling (43) and the relation τdd
−δ/2 → 0 as d → ∞, we get

dP0

(
t1(si) >

√
2 log(d/si) + δ log d

)
≤ d exp (− (log(d/si) + (δ/2) log d) (1 + o(1)))

= O
(
sid

−δ/2
)
= O

(
viτdd

−δ/2
)
= o(vi).

Similarly, using the fact that vk−1 < vi when k ≤ i ≤ M , we obtain

dP0

(
t1(sk−1) >

√
2 log(d/sk−1) + δ log d

)
= o(vk−1) = o(vi).
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Therefore for all m0 ≤ k ≤ M and k ≤ i ≤ M

J1(sk−1, si) = o(vi). (58)

Consider the second term on the right side of (57), J2(sk−1, si). First, note
that for all m0 ≤ k ≤ M and k ≤ i ≤ M ,

s < si and s < sk−1, k �= m0.

and for k = m0 one has sk−1 = sm0−1 ≤ s, which implies s/sm0−1 < dΔ.
Therefore, by the assumption on rε = rε(s) and the ‘continuity’ of the function
uε(rε) as cited in (17), using the fact that Δ log d → 0 as d → ∞, one can find
constants δ2 > 0 and δ3 > 0 such that for all sufficiently small ε

rε ≥ r∗ε(si)(1 + δ2) and rε ≥ r∗ε(sk−1)(1 + δ3)

when m0 ≤ k ≤ M and k ≤ i ≤ M . From this, for all sufficiently small ε, cf.
(51),

inf
θ1∈Θσ(rε)

Eθ1 (t1(si)) ≥ (1 + δ2)
2
√
2 log(d/si) >

√
2 log(d/si) + δ log d, (59)

and hence as ε → 0√
2 log(d/si) + δ log d− inf

θ1∈Θσ(rε)
Eθ1 (t1(si)) → −∞. (60)

It now follows from (44), (59), and (60) that, uniformly in θ1 ∈ Θσ(rε),

sPθ1

(
t1(si) ≤

√
2 log(d/si) + δ log d

)
≤ sPθ1

(
t1(si)−Eθ1 (t1(si)) ≤

√
2 log(d/si) + δ log d− inf

θ1∈Θσ(rε)
Eθ1 (t1(si))

)
≤ sPθ1

(
t1(si)−Eθ1 (t1(si)) ≤ −

√
2 log(d/si)

[
(1 + δ2)

2 − 1 + o(1)
])

≤ s exp
(
− log(d/si)

[
(1 + δ2)

2 − 1 + o(1)
]2

(1 + o(1))
)

= O
(
s(si/d)

[(1+δ2)
2−1]2

)
= O

(
si(si/d)

[(1+δ2)−1]2
)
= o(vi),

where the last equality is due to restriction (33) imposed on s. Also, as relation
(60) continues to hold with sk−1, m0 ≤ k ≤ M , instead of si, similar arguments
yield

sPθ1

(
t1(sk−1) ≤

√
2 log(d/sk−1) + δ log d

)
= o(vk−1) = o(vi),

which implies

J2(sk−1, si) = o(vi). (61)
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Combining (57), (58) and (61), we arrive at (56). We see then by (56) that

d∑
j=1

Eη,θ(X
2
j ) =

⎛⎝ d∑
j=1

[
Pη,θ

(
Aj(sk−1) ∩Aj(si)

)
+ Pη,θ

(
Aj(sk−1) ∩Aj(si)

)])
(1 + o(1)) = o(vi).

Therefore, we use Bernstein’s inequality as in (55) for the case of t ≥ B2
d/H

with H = 4/3 and get as ε → 0

I2 = sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

(d/s)Pη,θ (m̂ ≥ m0)

≤ sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

(d/s)

M∑
k=m0

M∑
i=k

Pη,θ

⎛⎝ d∑
j=1

Xj > vi(1 + o(1))

⎞⎠
≤ (d/s)

M∑
k=m0

M∑
i=k

exp (−(3vi/16)(1 + o(1))) = O
(
M2(d/s) exp (−(3/16)vm0)

)
= O

(
M2(d/s) exp (−(3dc/16τd))

)
= o(1).

This in combination with (49) and (53) completes the proof of Theorem 3.

Proof of Theorem 4. To prove the theorem, we first pick good prior distributions
on η = (ηj) and θ = (θj). Having done this, we bound the normalized minimax
risk by the normalized Bayes risk and show that the latter risk is strictly positive.
The first part of the proof, up to relation (66), goes along the lines of that of
Theorem 2 in [17], with p = s/d instead of p = d−β .

