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Abstract: An important problem in time series analysis is the discrimi-
nation between non-stationarity and long-range dependence. Most of the
literature considers the problem of testing specific parametric hypotheses of
non-stationarity (such as a change in the mean) against long-range depen-
dent stationary alternatives. In this paper we suggest a simple approach,
which can be used to test the null-hypothesis of a general non-stationary
short-memory against the alternative of a non-stationary long-memory pro-
cess. The test procedure works in the spectral domain and uses a sequence of
approximating tvFARIMA models to estimate the time varying long-range
dependence parameter. We prove uniform consistency of this estimate and
asymptotic normality of an averaged version. These results yield a simple
test (based on the quantiles of the standard normal distribution), and it
is demonstrated in a simulation study that - despite of its semi-parametric
nature - the new test outperforms the currently available methods, which
are constructed to discriminate between specific parametric hypotheses of
non-stationarity short- and stationarity long-range dependence.
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1. Introduction

Many time series [like asset volatility or regional temperatures] exhibit a slow de-
cay in the sample autocorrelation function and simple stationary short-memory
models can not be used to analyze this type of data. A typical example is dis-
played in Figure 1, which shows 2048 log-returns of the IBM stock between
July 15th 2005 and August 30th 2013, with estimated autocovariance function
of the squared returns X2

t . In this example the assumption of stationarity with
a summable sequence of autocovariances, say (γ(k))k∈N, is hard to justify for
the volatility process. Long-range dependent processes have been introduced as
an attractive alternative to model features of this type using an autocovariance
function with the property
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Fig 1. Left panel: log-returns of the IBM stock between July 15th 2005 and August 30th 2013;
right panel: Sample autocovariance function of the squared returns X2

t

γ(k) ∼ Ck2d−1

as k → ∞, where d ∈ (0, 0.5) denotes a “long memory” parameter. Statistical
models (and corresponding theory) for long-range dependent processes are very
well developed [see Doukhan et al. (2003) or Palma (2007) for recent surveys] and
have found applications in numerous fields [see Breidt et al. (1998), Beran et al.
(2006) or Haslett and Raftery (1989) for such an approach in the framework of
asset volatility, video traffic and wind power modeling]. However, it was pointed
out by several authors that the observation of “long memory” features in the
sample autocovariance function can be as well explained by non stationarity [see
Mikosch and Starica (2004) or Chen et al. (2010) among many others]. This is
clearly demonstrated in Figure 2, which shows the sample autocovariances of
the squared returns from a fit of the (non-stationary) model Xt,T = σ(t/T )Zt

for the returns [here Zt is an i.i.d. sequence and σ(·) is piecewise-constant,
cf. Starica and Granger (2005) or Fryzlewicz et al. (2006) for more details], and
from a stationary FARIMA(3, d, 0)-fit for the squared ones X2

t . Both models are
able to explain the observed effect of ‘long-range dependence’ for the volatility
process. So, in summary, the same effect can be explained by two completely
different modeling approaches. For this reason several authors have pointed
out the importance to distinguish between long-memory and non-stationarity
[see Starica and Granger (2005), Perron and Qu (2010) or Chen et al. (2010)
to mention only a few]. However, there exists a surprisingly small number of
statistical procedures which address problems of this type. To the best of our
knowledge, Künsch (1986) is the first reference investigating the existence of
“long memory” if non-stationarities appear in the time series. In this article a
procedure to discriminate between a long-range dependent model and a process
with a monotone mean functional and weakly dependent innovations is derived.
Later on, Heyde and Dai (1996) developed a method for distinguishing between
long-memory and small trends. Sibbertsen and Kruse (2009) tested the null
hypothesis of a constant long-memory parameter against a break in the long-
memory parameter. Furthermore, Berkes et al. (2006), Baek and Pipiras (2012)
and Yau and Davis (2012) investigated CUSUM and likelihood ratio tests to
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Fig 2. Left panel: Sample autocovariance function of a simulated time series from a
FARIMA(3,d,0)-fit to the 2048 squared IBM-returns X2

t , right panel: Sample autocovari-
ance function of X2

t for Xt simulated from the model Xt,T = σ̂(t/T )Zt with σ̂(·) estimated
by a rolling-window of length 128.

discriminate between the null hypothesis of no long-range and weak dependence
with one change point in the mean.

Although the procedures proposed in these articles are technically mature
and work rather well in suitable situations, they are, however, only designed to
discriminate between long-range dependence and a very specific change in the
first-order structure, like one structural break and two stationary segments of
the series. This is rather restrictive, since the expectation might change in a
different way than assumed [there could be, for example, continuous changes or
multiple breaks instead of a single one] and the second-order structure could be
time-varying as well. However, if these or more general non-stationarities occur,
the discrimination techniques, which have been proposed in the literature so far,
usually fail, and a procedure which is working under less restrictive assumptions
is still missing.

The objective of this paper is to fill this gap and to develop a test for the null
hypothesis of no long-range dependence in a framework which is flexible enough
to deal with different types of non-stationarity in both the first and second-order
structure. The general model is introduced in Section 2. Our approach uses an
estimate of a (possibly time varying) long-range dependence parameter, which
is derived by a sequence of approximating tvFARIMA models with a slightly
enlarged parameter space. This statistic estimates a functional which vanishes
if and only if the null hypothesis of a short-memory locally stationary process
is satisfied. The method is based on some non-intuitive features of averages of
unconstrained estimators in models with a constrained parameter space, which
become clear from the rather technical proofs given in Section 7. In order to
make these phenomena also visible to readers which are less familiar with the
technical machinery used for the asymptotic analysis of non-stationary long
range dependent processes we provide in Section 3 a motivation of our approach
in the context of the classical nonparametric regression model with repeated
observations.

In Section 4 we return to the locally stationary long range dependent time
series model and prove consistency and asymptotic normality of a correspond-
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ing test statistic under the null hypothesis of no long-range dependence. As a
consequence we obtain a nonparametric test, which is based on the quantiles
of the standard normal distribution and therefore very easy to implement. The
finite sample properties of the new test are investigated in Section 5, which
also provides a comparison with the competing procedures with a focus on
non-stationarities. We demonstrate the superiority of the new method and also
illustrate its application in two data examples.

2. Locally stationary long-range dependent processes

In order to develop a test for the presence of long-range dependence which
can deal with different kinds of non-stationarity, a set-up is required which
includes short-memory processes with a rather general time-varying first and
second order structure and a reasonable long-range dependent extension. For
this purpose, we consider a triangular scheme ({Xt,T }t=1,...,T )T∈N of locally
stationary long-memory processes, which have an MA(∞) representation of the
form

Xt,T = μ(t/T ) +

∞∑
l=0

ψt,T,lZt−l, t = 1, . . . , T, (2.1)

where

sup
T∈N

sup
t∈{1,...,T}

∞∑
l=0

ψ2
t,T,l < ∞, (2.2)

μ : [0, 1] → R is a trend function and {Zt}t∈Z are independent standard normal
distributed random variables. The assumption of a normal distribution for the
innovations is made to simplify the technical arguments in the proofs of our
results [see Section 7] and can be replaced by the existence of moments of
all order of the random variables Zt - see Remark 4.8 for more details. Note
also that the random variables Zt have been standardized to have variance 1.
Alternatively, one could normalize by ψt,T,0 = 1 and allow for an additional
parameter in the variance. For the coefficients ψt,T,l and the function μ in the
expansion (2.1) we make the following additional assumptions.

Assumption 2.1. Let ({Xt,T }t=1,...,T )T∈N denote a sequence of stochastic pro-
cesses which have an MA(∞) representation of the form (2.1) satisfying (2.2),
where μ is twice continuously differentiable. Furthermore, we assume that the
following conditions are satisfied:

1) There exist twice continuously differentiable functions ψl : [0, 1] → R (l ∈
Z) such that the conditions

sup
t=1,...,T

∣∣ψt,T,l − ψl(t/T )
∣∣ ≤ CT−1I(l)D−1 ∀l ∈ N (2.3)

ψl(u) = a(u)I(l)d0(u)−1 +O(I(l)D−2) (2.4)
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are satisfied uniformly with respect to u ∈ [0, 1] as l → ∞, where I(x) :=
|x| · 1{x �=0} + 1{x=0} and D = supu∈[0,1] d0(u) < 1/2. Moreover, the func-
tions a : [0, 1] → R, d0 : [0, 1] → [0, 1/2) in (2.4) are twice continuously
differentiable.

2) The time varying spectral density f : [0, 1]× [−π, π] → R
+
0

f(u, λ) :=
1

2π

∣∣∣ ∞∑
l=0

ψl(u) exp(−iλl)
∣∣∣2 (2.5)

can be represented as

f(u, λ) = |1− eiλ|−2d0(u)g(u, λ), (2.6)

where the function g defined by

g(u, λ) :=
1

2π

∣∣1 + ∞∑
j=1

aj,0(u) exp(−iλj)
∣∣−2

(2.7)

is twice continuously differentiable (note that the identities (2.5) and (2.6)
define the coefficients aj,0(u)).

3) There exists a constant C ∈ R
+, which is independent of u and λ, such

that for l �= 0 the conditions

sup
u∈(0,1)

|ψ′
l(u)| ≤ C log |l||l|D−1, (2.8)

sup
u∈(0,1)

|ψ′′
l (u)| ≤ C log2 |l||l|D−1,

sup
u∈(0,1)

∣∣ ∂

∂u
f(u, λ)

∣∣ ≤ C| log(λ)||λ|−2D,

sup
u∈(0,1)

∣∣ ∂2

∂u2
f(u, λ)

∣∣ ≤ C log2(λ)|λ|−2D

are satisfied for all λ ∈ [−π, π].

Similar locally stationary long-range dependent models have been investi-
gated by Beran (2009), Palma and Olea (2010) and Roueff and von Sachs (2011)
and Wu and Zhou (2014). It is also worthwhile to mention that in general (2.4)
does not imply (2.6) and (2.7) and vice versa conditions (2.6) and (2.7) do not
imply (2.4). Therefore, none of the conditions (2.4), (2.6) or (2.7) can be omitted
in Assumption 2.1. It is also worthwhile to mention that equations (2.5), (2.6)
and (2.7) do not necessarily imply that ψ0(u) = 1 (which follows by a careful
inspection of these relations).

Note also hat in contrast to the standard framework of local stationarity in-
troduced by Dahlhaus (1997) and extended to the long-memory case in Palma
and Olea (2010), condition (2.3) is much weaker. For example, in contrast to
these references the assumptions made here include tvFARIMA(p, d, q)-models
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as well [see Theorem 2.2 in Preuß and Vetter (2013)]. Moreover, we mention
again that the assumption of Gaussianity is only imposed to simplify the tech-
nical arguments in the proofs of our main results - see Remark 4.8 for more
details. The very specific form of the function g in (2.7) implies that the process
{Xt,T }t=1,...,T can be locally approximated by a FARIMA(∞, d, 0) process in
the sense of (2.3). More precisely, we obtain with

bk(u) =

(
k + d(u)− 1

k

)
and (

∞∑
k=0

ak,0(u)z
k)−1 =

∞∑
k=0

a
(−1)
k,0 (u)zk (2.9)

(a0,0 = 1) the relation

ψl(u) =

l∑
k=0

a
(−1)
k,0 (u)bl−k(u)

between the approximating functions ψl(u) and the time-varying AR-parameters
[see the proof of Lemma 3.2 in Kokoszka and Taqqu (1995) for more details]. The
relation (2.9) can be used to calculate the coefficients a−1

k,0(u) from the functions
ak,0(u), i.e.

a
(−1)
0,0 (u) =

1

a0,0(u)
, a

(−1)
1,0 (u) = −a1,0(u)

a20,0(u)
, . . .

In order to further visualize some properties of these kinds of locally station-
ary long-memory models we introduce for every fixed u ∈ [0, 1] the stationary
process

Xt(u) := μ(u) +

∞∑
l=0

ψl(u)Zt−l.

One can show that condition (2.4) implies the existence of bounded functions
yi : [0, 1] → R

+ (i = 1, 2) such that the approximations

|Cov(Xt(u), Xt+k(u))| ∼ y1(u)k
2d0(u)−1 as k → ∞ (2.10)

and

f(u, λ) ∼ y2(u)|λ|−2d0(u) as λ → 0 (2.11)

hold [see Palma and Olea (2010) for details]. Consequently, the autocovariances
γk(u, k) =
Cov(X0(u), Xk(u)) are not absolutely summable if the function a(u) in (2.4)
is not vanishing, and in this case the time varying spectral density f(u, λ) has
a pole at λ = 0 for any u ∈ [0, 1] for which d0(u) is positive. Note that in gen-
eral the statements (2.10) and (2.11) are not equivalent [see Yong (1974) for a
discussion of this problem in the stationary case].

In the framework of these long-range dependent locally stationary processes
we now investigate the null hypothesis that the time-varying “long memory”
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parameter d0(u) vanishes for all u ∈ [0, 1], i.e. there is no long-range dependence
in the locally stationary process Xt,T . The alternative is defined by the property
that the function d0 is nonnegative on the interval [0, 1] and positive on a subset
of positive Lebesgue measure. Formally, the hypotheses can be formulated as

H0 : d0(u) = 0 ∀u ∈ [0, 1] (2.12)

versus H1 : d0(u) ≥ 0 ∀u ∈ [0, 1] and λ({u ∈ [0, 1] | d0(u) > 0}) > 0 ,

where λ denotes the Lebesgue measure. This hypothesis is obviously equivalent
to

H0 : F = 0 versus H1 : F > 0, (2.13)

where the quantity F is defined by the integral

F :=

∫ 1

0

d0(u)du. (2.14)

In Section 4 we will develop a nonparametric estimator of the function d0
and the integral F . Roughly speaking, the sample size T is decomposed into M
blocks with length N (i.e. T = NM), where M is some positive integer. We
define the corresponding midpoints in both the time and rescaled time domain
by tj = N(j − 1) + N/2, uj = tj/T , respectively, and calculate an estimator

d̂N (uj) of the long range dependence parameter at the point uj on each of the M
blocks (for the exact definition of the estimator see Section 4). The test statistic
is then obtained as

F̂T =
1

M

M∑
j=1

d̂N (uj) (2.15)

and could be considered as a Riemann sum of the integral
∫
0
d̂N (u)du, which

approximates the integral in (2.14). We also note that the proofs of our main
results in Section 4 require the smoothness of the time varying long range de-
pendence parameter as specified in Assumption 4.1.

Remark 2.2. (some boundary issues) Note that for each u ∈ [0, 1] the local
long range dependence parameter d0(u) is a boundary point of the parameter
space [0, 1/2) defined by the two hypotheses in (2.12). However, we will not

use this property for the construction of the estimates d̂N (uj) of the quantities
d0(uj), which are aggregated in the statistic (2.15). For this purpose we consider
a sequence of approximating tvFARIMA(k, d, 0) models, where the parameter
k = k(T ) converges to infinity as the sample size increases and the corresponding
long range dependence parameters are allowed to vary in intervals of the form
[−γk, 1/2−δk], where (γk)k∈N. and (δk)k∈N are positive sequences converging to
0. We will prove in Theorem 4.3 below that this provides a uniformly consistent
estimate of the function d0 and that an average of these statistics provides a
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consistent and asymptotically normal distributed estimate of the integral F (see
Theorem 4.5 and Theorem 4.6 below). As a consequence we obtain a consistent
level-α test for the presence of long-range dependence in non-stationary time
series by rejecting the null hypothesis for large values of the estimator of F̂T .

On a first glance these properties are surprising because we use unconstrained
(i.e. potentially negative) estimators of the long range dependence parameters
in the approximating tvFARIMA models to estimate the non-negative function
d0, but the statements become clear from the rather technical arguments given
in the proofs of Section 7. The situation is similar to the problem of testing
the hypothesis H0 : μ = 0 versus H1 : μ > 0 for the mean of a sample of
i.i.d. random variables X1, . . . , Xn. A test which rejects H0, whenever

√
nXn >

σ̂nu1−α (here σ̂n is an estimator of the variance and u1−α the (1− α)-quantile
of the standard normal distribution) has asymptotic level α and is consistent.
Moreover, in Section 3 we consider an example of testing for a positive signal
in a nonparametric regression model and demonstrate that the aggregation of
local statistics of the type Xn might have substantial advantages compared to
the aggregation of local estimators of the from max{Xn, 0}, which reflect the
constraint μ ≥ 0 in its definition.

3. Testing for a positive nonparametric signal

In this section we provide some heuristic explanation for the phenomenon de-
scribed in the previous paragraph, which is also available to readers which are
less familiar with the technical machinery used for the asymptotic analysis of
non-stationary long range dependent processes. We will also demonstrate that
there are situations where more powerful tests can be obtained by ignoring
particular constraints in the estimation procedure. This situation occurs in par-
ticular if different estimators are aggregated as described in (2.15).

For this purpose we consider the problem of testing the hypothesis of a van-
ishing regression function against the alternative that the regression function is
positive on the interval [0, 1] in the common nonparametric regression model

Yji = μ(tj) + εji; j = 1, . . . ,M ; i = 1, . . . , N.

