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studies and an analysis of batch effects in a gene expression study.
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1. Introduction

Large-scale multiple testing is common in analysis of high dimensional data, and
it has wide application in scientific fields such as biology, medicine, genomics,
neuroscience, economics, and finance. For example, in a genome-wide association
study, hundreds of thousands of genetic polymorphisms were scanned simulta-
neously; in this process, multiple testing procedures, especially false discovery
rate (FDR) methods ([4]), play an important role in detecting the association
between genetic variants and some complex diseases ([32]).

Benjamini and Hochberg’s (BH) procedure and its variants (e.g., the step-
wise multiple testing procedures in [23] and false discovery rate estimators in
[27]) have been shown to be theoretically valid when the test statistics are in-
dependent or have some form of weak dependence such as positive regression
dependence on a subset (PRDS) ([5]; [23]) or general weak dependence on p-
values ([27]). There has been some recent research on quantifying the effect of
correlation in false discovery rate analysis. For instance, [7] argued that the
difficulties caused by dependence in multiple testing tend to diminish as the
number of simultaneous tests increases when the dependence is weak, provided
that the test statistics have light-tailed marginal distributions; [31] generalized
the popular random effect model that is assumed on the p-values to a conditional
dependence model that allows weak dependence among the null hypotheses and
can be useful to characterize the spatial structures of the null hypotheses. When
the dependence is strong, the effect of correlation on the variance of some error
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measures, such as the number of false discoveries or the estimator of false dis-
covery rate, does not diminish as the number of tests increases and should be
carefully accounted for ([22]; [11]; [25]; [2]). In particular, [13] proposed that the
false discovery proportion (FDP) can be consistently estimated when the test
statistics follow a multivariate normal distribution with arbitrary covariance
dependence. Their method is quite useful in applications where the normality
approximation of the test statistics is adequate, such as the expression quan-
titative trait loci (eQTL) in genome-wide association studies and the classical
two-sample comparison in microarray studies. In practice, chi-squared or F tests
are popular in many areas, including (but not limited to), the analysis of vari-
ance (ANOVA) for testing fixed or random effects in the analysis of experimental
data, the Pearson’s chi-squared goodness of fit test for independence, and many
variants of likelihood-ratio tests. In all of the above testing problems, it would
be beneficial to extend [13]’s method to accommodate the chi-squared or F
tests in multiple testing under general dependence structures. It is worth not-
ing that [23] showed that a class of multivariate F distributions that arises in
many-to-one comparisons of variances with one-sided alternatives satisfies the
PRDS property, and thus the BH procedure can be legally applied. However,
this class of multivariate F distributions is very restrictive in applications as it
is constructed based on a series of independent chi-squared random variables.

In this article, we provide a new method for solving multiple testing problems
that arise when the test statistics follow a multivariate non-central chi-squared
distribution with arbitrary underlying covariance dependence. Specifically, we
construct a testing framework for a large number of highly correlated chi-squared
test statistics, based on a small panel of data with dimensionm by k. The dataset
consists of k independent multivariate normally distributed random vectors with
an arbitrary common covariance dependence structure, where k is the number
of degrees of freedom for each chi-squared test statistic and m is the number
of tests. For each multivariate normally distributed random vector, we adopt
a latent factor structure ([14]) to model the arbitrary covariance dependence
structure. That is, the covariance dependence can be additively decomposed into
two separate sources of variation: (i) major dependent variation shared across
the tests in terms of low dimensional latent common factors; and (ii) test-specific
weakly dependent variation. Under this setting, we approximate the FDP based
on the associated p-values with respect to a threshold t by summing a series
of non-central chi-squared distribution functions, within which are found the
latent common factors and factor loadings.

We then use the testing framework to simultaneously test k linear constraints
in a large dimensional linear factor model, with another latent factor structure
assumed on the random errors. This model has wide application in genomics re-
search where some unobservable batch effects (or confounders) that contribute
to the gene expression differentiation can be viewed as latent common factors.
This naturally leads to a factor-adjusted multiple testing procedure ([20]; [16]).
The factor-adjusted procedure is more robust and powerful than the traditional
unadjusted method, because the latent common factors are taken into account
at an early stage before any tests are performed, resulting in a new ranking
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of the hypotheses being tested. To make the testing procedure operational, the
latent common factors need to be accurately estimated, both theoretically and
computationally. Both goals are achieved via a proposed restricted principal
component analysis (Restricted-PCA) algorithm. We further show that the es-
timated FDP of the associated factor-adjusted p-values converges to the true
one, even when idiosyncratic errors are allowed to be weakly correlated. Note
that factor-adjusted multiple testing that accounts for latent factors in a linear
model has been studied in the literature; see [20], [16], [28], and [17]. Although
we present latent models in a similar fashion, our model settings (see (13) and
(14)) are more general in the sense that the idiosyncratic errors can accommo-
date various dependence structures. Moreover, we provide a simple and analyti-
cally tractable Restricted-PCA algorithm to adjust for the latent factors. This is
the key ingredient of our method; it enables us to derive a consistent estimated
FDP.