Let θ∗j = (θ∗j,k)k∈Z be the extremal sequence in the problem (the same for all

j = 1, . . . , d) of minimizing (2ε4)−1
∑

k∈Z
θ4k over Θσ(rε):

1

2ε4

∑
k∈Z

(θ∗j,k)
4 = inf

θj∈Θσ(rε)

1

2ε4

∑
k∈Z

θ4j,k.

Let the prior distribution of a ‘vector’ θ = (θ1, . . . , θd) ∈ Θσ,d(rε) be of the form

πθ(dθ) =

d∏
j=1

πθj (dθj), πθj (dθj) =
∏

1≤|k|≤Kε

(
δ−θ∗

j,k
+ δθ∗

j,k

2

)
(dθj,k),

where δx is the Dirac measure at point x. Denote by

p = s/d

the portion of non-zero components of a vector η = (η1, . . . , ηd) ∈ Hd,s. The
prior distribution of η is naturally defined to be

πη(dη) =

d∏
j=1

πηj (dηj), πηj (dηj) = ((1− p)δ0 + pδ1) (dηj).
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Then, assuming that θ = (θj) and η = (ηj) are independent, we get

Rε := inf
η̃

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η − η̃| ≥ s−1 inf
η̃
EπηEπθ

Eη,θ|η − η̃|

= s−1 inf
η̃
EπηEπθ

Eη,θ

d∑
j=1

|ηj − η̃j | = s−1 inf
η̃

d∑
j=1

Eπηj
Eπθj

Eηjθj |ηj − η̃j |,

where the infimum is over all selectors η̃ = (η̃j) and Eηjθj is the expected
value that corresponds to the measure Pηjθj induced by the observation Xj =
(Xj,k)1≤|k|≤Kε

consisting of independent random variables Xj,k that follow nor-
mal distributions N (ηjθj,k, ε

2).
Consider the mixture of distributions given by the formula

Pπ,ηj (dXj) = Eπθj
Pηjθj (dXj,k)

=
∏

1≤|k|≤Kε

(
N (−ηjθ

∗
j,k, ε

2) +N (ηjθ
∗
j,k, ε

2)

2

)
(dXj,k). (62)

In particular, when ηj = 0, Pπ,0(dXj) =
∏

1≤|k|≤Kε

N (0, ε2)(dXj,k). Using the

notation

v∗j,k =
θ∗j,k
ε

, (63)

we obtain with respect to the probability measure Pπ,ηj

Yj,k :=
Xj,k

ε
= ηjv

∗
j,k + ξj,k

ind.∼ N (ηjv
∗
j,k, 1), 1 ≤ j ≤ d, 1 ≤ |k| ≤ Kε.

Next, denoting Yj = (Yj,k)1≤|k|≤Kε
, we may rewrite the likelihood ratio in the

form

dPπ,ηj

dPπ,0
(Yj) =

∏
1≤|k|≤Kε

exp

(
−
ηj(v

∗
j,k)

2

2

)
cosh

(
ηjv

∗
j,kYj,k

)
. (64)

From this, using the fact that each ηj takes on only two values, zero and one,
with respective probabilities (1− p) and p, we may continue

Rε ≥ s−1
d∑

j=1

inf
η̃j

Eπηj
Eπ,ηj |ηj − η̃j |

= s−1
d∑

j=1

inf
η̃j

[(1− p)Eπ,0(η̃j) + pEπ,1(1− η̃j)] , (65)

where inf η̃j (1 − p)Eπ,0(η̃j) + pEπ,1(1 − η̃j) is the Bayes risk in the problem of
testing two simple hypotheses

H0 : P = Pπ,0 vs. H1 : P = Pπ,1,
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with the probability measures Pπ,0 and Pπ,1 defined according to (62). In par-
ticular, under the null hypothesis, the vector Yj = (Yj,k)1≤|k|≤Kε

has a nor-

mal distribution with density function pπ,0(t) =
∏

1≤|k|≤Kε

(2π)−1/2 exp(−t2k/2),

t = (tk)1≤|k|≤Kε
. By (64) the likelihood ratio in this problem becomes

Λπ(Yj) :=
dPπ,1

dPπ,0
(Yj) =

∏
1≤|k|≤Kε

exp

(
−
(v∗j,k)

2

2

)
cosh

(
v∗j,kYj,k

)
,

and the optimal (Bayes) test ηB that minimizes the Bayes risk in hand has the
form (see, for example, [6, Sec. 8.11])

ηB(Yj) = I

(
Λπ(Yj) ≥

1− p

p

)
.