Here ε11, . . . , εMN are i.i.d. standard normal distributed (centered) random vari-
ables (this assumption is in fact not necessary but makes some of the following
arguments much simpler), tj = tj,M = j/M and μ is a smooth non-negative
Lipschitz continuous function on the interval [0, 1]. We are interested in testing
the hypothesis

H0 : μ(t) ≡ 0 versus H1 : μ(t) > 0 for all t ∈ [0, 1] . (3.1)

Note that the alternative could also be considered on the set of all non-negative
functions which are positive on a subset of positive Lebesgue measure, say U ⊂
[0, 1]. As this generalization does not change any of the subsequent arguments

(only integrals of the form
∫ 1

0
μ(t)dt and sums of the form 1

M

∑M
j=1 μ(tj) have
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to be replaced by
∫
U μ(t)dt and 1

Mλ(U)

∑M
j=1 1U (

j
M )μ(tj)) (here λ(U) denotes

the Lebesgue measure of the set U) we restrict ourselves to the case U = [0, 1]
for the sake of transparency.

3.1. Tests based on unconstrained estimators

The idea used in Section 4 below for testing hypotheses of this type translates in
the nonparametric regression model to the following procedure. We first define
(unconstrained) estimators for the values μ(tj), that is μ̂j = 1

N

∑N
i=1 Yji, (j =

1, . . . ,M), and then consider the average

TM =
1

M

M∑
j=1

μ̂j =
1

MN

M∑
j=1

N∑
i=1

Yji.

Note that SM =
√
N(TM − 1

M

∑M
j=1 μ(tj)) =

√
N

M

∑M
j=1(μ̂j − μ(tj)) is a sum of

independent identically distributed random variables with variance Var(SM ) =
1/M. Consequently, using a central limit theorem for triangular arrays, shows

that
√
M SM

D→ N (0, 1) as M → ∞, N → ∞. Moreover, since μ is Lipschitz
continuous, this implies

√
MN

(
TM −

∫ 1

0

μ(t)dt
)

D→ N (0, 1),

whenever N = o(M). Thus a consistent and asymptotic level α test for the
hypothesis (3.1) is obtained by rejecting the null hypothesis H0, whenever

√
MNTM > u1−α, (3.2)

where u1−α is the (1− α)-quantile of the standard normal distribution.

3.2. Tests based on constrained estimators

Alternatively, and - on a first glance - more reasonable strategy is to use a
constrained estimator which addresses the boundary condition μ(t) ≥ 0. This
gives

μ̃j = max{0, μ̂j}
as estimator for μ(tj), and we obtain with the notation T̃M = 1

M

∑M
j=1 μ̃j the

representation

S̃M =
√
N

(
T̃M − 1

M

M∑
j=1

μ(tj)
)
=

√
N

M

( M∑
i=j

Zj +

M∑
j=1

δj

)
, (3.3)

where Zj = max(0, μ̂j) − E[max(0, μ̂j)], δj = E[max(0, μ̂j)] − μ(tj). Note that
μ̂j ∼ N (μ(tj), 1/N), which yields

δj =
1√
2πN

exp
(
−Nμ2(tj)

2

)
− μ(tj)√

π

∫ ∞

μ(tj)
√

N/2

exp(−z2)dz. (3.4)
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This term is of order o(1) (exponentially in N and independent of M , provided
that μ(t) ≥ c > 0 on [0, 1]). Note also that

E[(max(0, μ̂j))
2] = μ2(tj) +

1

N
+

μ(tj)√
2πN

exp
(
−Nμ2(tj)

2

)
− 1 +Nμ2(tj)

N
√
π

∫ ∞

μ(tj)
√

N/2

exp(−z2)dz .

This gives for the variance of the random variable Zj

E[Z2
j ] = Var(max(0, μ̂j)) =

{
1
N

(
1
2 − 1

2π

)
if μ(tj) = 0

1
N (1 + o(1)) if μ(tj) > 0

Ljapunoff’s central limit theorem now shows that

√
MN/σ2

N (T̃M − 1

M

M∑
j=1

μ(tj)−BM,N )
D→ N (0, 1),

where σ2
N = NE[Z2

i ] and

BM,N =
1

M

M∑
i=j

δj =

{
1
M

∑M
j=1 δj if μ(t) > 0 for all t
1√
2πN

if μ(t) = 0 for all t
.

This implies (observing the Lipschitz continuity of the regression function and
N = o(M))

√
NM/σ2

N

(
T̃M −

∫ 1

0

μ(t)dt−BM,N

)
D→ N (0, 1).

Note that the statistic is asymptotically normal distributed, although we average
constrained estimators. Under the null hypothesis things are simplifying. In
particular we obtain σ2

H0
= σ2

N,H0
= NEH0 [Z

2
i ] =

1
2 − 1

2π and a test based on

T̃M rejects the null hypothesis H0, whenever

T̃M >
1√
2πN

+ σH0

u1−α√
MN

=
1√
2πN

+

√
1

2
− 1

2π

u1−α√
MN

. (3.5)

This test has asymptotic level α and is consistent. We conclude this section
mentioning once again that the assumption of i.i.d. standard normal distributed
errors was made to minimize the technical arguments. All statements remain
true for arbitrary centered errors which have moments of order 4. This observa-
tion is a simple consequence of the central limit theorem, and in the following
finite sample comparison we actually use non-normal error distributions.
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3.3. A comparison of the two tests

The use of different estimators for the quantities μ(ti) yields to the different
tests (3.2) and (3.5) the hypotheses in (3.1). Both test statistics have an asymp-
totic normal distribution under the null hypothesis and the alternative. A finite
sample comparison is given in Table 1 where we report simulation results for
the functions

μ1(t) ≡ 0, (3.6)

μ2(t) = 0.1, (3.7)

μ3(t) = 0.1 + 0.1t. (3.8)

The sample sizes are M = N = 20 and M = N = 50 and we use 10000
simulation runs to estimate the rejection probabilities of the tests (3.2) and
(3.5). For the distribution of the errors distribution we use a (X 2

5 − 5)/
√
10

distribution, in order to demonstrate that the previous findings do not depend on
the assumption of normal distributed errors. We observe that the test (3.2) based
on the statistic TM (which uses the unconstrained estimators of the regression
function) outperforms the method (3.5) which uses the constrained estimators.

A heuristic explanation for the superiority of the unconstrained estimate is
as follows: a constrained estimate produces a systematic bias which has to be
reflected in the decision rule, such that the test keeps its required nominal level.
The bias occurs at every design point and by taking an average, with respect to
the design points it accumulates and has an influence on the power of the test.

M = N = 20
model (3.6) (3.7) (3.8)
level 5% 10% 5% 10% 5% 10%

test (3.2) 0.052 0.103 0.634 0.764 0.918 0.966
test (3.5) 0.070 0.118 0.576 0.684 0.873 0.926

M = N = 50
model (3.6) (3.7) (3.8)
level 5% 10% 5% 10% 5% 10%

test (3.2) 0.056 0.109 0.999 1.000 1.000 1.000
test (3.5) 0.065 0.112 0.997 0.998 1.000 1.000

Table 1

Simulated rejection probabilities of the tests (3.2) and (3.5) for the hypothesis (3.1) in
model (3.6) - (3.8).

We can also give a more “theoretical” argument for the advantages of the
unconstrained approach. Note that for a positive function μ the power of test
(3.2) is approximately given by

PH1

(
TM >

u1−α√
MN

)
≈ Φ

(√
MN

∫ 1

0

μ(t)dt− u1−α

)
,

where Φ denotes the distribution function of the standard normal distribution.
This formula is remarkably precise. For example, if N = M = 20, μ(t) = 0.1 we
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obtain for the power of the test (3.2) 0.638, while the result of the simulation is
0.643. Similarly, the power of the test (3.5) is approximately given by

PH1

(
T̃M >

1√
2πN

+ σH0

u1−α√
MN

)
≈ Φ

(√MN

σN

∫ 1

0

μ(t)dt+ rN,M

)
, (3.9)

where the term rN,M is defined by

rN,M =

√
NM

σN
BM,N −

√
M

2πσ2
N

− σH0

σN
u1−α.

Now, note that σ2
N = 1 + o(1) and that BM,N = o(1) of exponential order

(uniformly) if μ(t) ≥ c > 0 for all t ∈ [0, 1] asM,N → ∞ Consequently, the term
rN,M will be negative for reasonable large M,N . It actually diverges to −∞, but

at a lower rate as the dominating term
√
MN
σ

∫ 1

0
μ(t)dt in (3.9), which converges

to ∞. This means that the test (3.2) based on unconstrained estimation is more
powerful than the test (3.5), which uses constrained estimation.

A similar argument for the superiority of the test (3.2) based on the uncon-
strained estimators of the regression function can be given for local alternatives
of the form μM,N (t) = c(t)/

√
MN , where c : [0, 1] → R is a Lipschitz continu-

ous function. More precisely, the asymptotic power of the tests (3.2) and (3.5)
is given by

Φ
(∫ 1

0

c(t)dt− u1−α

)
and

Φ
(∫ 1

0

c(t)dt
/√

2− 2/π − u1−α

)
,

respectively. As
√
2− 2π ≈ 1.1676 > 1, it follows that the unconstrained test

(3.2) also outperforms the test (3.5) under local alternatives. Exemplarily, we
display in Table 2 the power of the two tests under the local alternatives
μM,N (t) = (1 + t)/

√
MN.

M = N = 20 M = N = 50 M = N = 100 M = N = 200 M = N = 500
level 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
(3.2) 0.458 0.600 0.444 0.591 0.442 0.588 0.437 0.587 0.451 0.588
(3.5) 0.420 0.536 0.393 0.516 0.382 0.508 0.378 0.506 0.379 0.509

Table 2

Simulated rejection probabilities of the tests (3.2) and (3.5) under local alternatives in
model (3.8).

In the following section we will use a similar approach based on averages
of unconstrained estimates of the function d0(·) in sequence of approximating
tvFARIMA models. The proofs in Section 7 show that this approach provides a
consistent and asymptotic level α test for the hypotheses (2.13).
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3.4. Two sided hypotheses

The problem of testing two-sided hypothesis of the form

H0 : μ(t) ≡ 0 versus H1 : μ(t) �= 0 for all t ∈ [0, 1] (3.10)

can be addressed by rejecting the null hypothesis for large values of the statistic
ÂM = 1

M

∑M
j=1 |μ̂j |. It can be shown by similar but slightly more complicated

arguments as given in the previous paragraphs that√
MN/τ2N

(
ÂM −

∫ 1

0

|μ(t)|dt− CM,N

)
D−→ N (0, 1),

where τ2N = N Var (|μ̂j|),

CM,N =

{
2
M

∑M
j=1 δj if μ(t) �= 0 for all t√
2

πN if μ(t) = 0 for all t
,

and the quantities δj are defined in (3.4). Thus, the null hypothesis in (3.10) is
rejected if

ÂM >

√
2

πN
+ τH0

u1−α√
MN

where τ2H0
= N VarH0(|μ̂j|) = 1− 2/π.

4. Testing short- versus long-memory

In order to estimate the integral F we use a sequence of semi-parametric mod-
els approximating the processes {Xt(u)}t∈Z with time varying spectral den-
sity (2.6) and proceed in several steps. First we choose an increasing sequence
k = k(T ) ∈ N, which diverges ‘slowly’ to infinity as the sample size T grows,
and fit a tvFARIMA(k,d,0) model to the data. To be precise, we consider
a locally stationary long-memory model with time varying spectral density
f : [0, 1]× [−π, π] → R

+
0 defined by

fθk(u)(λ) = |1− exp(iλ)|−2d(u)gk(u, λ), (4.1)

where

gk(u, λ) =
1

2π
|1 +

k∑
j=1

aj(u) exp(−iλj)|−2

and θk = (d, a1, . . . , ak) : [0, 1] → R
k+1 is a vector valued function. We empha-

size again that k = k(T ) depends on the sample size and refer to Assumption
4.1 for the precise condtions regarding its growth rate. We then estimate the
function θk(u) by a localized Whittle-estimator, that is

θ̂N,k(u) = arg min
θk∈Θ�uT�/T,k

Lμ̂
N,k(θk, u), (4.2)
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where

Lμ̂
N,k(θk, u) :=

1

4π

∫ π

−π

(
log(fθk(λ)) +

I μ̂N (u, λ)

fθk(λ)

)
dλ (4.3)

denotes the (local) Whittle likelihood [see Dahlhaus and Giraitis (1998) or
Dahlhaus and Polonik (2009)] and for each u ∈ [0, 1] the parameter space
Θu,k ⊂ R

k+1 is a compact set which will be specified in Assumption 4.1. In
(4.2) and (4.3) the quantity

I μ̂N (u, λ)=
∣∣∣ 1√

2πN

N−1∑
p=0

[
X�uT�−N/2+1+p,T − μ̂(�uT �−N/2 + 1 + p, T )

]
e−ipλ

∣∣∣2,
(4.4)

denotes the mean-corrected local periodogram, N is an even window-length
which is ‘small’ compared to T and μ̂ is an asymptotically unbiased estimator
of the mean function μ : [0, 1] → R, see Dahlhaus (1997). Here and throughout
this paper we use the convention Xj,T = 0 for j �∈ {1, ..., T}. We finally obtain

an estimator d̂N (u) for the time-varying long-memory parameter by taking the

first component of the (k + 1) dimensional vector θ̂N,k(u) defined in (4.2). We
emphasize that the tvFARIMA models are only used to define the estimator
d̂N (u) as the solution of the optimization problem (4.2).

It will be demonstrated in Theorem 4.3 below that - provided that the “true”
underlying process can be approximated by tvFARIMA models - this approach
results in a uniformly consistent estimator of the time-varying long-memory pa-
rameter. For this purpose we define θ0,k(u) := (d0(u), a1,0(u), ..., ak,0(u)) as the
(k+1) dimensional vector containing the long memory parameter d0(u) and the
first k AR-parameter functions a1,0(u), ..., ak,0(u) of the approximating process
{Xt(u)}t∈Z defined by the representation (2.6) and (2.7). Here and throughout
this paper, A11 denotes the element in the position (1,1) and ‖A‖sp the spectral
norm of the matrix A = (aij)

k
i,j=1, respectively. We state the following technical

assumptions.

Assumption 4.1. Let k = k(T ) be a sequence converging to infinity for in-
creasing sample size T and let (γ�)�∈N and (δ�)�∈N denote positive sequences in
the interval (0,min{1/4, 1/2−D}) such that

lim inf
T→∞

γk(T ) log T > 0 , lim inf
k→∞

δk(T ) log T > 0,

lim
T→∞

γk(T ) = 0 , lim
k→∞

δk(T ) = 0.

For each u ∈ [0, 1] and k ∈ {k(T ), T ∈ N} define Θu,k = [−γk, 1/2−δk]×Θu,k,1×
. . . × Θu,k,k, where the constant D is the same as in Assumption 2.1. For each
i = 1, . . . , k Θu,k,i is a compact set with a finite number (independent of u, k, i) of
connected components with positive Lebesgue measure. Let Θk denote the space
of all four times continuously differentiable functions θk : [0, 1] → R

k+1 with
θk(u) ∈ Θu,k for all u ∈ [0, 1]. If θk(u) and θ

′

k(u) are distinct elements of Θu,k, we
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assume that the set {λ : fθk(u)(λ) �= fθ′
k(u)

(λ)} has positive Lebesgue measure.

We assume that the following conditions hold for each k ∈ {k(T ), T ∈ N}:
(i) The functions gk in (4.1) are bounded from below by a positive constant

(which is independent of k) and are four times continuously differentiable
with respect to λ and u, where all partial derivates of gk up to the order
four are bounded with a constant independent of k.

(ii) For each u ∈ [0, 1] the parameter θ̃0,k(u) = argminθk∈Θu,k
Lk(θk, u) exists

and is uniquely determined, where

Lk(θk, u) :=
1

4π

∫ π

−π

(
log(fθk(λ)) +

f(u, λ)

fθk(λ)

)
dλ.

Moreover, for each u ∈ [0, 1] the vectors θ̃0,k(u) and θ0,k(u) are interior
points of Θu,k.

(iii) Define

Γk(θk) =
1

4π

∫ π

−π

f2
θk
(λ)∇f−1

θk
(λ)∇f−1

θk
(λ)T dλ, (4.5)

Vk(θk, u) =
1

4π

∫ π

−π

f2(u, λ)∇f−1
θk

(λ)∇f−1
θk

(λ)T dλ,

[here ∇ denotes the derivative with respect to the parameter-vector θk],
then the matrix Γk(θ0,k) is non-singular for every u ∈ [0, 1], k ∈ {k(T ), T ∈
N}, and

lim
T→∞

∫ 1

0
[Γ−1

k (θ0,k(u))]1,1du∫ 1

0
[Γ−1

k (θ0,k(u))Vk(θ0,k(u), u)Γ
−1
k (θ0,k(u))]1,1du

= 1 (4.6)

as T → ∞. Furthermore, condition (4.6) is also satisfied if the function
θ0,k(u) is replaced by any sequence θ̃T (u) such that supu∈[0,1] |θ̃T (u) −
θ0,k(u)| → 0. For such a sequence we additionally assume that the condi-
tion

lim
T→∞

∫ 1

0
[Γ−1

k (θ0,k(u))]1,1du∫ 1

0
[Γ−1

k (θ̃T (u))]1,1du
= 1

is satisfied as T → ∞.
(iv) Let ΘR,k =

⋃
u∈[0,1] Θu,k be compact and

sup
θk∈ΘR,k

‖Γ−1
k (θk)‖sp = O(k) , lim inf

T→∞

∫ 1

0

[Γ−1
k (θ0,k(u))]1,1du ≥ c > 0.