The rest of this article is organized as follows. The testing framework for ap-
proximating the FDP based on a large number of highly correlated chi-squared
test statistics is presented in detail in Section 2. Section 3 discusses the connec-
tion between simultaneously testing k linear constraints in the large dimensional
linear factor model and the testing framework, and forms a consistent estimator
of FDP based on the factor-adjusted p-values. The Restricted-PCA algorithm
is described in Section 4. The model’s numerical performances including both
simulation studies and a real data application are extensively investigated in
Sections 5 and 6, respectively. Concluding remarks in Section 7 end this arti-
cle. All of the proofs are deferred to the Appendix. For notational convenience,
three tables summarizing the most common recurring notations in this article
are provided in Appendix A.

2. Testing framework from normal to chi-squared test statistics

In this section, we systematically construct and study a testing framework for
a large number of highly correlated chi-squared test statistics based on a small
panel of data with dimension m by k, where m is the number of tests and k is
the number of degrees of freedom for each chi-squared test statistic.

2.1. Multiple testing under multivariate non-central chi-squared
distribution

We begin with a small panel of data W = (wi�)m×k ∈ Rm×k. As a convention,
we denote by W�� = (w1�, . . . , wm�)

� the �-th column of W, and assume that
{W��, � = 1, . . . , k} are independent and W�� follows a multivariate normal
distribution with a mean μ̃�� = (μ1�, . . . , μm�)

� and correlation matrix ΣW =
(σW,i1i2)m×m (σW,ii = 1, for i = 1, . . . ,m). For notational convenience, we
denote by Wi� = (wi1, . . . , wik)

� and μ̃i� = (μi1, . . . , μik)
� the i-th row of

W and its mean, respectively. Under the above setup, the joint distribution
of (‖W1�‖22, . . . , ‖Wm�‖22)� is termed the multivariate non-central chi-squared
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distribution with k degrees of freedom, the accompanying correlation matrix
ΣW, and the non-centrality parameters (‖μ̃1�‖22, . . . , ‖μ̃m�‖22)�.

Within W, suppose we are interested in testing the following hypotheses:

H0i : μ̃i� = 0 v.s. H1i : μ̃i� �= 0, for i = 1, . . . ,m. (1)

By construction, Ti = ‖Wi�‖22 can serve as the test statistic for the i-th hy-
pothesis, which follows a chi-squared distribution with degrees of freedom k
under the true null. Therefore, the p-value for the i-th test is calculated as
Pi = 1−χk(Ti; 0), where χk(t;λ) is the cumulative distribution function (CDF)
of a chi-squared random variable with degrees of freedom k and non-centrality
parameter λ. Denote by I0 and I1 the sets of indices corresponding to the
true null and non-null, and let m0 and m1 be the cardinality of I0 and I1,
respectively. Hence, the asymptotic proportion of the true null is defined as
π0 = limm→∞ m0/m.

As noted by [10], correlation must be accounted for in deciding which null
hypotheses are significant because the accuracy of FDR controlling techniques is
compromised in high correlation situations. To capture the correlation structure
of ΣW, we assume that {Wi�, i = 1, . . . ,m} satisfies the following latent factor
structure ([3]; [14]):

Wi� = μ̃i� + Z̃γ̃i + η̃i�, for i = 1, . . . ,m, (2)

where Z̃ = (Z̃1, . . . , Z̃k)
� ∈ Rk×r and Z̃� = (Z̃�1, . . . , Z̃�r)

�, for � = 1, . . . , k,
is a r × 1 vector of latent common factors with the identification restriction
E(Z̃�) = 0 and cov(Z̃�) = Ir. The accompanied γ̃i are the unknown factor
loadings and η̃i� = (η̃i1, . . . , η̃ik)

� are the idiosyncratic errors that are inde-

pendent of Z̃. In the spirit of the model setup in [13], we further assume that
{η̃�� = (η1�, . . . , ηm�)

�, � = 1, . . . , k} are independent and that η̃�� satisfies a
weak dependence assumption as

η̃��
d∼ N(0,Ση̃) with Ση̃ = (ση̃,i1i2)m×m,

{m(m− 1)}−1
∑ ∑
i1 �=i2

|ρη̃,i1i2 | = O(m−δ), for some δ > 0, (3)

where ρη̃,i1i2 = ση̃,i1i2/(ση̃,i1i1ση̃,i2i2)
1/2 is the coefficient of correlation between

η̃i1� and η̃i2�. Here we would like to point out that Z̃ drives the dependence
among the m tests, hence the number of factor r, depends on m. Consequently,
the mean μ̃i�, the factor loadings γ̃i and the variance of the idiosyncratic error
ση̃,i1i2 also depend on m. For notational simplicity, we suppress the dependent
m in the model assumptions (2) and (3).