Using this, we infer from (65) that

Rε = inf
η̃

sup
η∈Hd,s

sup
θ∈Θσ,d(rε)

s−1Eη,θ|η − η̃|

≥ (d/s)Pπ,0

(
Λπ(Y1) ≥

1− p

p

)
+Pπ,1

(
Λπ(Y1) <

1− p

p

)
=: Aε +Bε. (66)

where, under Pπ,η1 -probability with η1 ∈ {0, 1}, the vector Y1 = (Y1,k)1≤|k|≤Kε

has independent normal components:

Y1,k = η1v
∗
1,k + ξ1,k ∼ N (η1v

∗
1,k, 1), 1 ≤ |k| ≤ Kε.

It now follows from (66) that the minimax risk Rε is positive if at least one of
the terms, Aε or Bε, is positive. Let us prove that for all sufficiently small ε the
probability Bε is separated from zero.

Recall that d = dε → ∞ and s = sd = o(d) as ε → 0. Put

H = Hε = log

(
1− p

p

)
∼ log(d/s),

and introduce the random variable

λπ(Y1) := log Λπ(Y1).

Using the notation P0 for Pπ,0, consider the probability measure Ph, depending
on a positive parameter h = hε, that is defined by the formula

dPh

dP0
(Y1) :=

exp(hλπ(Y1))

Ψ(h)
, Ψ(h) = EP0 exp(hλπ(Y1)).

With the parameter h > 0 chosen to satisfy

EPh
λπ(Y1) = H,
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we have (see Lemma 2 in [17])

h ∼ 1

2
+

H

u2
ε

= O(1), (67)

and (see formula (45) in [17])

Ψ(h) = exp

(
h2 − h

2
u2
ε(1 + o(1))

)
, (68)

where for notational simplicity we write u2
ε for u2

ε(rε).
We have

Bε = Eπ,1 (I {λπ(Y1) < H}) = Eπ,0 (exp(λπ(Y1)) · I {λπ(Y1) < H})

= Eh

(
dP0

dPh
(Y1) · exp(λπ(Y1) · I {λπ(Y1) < H}

)
= Ψ(h)Eh (exp[(1− h)λπ(Y1)] · I {λπ(Y1) < H}) . (69)

By Lemma 3 in [17], the standardized random variable

Zh :=
λπ(Y1)− μh

σh
,

where

μh = EPh
(λπ(Y1)) = u2

ε(h−
1

2
)(1+o(1)), σ2

h = VarPh
(λπ(Y1)) = u2

ε(1+o(1)),

converges in Ph-distribution to an N (0, 1). Therefore the statistic λπ(Y1) on
the right side of (69) is nearly a normal N (H,u2

ε) random variable.
Next, by assumption and the ‘continuity’ of uε as stated in (17), for some

constant δ4 > 0

uε/
√
log(d/s) ≤

√
2(1− δ4),

provided ε is small enough. This and formula (67) give the inequality 1−h < 0,
which implies for all y ∈ R

2Kε and all sufficiently small ε

exp[(1− h)λπ(y)] · I {λπ(y) < H} < exp [(1− h)H] ∼ (d/s)1−h ≤ const.

Then, by the dominant convergence theorem, the replacement of λπ(Y1) by
an N (H,u2

ε) on the right side (69) and the use of (67) and (68) yield for all
sufficiently small ε

Bε ∼ exp

(
h2 − h

2
u2
ε

)∫ H

−∞
exp [(1− h)x]

1√
2πuε

exp

(
− (x−H)2

2u2
ε

)
dx

= exp

(
h2 − h

2
u2
ε +H(1− h) +

(1− h)2u2
ε

2

)
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×
∫ H

−∞

1√
2πuε

exp

(
−
(
x− (H + (1− h)u2

ε)
)2

2u2
ε

)
dx

∼ exp(0)

∫ H

−∞

1√
2πuε

exp

(
−
(
x− (H + (1− h)u2

ε)
)2

2u2
ε

)
dx

≥
∫ H+(1−h)u2

ε

−∞

1√
2πuε

exp

(
−
(
x− (H + (1− h)u2

ε)
)2

2u2
ε

)
dx = 1/2.

From this
lim inf
ε→0

Rε ≥ lim inf
ε→0

Bε ≥ 1/2 > 0,

and the proof of Theorem 4 is complete.
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