In order do illustrate the construction of the sets Θu,k,i in Assumption 4.1,
consider exemplarily the case where for some δ > 0 the polynomial z →
1 +

∑∞
j=1 aj,0(u)z

j with the coefficients from (2.7) is bounded away from zero
inside the disc Dδ := {z : |z| ≤ 1 + δ} (uniformly with respect to u). In this
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case the sets Θu,k,1 × ... × Θu,k,k can be chosen as the intersection of the set

{(θu,k,1, . . . , θu,k,k) ∈ R
k||1 +

∑k
j=1 θu,k,jz

j | > C1 > 0 ∀z ∈ Dδ} with the set

{(a1, ..., ak) ∈ R
k : there exists a sequence (ai)i>k such that (ai)i∈N ∈ A0}.

Here the set A0 is defined by

A0 :=
{
(ai)i∈N

∣∣∣ the function p(z) := 1 +

∞∑
j=1

ajz
j satisfies |p(z)| > C2 > 0

and |p(l)(z)| ≤ C3 for all z ∈ Dδ and 0 ≤ l ≤ 4
}
,

the constants C2, C3 are chosen such that C1 < C2 and such that the sequence
(aj,0)j∈N is an inner point of the set A0.

Assumption (i) and (ii) are rather standard in a semi-parametric locally sta-
tionary time series model [see for example Dahlhaus and Giraitis (1998) or
Dahlhaus and Polonik (2009) among others]. Note that the number of parame-
ters k grows with increasing sample size in order to obtain a consistent estimate
of the function u → d(u) in model (2.5). The restriction on the spectral norm
in part (iv) was verified for a large number of long-range dependent models
by Bhansali et al. (2006) [see equation (4.4) in this reference]. Note that these
assumptions solely depend on the “true” underlying model.

On the other hand, an important step of our approach is the approximation
of the spectral density f(u, λ) in (2.6) by the truncated analogue

|1− eiλ|−2d0(u)|1 +
k∑

j=1

aj,0(u)e
−iλj |−2,

and the following assumption guarantees that the corresponding approximation
error converges to 0 with reasonable rate. As a consequence it provides a link
between the growth rate of k = k(T ) and N as the sample size T increases.

Assumption 4.2. Suppose that N → ∞, N log(N) = o(T ) and

sup
u∈[0,1]

∞∑
j=k+1

|aj,0(u)| = O(N−1+ε) (4.7)

for some 0 < ε < 1/6 as T → ∞.

Note that

f(u, λ)− fθ0,k(u)(λ) = |1− eiλ|−2d0(u) (4.8)

×
(∣∣1 + ∞∑

j=1

aj,0(u)e
−iλj

∣∣−2 −
∣∣1 + k∑

j=1

aj,0(u)e
−iλj

∣∣−2
)
,

and an application of Lemma 2.4 in Kreiß et al. (2011) to the second factor
(corresponding to the “short memory” part) shows that condition (4.7) with
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0 < γk < 1/2−D implies

sup
u∈[0,1]

∫ π

−π

|1− eiλ|−2γk
∣∣f(u, λ)− fθ0,k(u)(λ)

∣∣dλ = O(N−1+ε).

As a consequence Assumption 4.1 (iii) is rather intuitive, because the parametric
model (4.1) can be considered as an approximation of the “true” model defined
in terms of the time varying spectral density (2.5). We finally note that condi-
tion (4.7) is satisfied for a large number of tvFARIMA(p, d, q) models, because
it can be shown by similar arguments as in the proof of Theorem 2.2 in Preuß
and Vetter (2013) that the coefficients aj,0(u) are geometrically decaying. This
yields

∑∞
j=k+1 supu |aj,0(u)| = O(qk) for some q ∈ (0, 1) resulting in a loga-

rithmic growth rate for k, which is in line with the findings of Bhansali et al.
(2006). Similarly, one can include processes whose AR coefficients decay such
that

∑∞
j=0 supu |aj,0(u)|jr < ∞ is satisfied for some r ∈ N0. In this case k needs

to grow at some specific polynomial rate.
Our first main result states a uniform convergence rate for the difference be-

tween θ̂N,k(u) and its true counterpart θ0,k(u). As a consequence it implies that

the estimator d̂N obtained in the approximating models is uniformly consistent
for the (time varying) long-range dependence parameter of the locally stationary
process.

Theorem 4.3. Let Assumption 2.1, 4.1 and 4.2 be satisfied and suppose that
the estimator of the mean function μ satisfies

N εk3 max
t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣ = op(1) (4.9)

for some 0 < ε < min{1/4−D/2, 1/6}. If N5/2/T 2 → 0 and k4 log2(T )N−ε/2 →
0, then

sup
u∈[0,1]

∥∥θ̂N,k(u)− θ0,k(u)
∥∥
2

(4.10)

= OP

(
k3/2N−1/2+ε +N εk3/2 max

t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣).

In particular

sup
u∈[0,1]

|d̂N (u)− d0(u)| = OP

(
k3/2N−1/2+ε +N εk3/2 max

t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣).

Remark 4.4. It follows from the proof of Theorem 4.10 below that there exists
an estimator μ̂ with

N1/2−D−α max
t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣ = op(1)

for every α > 0. Under the addional assumption

sup
u∈[0,1]

∞∑
j=k+1

|aj,0(u)| = O(qk) (4.11)
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for some q ∈ (0, 1) a logarithmic rate for the dimension k of the tvFARIMA
models can be used such that assumption (4.9) is satisfied [for a broad class of
models, where the stronger condition (4.11) is in fact satisfied, we refer to the
discussion following (4.8)].

In order to obtain an estimator of the quantity F in (2.14) we assume without
loss of generality that the sample size T can be decomposed into M blocks
with length N (i.e. T = NM), where M is some positive integer. We define
the corresponding midpoints in both the time and rescaled time domain by
tj = N(j − 1) +N/2, uj = tj/T , respectively, and calculate d̂N (uj) on each of
the M blocks as described in the previous paragraph. The test statistic is then
obtained as

F̂T =
1

M

M∑
j=1

d̂N (uj). (4.12)

The following two results specify the asymptotic behaviour of the statistic
F̂T under the null hypothesis and alternative.

Theorem 4.5. Assume that the null hypothesis H0 (of no long-range depen-
dence) is true. Let Assumptions 2.1, 4.1 and 4.2 be satisfied, define WT =

[
∫ 1

0
Γ−1
k (θ0,k(u))du]1,1 and suppose that the estimator μ̂ of the mean function

satisfies

max
t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣ = Op(N

−1/2+ε/2),

(4.13)

max
t=1,...,T

∣∣∣{μ( t− 1

T

)
− μ̂

( t− 1

T

)}
−

{
μ
( t

T

)
− μ̂

( t

T

)}∣∣∣ = Op(N
−1/2−2εT−1/2),

(4.14)

where ε is the constant in Assumption 4.2 satisfying 0 < ε < 1/6. Moreover, if
the conditions

k6
√
T/N1−ε → 0, k4 log2(T )/N ε/2 → 0,

k2 log(T )/T 1/6−ε → 0, k2N2/T
3
2 → 0

hold as T → ∞, then we have
√
T F̂T /

√
WT

D→ N (0, 1). (4.15)

Note that F̂T is an average of the estimates of the long-range dependence pa-
rameter in the approximating tvFARIMA model. By Assumption 4.1 the point
0 is an interior point of the canonical projection of the parameter space Θu,k

onto the first component, which motivates the asymptotic normality obtained
in Theorem 4.5. More precisely, we show in Section 7 that the leading term in
the stochastic expansion of F̂T is given by

− 1

M

M∑
j=1

1

4π

∫ π

−π

(
IμN (uj , λ)− fθ0,k(uj)(λ)

)
[Γ−1

k (θ0,k(uj))∇f−1
θ0,k(uj)

(λ)]1 dλ,
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where [a]1 denotes the first element of the (k+1) dimensional vector a. Asymp-
totic normality follows because the individual terms in this sum are asymptoti-
cally independent (see Section 7 for details and Section 3 for a similar result in
a simplified model).

Theorem 4.6. Assume that the alternative H1 of long-range dependence is true.
Let Assumptions 2.1, 4.1 and 4.2 be satisfied and suppose that the estimator μ̂
of the mean function satisfies

N εk3 max
t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣ = op(1), (4.16)

where ε is the constant in Assumption 4.2 satisfying 0 < ε < min{1/4 −
D/2, 1/6}. Moreover, if the conditions

k6/N1−2ε → 0, k4 log2(T )/N ε/2 → 0, k4/N1−2D−2ε → 0, k2N5/2/T 2 → 0

are satisfied as T → ∞, then we have

F̂T
P→ F > 0.

Remark 4.7. (more transparent conditions) If assumption (4.11) is satisfied,
more transparent conditions for Theorem 4.3, 4.5 and 4.6 can be given. To be
precise assume that (4.11) holds for some q ∈ (0, 1) and choose

k = �−a
log T

log q
�

for some a ∈ (1/2, 1). If D < 1/6, then it follows by straightforward but tedious
calculations that Theorem 4.3, 4.5 and 4.6 hold forN = T β with any β satisfying
a < β < min{ 6

5a,
3
4} (note that this conditions provides a further restriction for

the choice of the constant a). Similarly, if 1/6 ≤ D < 1/2 the results hold,
whenever a < β < min{ 4a

3+2D , 3
4}.

Remark 4.8. (the non-Gaussian case) It is worthwhile to mention that in most
of articles cited in this paper the assumption of Gaussianity for the innovation
process in (2.1) is required. In the present case this assumption is not necessary
and is only imposed here to simplify technical arguments in the proof of Theorem
7.1. This observation is a consequence of method of proof used in Section 7. In
fact, asymptotic normality is established by the method of moments showing
that all cumulants of the statistic under consideration converge to those of a
normal distribution. In the definition of all cumulants one needs the existence
of all moments of Zi (which is obviously true in the Gaussian case). The main
simplification under the assumption of Gaussianity consists in the fact that one
does not have to work with partitions including cumulants of any possible order.
The extension to non Gaussian innovations does not change the main argument
in the proofs, but the calculations become substantially more complicated, and
the details are omitted for the sake of brevity.

As a consequence all results of this section remain true as long as the in-
novations are independent with all moments existing, mean zero and E(Z2

t ) =
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σ2(t/T ) for some twice continuously differentiable function σ : [0, 1] → R. To be
more precise, in order to address for non-Gaussian innovations the variance VT

in Theorem 7.1 (which is one of the main ingredients for the proofs in Section
7) has to be replaced by

VT,general = VT +
1

TM

M∑
j=1

κ4(uj)/σ
4(uj)

(∫ π

−π

f(uj , λ)φT (uj , λ)dλ
)2

,

where VT is defined in (7.5) and κ4(u) denotes the fourth cumulant of the innova-
tions, i.e. κ(t/T ) = E(Z4

t )−3σ4(t/T ) for all t = 1, . . . , T . In the proof of Theorem
4.5 we apply this result with φT (uj , λ) = (4π)−1[Γ−1

k (θ0,k(uj))∇f−1
θ0,k(uj)

(λ)]1.

Consequently, we obtain that in the non-Gaussian case the asymptotic normal-

ity in Theorem 4.5 holds, where the matrix WT = [
∫ 1

0
Γ−1
k (θ0,k(u))du]1,1 has to

be replaced by

WT,general =WT +
1

TM

M∑
j=1

κ4(uj)/σ
4(uj)

(∫ π

−π

f(uj , λ)φT (uj , λ)dλ
)2

. (4.17)

Thus, under the null hypothesis it follows that
√
T F̂T√

WT,general

D→ N (0, 1). (4.18)

Remark 4.9. (the final test) Note that the first term WT in (4.17) can be
consistently estimated by

ŴT =
[ 1

M

M∑
j=1

Γ−1
k (θ̂N,k(uj))

]
11
.

This gives as an estimator for VT,general the statistic

ŴT,general = ŴT

+
1

M

M∑
j=1

κ̂4(uj)

σ̂4(uj)

(∫ π

−π

fθ̂N,k(uj)
(λ)[Γ−1

k (θ̂N,k(uj))∇f−1

θ̂N,k(uj)
(λ)]1dλ

)2

,

where σ̂(uj) and κ̂(uj) are obtained by calculating the empirical second and
fourth moment μ̂2,Z(uj), μ̂4,Z(uj) of the residuals

Zt,res = Xt,T −
k∑

i=2

[θ̂N,k(uj)]iXt−i+1,T ,

t = tj −N/2 + k + 1, tj −N/2 + k + 2, ..., tj +N/2,

and setting σ̂2(uj) = μ̂2,Z(uj), κ̂(uj) = μ̂4,Z(uj)− 3μ̂2
2,Z(uj). Since

ŴT,general/WT,general
P−→ 1,

an asymptotic level α-test is obtained from (4.18) by rejecting the null hypoth-
esis (2.13), whenever
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√
T F̂T /

√
ŴT,general ≥ u1−α, (4.19)

where u1−α denotes the (1 − α)-quantile of the standard normal distribution
(in the Gaussian case ŴT,general can be replaced by ŴT ). It then follows from
Remark 4.8 and Theorem 4.6 that for any estimator of the mean function μ
satisfying (4.13), (4.14) and (4.16), the test, which rejects H0 whenever (4.19)
is satisfied, is a consistent level-α test for the null hypothesis stated in (2.13).
The finite sample properties of this resulting test are investigated in Section 5.

A popular estimate of the mean function is given by the the local-window
estimator

μ̂L(u) =
1

L

L−1∑
p=0

X�uT�−L/2+1+p,T , (4.20)

where L is a window-length which does not necessarily coincide with the cor-
responding parameter in the calculation of the local periodogram. Note that
also I μ̂N (u, λ) is an asymptotically unbiased estimator for f(u, λ) if N → ∞ and
N/T → 0. The final result of this section shows that this estimator satisfies the
assumptions of Theorem 4.5 and 4.6 if L grows at a ‘slightly’ faster rate than
N . This means, it can be used in the asymptotic level α test defined by (4.19).

Theorem 4.10. a) Suppose that the assumptions of Theorem 4.5 hold and
additionally N1+4ε/L1−δ → 0 and L5/2−δ/T 3/2 → 0 are satisfied for some
δ > 0, where ε > 0 denotes the constant in Theorem 4.5. Then the local-
window estimator μ̂L defined in (4.20) satisfies (4.13) and (4.14).

b) Suppose the assumptions of Theorem 4.6 hold. If additionally
N εk5/L1/2−D−δ → 0 and L5/2−D/T 2 → 0 for some 0 < δ < 1/2−D − ε
(with the constant ε from Theorem 4.6), then the local-window estimator
μ̂L defined in (4.20) satisfies (4.16).

Remark 4.11. (parametric models) Analogues of Theorem 4.5 and 4.6 can be
obtained in a parametric framework. To be precise, assume that the approximat-
ing processes {Xt(u)}t∈Z has a time varying spectral density of the form (4.1),
where k is fixed and known. In this case it is not necessary that the dimension k
is increasing with the sample size T and Assumption 4.1(iii) and 4.2 are not re-
quired. All other stated assumptions are rather standard in this framework of a
semi-parametric locally stationary time series model [see for example Dahlhaus
and Giraitis (1998) or Dahlhaus and Polonik (2009) among others]. With these
modifications Theorem 4.5 and 4.6 remain valid and as a consequence we obtain
an alternative test to the likelihood ratio test proposed in Yau and Davis (2012),
which operates in the spectral domain and can be used for more general null
hypotheses as considered by these authors.

Remark 4.12. (local alternatives) Theorem 4.5 remains valid under local al-
ternatives converging to the null hypothesis at a rate

√
T/k. To be precise let

d0,T (u) = a(u)
√
WT,general/T where a : [0, 1] → [0,∞) is a twice continuously
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differentiable function such that
∫ 1

0
a(u) du > 0. Then it follows by similar ar-

guments as given in the proof of Theorem 4.5, that

√
T
( F̂T −

∫ 1

0
a(u) du√

WT,general

)
D→ N (0, 1)

(note that WT,general = O(k) due to Assumption 4.1(iv) and that WT does
not depend on the long-memory parameter function d0). This indicates that

(asymptotically) the power of the test (4.19) is increasing with
∫ 1

0
a(u) du, which

can also be observed in the simulation study presented in the following Section.

Remark 4.13. (two sided hypotheses) In some cases it might also be of interest
to detect any type of “fractional” behaviour either with positive or negative
values of d0(u) depending on the period. In principle, problems of this type can
be addressed by rejecting the null hypothesis

H
(1)
0 :

∫ 1

0

|d0(u)|du = 0

for large values of the statistic

F̂
(1)
T =

1

M

M∑
j=1

|d̂N (uj)|.

The analysis of the asymptotic properties of this statistic is not a direct con-
sequence of the arguments presented in Section 7. Observing Section 3.4 we

conjecture that an appropriately standardized version of F̂
(1)
T is also asymptoti-

cally normal distributed, but a rigorous proof would be beyond the scope of the
present paper.