Remark 1. [13] introduced a definition for weakly dependent normal variables
to guarantee the validity of their approximated FDP. Their definition is essen-
tially in the same form as in (3) except that the correlation matrix is replaced
by the covariance matrix. If the diagonals of the covariance matrix are bounded
away from zero and infinity, these two definitions are mutually inclusive. A
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more general definition of weakly correlated standard normal variables is given
in Definition 1 of [2], which is a necessary and sufficient condition for the con-
sistency of the associated empirical cumulative distribution function in L2 norm.
Another related condition was given in [25], where they assumed that the empir-
ical moments of all of the pairwise correlations of the chi-squared test statistics
shrink to zero when the number of tests diverges to infinity. Under this condi-
tion and a novel decomposition for bivariate chi-squared density function, they
showed that the fraction of discoveries has asymptotically vanishing variance.
We remark here that the technique for decomposing the bivariate chi-squared
density function is still not applicable to our case because the condition in (3)
is imposed directly on the underlying correlation matrix.

2.2. Approximation of FDP

Traditional multiple testing procedures are based on a sequence of p-values for
a family of hypotheses, where the hypotheses with p-values less than or equal
to some threshold t are rejected. Define the following empirical processes:

V (t) = #{i ∈ I0 : Pi ≤ t},
S(t) = #{i ∈ I1 : Pi ≤ t}, and
R(t) = #{i ∈ I : Pi ≤ t} (4)

for any t ∈ [0, 1], where I = I0∪I1. Then V (t), S(t), and R(t) are the number of
falsely rejected hypotheses, the number of correctly rejected hypotheses, and the
total number of rejected hypotheses, respectively. The false discovery proportion
with respect to the threshold t is defined as FDP(t) = V (t)/{R(t) ∨ 1} with
R(t) ∨ 1 = max{R(t), 1}.

Note that V (t) is unobserved but realized through an experiment, whereas
R(t) can be observed. Essentially, estimating the FDP is equivalent to approxi-
mating V (t)/m0. As discussed in [27], if the p-values satisfy the weak dependence
assumption, then V (t)/m0 would converge to some distribution function almost
surely. However, a strong dependence structure on ΣW would affect or even vio-
late the convergence of V (t)/m0. From (2), after controlling for the effect of the

latent common factors Z̃, the correlation among the idiosyncratic errors η̃�� is
weak, according to assumption (3). Hence, it is possible to seek an approximated

expression for V (t)/m0 conditional on the latent common factors Z̃, which in
turn can be used to estimate the FDP.

Proposition 1. Suppose assumptions (2) and (3) hold. If we further assume
that (i): limm supi ‖μ̃i�‖22 < ∞; (ii): limm infi ση̃,ii > 0; (iii): for each realization

of Z̃, limm supi ‖Z̃γ̃i‖22 < ∞, then for a finite number of degrees of freedom k
and any t ∈ [0, 1],

lim
m0→∞

[
m−1

0 V (t)−m−1
0

∑
i∈I0

{
1− χk

(χ−1
k (1− t; 0)

ση̃,ii
;λ0i

)}]
= 0, a.s. (5)
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lim
m→∞

[
m−1R(t)−m−1

m∑
i=1

{
1− χk

(χ−1
k (1− t; 0)

ση̃,ii
;λ1i

)}]
= 0, a.s. (6)

lim
m→∞

[
FDP(t)−

∑
i∈I0

{
1− χk(

χ−1
k (1−t;0)

ση̃,ii
;λ0i)

}
∑m

i=1

{
1− χk(

χ−1
k (1−t;0)

ση̃,ii
;λ1i)

} ]
= 0, a.s. (7)

where λ0i = ‖Z̃γ̃i‖22/ση̃,ii, λ1i = ‖μ̃i�+ Z̃γ̃i‖22/ση̃,ii, and χ−1
k (t;λ) is the inverse

function of χk(t;λ).

The proof can be found in Appendix B. The above results could be generalized
to the case where the number of degrees of freedoms k is allowed to grow to
infinity by assuming that the average of the coefficients of correlation grows
to zero at the rate O(m−δk−1) in assumption (3). Essentially, this Proposition
indicates that the difference between two random parts (i.e., V(t) or R(t) and
the corresponding approximation) is negligible. This is achieved by assuming

that the latent factors part Z̃γ̃i is fixed, and by deriving the analysis solely on
the dependence structure of η̃i�.

Proposition 1 approximates the corresponding FDP(t) by a series of non-
central chi-squared distribution functions, which contain some latent common
factors and factor loadings. In practice, the approximation of V (t) in (5) is
intractable due to the unknown true null set I0. If the corresponding summation
of the alternative set I1 in (5) is negligible, we can conservatively estimate V (t)
as

m∑
i=1

{
1− χk

(χ−1
k (1− t; 0)

ση̃,ii
;λ0i

)}
. (8)

Recall that FDP(t) = V (t)/{R(t) ∨ 1}, in which R(t) is observed. From (8), we
propose to estimate the FDP(t) as

F̂DP(t) =

[ m∑
i=1

{
1− χk

(χ−1
k (1− t; 0)

ση̃,ii
;λ0i

)}]/
{R(t) ∨ 1}. (9)

To demonstrate the usefulness of the testing framework, in the next section we
obtain a consistent estimator of the FDP when the test statistics are multivari-
ate non-central chi-squared distributed within a large dimensional linear factor
model.