Remark 4.14. (alternative parameter estimates) The parameters of the ap-
proximating time varying FARIMA process are estimated by a local Whittle
estimator from an approximating time varying FARIMA process, but other es-
timators for the time varying long range dependence parameter could be used as
well. Alternative estimators are localized versions of the log-periodogram and
the “local” Whittle estimator who have been considered and investigated in
the stationary case by Geweke and Porter-Hudak (1983); Robinson (1995) and
Künsch (1987); Robinson (1994), respectively. We expect that the use of estima-
tors of this type yields to similar results as stated in Theorem 4.5 and 4.6, but
the asymptotic variance in Theorem 4.5 will probably be different. As these es-
timators have been designed to avoid strong smoothness assumptions regarding
the spectral density, their use in the procedure proposed in this paper may lead
to weaker assumptions in Theorem 4.3 and 4.5. For a rigorous proof of results
of this type one has to extend the results Robinson (1994) and Robinson (1995)
to a time varying long range dependence parameter (including a definition of
appropriate estimators for this case) and then carefully modify the arguments
given in Section 7.2 and and 7.3.
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In order to indicate the difficulties which might occur in the use of different
estiamtors, we consider a further alternative estimator, which is - on a first glance
- very closely related to the estimator investigated in this section. Note, that
from a computational point of view, it might be simpler to replace the integral
in (4.3) by a sum over Fourier frequencies. Again we expect that similar results
as presented in this section could be obtained for this alternative estimator, but
all arguments in the proofs in Section 7 have to be checked very carefully and
to modified at several places. In particular the standardization in (4.15) may
change if integrals are replaced by sums over Fourier frequencies. For example,
the asymptotic variances of the statistics

F̃1,T =
1

4πM

M∑
j=1

∫ π

−π

I2N (uj , λ) dλ,

F̂1,T =
1

T

M∑
j=1

�N
2 �∑

k=1

I2N (uj , λk,N ),

are different (here λk,N = denotes the kth Fourier frequency) and given by

lim
T→∞

T Var (F̃1,T ) =
14

3π

∫ π

−π

∫ 1

0

f4(u, λ)dudλ,

lim
T→∞

T Var (F̂1,T ) =
5

π

∫ π

−π

∫ 1

0

f4(u, λ)dudλ,

respectively [see Deo and Chen (2000) and Sen et al. (2016), who proved this
result in the stationary short memory and locally stationary long memory case,
respectively]. The answer to the question if a similar phenomenon occurs if a
discretized Whittle estimator is used in the test statistic (4.12) is by no means
trivial and requires a new proof following the arguments outlined in Section 7.

Remark 4.15. (weaker assumptions and generalizations)
(1) The (uniform) smoothness conditions stated in Assumption 2.1 are com-
monly made in the literature [see for example Palma and Olea (2010)] and are
also required in the present context to obtain the uniform consistency of the
estimator for the function d0. However, it is worthwhile to mention that the
asymptotic properties of the proposed test can also be derived under weaker
assumptions. To be more precise, Theorem 4.5 remains valid if the conditions
on the function ψl(u) and its derivatives stated in Assumption 2.1 are replaced
by

|ψ′
l(u)| ≤ C(u) log |l||l|D−1, |ψ′′

l (u)| ≤ C(u) log2 |l||l|D−1,∣∣ ∂

∂u
f(u, λ)

∣∣ ≤ C(u)| log(λ)||λ|−2D,
∣∣ ∂2

∂u2
f(u, λ)

∣∣ ≤ C(u) log2(λ)|λ|−2D

for all λ ∈ [−π, π] and u ∈ (0, 1). Here C : (0, 1) → R denotes a function

such that
∫ 1

0
|C(u)|pdu < ∞ for all p ∈ N. The proof of this statement can
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be performed by similar arguments as given in the proof of Theorem 4.5 with
additional technical arguments for the more delicate estimates of the error terms.

Moreover, we conjecture that, the conditions can be further weakened such
that the function C is only integrable up to a specific order. A detailed verifica-
tion of such a statement, however, is an open problem and far beyond the scope
of the present paper.

(2) As pointed out by a referee a further important question in this context
is to extend the theory to mean functions with jumps. For this purpose one
would have to construct uniformly consistent estimators of a piecewise continu-
ous mean function (such that assumptions (4.9) or (4.13) are satisfied). However,
this is a very difficult task and we are not aware of any estimators with this
property. Even in the classical case of nonparametric regression with indepen-
dent errors, there are no results available regarding the uniform consistency of
an estimate of the regression functions in the case of jumps (to our best knowl-
edge). Recent papers provide the uniform consistency over sets which exclude
the jump points [see Gijbels et al. (2007) and Xia and Qiu (2012) among others].
However, these results do not yield a uniform convergence of the type (4.9) or
(4.13) required in our theory. Moreover, is also not clear if the results of these
authors can be generalized for locally stationary long range dependent time
series as considered in this paper.

(3) A further interesting problem for future research is the extension of the
results to processes with a long range dependence parameter d0(u) > 1/2. While
this seems to be difficult for the Whittle estimator (4.3) considered in this paper,
it might be possible for the semiparametric estimators investigated by Robinson
(1994, 1995), who considered stationary models with a spectral density satis-
fying f(λ) ≈ G|λ|−2d as λ → 0, where d ∈ (−1/2, 1/2). There exist several
references investigating asymptotic properties of the local Whittle estimator in-
troduced by Künsch (1987) in the case of fractional processes, that is d > 1/2
[see Velasco (1999) or Phillips and Shimotsu (2004) among others]. A very chal-
lenging question is, if similar results as derived in this section can be obtained
for models with a time varying spectral density satisfying

f(λ, u) ≈ |λ|−2d0(u)g(u, λ) as λ → 0 .

In the simplest case, where the function g does not depend on the frequency, that
is g(u, λ) = g(u), one can use a localized version of the local Whittle estimator
proposed by Künsch (1987) to estimate the function d0, but the theoretical
properties of such a statistic are not obvious. In particular it is not clear if this
approach yields to a uniformly consistent estimate (including the appropriate
rates) as derived in Theorem 4.3 and required for the theory presented in this
paper.

5. Finite sample properties

The application of the test (4.19) requires the choice of several parameters.
Based on an extensive numerical investigation we recommend the following rules.
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For the choice of the parameter L in the local window estimate μ̂L of the mean
function [for a precise definition see (4.20)] we use L = N1.05. Because the
procedure is based on a sequence of approximating tvFARIMA(k, d, 0)-processes
the choice of the order k is essential, and we suggest the AIC criterion for this
purpose, that is

k̂ = argmin
k

1

T

T/2∑
j=1

(
log(hθ̂k,s

(λj)) +
I μ̂(λj)

hθ̂k,s
(λj)

)
+

k + 1

T
, (5.1)

where λj = 2πj/T (j = 1, . . . , T ), and hθ̂k,s
(λ) is the estimated spectral den-

sity of a stationary FARIMA(k, d, 0) process and I μ̂L(λ) is the mean-corrected
periodogram given by

I μ̂L(λ) :=
∣∣∣ 1√

2πN

T∑
t=1

[
Xt,T − μ̂L(t/T )

]
e−itλ

∣∣∣2.
Note that we choose the same order k for each of the M blocks. An alter-

native choice is to use tvFARIMA models of different order for each block. In
our numerical experiments we investigated both methods and we observed sub-
stantial advantages for the rule (5.1) (the results of this comparison are not
displayed for the sake of brevity). Because this approach also has additional
computational advantages we recommend to choose the same approximating
tvFARIMA(k,d,0) model for all blocks. Finally, the performance of the test de-
pends on the choice of N , and this dependency will be carefully investigated in
the following discussion.

5.1. Simulation of level and power

All results presented in this section are based on 1000 simulation runs, and we
begin with an investigation of the approximation of the nominal level of the
test (4.19) considering three examples. The first example is given by a location
model with a tvAR(1)-process, that is

Xt,T = μi(t/T ) + Yt,T , t = 1, . . . , T, (5.2)

where

Yt,T = 0.6
t

T
Yt−1,T + Zt, t = 1, . . . , T. (5.3)

The innovations {Zt}t=1,...,T in (5.3) are either i.i.d. standard normal or i.i.d.
chi-square distributed normalized such that E[Zi] = 0, V ar(Zi) = 1, i.e. Zi ∼
(χ2

5 − 5)/
√
10. Two cases are investigated for the mean function representing a

smooth change and abrupt change in the mean effect, i.e.

μ1(t/T ) = 1.2
t

T
, (5.4)
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μ2(t/T ) =

{
0.65 for t = 1, . . . , T/2
1.3 for t = T/2 + 1, . . . T.

(5.5)

The mean function (5.5) is not smooth and used to investigate the impact of a
violation of the assumptions in the procedure. Our third example consists of a
tvMA(1)-process given by

Xt,T = Zt + 0.55 sin
(
π
t

T

)
Zt−1, t = 1, . . . , T, (5.6)

where {Zt}t=1,...,T is again a sequence of i.i.d. normal or chi-square distributed
random variables normalized to have mean 0 and variance 1. Figure 3 and 4 show
the sample autocovariance and the sample partial autocovariance functions of
1024 observations generated by the models (5.4), (5.5) and (5.6), respectively,
from which it is clearly visible that the mean functions in (5.4) and (5.5) are
causing a long-memory type behaviour. In Table 3, we show for these models
the simulated level of the test (4.19) for various choices of N . We observe in
model (5.2) and (5.6) a reasonable approximation of the nominal level whenever
M = T/N ≈ 4 and the sample size T is larger or equal than 512. Here the results
are similar for normal and chi-square distributed innovations. On the other hand
in model (5.2) with mean function (5.5) the assumptions of the asymptotic
theory are violated and the situation is different. For moderate sample sizes the
specification M = T/N ≈ 4 yields to an overestimation of the nominal level.
Moreover, the approximation of the nominal level becomes worse with increasing
sample size. We conjecture that the performance of the test could be improved
by using estimators addressing the problem of jumps in the mean function.

In order to investigate the power of the test (4.19) and to compare it with the
competing procedures proposed by Berkes et al. (2006), Baek and Pipiras (2012)
and Yau and Davis (2012), we simulated data from a tvFARIMA(1, d, 0)-process

(1 + 0.2
t

T
B)(1−B)d(t/T )Xt,T = Zt, t = 1, . . . , T, (5.7)

and a tvFARIMA(0, d, 1)-process

(1−B)d(t/T )Xt,T = (1− 0.35
t

T
B)Zt, t = 1, . . . , T, (5.8)

where B is the backshift operator that is BjXt,T := Xt−j,T . In both cases the
long-memory function is given by d(t/T ) = 0.1+0.3t/T . Because all competing
procedures are designed to detect stationary long-range dependent alternatives,
we also simulated data from a stationary FARIMA(1,d,1)-process

(1 + 0.25B)(1−B)0.1XT = (1− 0.3B)Zt, t = 1, . . . , T. (5.9)

The corresponding results for the new test (4.19) and its competitors are pre-
sented in Table 4-7. In Table 4 and 5 we show the simulated power in model
(5.7) for (standardized) normal and chi-square distributed innovations. We do
not observe substantial differences in the power of the new test under different
distributional assumptions and for this reason Table 6 and 7 only contain results
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Fig 3. Sample autocovariance functions of model (5.2) with mean function (5.4) (left panel),
(5.5) (middle panel) and of model (5.6) (right panel). The sample size is T=1024.

Fig 4. Sample partial autocovariance functions of model (5.2) with mean function (5.4) (left
panel), (5.5) (middle panel) and of model (5.6) (right panel). The sample size is T=1024.

for normal distributed innovations. In the first column the rejection probabil-
ities of the new test are displayed and we observe a reasonable power in all
models under consideration. Interestingly, the differences in power between the
tvFARIMA(1, d, 0) and the tvFARIMA(0, d, 1)-model are rather small (see sec-
ond column in Table 4 and 6). The results in Table 7 show a loss in power,
which corresponds to intuition because the “average” long-memory effect in

model (5.9) is 0.1, while it is
∫ 1

0
(0.1 + 0.3u) du = 0.25 in model (5.7) and (5.8)

[see also Remark 4.12 and the discussion at the end of this section]. In order
to compare the new test with existing approaches we next investigate the per-
formance of the procedures proposed by Berkes et al. (2006), Baek and Pipiras
(2012) and Yau and Davis (2012), which are designed for a test of the null hy-
pothesis “the process has the short memory property with a structural break in
the mean” against the alternative “the process is stationary and has the long
memory property”. The third columns of Table 4-7 show the power of the test
in Baek and Pipiras (2012), which also operates in the spectral domain. These
authors estimate the change in the mean with a break point estimator and re-
move this mean effect (which is responsible for the observed local stationarity)
from the time series. Then they calculated the local Whittle estimator intro-
duced by Robinson (1995) for the self similarity parameter and reject the null
hypothesis for large value of this estimate. Note that the calculation of the local
Whittle estimator requires the specification of the number of “low frequencies”
and we used m =

√
T as Baek and Pipiras (2012) suggested in their simulation

study. We observe that the new test (4.19) yields larger power than the proce-
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dure of Baek and Pipiras (2012) in nearly all cases under consideration. This
improvement becomes more substantial with increasing sample size.

Next we study the performance of the procedure proposed by Berkes et al.
(2006) in models (5.7)-(5.9). These authors use a CUSUM statistic to construct

an estimator, say k̂∗, for a (possible) change point k∗ in a time series. Then two

CUSUM statistics are computed for the first k̂∗ elements of the time series and
the remaining ones, respectively. The test statistic is given by the maximum of
those two. For the choice of the bandwidth function we use q(n) = 15 log10(n) as
suggested by these authors in Section 3 of their article. The results are depicted
in the fourth columns of Table 4-7 and demonstrate that this test is not able
to detect long-range dependence in both the stationary and locally stationary
case. These findings coincide with the results of Baek and Pipiras (2012) who
also remarked that the test in Berkes et al. (2006) has very low power against
long-range dependence alternatives.

The method proposed by Yau and Davis (2012) consists of a parametric
likelihood ratio test assuming two (not necessarily equal) ARMA(p, q) models
before and after the breakpoint of the mean function. Their method requires a
specification of the order of these two models and we used ARMA(1, 1)-models
under the null hypothesis and a FARIMA(1, d, 1) model under the alternative
hypothesis. The corresponding results for this test are depicted in the fifth
columns of Table 4-7 corresponding to non-stationary and stationary long-range
dependent alternatives, respectively. We observe that in these cases the new test
(4.19) outperforms the test proposed in Yau and Davis (2012) if the sample size
is larger than 512 and that both tests have similar power for sample size 256
(see the fifth column of Table 4 and 6). On the other hand, in the case of the
long-range dependent stationary alternative (5.9) the test of Yau and Davis
(2012) yields slightly better rejection probabilities than the new test (4.19) for
smaller sample sizes while we observe advantages of the proposed test in this
paper for sample sizes 512 and 1024. These results are remarkable, because
the test of Yau and Davis (2012) is especially designed to detect stationary
alternatives of FARIMA(1, d, 1) type, but the new semi-parametric test still
yields an improvement in many cases.

Finally, as it was pointed out by a reviewer, it is also of interest to sys-
tematically investigate the power of the test (4.19) as a function of the quan-

tity F =
∫ 1

0
d(u) du. The arguments in Remark 4.12 indicate that the power

is increasing with F , and we will now investigate if these properties can also
be observed in finite samples. For this purpose we simulated data from the
tvFARIMA(0,d,1)-process in (5.8) with different choices for the long-memory
function d:

d1(t/T ) = 1/8 , d2(t/T ) = t/4T, (5.10)

d3(t/T ) =

⎧⎨⎩
0 for 1 ≤ t ≤ T/3

3/8 for T/3 < t ≤ 2T/3
0 for 2T/3 < t ≤ T,

(5.11)

d4(t/T ) = 0.3 , d5(t/T ) = 1.8t/T (1− t/T ). (5.12)
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Zt ∼ N (0, 1)
(5.2), (5.4) (5.2),(5.5) (5.6)

T N M 5% 10% 5% 10% 5% 10%
256 64 4 .090 .128 .094 .145 .085 .122
256 32 8 .151 .228 .165 .255 .182 .261
512 128 4 .061 .095 .070 .114 .069 .099
512 64 8 .089 .130 .089 .126 .081 .107
1024 256 4 .046 .072 .077 .119 .069 .106
1024 128 8 .059 .087 .061 .088 .064 .093
2048 512 4 .048 .090 .094 .148 .074 .122
2048 256 8 .026 .034 .026 .058 .062 .084
4096 1024 4 .056 .094 .164 .248 .076 .112
4096 512 8 .014 .030 .026 .056 .060 .080

Zt ∼ (χ2
5 − 5)/

√
10

(5.2), (5.4) (5.2),(5.5) (5.6)
T N M 5% 10% 5% 10% 5% 10%
256 64 4 .094 .142 .100 .162 084 .118
256 32 8 .218 .319 .249 .335 .187 .258
512 128 4 .066 .100 .062 .098 .068 .090
512 64 8 .086 .144 .102 .140 .074 .118
1024 256 4 .042 .076 .080 .126 .080 .114
1024 128 8 .058 .082 .090 .124 .066 .106
2048 512 4 .048 .078 .116 .154 .086 .116
2048 256 8 .020 .026 .040 .068 .046 .074
4096 1024 4 .052 .098 .196 .264 .085 .127
4096 512 8 .026 .044 .046 .062 .058 .090

Table 3

Simulated level of the test (4.19) for different processes and choices of T,N and M.

(4.19) Baek/Pipiras Berkes et. al Yau/Davis
T N M 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.288 0.354 0.248 0.330 0.037 0.080 0.250 0.306
256 32 8 0.290 0.436
512 128 4 0.530 0.590 0.356 0.468 0.006 0.041 0.182 0.226
512 64 8 0.348 0.458
1024 256 4 0.746 0.770 0.562 0.656 0.026 0.102 0.204 0.267
1024 128 8 0.412 0.512
2048 512 4 0.882 0.900 0.724 0.816 0.152 0.222 0.376 0.452
2048 256 8 0.625 0.683
4096 1024 4 0.974 0.978 0.892 0.928 0.318 0.460 0.740 0.782
4096 512 8 0.892 0.910

Table 4

Rejection frequencies of the test (4.19) and three competing procedures under the
alternative (5.7) for different choices of T,N and M. The innovations are standard

normal distributed.

For the functions d1, d2, and d3 the quantity F =
∫ 1

0
d(u) du is given by 1/8

while F = 3/10 for d4 and d5. The corresponding results are shown in Table 8.
We mainly discuss the case M = 4 (because it yields to the best approximation
of the nominal level) and mention that the interpretation of the results for other
choice of M is very similar. For a fixed F = 1/8 we do not observe substantial
differences between the functions d1 and d2 in the caseM = 4, while the function
d3 yields to a larger power. This observation can be explained by the fact that
the integral in (2.14) is approximated by a Riemann sum 1

M

∑M
j=1 d(uj) at points

uj =
j−1
M + 1

2M . Consider exemplarily the case M = 4 (which is recommended,
because it yields to a good approximation of the nominal level). While for the
function d1(u) = 1/8 all estimates roughly yield the same contribution of size
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(4.19) Baek/Pipiras Berkes et. al Yau/Davis
T N M 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.340 0.436 0.244 0.343 0.034 0.082 0.262 0.335
256 32 8 0.373 0.492
512 128 4 0.550 0.600 0.434 0.510 0.005 0.021 0.228 0.276
512 64 8 0.362 0.476
1024 256 4 0.714 0.756 0.527 0.641 0.047 0.130 0.197 0.240
1024 128 8 0.446 0.522
2048 512 4 0.910 0.926 0.721 0.805 0.143 0.244 0.263 0.334
2048 256 8 0.634 0.708
4096 1024 4 0.974 0.976 0.889 0.938 0.311 0.408 0.713 0.741
4096 512 8 0.923 0.938

Table 5

Rejection frequencies of the test (4.19) and three competing procedures under the
alternative (5.7) for different choices of T,N and M. The innovations are

(χ2
5 − 5)/

√
10 distributed.

(4.19) Baek/Pipiras Berkes et. al Yau/Davis
T N M 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.260 0.330 0.230 0.322 0.039 0.088 0.296 0.366
256 32 8 0.276 0.394
512 128 4 0.528 0.590 0.342 0.456 0.010 0.036 0.268 0.322
512 64 8 0.314 0.414
1024 256 4 0.774 0.796 0.546 0.656 0.024 0.086 0.228 0.292
1024 128 8 0.414 0.492
2048 512 4 0.900 0.913 0.758 0.820 0.168 0.268 0.320 0.404
2048 256 8 0.608 0.665
4096 1024 4 0.994 0.996 0.900 0.940 0.332 0.444 0.649 0.697
4096 512 8 0.982 0.990

Table 6

Rejection frequencies of the test (4.19) and three competing procedures under the
alternative (5.8) for different choices of T,N and M. The innovations are standard

normal distributed.

(4.19) Baek/Pipiras Berkes et. al Yau/Davis
T N M 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.094 0.136 0.087 0.149 0.045 0.093 0.178 0.210
256 32 8 0.138 0.216
512 128 4 0.146 0.196 0.119 0.177 0.022 0.055 0.140 0.176
512 64 8 0.138 0.214
1024 256 4 0.328 0.406 0.127 0.197 0.018 0.079 0.152 0.206
1024 128 8 0.152 0.218
2048 512 4 0.646 0.710 0.174 0.266 0.052 0.116 0.374 0.470
2048 256 8 0.312 0.388
4096 1024 4 0.854 0.888 0.232 0.466 0.064 0.162 0.736 0.792
4096 512 8 0.716 0.742

Table 7

Rejection frequencies of the test (4.19) and three competing procedures under the
alternative (5.9) for different choices of T,N and M. The innovations are standard

normal distributed.

1/8, we observe that for the function d3 two points (namely u2 and u3) yield
a contribution of size 3/8 and the other points u1, u4 yield the value d3(uj) =
0 (j = 1, 4). Nevertheless the total contribution in this case is 3/16, while it
is only 1/8 for d1. This explains the improvement in power observed for the
function d3. We expect that these advantages vanish asymptotically, because the

approximation of F =
∫ 1

0
d(u) du by its Riemann sum becomes more accurate

with increasing M . Finally, a comparison of columns 1-3 (corresponding to the
case F = 1/8 with columns 4-5 in Table 8 (corresponding to the case d = 3/10)
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d1 d2 d3 d4 d5

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
256 64 4 0.118 0.174 0.118 0.168 0.146 0.222 0.374 0.450 0.356 0.432
256 32 8 0.184 0.270 0.167 0.241 0.183 0.261 0.359 0.452 0.335 0.464
512 128 4 0.198 0.272 0.216 0.296 0.350 0.412 0.592 0.638 0.622 0.662
512 64 8 0.092 0.146 0.134 0.188 0.104 0.188 0.372 0.490 0.400 0.518
1024 256 4 0.430 0.504 0.402 0.504 0.648 0.716 0.792 0.808 0.776 0.808
1024 128 8 0.160 0.226 0.136 0.200 0.230 0.290 0.506 0.608 0.500 0.586
2048 512 4 0.746 0.790 0.804 0.844 0.868 0.880 0.876 0.892 0.912 0.932
2048 256 8 0.434 0.492 0.454 0.510 0.534 0.578 0.670 0.754 0.678 0.744
4096 1024 4 0.932 0.940 0.930 0.940 0.943 0.953 0.982 0.985 0.992 0.992
4096 512 8 0.914 0.922 0.910 0.918 0.910 0.925 0.967 0.978 0.895 0.923

Table 8

Rejection frequencies of the test (4.19) under the alternative (5.8) for different
choices of the long-memory function d defined in (5.10)-(5.12). The innovations are

standard normal distributed.

model (5.8) with d1 model (5.8) with d4

tvARMA(1,1) tvFARIMA(1,d,1) tvARMA(1,1) tvFARIMA(1,d,1)
h-step prediction med dev med dev med dev med dev

5 19.1 52.4 4.8 3.6 12.3 42.3 4.5 3.3
10 25.2 56.5 10.7 5.0 18.1 44.0 10.1 4.7
25 43.2 54.6 25.4 7.8 36.5 40.1 26.3 10.8

Table 9

Prediction error by a fit of tvARMA(1,1) and tvFARIMA(1,d,1) models (median
and median absolute deviation obtained by 1000 simulation runs).

shows that the monotonicity of the power as a function of the integral F =∫ 1

0
d(u) du can also be observed in samples of realistic size.

Remark 5.1. It is well known that fitting tvFAR or tvFARIMA to tvAR or
tvARMA models yields to confounded estimates of the AR/MA coefficients and
the long-memory parameter. As a consequence the approximation of the nominal
level becomes less accurate if the AR polynomial |1+

∑k
j=1 aj(u)e

−iλj |2 has roots
close to the unit disc. For example, motivated by a comment of a reviewer, we
have conducted a further simulation study investigating a tvAR(1) model. These
results are not depicted for the sake of brevity but they clearly show that the
approximation of the nominal level of the new test is not accurate if the AR
coefficients vary in the interval (0.85, 1). In this case the level is overestimated,
and the test (4.19) decides too often for a long-memory process.

5.2. Simulation of prediction error

In this subsection we investigate the question what one loses by fitting a short-
range dependent non-stationary model to data that is truly non-stationary and
long-range dependent. For this purpose we simulate from the tvFARIMA(0, d, 1)-
process in (5.8) with long-memory functions d1 and d4 in (5.10) and (5.12),
respectively. We separately fit a tvARMA(1,1) model and a tvFARIMA(1,d,1)
model to the data and use the state space framework in Palma et al. (2013) in
order to predict future values and then compare the prediction errors of these
two fitted models. To be more precise we consider the sample size T = 1024
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with block length N = 256 (resulting in M = 4 blocks) and use the local Whit-
tle estimator from Section 4 to estimate on each block the locally varying AR
and MA coefficients for the tvARMA(1,1) model and the AR, MA and long-
memory parameters for the tvFARIMA(1, d, 1) model. With these time-varying
coefficients we use the Kalman filter equations in Palma et al. (2013) and calcu-
late 5, 10 and 25-step predictors with each of these two models. The prediction
error is calculated by sum of squared residuals

k∑
�=1

(
Xt,+�,T − X̂t+�,T

)2
, � = 5, 10, 25.

In Table 9 we display the median and median absolute deviation of the prediction
errors obtained in 1000 simulation runs. We observe that the predictions, which
take the long memory property into account are substantially more accurate.

5.3. Data examples

Testing: As an illustration we apply the new test to two different datasets,
where in both examples the mean function has been estimated as described in
Section 4. As pointed out in the previous section the quality of predictions can
be improved, if long range dependence is present in non stationary data and
considered in the predictions. For this reason the test proposed in this paper
can be useful to obtain more accurate forcasts.

The first data set contains annual pinus longaeva tree ring width measure-
ments at Mammoth Creek, Utah, from 0 A.D. to 1989 A.D. while the second
data set contains 2048 squared log-returns of the IBM stock between July 15th
2005 and August 30th 2013 which was already discussed in the introduction.
Both time series are depicted in Figure 5, and in the case of the tree ring data

our test statistic
√
T F̂T /

√
ŴT equals 17.8 for M = 4 and yields a p-value ≈ 0.

This implies that the null hypothesis of a non-stationary short-memory model
has to be rejected for this dataset, which coincides with the results of the tests
in Baek and Pipiras (2012) and Yau and Davis (2012). Their test statistics have
the values 3.49 and 9.37 and p-values of 0.00024 and 0 corresponding to the local
Whittle and likelihood ratio approach, respectively. The CUSUM procedure of
Berkes et al. (2006) yields a value of 0.906 for the test statistic and does not
reject the null hypothesis at even 10% nominal level. This result is possibly due
to the low power of this test as remarked in Section 5.1.

In the situation of the squared log-returns of the IBM stock, the assumption
of Gaussianity is too restrictive and we therefore apply the more general test

described in Remark 4.8. The values of the test statistic
√
T F̂T /

√
ŴT,general

are 5.67 and 9.48 for M = 4 and M = 8, respectively, yielding that the p-value
is smaller than 2.87 · 10−7 for both choices of the segmentation. This means
that the assumption of no long-range dependence is clearly rejected. If we apply
the likelihood ratio test of Yau and Davis (2012) to this dataset, we obtain
a value for the statistic of 15.77 which is then compared with the quantiles
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Fig 5. Left panel: plot of the 1990 annual pinus longaeva tree ring width measurements at
Mammoth Creek, Utah from 0 A.D. to 1989 A.D.; Right panel: plot of the squared log-returns
of the IBM stock between July 15th 2005 and August 30th 2013.

of the standard normal distribution. This yields also to a rejection of the null
hypothesis. On the other hand, the CUSUM procedure of Berkes et al. (2006)
only rejects the null hypothesis of no long-range dependence at a 10% but not
at a 5% level. This observation is, however, not surprising given the low power
of this test in the finite sample situations presented in the previous section.
The test of Baek and Pipiras (2012) rejects the null hypothesis with a p-value
8.65 · 10−12, yielding the same result as our approach and the one of Yau and
Davis (2012).

Prediction: The result of the test (4.19) has important consequences for
the subsequent data analysis as it advices the statistician to use short memory
or long memory (non-stationary) models. In the final part of this section we
demonstrate how the information of the test can be employed to obtain superior
forecasting results in the two datasets analyzed in the previous paragraph. For
this purpose, we divide both datasets into two parts. One part contains the first
3/4×T observations of the corresponding dataset while the second part contains
the remaining T/4 data points. The new testing procedure (4.19) proposed in
this paper is applied to the first part of the data, and - depending on the
result of the test - forecasts are performed using either a tvFARIMA(1,d,1) or a
ARMA(1,1) with the window of size N = 256 in the localized Whittle estimator
[see also Section 5.2]. In order to compare the forecasting performance of the
short- with the long-memory model, we define the prediction error on the second
part of each dataset by

PE(h) =

T∑
t=3/4T+1

h∑
�=1

(
Xt+�,T − X̂t+�,T

)2
, h = 5, 10, 25,

and denote with PEshort(h) and PElong(h) the prediction error for the short-
and long-memory approach respectively. The expression

R(h) =
PElong(h)

PEshort(h)
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R(h)
dataset h = 5 h = 10 h = 25

Mammoth Creek Data 0.21 0.24 0.26
IBM Data 0.09 0.15 0.33

Table 10

Comparison of prediction errors for the Mammoth Creek and IBM dataset with
different values of h. A value smaller than one indicates a better performance of the

long range dependent model.

then serves as a measure for the comparison. It is smaller than one if the long-
range dependence approach yields superior predictions, while it is larger than
one in the other case. As in the previous paragraph (where we applied the test to
the total sample), an application of the test (4.19) to the first 3/4× T observa-
tions of the Mammoth Creek and the IBM dataset yields p-values much smaller
than one percent in both cases. Consequently one would perform data analysis
on the basis of a non-stationary long range dependent model. The advantages
of this approach are clearly visible in Table 10 where we depict the ratio of the
prediction error from a short and long range dependent model. We observe that
the long-range dependence approach, in fact, yields substantially smaller pre-
diction errors. In all cases the prediction error from the long-range dependent
model is less than one third of the corresponding error from the short-memory
model (for both datasets and all considered values of h). This demonstrates that
the difference in forecasting performance is huge and highlights the importance
of powerful tests to discriminate between long- and short-range dependence.

6. Conclusions

In this paper we have developed a test for weak against strong (long-range)
dependence for non-stationarity time series. Our approach is based on an average
of unconstrained Whittle-likelihood estimates of the (nonnegative) local long-
range dependence parameter from a sequence of approximating time varying
FARIMA models [see equation (4.12) for its definition]. It is demonstrated that a
standardized version of this average is asymptotically normal distributed, which
provides a very simple asymptotic level α and consistent test for discriminating
between short and long range dependence of a non-stationary time series.

As an alternative to the statistic F̂T in (4.12) one could form an average of

constrained Whittle-likelihood estimates, say d̂N,c(ui). Constrained parameter
estimation has found considerable attention in the literature [see for example
Chernoff (1954) or Andrews (1999) among many others], but - to our best
knowledge - it has not been considered so far in locally stationary processes.
The “classical” results indicate that for a fixed value u the asymptotic distribu-
tion of d̂N,c(u) is given by a function of a multivariate normal distribution (in
the simplest case a half normal type distribution). However, we expect that -

due to averaging - the (standardized) statistic F̂T,c = 1
M

∑M
i=1 d̂N,c(ui) is still

asymptotically normal distributed. An interesting direction for future research
is the development of an asymptotic theory for constrained estimators in locally
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stationary (long memory) processes and to use it for a rigorous investigation of
the asymptotic properties of the statistic F̂T,c. Moreover, the results of Section
3 for the nonparametric regression model with independent errors indicate some
advantages of unconstrained over unconstrained averages, and it will be of in-
terest to investigate if the superiority of F̂T over F̂T,c can also be observed for
the testing problem considered in this paper.

It is also notable that this paper has its focus on discriminating between short
and standard long-range dependence, which corresponds to a pole of the local
spectral density at frequency 0. However, it was pointed out by several authors
[see for example Arteche and Robinson (2000); Hidalgo and Soulier (2004);
Reisen et al. (2006) among others] that - due to strong cyclic components -
strong dependency can also occur as a pole in the spectral density at any other
frequency (reflecting strong seasonal long range dependence). In this case the
analogue of the model (2.6) is given by

f(u, λ) = |1− ei(λ−λ0)|−d0(u)|1− ei(λ+λ0)|−d0(u)g(u, λ), (6.1)

where λ0 denotes the unknown pole [see Hidalgo and Soulier (2004)], and a
further interesting direction of future research is the construction of tests for
the hypothesis (2.12) in the more general model (6.1).

We finally note that several authors have analyzed financial data under lin-
earity assumptions as made in equation (2.1) [see Mikosch and Starica (2004),
Perron and Qu (2010) or Chen et al. (2010) among others]. On the other hand
it is also argued in the literature that this assumption might not be reasonable
in some cases. Long range dependent processes have mainly been investigated
in models with linear representations. A nonlinear (nonparametric) extension
does not seem to be obvious as indicated by the results of Grublyte and Sur-
gailis (2014), who proposed a linear representation with random coefficients.
Therefore, an interesting problem for future research is to investigate if the
methodology suggested in this paper is also valid for processes with nonlinear
representations.

7. Appendix: Proofs

7.1. Preliminary results

We begin stating two results, which will be the main tools in the asymptotic
analysis of the proposed estimators and the test statistic. For this purpose, we
let φT : [0, 1]× [−π, π] → R denote a function which (might) depend on the the
sample size T and define

GT (φT ) =
1

M

M∑
j=1

∫ π

−π

f(uj , λ)φT (uj , λ) dλ,

ĜT (φT ) =
1

M

M∑
j=1

∫ π

−π

IμN (uj , λ)φT (uj , λ) dλ,
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where IμN is the analogue of the local periodogram (4.4) where the estimator μ̂
has been replaced by the “true” mean function μ.