Remark 2. Our approximated FDP in Proposition 1 is closely related to two
existing studies in the literature as follows.

The weak dependence case given in [27].

By letting Z̃ = 0, Wi�’s are weakly correlated in the absence of the la-
tent common factors Z̃, in which the summation part of (5) is m0t.
This essentially implies that the empirical distribution of the chi-squared
type p-values under the true null converges to the standard uniform dis-
tribution, which is a generalization of Theorem 1 in [2]. Thus, we can
adopt the method of [27] to estimate FDP(t) as mπ̂0(λ)t/{R(t) ∨ 1} with
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π̂0(λ) = #{i;Pi > λ}/{m(1−λ)}. Here λ is selected such that the number
of hypotheses under the alternative with p-values greater than λ is negligi-
ble.

The strong dependence case given in [13].
When the number of degrees of freedom k reduces to 1, the approximated
FDP in (7) can also be reformulated as

lim
m→∞

[
FDP(t)−

∑
i∈I0

{
Φ(

zt/2+γ̃�
i Z̃1

(ση̃,ii)1/2
) + Φ(

zt/2−γ̃�
i Z̃1

(ση̃,ii)1/2
)
}

∑m
i=1

{
Φ(

zt/2+μi1+γ̃�
i Z̃1

(ση̃,ii)1/2
) + Φ(

zt/2−μi1−γ̃�
i Z̃1

(ση̃,ii)1/2
)
}]

a.s.
= 0,

(10)
where Φ(·) and zt/2 = Φ−1(t/2) are the CDF and the t/2 lower quantile
of a standard normal distribution, respectively. The above approximation
is exactly the same as in [13]. Thus, our approximation of FDP can ac-
commodate the cases where the test statistics are normally or chi-squared
distributed.

3. Simultaneously testing k linear constraints in a large dimensional
linear factor model

The testing framework in Section 2 is derived under a very special data matrix
W ∈ Rm×k, which is motivated by the structure of multivariate chi-squared
distribution. To illustrate the practical utility of the testing framework, we pro-
vide a specific example, that is, simultaneously testing k linear constraints in a
large dimensional linear factor model.

3.1. Model and assumptions

Assume we observe a large panel of data, that is, Y = (Yij)m×n ∈ Rm×n, with a
total of m units, and each unit has n observations. Let Xj = (Xj1, . . . , Xjp)

� ∈
Rp be the observable explanatory variables. To link the panel data to the ex-
planatory variables, we consider the following multivariate linear regression:

Yi� = Xβi + Ei�, for i = 1, . . . ,m, (11)

where Yi� = (Yi1, . . . , Yin)
� ∈ Rn, X = (X1, . . . ,Xn)

� ∈ Rn×p is the design
matrix, βi = (βi1, . . . , βip)

� ∈ Rp are the regression coefficients of unit i, and
Ei� = (εi1, . . . , εin)

� ∈ Rn are the random errors that are independent of X.
Moreover, we assume that {E�j = (ε1j , . . . , εmj)

�, j = 1, . . . , n} are independent
with mean 0 and covariance matrix ΣE = (σE,ij)m×m, and collect the error
panel as E = (E�1, . . . , E�n) ∈ Rm×n. To model the dependence structure of
ΣE , we further assume that {Ei�, i = 1, . . . ,m} follows a similar latent factor
structure as in (2), that is,

Ei� = Zγi + ηi�, for i = 1, . . . ,m, (12)
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where Z = (Z1, . . . ,Zn)
� ∈ Rn×r and {Zj = (Zj1, . . . , Zjr)

�, j = 1, . . . , n}
are independent and each is an r × 1 vector of latent common factors with the
identification restriction E(Zj) = 0 and cov(Zj) = Ir, γi are the corresponding
factor loadings (r × 1), and ηi� = (ηi1, . . . , ηin)

� are the idiosyncratic errors,
which are independent of Z. Moreover, {η�j = (η1j , . . . , ηmj)

�, j = 1, . . . , n} are
supposed to be i.i.d., and η�j satisfies a similar weak dependence assumption as
in (3), that is,

η�j
d∼ N(0,Ση) with Ση = (ση,i1i2)m×m, and

{m(m− 1)}−1
∑ ∑
i1 �=i2

|ρη,i1i2 | = O(m−δ), for some δ > 0, (13)

with ρη,i1i2 = ση,i1i2/(ση,i1i1ση,i2i2)
1/2 being the coefficient of correlation be-

tween ηi1� and ηi2�. After incorporating the latent factor structure (12), model
(11) can be further written as

Yi� = Xβi + Zγi + ηi�, for i = 1, . . . ,m. (14)

(14) is called the large dimensional linear factor model with some observable
and unobservable common factors.