Theorem 7.1. a) Let Assumption 2.1 be fulfilled and assume that φT (u, λ) :
[0, 1] × [−π, π] → R is symmetric in λ, twice continuously differentiable
with uniformly bounded partial derivatives such that for all u ∈ [0, 1],
λ ∈ [−π, π], T ∈ N

φT (u, λ) ≤ Cg(k)|λ|2d0(u)−ε, (7.1)

∂

∂λ
φT (u, λ) ≤ Cg(k)|λ|2d0(u)−1−ε, (7.2)

∂2

∂λ2
φT (u, λ) ≤ Cg(k)|λ|2d0(u)−2−ε, (7.3)

where C > 0, 0 < ε < 1/2−D are constants and g : N → (0,∞) is a given
function. Then we have

E[ĜT (φT )] = GT (φT ) +O
( g(k)

N1−ε

)
+O

(g(k)N2

T 2

)
, (7.4)

Var[ĜT (φT )] = VT +O
( 1

T

g2(k)

N1−2D−2ε

)
+O

(g2(k)N2

T 3

)
(7.5)

where

VT =
1

T

4π

M

M∑
j=1

∫ π

−π

f2(uj , λ)φ
2
T (uj , λ) dλ.

b) Suppose the assumptions of part a) hold with D = 0, ε < 1/6 and addi-
tionally lim infT→∞ T · VT ≥ c,

N → ∞, g(k)
√
T/N1−ε → 0, g(k) log(T )/T 1/6−ε → 0,

and g(k)N2/T
3
2 → 0.

Then we have

√
T
(
ĜT (φT )−GT (φT )

)
/
√
VT

D→ N (0, 1).

Proof: In order to prove part a) Theorem 7.1 we define t̃j := tj −N/2 + 1,

ψ̃l(uj,p) := ψl(
t̃j+p
T ), Za,b := Za−N/2+1+b and obtain

E[ĜT (φT )] =
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

ψt̃j+p,T,lψt̃j+q,T,m

×
∫ π

−π

φT (uj , λ)e
−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

= EN,T +AN,T +BN,T
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where

EN,T :=
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

ψl(uj)ψm(uj)

×
∫ π

−π

φT (uj , λ)e
−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m),

AN,T :=
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

∫ π

−π

φT (uj , λ)e
−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

{
ψl(uj)

(
ψ̃m(uj,q)− ψm(uj)

)
+

(
ψ̃l(uj,p)− ψl(uj)

)
ψ̃m(uj,q)

}
,

BN,T :=
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

∫ π

−π

φT (uj , λ)e
−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

{(
ψt̃j+p,T,l − ψ̃l(uj,p)

)
ψt̃j+q,T,m + ψ̃l(uj,p)

(
ψt̃j+q,T,m − ψ̃m(uj,q)

)}
.

Note that BN,T and AN,T compromise the error arising in the approximation of

ψt̃j+p,T,l by ψl(
t̃j+p
T ) and ψ̃m(uj,q) by ψm(uj), respectively. In order to establish

the claim (7.4), we prove the following statements:

EN,T =
1

M

M∑
j=1

∫ π

−π

f(uj , λ)φT (uj , λ) dλ+O
( g(k)

N1−ε

)
(7.6)

AN,T = O
(g(k) log(N)

N1−εM

)
+O

(g(k)N2

T 2

)
(7.7)

BN,T = O
(g(k) log(T )

T

)
. (7.8)

Proof of (7.6): Due to the independence of the random variables Zt, we only need
to consider terms fulfilling p = q+ l−m (this means 0 ≤ p = q+ l−m ≤ N − 1
because of p ∈ {0, 1, 2 . . . , N − 1}) which in turn implies |l − m| ≤ N − 1.
Therefore

EN,T =
1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

N−1∑
q=0

0≤q+l−m≤N−1

ψl(uj)ψm(uj)

×
∫ π

−π

φT (uj , λ)e
−i(l−m)λ dλ

=
1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

ψl(uj)ψm(uj)

×
∫ π

−π

φT (uj , λ)e
−i(l−m)λ dλ(N − |l −m|)

=
1

M

M∑
j=1

∫ π

−π

φT (uj , λ)f(uj , λ) dλ+ E1
N,T + E2

N,T ,
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where

E1
N,T = − 1

2π

1

M

M∑
j=1

∞∑
l,m=0

N≤|l−m|

ψl(uj)ψm(uj)

∫ π

−π

φT (uj , λ)e
−i(l−m)λ dλ,

E2
N,T =

−1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

ψl(uj)ψm(uj)

∫ π

−π

φT (uj , λ)e
−i(l−m)λ dλ|l −m|.

Using (2.4), (7.1) and Lemma 8.2 in the supplement, we obtain

|E1
N,T | ≤ C

g(k)

M

M∑
j=1

∞∑
l,m=1

N≤|l−m|

1

l1−d0(uj)

1

m1−d0(uj)

1

|l −m|1+2d0(uj)−ε
(1 + o(1)),

where we used the fact that terms corresponding to l = 0 or m = 0 are of smaller
or the same order (we will use this property frequently from now on without
further mentioning it). We set h := l −m and obtain from Lemma 8.1a) in the
online supplement that

g(k)

M

M∑
j=1

∑
h∈Z

N≤|h|

∞∑
m=1

h+m≥1

1

(h+m)1−d0(uj)

1

m1−d0(uj)

1

|h|1+2d0(uj)−ε

≤ Cg(k)
∑
h∈Z

N≤|h|

1

|h|2−ε
= O

( g(k)

N1−ε

)
.

By proceeding analogously we obtain that E2
N,T = O(g(k)N−1+ε) which proves

the assertion in (7.6).

Proof of (7.7): Without loss of generality we only consider the first summand

AN,T (1) =
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

ψl(uj)
(
ψ̃m(uj,q)− ψm(uj)

)
×

∫ π

−π

φT (uj , λ)e
−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

inAN,T (the second term is treated exactly in the same way). A Taylor expansion
and similar arguments as in the proof of (7.6) yield

AN,T (1) = A1
N,T +A2

N,T

where

A1
N,T =

1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

N−1∑
q=0

0≤q+l−m≤N−1

ψl(uj)ψ
′

m(uj)
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×
(−N/2 + 1 + q

T

)∫ π

−π

φT (uj , λ)e
−i(l−m)λ dλ,

A2
N,T =

1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

N−1∑
q=0

0≤q+l−m≤N−1

ψl(uj)ψ
′′

m(ηm,j,q)

×
(−N/2 + 1 + q

T

)2
∫ π

−π

φT (uj , λ)e
−i(l−m)λ dλ

and ηm,j,q ∈ (uj −N/(2T ), uj +N/(2T )). Using (2.4), (2.8), (7.1), Lemma 8.2
it follows

|A1
N,T | ≤ C

g(k)

N

1

M

M∑
j=1

∞∑
l,m=1

1≤|l−m|≤N−1

1

l1−d0(uj)

log(m)

m1−d0(uj)

1

|l −m|1+2d0(uj)−ε

×
∣∣∣ N−1∑

q=0
0≤q+l−m≤N−1

(−N/2 + 1 + q

T

)∣∣∣
≤ C

g(k)

T

1

M

M∑
j=1

∞∑
l,m=1

1≤|l−m|≤N−1

1

l1−d0(uj)

log(m)

m1−d0(uj)

1

|l −m|2d0(uj)−ε

= C
g(k)

T

1

M

M∑
j=1

∑
s∈Z

1≤|s|≤N−1

∞∑
l=1

1≤l−s

1

l1−d0(uj)

log(l − s)

(l − s)1−d0(uj)

1

|s|2d0(uj)−ε

≤ C
g(k) log(N)

T

1

M

M∑
j=1

∑
s∈Z

1≤|s|≤N−1

1

|s|1−ε
= O

(g(k) log(N)

N1−εM

)

where we used Lemma 8.1(c) in the online supplement for the last step. Finally,
(2.4), (2.8), (7.1), Lemma 8.2 in the online supplement and the same arguments
as above, show that the term A2

N,T is of order O(g(k)N2T−2).

Proof of (7.8): By employing (2.3) and the same arguments as above it can

be shown that BN,T is of order O( g(k) log(T )
T ).

In the next step we prove the asymptotic representation for the variance in
(7.5). We obtain

Var(ĜT (φT )) =
1

(2πN)2
1

M2

M∑
j1,j2=1

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

× cum(Ztj1 ,p−lZtj1 ,q−m, Ztj2 ,r−nZtj2 ,s−o)

×
∫ π

−π

φT (uj1 , λ1)e
−i(p−q)λ1 dλ1

∫ π

−π

φT (uj2 , λ2)e
−i(r−s)λ2 dλ2
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+O
(g2(k) log(N)

TN1−εM

)
+O

(g2(k)N2

T 3

)
,

where we used assumption (2.3) and similar arguments as given in the proof of
(7.4). Because of the Gaussianity of the innovations we obtain

cum(Ztj1 ,p−lZtj1 ,q−m, Ztj2 ,r−nZtj2 ,s−o) =

E(Ztj1 ,p−lZtj2 ,r−n)E(Ztj1 ,q−mZtj2 ,s−o)

+ E(Ztj1 ,p−lZtj2 ,s−o)E(Ztj1 ,q−mZtj2 ,r−n).

This implies that the calculation of the (dominating part of the) variance splits
into two sums, say V 1

N,T and V 2
N,T . In the following discussion we will show that

both terms converge to the same limit, that is

V i
N,T =

1

T

2π

M

M∑
j=1

∫ π

−π

f2(uj , λ)φ
2
T (uj , λ) dλ+O

( 1

T

g2(k)

N1−2D−2ε

)
; i = 1, 2

For the sake of brevity we restrict ourselves to the case i = 1. Because of
the independence of the innovations Zt, we obtain that the conditions p =
r + l − n + (j2 − j1)N and s = q + o − m + (j1 − j2)N must hold, which,
because of p, s ∈ {0, ..., N −1}, directly implies |l−n+(j2− j1)N | ≤ N −1 and
|o−m+ (j1 − j2)N | ≤ N − 1. Thus, the term V 1

N,T can be written as

1

(2πN)2
1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=0

M∑
j2=1

0≤r+l−n+(j2−j1)N≤N−1
0≤q+o−m+(j1−j2)N≤N−1

|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1 dλ1

×
∫ π

−π

φT (uj2 , λ2)e
−i(r−q+m−o+(j2−j1)N)λ2 dλ2.

Since q ∈ {0, 1, 2 . . . , N − 1}, we get from the condition 0 ≤ q + o − m +
(j1 − j2)N ≤ N − 1 that, if q, o,m, j1 are fixed, there are at most two possible
values for j2 such that the corresponding term does not vanish. It follows from
Lemma 8.3 (i)–(iii) in the online supplement that there appears an error of order

O( 1
T

g2(k)
N1−2D−2ε ) if we drop the condition 0 ≤ r+ l− n+ (j2 − j1)N ≤ N − 1 and

assume that the variable r runs from −(N − 1) to −1. Therefore, up to an error

of order O( 1
T

g2(k)
N1−2D−2ε ), the term V 1

N,T is equal to

D1,T +D2,T ,

where

D1,T =
1

(2πN)2
1

M2

M∑
j1=1

N−1∑
q=0

N−1∑
r=−(N−1)

∞∑
l,m,n,o=0
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M∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π

φT (uj1 , λ1)φT (uj2 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1 dλ1

×
∫ π

−π

e−i(r−q+m−o+(j2−j1)N)λ2 dλ2

D2,T =
1

(2πN)2
1

M2

M∑
j1=1

N−1∑
q=0

N−1∑
r=−(N−1)

∞∑
l,m,n,o=0

×
M∑

j2=1
0≤q+o−m+(j1−j2)N≤N−1

|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1

×
∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1.

We show

D1,T =
2π

N

1

M2

M∑
j1=1

∫ π

−π

f2(uj1 , λ1)φ
2
T (uj1 , λ1) dλ1 +O

( 1

T

g2(k)

N1−2D−2ε

)
(7.9)

D2,T = O
( 1

T

g2(k)

N1−2D−2ε

)
,

which then concludes the proof of (7.5). For this purpose we begin with an
investigation of the term D1,T for which the terms in the sum vanish if r − q +
m− o+ (j2 − j1)N �= 0. Moreover, the following facts are correct:

I. The variable r runs from 0 to N − 1 since r− q +m− o+ (j2 − j1)N = 0
and 0 ≤ q + o−m+ (j1 − j2)N ≤ N − 1.

II. We can drop the condition |l−n+(j2−j1)N | ≤ N−1 by making an error
of order O(g2(k)T−1N−1+2D+2ε) [this follows from Lemma 8.3(iv) in the
online supplement].

III. There appears an error of order O(g2(k)T−1N−1+2D+2ε) if we omit the
sum with j1 �= j2 [we prove this in Lemma 8.3(v) in the online supplement].

IV. We can afterwards omit the condition 0 ≤ q + o −m ≤ N − 1 since it is
0 ≤ r ≤ N −1 and r−q+m−o = 0 [note that, because of III., we assume
j1 = j2 from now on].

V. We can then drop the condition |o−m| ≤ N − 1 since r − q +m− o = 0
and |r − q| ≤ N − 1.
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Thus, using the representation of f(uj1 , λ) in (2.5), the termD1,T can be written
as (up to an error of order O(g2(k)T−1N−1+2D+2ε))

1

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∫ π

−π

f(uj1 , λ1)φ
2
T (uj1 , λ1)e

−i(r−q)λ1 dλ1

×
∫ π

−π

f(uj1 , λ2)e
−i(r−q)λ2 dλ2

=
1

N2

1

M2

M∑
j1=1

N−1∑
s=−(N−1)

∫ π

−π

f(uj1 , λ1)φ
2
T (uj1 , λ1)e

−isλ1 dλ1

×
∫ π

−π

f(uj1 , λ2)e
−isλ2 dλ2(N − |s|)

= D
(1)
1,T +D

(2)
1,T +D

(3)
1,T ,

where

D
(1)
1,T =

1

N

1

M2

M∑
j1=1

∞∑
s=−∞

∫ π

−π

f(uj1 , λ1)φ
2
T (uj1 , λ1)e

−isλ1 dλ1

×
∫ π

−π

f(uj1 , λ2)e
−isλ2 dλ2

D
(2)
1,T = − 1

N

1

M2

M∑
j1=1

∑
s∈Z

|s|≥N

∫ π

−π

f(uj1 , λ1)φ
2
T (uj1 , λ1)e

−isλ1 dλ1

×
∫ π

−π

f(uj1 , λ2)e
−isλ2 dλ2

D
(3)
1,T = − 1

N2

1

M2

M∑
j1=1

N−1∑
s=−(N−1)

|s|
∫ π

−π

f(uj1 , λ1)φ
2
T (uj1 , λ1)e

−isλ1 dλ1

×
∫ π

−π

f(uj1 , λ2)e
−isλ2 dλ2

With Parseval’s identity, we get

D
(1)
1,T =

2π

N

1

M2

M∑
j1=1

∫ π

−π

f2(uj1 , λ2)φ
2
T (uj1 , λ2) dλ2,

while Lemma 8.2 in the online supplement yields (up to a constant) the inequal-
ities

D
(2)
1,T ≤ g2(k)

N

1

M2

M∑
j1=1

∑
s∈Z

|s|≥N

1

|s|2−2ε
≤ g2(k)

N2−2ε

1

M
,
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D
(3)
1,T ≤ g2(k)

N2

1

M2

M∑
j1=1

N−1∑
s∈Z

1≤|s|≤N−1

1

|s|1−2ε
≤ g2(k)

N2−2εM
,

which proves (7.9). We now consider the term

D2,T = D
(1)
2,T +D

(2)
2,T ,

where

D
(1)
2,T =

1

(2πN)2
1

M2

M∑
j1=1

N−1∑
q=0

∞∑
r=−∞

∞∑
l,m,n,o=0

∞∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1

×
∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1

D
(2)
2,T = − 1

(2πN)2
1

M2

M∑
j1=1

N−1∑
q=0

∑
r∈Z

|r|≥N

∞∑
l,m,n,o=0

∞∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1

×
∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1.

Here D
(1)
2,T corresponds to the sum over all r and vanishes by Parseval’s identity.

D
(2)
2,T stands for the resulting error term which is of orderO(T−1g2(k)N−1+2D+2ε)

because of Lemma 8.3 (vi) in the online supplement.
Part b) follows with par a) if we show

cuml[
√
TĜT (φ)] = O

(
g(k)lT l(ε−1/2+2D)+(1−4D) log(T )l

)
(7.10)

for l ≥ 3 and D < 1/4. For a proof of this statement where we proceed (with
a slight modification) analogously to the proof of Theorem 6.1 c) in Preuß and
Vetter (2013). Note that these authors work with functions φT such that
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1

N

N/2∑
k=1

φT (u, λk)e
ihλk = O

( 1

|h modulo N/2|
)

(7.11)

while
∫ π

−π
φT (u, λ)e

ihλdλ = O(h−1) for the integrated case. The authors then
derive the exact same order as in (7.10) with the only difference that ε = 0
and g(k) ≡ 1. In our situation, assumption (7.1) and Lemma 8.2 in the online
supplement imply∫ π

−π

φT (u, λ)e
ihλ dλ = O

( g(k)

|h|1+2d0(u)−ε

)
= O

(
T ε g(k)

|h|
)

(7.12)

and we can therefore proceed completely analogously to the proof of Theorem
6.1 c) in Preuß and Vetter (2013) but using (7.12) instead of (7.11). The details
are omitted for the sake of brevity. �

For the formulation of the next result we define the set

GT (s, �) =
{
φ̃T : [−π, π] → R | φ̃T is symmetric, there exists

a polynomial P� of degree � and a constant

d ∈ [−γk, 1/2) such that

φ̃T (λ) = logs(|1− eiλ|)|1− eiλ|2d|P�(e
iλ)|2

}
and state the following result.

Theorem 7.2. Suppose Assumption 2.1 and 4.2 are fulfilled, N5/2/T 2 → 0 and
0 < ε < 1/4 − D/2 is the constant of Assumption 4.2. Let ΦT denote a class
of functions φT : [0, 1] × [−π, π] → R consisting of elements, which are twice
continuously differentiable with uniformly bounded partial derivates with respect
to u, λ, T and satisfy (7.1)–(7.3) with g(k) ≡ 1, where the constant C does not
depend on ΦT , T . Furthermore, we assume that for all u ∈ [0, 1] the condition
φT (u, ·) ∈ GT (s, qk) holds, where q, s ∈ N are fixed and k = k(T ) denotes a
sequence satisfying k4 log2(T )N−ε/2 → 0. Then

sup
u∈[0,1]

sup
φT∈ΦT

∣∣∣ ∫ π

−π

(IμN (u, λ)− f(�uT �/T, λ))φT (�uT �/T, λ)dλ
∣∣∣= oP (N

−1/2+ε/2).

Proof: We define Φ∗
T as the set of functions which we obtain by multiplying

all elements φT ∈ ΦT with 1{u=t/T}(u, λ), that is φ∗
T (u, λ) = φT (t/T, λ) for

some t = 1, ..., T and φT ∈ ΦT , and consider

D̂T,1(φ
∗
T ) :=

T∑
t1=1

∫ π

−π

IμN (t1/T, λ)φ
∗
T (t1/T, λ)dλ, φ∗

T ∈ Φ∗
T .

It follows from Theorem 2.1 in Newey (1991) that the assertion of Theorem 7.2
is a consequence of the statements:

(i) For every φ∗
T ∈ Φ∗

T we have

ĜT,1(φ
∗
T ) := N1/2−ε/2

(
D̂T,1(φ

∗
T )−

∫ π

−π

f(t/T, λ)φT (t/T, λ)dλ
)
= op(1) (7.13)



1644 H. Dette et al.

(ii) For every η > 0 we have

lim
T→∞

P
(

sup
φ∗
T,1,φ

∗
T,2∈Φ∗

T

|ĜT,1(φ
∗
T,1)− ĜT,1(φ

∗
T,2)| > η

)
= 0. (7.14)

In order to prove part (i) we use the same arguments as given in the proof of
(7.4) and (7.5) and obtain

E[D̂T,1(φ
∗
T ))] =

∫ π

−π

f(t/T, λ)φT (t/T, λ)dλ+O
( 1

N1−ε−2γK

)
+O

(N2

T 2

)
,

Var[N1/2D̂T,1(φ
∗
T )] =

∫ π

−π

f2(t/T, λ)φ2
T (t/T, λ)dλ+O

( 1

N1−2D−2ε−4γk

)
+O

(N2

T 2

)
,

which yields (7.13) observing the growth conditions on N and T . For the proof
of part (ii) we note that it follows by similar arguments as given in the proof of
Theorem 6.1 d) of Preuß and Vetter (2013) that there exists a positive constant
C such that the inequlality

E(|ĜT,1(φ
∗
T,1)− ĜT,1(φ

∗
T,2)|l) ≤ (2l)!ClΔl

T,ε(φ
∗
T,1, φ

∗
T,2)

holds for all even l ∈ N and all φ∗
T,1, φ

∗
T,2 ∈ Φ∗

T , where

ΔT,ε(φ
∗
T,1, φ

∗
T,2) = 1{t1=t2}N

−ε/2

√∫ π

−π

(φT,1,1(t1/T, λ)− φT,1,2(t1/T, λ))2dλ

+A1{t1 �=t2}N
−ε/2

for a constant A which is sufficiently large such that

sup
φT,1,i∈Φ∗

T

√∫ π

−π

(φT,1,1(t1/T, λ)− φT,1,2(t1/T, λ))2dλ ≤ A.

By an application of Markov’s inequality and a straightforward but cumbersome
calculation [see the proof of Lemma 2.3 in Dahlhaus (1988) for more details] this
yields

P (|ĜT,1(φ
∗
T,1)− ĜT,1(φ

∗
T,2)| > η) ≤ 96 exp(−

√
ηΔ−1

T,ε(φ
∗
T,1, φ

∗
T,2)C

−1)

for all φ∗
T,1, φ

∗
T,2 ∈ Φ∗

T . The statement (7.14) then follows with the extension
of the classical chaining argument as described in Dahlhaus (1988) if we show
that the corresponding covering integral of Φ∗

T with respect to the semi-metric
ΔT,ε is finite. More precisely, the covering number NT (u) of Φ

∗
T with respect to

ΔT,ε is equal to one for u ≥ AN−ε/2 and bounded by TC(qk)2u−qkN−qkε/2 for
some constant C for u < AN−ε/2 [see Chapter VII.2. of Pollard (1984) for a
definition of covering numbers]. This implies that the covering integral JT (δ) =∫ δ

0
[log(48NT (u)

2u−1]2du is up to a constant bounded by k4 log2(T )N−ε/2. The
assertion follows by the assumptions on k and N . �
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7.2. Proof of Theorem 4.3

Introducing the notation

Lμ
N,k(θk, u) :=

1

4π

∫ π

−π

(
log(fθk(λ)) +

IμN (u, λ)

fθk(λ)

)
dλ, u ∈ [0, 1]

we obtain with the same arguments as given in the proof of Theorem 3.6 in
Dahlhaus (1997)

max
t=1,...,T

∣∣Lμ̂
N,k(θk, t/T )− Lμ

N,k(θk, t/T )
∣∣ ≤ CN ε max

t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣2

+C max
t=1,...,T

max
q=0,...,N

{∣∣μ(t/T )− μ̂(t/T )
∣∣∣∣ ∫ π

−π

dX−μ
N (t/T, λ)f−1

θk
(λ)eiqλ dλ

∣∣}
for some constant C ∈ R and dX−μ

N is defined by
∣∣dX−μ

N (u, λ)
∣∣2 := IμN (u, λ). By

proceeding as in the proof of Theorem 7.2 one verifies

max
t=1,...,T

max
q=0,...,N

sup
θk∈ΘR,k

∣∣ ∫ π

−π

dX−μ
N (t/T, λ)f−1

θk
(λ)eiqλ dλ

∣∣ = O(N ε),

and (4.9) yields

max
t=1,...,T

sup
θk∈ΘR,k

∣∣Lμ̂
N,k(θk, t/T )− Lμ

N,k(θk, t/T )
∣∣

= max
t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣Op(N

ε)

= op(k
−5/2), (7.15)

and analogously we get

max
t=1,...,T

sup
θk∈ΘR,k

∥∥∇Lμ̂
N,k(θk, t/T )−∇Lμ

N,k(θk, t/T )
∥∥
2

(7.16)

= max
t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣Op(k

1/2N ε) = op(k
−5/2).

For each u ∈ [0, 1] let θ̂N,k(u) denote the Whittle-estimator defined in (4.2).
Then Theorem 7.2 and similar arguments as in the proof of Theorem 3.2 in
Dahlhaus (1997) yield

sup
u∈[0,1]

∥∥θ̂N,k(u)− θ0,k(u)
∥∥
2

= op(1). (7.17)

We will now derive a refinement of this statement. By an application of the

mean value theorem, there exist vectors ζ
(k)
u = (ζ

(k)
u,1 , ζ

(k)
u,2, . . . , ζ

(k)
u,k+1) ∈ R

k+1,

u ∈ {1/T, 2/T, . . . , 1}, satisfying ‖ζ(k)u − θ0,k(u)‖2 ≤ ‖θ̂N,k(u) − θ0,k(u)‖2 such
that

∇Lμ̂
N,k(θ̂N,k(u), u)−∇Lμ̂

N,k(θ0,k(u), u) = ∇2Lμ̂
N,k(ζ

(k)
u , u)

(
θ̂N,k(u)− θ0,k(u)

)
,
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and the first term on the left-hand side vanishes due to (7.17). This yields

ET −∇Lμ
N,k(θ0,k(u), u) = ∇2Lμ̂

N,k(ζ
(k)
u , u)

(
θ̂N,k(u)− θ0,k(u)

)
,

where ET denotes the difference between ∇Lμ
N,k(θ0,k(u), u) and ∇Lμ̂

N,k(θ0,k(u),

u), which is of order maxt=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣Op(k

1/2N ε) by (7.16). It fol-
lows from

∇Lμ
N,k(θk, u) =

1

4π

∫ π

−π

[
IμN (u, λ)− fθk(λ)

]
∇f−1

θk
(λ) dλ

and Theorem 7.2 that maxu∈{1/T,...1} ‖∇Lμ
N,k(θ0,k(u), u)‖2 = Op(

√
kN−1/2+ε/2)

so it remains to show that

P (∇2Lμ̂
N,k(ζ

(k)
u , u)−1

exists and that ‖∇2Lμ̂
N,k(ζ

(k)
u , u)−1‖sp ≤ Ck for all u ∈ {1/T, . . . , 1}) → 1 for

some positive constant C. This, however, follows with a Taylor expansion, (7.17),
Theorem 7.2 and Assumption 4.1 (iv) for the corresponding expression with
μ̂ replaced by μ. The more general case is then implied by the convergence-
assumptions on μ̂. �

7.3. Proof of Theorem 4.5 and Theorem 4.6

We will show in Section 7.3.1 that under the null hypothesis H0 the estimate

max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥
2

= Op(k
3/2N−1/2+ε/2) (7.18)

is valid, while Theorem 4.3 and (4.16) imply

k3/2 max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥
2

= op(1) (7.19)

under the alternative H1. As in the proof of Theorem 4.3 there exist vectors

ζ
(k)
j = (ζ

(k)
j,1 , ζ

(k)
j,2 , . . . , ζ

(k)
j,k+1) ∈ R

k+1, j = 1, . . . ,M , satisfying

‖ζ(k)j − θ0,k(uj)‖2 ≤ ‖θ̂N,k(uj)− θ0,k(uj)‖2

such that

−∇Lμ̂
N,k(θ0,k(uj), uj) = ∇2Lμ̂

N,k(ζ
(k)
j , uj)

(
θ̂N,k(uj)− θ0,k(uj)

)
holds because of Assumption 4.1 (ii) and (7.18) (under H0) or (7.19) (under
H1). By rearranging and summing over every block, it follows that

1

M

M∑
j=1

(
θ̂N,k(uj)− θ0,k(uj)

)
= R0,T −R1,T −R2,T −R3,T −R4,T (7.20)
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where

R0,T := − 1

M

M∑
j=1

Γ−1
k (θ0,k(uj))∇Lμ

N,k(θ0,k(uj), uj),

Γ−1
k is defined in (4.5) and the terms Ri,T (i = 1 . . . , 4) are given by

R1,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇Lμ̂

N,k(θ0,k(uj), uj)−∇Lμ
N,k(θ0,k(uj), uj)

)
,

R2,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇2Lμ̂

N,k(ζ
(k)
j , uj)

−∇2Lμ
N,k(ζ

(k)
j , uj)

)(
θ̂N,k(uj)− θ0,k(uj)

)
,

R3,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇2Lμ

N,k(ζ
(k)
j , uj)

−∇2Lμ
N,k(θ0,k(uj), uj)

)(
θ̂N,k(uj)− θ0,k(uj)

)
,

R4,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇2Lμ

N,k(θ0(uj), uj)

− Γk(θ0,k(uj))
)(
θ̂N,k(uj)− θ0,k(uj)

)
.

We obtain for the first summand in (7.20)

R0,T = − 1

M

M∑
j=1

1

4π

∫ π

−π

[
IμN (uj , λ)− fθ0,k(uj)(λ)

]
Γ−1
k (θ0,k(uj))∇f−1

θ0,k(uj)
(λ) dλ

and with the notation φT (uj , λ) = 1/(4π)[Γ−1
k (θ0,k(uj))∇f−1

θ0,k(uj)
(λ)]1, it is easy

to see that Assumption 4.1 (i)–(iv) imply the conditions of Theorem 7.1 b) with
g(k) = k2. Moreover, observing the definition of VT and WT in Theorem 7.1 and
4.5, (4.6) yields VT /WT → 1. Consequently, under the assumptions of Theorem
4.5 it follows (observing (4.9) and the growth conditions on N , T )

√
T

M

M∑
j=1

[
Γ−1
k (θ0,k(uj))∇Lμ

N (θ0,k(uj), uj)
]
1
/
√
WT

D→ N (0, 1).

Since d0(u) is the first element of the vector θ0,k(u), Theorem 4.5 is a conse-

quence of the fact 1
M

∑M
j=1 d0(uj) = F + O(M−2) [this can be proved by a

second order Taylor expansion] if we are able to show that

Ri,T = op(T
−1/2); i = 1, . . . , 4.

Analogously, Theorem 4.6 follows from (7.4) and (7.5) if the estimates

Ri,T = op(1) i = 1, . . . , 4.

can be established. It can be shown analogously to the proof of Theorem 3.6 in
Dahlhaus (1997), that, under assumptions (4.13) – (4.14), both terms R1,T and
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R2,T are of order Op(k
2N−εT−1/2 + k2N ε−1), while, under assumption (4.16),

the order is op(1) [see the proof of (7.23) and (7.15), respectively, for more
details]. Therefore it only remains to consider the quantities R3,T and R4,T . For
this purpose note that

∇2Lμ
N,k(θk(uj), uj) =

1

4π

∫ π

−π

[
IμN (uj , λ)− fθk(uj)(λ)

]
∇2f−1

θk(uj)
(λ) dλ

+ Γk(θk(uj)) (7.21)

∇3Lμ
N,k(θk(uj), uj) =

1

4π

∫ π

−π

[
IμN (uj , λ)− fθk(uj)(λ)

]
×

[ ∂3f−1
θk(uj)

(λ)

∂θj,t∂θj,s∂θj,r

]
r,s,t=1,...,k+1

dλ

− 1

4π

∫ π

−π

[
∂fθk(uj)(λ)

∂θj,t

∂2f−1
θk(uj)

(λ)

∂θj,s∂θj,r

]
r,s,t=1,...,k+1

dλ (7.22)

+
1

4π

∫ π

−π

[
∂

∂θj,t

(
∂fθk(uj)(λ)

∂θj,s

1

f2
θk(uj)

(λ)

∂fθk(uj)(λ)

∂θj,r

)]
r,s,t=1,...,k+1

dλ,

where we used the notation (θj,1, θj,2, . . . , θj,k+1) := (d(uj), a1(uj), . . . , ak(uj)).
For the term R3,T we obtain with the well-known inequality ‖Ax‖2 ≤ ‖A‖sp‖x‖2
‖R3,T ‖2 ≤ max

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

× 1

M

M∑
j=1

∥∥∇2Lμ
N,k(ζ

(k)
j , uj)−∇2Lμ

N,k(θ0,k(uj), uj)
∥∥
sp

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥
2
.

By the mean value theorem there exist vectors ζ̃
(k)
j ∈ R

k such that∥∥∇2Lμ
N,k(ζ

k
j , uj)−∇2Lμ

N,k(θ0(uj), uj)
∥∥
sp

≤ k max
r,s=1,...,k

∣∣[∇2Lμ
N,k(ζ

(k)
j , uj)−∇2Lμ

N,k(θ0,k(uj), uj)
]
r,s

∣∣
= k max

r,s=1,...,k

∣∣∇[
∇2Lμ

N,k(ζ̃
(k)
j , uj)

]
r,s

(
ζ
(k)
j − θ0,k(uj)

)∣∣
≤ k max

r,s=1,...,k

∥∥∇[
∇2Lμ

N,k(ζ̃
(k)
j , uj)

]
r,s

∥∥
2

∥∥ζ(k)j − θ0,k(uj)
∥∥
2

≤ k
∥∥θ̂N,k(uj)− θ0,k(uj)

∥∥
2

sup
θk∈ΘR,k

r,s=1,...,k

∥∥∇[
∇2Lμ

N,k(θk, uj)
]
r,s

∥∥
2
,

where ‖ζ̃(k)j − θ0,k(uj)‖2 ≤ ‖ζ(k)j − θ0,k(uj)‖2 for every j = 1, ...,M . Therefore,
we obtain

‖R3,T ‖2 ≤ k max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥2

2
sup

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

× sup
θk∈ΘR,k;j=1,...,M

r,s=1,...k

∥∥∇[
∇2Lμ

N (θk, uj)
]
r,s

∥∥
2
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≤ kC max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥2

2
sup

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp(

k · sup
θk∈ΘR,k;j=1,...,M

r,s,t=1,...,k

∣∣∣ 1

4π

∫ π

−π

[
IμN (uj , λ)− fθk(λ)

] ∂3f−1
θk

(λ)

∂θj,t∂θj,s∂θj,r
dλ

∣∣∣+ k
)
,

where, in the last inequality, we have used the fact that the second and third
term in (7.22) are bounded by a constant [this follows directly from Assumption
4.1]. Before we investigate the order of this expression, we derive a similar bound
for the term R4,T . Observing (7.22) we obtain

‖R4,T ‖2 ≤ max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥
2

sup
θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

× max
j=1,...,M

∥∥∇2Lμ
N,k(θ0,k(uj), uj)− Γk(θ0,k(uj))

∥∥
sp

= max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥
2

sup
θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

× max
j=1,...,M

∥∥ 1

4π

∫ π

−π

[
IμN (uj , λ)− fθ0,k(uj)(λ)

]
∇2f−1

θ0,k(uj)
(λ) dλ

∥∥
sp

≤ k max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥
2

sup
θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

× max
j=1,...,M

max
r,s=1,...,k

∣∣∣ 1

4π

∫ π

−π

[
IμN (uj , λ)− fθ0,k(uj)(λ)

]
×

∂2f−1
θ0,k(uj)