In regression analysis, testing the regression coefficients is of great interest
in practice. Most testing problems related to the regression coefficients for the
i-th unit in (14) can be formulated by a set of linear constraints as follows:

H0i : Aβi = 0 v.s. H1i : Aβi �= 0, (15)

where A ∈ Rk×p is a full low rank matrix with rank(A) = k, and k ≤ p.
Stacking all of the m hypotheses, as in (15), multiplicity must be accounted
for. In the following Sections 3.2 and 3.3, we first elaborate a factor-adjusted
multiple testing procedure to address the multiplicity issue, and then resort to
the theoretical framework in Section 2 to provide convincing mathematical proof
to show its consistency.

3.2. A factor-adjusted multiple testing procedure

Motivated by the parametric F -test in linear regression and by ignoring the
latent common factors Z, we construct an unadjusted test statistic for (15) and
approximate the corresponding p-value as follows:

T u
i = (Aβ̂i)

�{σ̂E,iiA(X�X)−1A�}−1(Aβ̂i) and
P u
i = 1− χk(T

u
i ; 0), (16)

where β̂i = (X�X)−1X�Yi� is the ordinary least-squares estimate of βi, and
σ̂E,ii = Y�

i�Q(X)Yi�/(n − p) with the operator Q defined as Q(X) = In −
X(X�X)−1X�. One problem of the parametric F -test in (16) is that the ranking
of the statistical significance is completely determined by that of {T u

i } or {P u
i },
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which is undesirable and inefficient in practice. Moreover, as mentioned in [8],
the approximated FDP based on unadjusted p-values tends to be highly unstable
due to dependence, even when the dependence is fully parametrized and used
in the procedure. In other words, any downstream methods (e.g., adjusting
test statistics) are naturally at a disadvantage. To provide a more robust and
powerful remedy, the latent common factors Z must be taken into account at
an early stage before any tests are performed, resulting in a new ranking of the
hypotheses being tested. Based on the above rationale, the testing problem (15)
can be conducted using factor-adjusted test statistics under model setup (14).
The idea was tentatively introduced in [20] and [16].

From model (14), Yi� = Xβi+Zγi+ηi�, the latent common factors Z should

be extracted from β̂i before the test statistics are formed. This motivates us to
introduce an oracle factor-adjusted test statistic and a p-value for the i-th unit
as follows:

T ad
i = {Aβ̂i −A(X�X)−1X�Zγi}�

{ση,iiA(X�X)−1A�}−1

{Aβ̂i −A(X�X)−1X�Zγi} and
P ad
i = 1− χk(T

ad
i ; 0). (17)

To make the testing procedure operational, the latent factors part Zγi and the
variance of the idiosyncratic error ση,ii should be estimated by some algorithm
and then used to replace the true ones. Specifically, the factor-adjusted test
statistics and the associated p-values for (15) can be constructed as follows:

T̂ ad
i = {Aβ̂i −A(X�X)−1X�Ẑγ̂i}�

{σ̂η,iiA(X�X)−1A�}−1

{Aβ̂i −A(X�X)−1X�Ẑγ̂i} and

P̂ ad
i = 1− χk(T̂

ad
i ; 0), (18)

where Ẑγ̂i and σ̂η,ii can be obtained by the algorithms discussed in Section 4.

As in (4), we denote by {V ad(t), V̂ ad(t)} and {Rad(t), R̂ad(t)} the number of
false rejections and the number of total rejections with respect to a threshold t
based on {P ad

i , P̂ ad
i }’s, respectively. Hence, the false discovery proportion of the

oracle factor-adjusted p-values is defined as FDPad(t) = V ad(t)/{Rad(t) ∨ 1}.
Intuitively, if the latent common factor and the variance of the idiosyncratic

error can be accurately estimated, the behavior of P̂ ad
i s would resemble that

of P ad
i s to a large extent. Moreover, the dependence between the oracle factor-

adjusted test statistics or p-values only comes from the idiosyncratic error part
ηi�, which is weakly dependent according to assumption (3). Hence, we can adopt
the traditional multiple testing procedure to estimate the FDPad(t) ([27]) as

F̂DP
ad

λ (t) = mπ̂0(λ)t/{R̂ad(t) ∨ 1}, (19)

where π̂0(λ) =
∑m

i=1 I(P̂
ad
i > λ)/{m(1− λ)} is an estimate of the proportion of

true null π0 and λ is defined in Remark 2.
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3.3. Consistency of the estimated FDP

In this subsection, we connect the chi-squared type factor-adjusted p-values
to the testing framework in Section 2 to explore the theoretical property of
the estimated FDP in (19). It has been shown that the BH procedure ([4]) and
Storey’s method ([27]) continue to control the FDR even when the test statistics
or the p-values are weakly dependent. Does the weak dependence assumption
hold for the factor-adjusted p-values? To answer this question, we propose a
two-stage procedure. In the first stage, we connect the structure of the oracle
factor-adjusted p-values (i.e., P ad

i ) to the theoretical framework in Section 2
to show that the weak dependence assumption of the oracle factor-adjusted
p-values is satisfied; in the second stage, we supply a sufficient condition on
the estimators of the latent factors and the variance of the idiosyncratic error,
under which the difference between the factor-adjusted p-values (i.e., P̂ ad

i ) and
the oracle factor-adjusted p-value is asymptotically negligible.