(λ)

∂θj,s∂θj,r
dλ

∣∣∣.
If we show

max
j=1,...,M

sup
θk∈ΘR,k

r,s,t=1,...,k

∣∣∣ ∫ π

−π

[
IμN (uj , λ)− fθk(λ)

] ∂3f−1
θk

(λ)

∂θj,t∂θj,s∂θj,r
dλ

∣∣∣ = Op(1),

max
j=1,...,M

max
r,s=1,...,k

∣∣∣ ∫ π

−π

[
IμN (uj , λ)− fθ0,k(uj)(λ)

]∂2f−1
θ0,k(uj)

(λ)

∂θj,s∂θj,r
dλ

∣∣∣
= Op(

1

N1/2−ε
),

it follows with Assumption 4.1 (iv) in combination with (7.18) (under H0) and
(7.19) (under H1) that the terms R3,T and R4,T are of order op(T

−1/2) (under
H0) and op(1) (under H1). These two claims, however are a direct consequence
of Theorem 7.2 and (4.9). �

7.3.1. Proof of (7.18)

With the same arguments as in the proof of Theorem 3.6 in Dahlhaus (1997)
we obtain

max
j=1,...,M

∣∣Lμ̂
N,k(θk, uj)− Lμ

N,k(θk, uj)
∣∣ ≤ Π1,T +Π2,T ,
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where

Π1,T = C max
t=1,...,T

max
q=1,...,N

sup
θk∈ΘR,k

∣∣∣ ∫ π

−π

dX−μ
N (t/T, λ)f−1

θk
(λ)

q−1∑
s=0

eisλ dλ
∣∣∣

×
(

max
t=1,...,T

∣∣∣{μ( t− 1

T

)
− μ̂

( t− 1

T

)}
−

{
μ
( t

T

)
− μ̂

( t

T

)}∣∣∣
+ max

t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣/N)

Π2,T = CN ε max
t=1,...,T

∣∣μ(t/T )− μ̂(t/T )
∣∣2

and C denotes a positive constant. By proceeding as in the proof of Theorem
7.2 one obtains

max
t=1,...,T

max
q=1,...,N

sup
θk∈ΘR,k

∣∣∣ ∫ π

−π

dX−μ
N (t/T, λ)f−1

θk
(λ)

q−1∑
s=0

eisλ dλ
∣∣∣ = o(N1/2+ε/2),

which implies (observing the assumptions (4.13) and (4.14))

max
j=1,...,M

sup
θk∈ΘR,k

∣∣Lμ̂
N,k(θk, uj)− Lμ

N,k(θk, uj)
∣∣ = Op(N

−εT−1/2 +N ε−1)

= oP (N
−1/2+ε/2k1/2) (7.23)

under H0. Analogously we obtain

max
j=1,...,M

sup
θk∈ΘR,k

∥∥∇Lμ̂
N,k(θk, uj)−∇Lμ

N,k(θk, uj)
∥∥
2

= Op(k
1/2N−εT−1/2 + k1/2N ε−1) = oP (N

−1/2+ε/2k1/2) (7.24)

under the null hypothesis. By using (7.23) and (7.24) instead of (7.15) and
(7.16), assertion (7.18) follows by the same arguments as given in the proof of
Theorem 4.3. �

7.4. Proof of Theorem 4.10

A second order Taylor expansion yields

E(μ̂L(t/T )) = μ(t/T ) +
μ′(t/T )

L

L−1∑
p=0

(−L/2 + 1 + p)/T +O(L2/T 2)

= μ(t/T ) +O(1/T + L2/T 2). (7.25)

For ti ∈ {1, ..., T} the cumulants of order l ≥ 2

cum(μ̂L(t1/T ), μ̂L(t2/T ), ..., μ̂L(tl/T )) =
1

Ll

L−1∑
p1,...,pl=0

∞∑
m1,...,ml=0
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ψt1,T,m1 · · ·ψtl,T,ml
cum(Zp1−m1 , ..., Zpl−ml

)

are bounded by

C

Ll

L−1∑
p1=0

∞∑
m1,...,ml=0

|mi−mi+1|≤L

1

(I(m1 · · ·ml))1−D
≤ ClL1−l(1−D),

where we used the independence of the innovations, (2.3) and (2.4) and the last
inequality follows by replacing the sums by its corresponding approximating
integrals and holds for some positive constant C (which is independent of l and
may vary in the following arguments). This yields that μ̂L(t/T ) estimates its
true counterpart at a pointwise rate of L1/2−D and we now continue by showing
stochastic equicontinuity. The expansion (7.25) and the bound ClL1−l(1−D) for
the l-th cumulant (l ≥ 2) of μ̂L yield cuml(L

1/2−D−α/2(μ̂L(t1/T )−μ̂L(t2/T ))) ≤
(2C)lL−lα/2 for all ti ∈ {1, ..., T} and every α > 0, from which we get

E(Ll(1/2−D−α)(μ̂L(t1/T )− μ̂L(t2/T ))
l) ≤ (2l)!ClL−lα/2

for all even l ∈ N and ti ∈ {1, . . . , T} [see the proof of Lemma 2.3 in Dahlhaus
(1988) for more details]. By considering the order of the bias (7.25) this yields

L1/2−D−α max
t=1,...,T

∣∣μ(t/T )− μ̂L(t/T )
∣∣ = op(1), for every α > 0,

as in the proof of Theorem 7.2. Consequently (4.13) [under the conditions of
part a)] and (4.16) [under the conditions of part b)] follow. So it remains to
show (4.14) in the case D = 0. For this purpose we define

Δ(t/T ) =
{
μ
( t− 1

T

)
− μ̂L

( t− 1

T

)}
−

{
μ
( t

T

)
− μ̂L

( t

T

)}
,

and from (7.25) we obtain E(Δ(t/T )) = O(T−1 +L2/T 2). A simple calculation
reveals cum(Δ(t1/T ),Δ(t2/T )) = O(L−1T−1) (where the estimate is indepen-
dent of ti) and with the Gaussianity of the innovations we get

cum(Δ(t1/T ), ...,Δ(tl/T )) = 0

for l ≥ 3. This yields, as above,

L1/2−αT 1/2 max
t=1,...,T

|Δ(t/T )| = op(1)

for every α > 0, and completes the proof of Theorem 4.10. �

8. Auxiliary results

Finally, we state some lemmas which were employed in the above proofs.

Lemma 8.1. Suppose it is μ, ν, a, b ∈ R. Then there exists a constant C ∈ R

such that the following holds:
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a) If μ, ν > 0 and b > a, then

N−1∑
p=0

p−a≥1
−p+b≥1

1

(p− a)1−μ

1

(b− p)1−ν
≤

b−1∑
p=1+a

1

(p− a)1−μ

1

(b− p)1−ν
(7.1)

≤ C

(b− a)1−μ−ν
.

b) If 0 < μ, ν and 0 < 1− μ− ν, then it follows for |a+ b| > 0

N−1∑
p=1

p+b≥1
p−a≥1

1

(p+ b)1−μ

1

(p− a)1−ν
≤

∞∑
p=1

p+b≥1
p−a≥1

1

(p+ b)1−μ

1

(p− a)1−ν
(7.2)

≤ C

|a+ b|1−μ−ν
.

c) If 0 < ν < 1− μ and y, z ≥ 1, then

∞∑
p=1+y

log(p)

p1−μ

1

(p− y)1−ν
≤ C log(y)

y1−μ−ν
,

∞∑
p=1

log(p+ z)

(p+ z)1−μ

1

p1−ν
≤ C log(z)

z1−μ−ν
.

Proof: The proof can be found in Sen et al. (2016). �
Lemma 8.2. For every T ∈ N, let ηT : [−π, π] �→ R be a symmetric and twice
continuously differentiable function such that ηT = O(|λ|α) for some α ∈ (−1, 1)
as |λ| → 0 (where the constant in the O(·) term is independent of T ). Then, for
|h| → ∞, we have ∫ π

−π

ηT (λ)e
ihλ dλ = O

( 1

|h|1+α

)
uniformly in T .

Proof: The assertion follows from Lemma 4 and Lemma 5 in Fox and Taqqu
(1986). �
Lemma 8.3. If Assumption 2.1 holds, then

(i)

1

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=0

M∑
j2=1

N≤|r+l−n+(j2−j1)N |
0≤q+o−m+(j1−j2)N≤N−1

|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)
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−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1 dλ1

×
∫ π

−π

φT (uj2 , λ2)e
−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(ii)

1

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=0

M∑
j2=1

−(N−1)≤r+l−n+(j2−j1)N≤−1
0≤q+o−m+(j1−j2)N≤N−1

|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1 dλ1

×
∫ π

−π

φT (uj2 , λ2)e
−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(iii)

1

N2

1

M2

M∑
j2=1

N−1∑
q=0

−1∑
r=−(N−1)

∞∑
l,m,n,o=0

M∑
j1=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1 dλ1

×
∫ π

−π

φT (uj2 , λ2)e
−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(iv)

1

N2

1

M2

M∑
j1=1

N−1∑
r,q=0

∞∑
l,m,n,o=0

M∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
N≤|l−n+(j2−j1)N |

|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π

φT (uj1 , λ1)φT (uj2 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1 dλ1

×
∫ π

−π

e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O
( 1

T

g2(k)

N1−2D−2ε

)
(v)

1

N2

1

M2

M∑
j1=1

N−1∑
r,q=0

∞∑
l,m,n,o=0

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1

|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)
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−π

φT (uj1 , λ1)φT (uj2 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1 dλ1

×
∫ π

−π

e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O
( 1

T

g2(k)

N1−2D−2ε

)
(vi)

1

N2

1

M2

M∑
j1=1

N−1∑
q=0

∑
r∈Z

|r|≥N

∞∑
l,m,n,o=0

∞∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π

φT (uj1 , λ1)e
−i(r−q+l−n+(j2−j1)N)λ1

×
∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1

= O
( 1

T

g2(k)

N1−2D−2ε

)
Proof: Without loss of generality we restrict ourselves to a proof of part (i)

and (v) and note that all other claims are proven by using the same arguments.

Proof of (i): We use (2.4), (7.1) and Lemma 8.2 to bound the term in (i) (up
to a constant) through

g2(k)

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=1

M∑
j2=1

N≤|r+l−n+(j2−j1)N |
0≤q+o−m+(j1−j2)N≤N−1

|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1
1≤|r−q+m−o+(j2−j1)N |

1

l1−d0(uj1 )

1

m1−d0(uj1 )

1

n1−D

1

o1−D

1

|r − q + l − n+ (j2 − j1)N |1+2d0(uj1 )−ε

1

|r − q +m− o+ (j2 − j1)N |1−ε
.

If the variables j1, o and m are fixed, it follows with the constraint 0 ≤ q + o−
m+ (j1 − j2)N ≤ N − 1 that there are at most two possible values for j2 such
that the resulting term is non vanishing. We now discuss for which combinations
of j1 and j2 the above expression is maximized and then restrict ourselves to
the resulting pair (j1, j2).

If j1 and j2 are given, the variables l,m, n, o can only be chosen such that
|l − n + (j2 − j1)N | ≤ N − 1 and |o − m + (j1 − j2)N | ≤ N − 1 are ful-
filled. Therefore, the possible values of the fractions (|r − q + l − n + (j2 −
j1)N |)−1(|r − q + m − o + (j2 − j1)N |)−1 are the same for any combination
of j1 and j2. Consequently, in order to maximize the term above we need to
maximize l−1d0(uj1 )m−1+d0(uj1 )n−1+Do−1+D, which is achieved by the choice
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j1 = j2 [since then l,m, n, o can be jointly taken as small as possible due to the
constraints |l − n + (j2 − j1)N | ≤ N − 1 and |o − m + (j1 − j2)N | ≤ N − 1].
Hence we can bound that above expression (up to a constant) by

g2(k)

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=1
N≤|r+l−n|
|l−n|≤N−1
|o−m|≤N−1
1≤|r−q+m−o|

1

l1−d0(uj1 )

1

m1−d0(uj1 )

1

n1−D

1

o1−D

× 1

|r − q + l − n|1+2d0(uj1 )−ε

1

|r − q +m− o|1−ε
.

By setting g := r + l − n and s := q + o−m this term can be written as

g2(k)

N2

1

M2

M∑
j1=1

N−1∑
q,r,s=0
1≤|r−s|

∑
g∈Z

|g|≥N

∞∑
m,n=1

1≤g−r+n
1≤s−q+m
|g−r|≤N−1

1

(g − r + n)1−d0(uj1 )

1

m1−d0(uj1 )

1

n1−D

× 1

(s− q +m)1−D

1

|g − q|1+2d0(uj1 )−ε

1

|r − s|1−ε

Through an repeated application of (7.1) and (7.3) the claim now follows.

Proof of (v): By setting

f(uj1 , uj2 , λ) :=
1

2π

∞∑
l,n=0

ψl(uj1)ψn(uj2)e
−i(l−n)λ.

we can write the term in (v) as

2π

N2

1

M2

M∑
j1=1

N−1∑
r,q=0

∞∑
m,o=0

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1

|o−m+(j1−j2)N |≤N−1

ψm(uj1)ψo(uj2)

×
∫ π

−π

φT (uj1 , λ1)φT (uj2 , λ1)f(uj1 , uj2 , λ1)e
−i(r−q+(j2−j1)N)λ1 dλ1

×
∫ π

−π

e−i(r−q+m−o+(j2−j1)N)λ2 dλ2.

and by integrating over λ2 this is the same as

4π2

N2

1

M2

M∑
j1=1

N−1∑
q=0

∞∑
m,o=0

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1

|o−m+(j1−j2)N |≤N−1

ψm(uj1)ψo(uj2)



1656 H. Dette et al.

×
∫ π

−π

φT (uj1 , λ1)φT (uj2 , λ1)f(uj1 , uj2 , λ1)e
−i(o−m)λ1 dλ1.

By (7.1) and Lemma 8.2 this sum can be bounded by

Cg2(k)

N2

1

M2

M∑
j1=1

N−1∑
q=0

∞∑
m,o=1

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1

|o−m+(j1−j2)N |≤N−1

1

m1−d0(uj1 )

1

o1−d0(uj1 )

× 1

|o−m|1+d0(uj1 )+d0(uj2 )−2ε

≤ Cg2(k)

N2

1

M2

M∑
j1=1

N−1∑
q=0

∞∑
m,o=1

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1

|o−m+(j1−j2)N |≤N−1

1

m1−D

1

o1−D

1

|o−m|1−2ε
.

As in the proof of (i) we can argue that there are at most two possible values for
j2 if o,m and j1 are chosen and that the expression is maximized for |j1−j2| = 1.
Therefore we can bound the above expression up to a constant through

g2(k)

N2

1

M

∑
κ∈{−1,1}

N−1∑
q=0

∞∑
m,o=1

0≤q+o−m+κN≤N−1
|o−m+κN |≤N−1

1

m1−D

1

o1−D

1

|o−m|1−2ε
.

By setting p := o−m+ κN the claim follows with (7.3). �

Acknowledgements

This work has been supported in part by the Collaborative Research Center
“Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt A1,
C1) of the German Research Foundation (DFG). The authors are also grateful
to three unknown referees and the associate editor. Their constructive comments
on two earlier versions of this paper resulted in a substantial improvement of
our work. Finally we would like to thank Tobias Kley and Kevin Kokot for
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Fox, R. and Taqqu, M. S. (1986). Large-sample properties of parameter esti-
mates for strongly dependent stationary gaussian time series. The Annals of
Statistics, 14:517–532.

Fryzlewicz, P., Sapatinas, T., and Subba Rao, S. (2006). A Haar-Fisz technique
for locally stationary volatility estimation. Biometrika, 93:687–704.

Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long
memory time series models. Journal of Time Series Analysis, 4(4):221–238.
MR0738585

Gijbels, I., Lambert, A., and Qiu, P. (2007). Jump-preserving regression and
smoothing using local linear fitting: a compromise. Annals of the Institute of

http://www.ams.org/mathscinet-getitem?mr=2877613
http://www.ams.org/mathscinet-getitem?mr=2278354
http://www.ams.org/mathscinet-getitem?mr=2301628
http://www.ams.org/mathscinet-getitem?mr=1613867
http://www.ams.org/mathscinet-getitem?mr=0065087
http://www.ams.org/mathscinet-getitem?mr=0968166
http://www.ams.org/mathscinet-getitem?mr=0738585


1658 H. Dette et al.

Statistical Mathematics, 59(2):235–272. MR2394168
Grublyte, I. and Surgailis, D. (2014). Projective stochastic equations and non-
linear long memory. Advances in Applied Probability, 46(4):1084–1105.

Haslett, J. and Raftery, A. E. (1989). Space-time modelling with long-memory
dependence: Assessing Ireland’s wind power ressource. Applied Statistics, 38.

Heyde, C. C. and Dai, W. (1996). On the robustness to small trends of estima-
tion based on the smoothed periodogram. Journal of Time Series Analysis,
17:141–150. MR1381169

Hidalgo, J. and Soulier, P. (2004). Estimation of the location and exponent of
the spectral singularity of a long memory process. Journal of Time Series
Analysis, 25(1):55–81. MR2042111

Kokoszka, P. S. and Taqqu, M. S. (1995). Fractional ARIMA with stable inno-
vations. Stochastic Processes and Their Applications, 60:19–47. MR1362317

Kreiß, J.-P., Paparoditis, E., and Politis, D. N. (2011). On the range of the
validity of the autoregressive sieve bootstrap. Annals of Statistics, 39.
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