Stage I: Weak dependence of the oracle factor-adjusted p-values

To this end, we first heuristically argue that by decomposing (T ad
1 , . . . , T ad

m )�, a
data matrix Wad as in Section 2.1 can be recovered through Y and the design
matrix X, and Wad satisfies assumptions (2) and (3). This can be achieved by
resorting to Proposition 1 in the testing framework. More specifically, by com-
paring the structure of (T1, . . . , Tm)� in Section 2 with that of (T ad

1 , . . . , T ad
m )�,

we observe that

Wad
i� � {ση,iiA(X�X)−1A�}−1/2{Aβ̂i −A(X�X)−1X�Zγi}

= {ση,iiA(X�X)−1A�}−1/2{Aβi +A(X�X)−1X�ηi�}
= {ση,iiA(X�X)−1A�}−1/2Aβi + (ση,ii)

−1/2P�ηi�, (20)

where P = X(X�X)−1A�{A(X�X)−1A�}−1/2 ∈ Rn×k. Note that the term
Wad

i� is closely related to the model assumptions (2) and (3) in the testing
framework. To link the parameters in the large dimensional linear factor model
to our testing framework, we directly compare (20) with (2), which yields

μ̃i� = (ση,ii)
−1/2{A(X�X)−1A�}−1/2Aβi,

Z̃γ̃i = 0,
η̃i� = (ση,ii)

−1/2P�ηi�, (21)

where μ̃i, γ̃i, Z̃, and η̃i� are as in (2) and (3). Note that the matrix P ∈ Rn×k

connects ηi� ∈ Rn to η̃i� ∈ Rk as in Section 2. Accordingly, we term P the
connection matrix. As P�P = Ik, one can readily verify that η̃i� ∼ N(0, Ik),
and η̃�� = DηηP� ∼ N(0, DηΣηDη), where P� is the �-th column of P and
Dη = diag

{
(ση,11)

−1/2, . . . , (ση,mm)−1/2
}
. Hence, assumptions (2) and (3) in

Section 2 are satisfied. In particular, as the latent common factors Z have been
adjusted before the test statistics are formed, there are no common factors
involved in (20). Therefore, the corresponding non-centrality parameter λad

0i /λ
ad
1i

and the variance of the idiosyncratic error σad
η̃,ii, as in (5), are reduced to 0/‖μ̃i�‖22
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and 1, respectively. From Proposition 1, we obtain

lim
m→∞

[
m−1

0 V ad(t)− t
]

= 0, a.s. and (22)

lim
m→∞

[
m−1Rad(t)− π0t− (1− π0)F1(t)

]
= 0, a.s. (23)

where F1(t) = limm→∞ m−1
1

∑
i∈I1

{1− χk(χ
−1
k (1− t; 0);λad

1i )} and the noncen-

trality parameter λad
1i = (Aβi)

�{A(X�X)−1A�}Aβi/ση,ii.

Stage II: When can we ignore the difference between the oracle factor-adjusted
p-values and the factor-adjusted p-values?

In the second stage, we supply a sufficient condition for the estimators of the
latent common factors and the variance of the idiosyncratic error, under which
the differences betweenm−1

0 V̂ ad(t) andm−1
0 V ad(t) (m−1R̂ad(t) andm−1Rad(t))

are negligible. The results are summarized in the following Proposition.

Proposition 2. For any estimators Ẑ, γ̂i, and σ̂η,ii that satisfy maxi∈I |σ̂η,ii−
ση,ii| →p 0 and maxi∈I ‖P�Ẑγ̂i−P�{Q(X)+PP�}Zγi‖2 →p 0, we can obtain,
with a probability tending to one,

lim
m→∞

{m−1
0 V̂ ad(t)−m−1

0 V ad(t)} = 0, a.s. and (24)

lim
m→∞

{m−1R̂ad(t)−m−1Rad(t)} = 0. a.s. (25)

The above conditions essentially mean that σ̂η,ii−ση,ii and P�Ẑγ̂i−P�Zγi

converge to zero in probability uniformly for all i, so that the effect of estimating
the latent common factors vanishes uniformly for all i ∈ I, as m and n increase.
For more detailed derivations, see the proof in Appendix B.

Combining the above two stages, the consistency of F̂DP
ad

λ (t) can be readily
obtained, which is summarized in the following theorem.

Theorem 1. Suppose the conditions in Proposition 2 and assumption (13) hold.
Then for a finite number of degrees of freedom k, we can obtain

lim
m,n→∞

∣∣F̂DP
ad

λ (t)− c× FDPad(t)
∣∣ = 0, a.s. (26)

where c = [π0 + (1− π0){1− F1(λ)}/(1− λ)]/π0.

The proof can be found in Appendix B. Theorem 1 indicates that the esti-
mated FDP can consistently match the true FDP of the oracle factor-adjusted
p-values when the tuning parameter λ is well chosen, such that F1(λ) = 1.

Remark 3. We remark here that we can use techniques similar to those in
Section 3.3 to decompose the unadjusted test statistics T u

i and connect the de-
composed formulas to the theoretical framework in Section 2 to approximate
the false discovery proportion for the unadjusted p-values P u

i with respect to a
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threshold t as

F̂DP
u
(t) =

m∑
i=1

χk

(χ−1
k (1− t)

σ̂η,ii/σ̂E,ii
; ‖P�Ẑγ̂i‖22/σ̂η,ii

)
/{Ru(t) ∨ 1},

where Ru(t) =
∑m

i=1 I(P
u
i ≤ t) is the number of total rejections. Nevertheless,

this estimator overestimates the true FDP under the non-sparse assumption, and
the associated power is lower than that based on the factor-adjusted procedure.

3.4. Departure from normality

In this subsection, we discuss the possible relaxation of the assumption of nor-
mality (13) on η�j . We conjecture that as long as η�j ’s are i.i.d. with mean
0 and a finite covariance matrix Ση, the theoretical properties in Section 3.3
are still valid. For illustration, we consider the large dimensional linear factor
model (14) as a one-way ANOVA model with p treatments. As the design ma-
trix X has a special structure within this model, P� (the �-th column of the
connection matrix) is a vector with p distinct values. For notational conve-
nience, suppose that the g-th treatment has ng replications with

∑p
g=1 ng = n,

and P� =
( n1︷ ︸︸ ︷

�1�√
n1

, . . . ,
�1�√
n1

, . . . ,

ng︷ ︸︸ ︷
�g�√
ng

, . . . ,
�g�√
ng

, . . . ,

np︷ ︸︸ ︷
�p�√
np

, . . . ,
�p�√
np

)�
with∑p

g=1 �
2
g� = 1. Consequently, by definition, η̃�� can be decomposed as

η̃�� = Dη

p∑
g=1

�g�

( ng∑
h=1

1
√
ng

η�gh
)
,

where {η�gh, g = 1, . . . , p, h = 1, . . . , ng} are the idiosyncratic errors in (12) un-
der the one-way ANOVA model. Then, as min{ng, g = 1, . . . , p} → ∞, according
to the central limit theorem (CLT), η̃�� is multivariate normally distributed with
mean 0 and covariance matrix DηΣηDη, asymptotically. Therefore, all of the
results in Section 3.3 are expected to hold beyond normality. For simplicity, we
leave the rigorous proof of the above conjecture for future research. To sup-
port our conjecture, in Section 5 we evaluate the performance of the proposed
factor-adjusted procedure using various idiosyncratic error distributions.

4. Restricted-PCA algorithm on an initial subset

This section provides a new algorithm for estimating the latent common factors,
and shows that they indeed satisfy the sufficient condition given in Proposition 2.
In the literature, the method of principal component analysis (PCA) has been
developed for consistently estimating the latent common factors Z in model (12)
if the pure error matrix E is observed; see, e.g., [3] and [14]. In practice, E is not
directly observed; rather, we observe Y, which is the sum of BX� and E with
B = (β1, . . . ,βm)� ∈ Rm×p (model (11)). Under model (14), [20] introduced an
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iterative re-weighted surrogate variables analysis (IRW-SVA) to estimate Z. In
essence, the weight vector in IRW-SVA is iteratively estimated and converges to
its steady state such that big weights are assigned to the rows ofY corresponding
to the true null whereas small weights (close to zero) are assigned to those
related to non-null. Note that under the null hypothesis that βi = 0 (in other
cases, we can transform Xβi as X(A�A)−1A�)(Aβi)), Ei� is observable as it is
equal to Yi�. Hence, when the small weights vanish after several iterations, the
subsequent standard factor analysis ([3]; [14]) can accurately estimate the latent
factors Z. Analogously, [17] suggested using negative control genes to perform
factor analysis to remove unwanted variation (RUV), where the negative control
genes can be regarded as a subset mimicking the true null set. In their approach,
the negative control genes are genes known as a priori not to be differentially
expressed with respect to the biological factor of interest. In summary, both
methods essentially perform the standard PCA algorithm on a subset of the
units, which can be treated as a subset-PCA algorithm. As an alternative to the
subset algorithm, [16] proposed approximating the latent common factors using
some variants of EM algorithms based on a hybrid residual matrix (on a full
set) obtained through a combination of restricted and unrestricted least squares.
As mentioned in [16], the estimation of the regression coefficients βi differs
depending on whether i falls in the true null. That is, βi should be estimated
by the unrestricted least-squares estimate for i ∈ I1, and by the restricted
least-squares estimate for i ∈ I0. To achieve a preliminary classification, they
suggested separating the true null and non-null sets based on the ranking of
the unadjusted p-values. However, thus far, there is no rigourous theoretical
support to explain how the effect of the estimated true null set (either by the
empirical posterior probability in [20], by some prior information in [17], or
by the unadjusted p-values in [16]) affects the estimate of the latent common
factors.

To quantify how the preliminary estimated null set affects the subsequent
factor analysis, we propose estimating the latent common factors (i.e., Z) via
a restricted-PCA algorithm on an initial subset; we show that the estimate of
the latent common factors is consistent. Specifically, we first estimate all of the
regression coefficients βi in an selected initial subset using the restricted least-
squares estimate. The PCA method can be subsequently used to estimate the
latent factors based on the induced residual matrix. As long as the initial subset
possesses some sparsity properties, the proposed estimation procedure can still
be valid; see Proposition 3 for details. Accordingly, we term this method the
restricted principal component analysis (Restricted-PCA) algorithm; it can be
regarded as a subset PCA algorithm. The new method is outlined below.

(a) [Determine the initial set]: Select an initial subset I∗ with its cardinality
Card(I∗) = m∗, such that the number of alternative hypotheses within
I∗ is negligible.

(b) [Estimate the latent factors]: We first extract the effect of the observ-
able explanatory variables X by regressing Yi� on X under the con-
straint Aβi = 0 for i ∈ I∗, and obtain the restricted residual matrix
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as Ê�
I∗� = {Q(X) + PP�}Y�

I∗�. We next define by {(Λ̂e, �̂e), e = 1, . . . , n}
the eigenvalue-eigenvector pairs of (nm∗)

−1Ê�
I∗�ÊI∗�, with Λ̂1 ≥ . . . ≥ Λ̂n.

The number of factors can be selected by maximizing the eigenvalue ratios
as r̂ = argmax1≤e≤n−1 Λ̂e/Λ̂e+1([1]). Accordingly, Ẑ = n1/2(�̂1, . . . , �̂r̂).

(c) [Estimate the unknown parameters]: Using least-squares estimate, for i ∈
I, γi and ση,ii can be estimated by γ̂i = (Ẑ�Ẑ)−1Ẑ�Q(X)Yi� and σ̂η,ii =

n−1η̂�
i� η̂i� respectively, where η̂i� = Q(Ẑ)Q(X)Yi�.

According to the theoretical results given in [1] and [29], the number of latent
common factors r can be selected by the eigenvalue ratio test in part (b) with
a probability tending to one. Consequently, we assume that r is known when
investigating the theoretical properties of the Restricted-PCA algorithm. In ad-
dition, we impose some regularity conditions, which are not the weakest possible
conditions, but those that facilitate the technical derivations.

Conditions.

C1. Assume p = O(nζ1), r = O(nζ2), and log(m) = O(nζ3), for some constants
0 ≤ ζ1 < 1, 0 ≤ ζ2 < 1/2, and 0 < ζ3 < 1/2.

C2. Assume σ2
0 ≤ limm infi ση,ii ≤ limm supi ση,ii ≤ σ2

1 for some positive
constants σ2

0 and σ2
1 .

C3. Assume there exists some positive definite matrix Σγ of dimension r such
that m−1

∑m
i=1(

√
rγi)(

√
rγi)

� → Σγ , with the eigenvalues of Σγ being
uniformly bounded from zero and infinity. Moreover, there exits some con-
stant γmax such that limm→∞ maxi ‖γi‖22 = γmax.

C4. Assume max1≤e≤r ‖�e − Z�e‖2 = Op(m
−ν) for some positive constant

ν > 0, where ρe is the e-th eigenvectors of m−1E�E and Z�e is the e-th
column of Z.

C5. Assume that Card(I∗ ∩ I1)/Card(I∗) = o(n−1−ζ2/2).

Condition C1 allows a diverging number of factors (observable and latent) to
capture all of the correlations among a large number of units, which is more
realistic because the correlation structure is not truly low-dimensional under
this setting. By condition C1, the number of units m could grow exponentially
with the sample size n, so that m can be much larger than n. Condition C2
is commonly assumed in the literature; see, for example, [29]. Condition C3
requires that the L2 norm of the factors loadings (i.e., ‖γi‖2) are bounded, so
that the variance of the response would not go to infinity. Moreover,

√
rγis can

be regarded as m independent realizations from a non-degenerate population
with a finite second moment. Conditions C4 is directly borrowed from [12], and
can be verified by [3]. Condition C5 requires that the signals on the alternative
within the initial subset I∗ are sparse. Under the above the conditions, we
demonstrate the following result.

Proposition 3. Suppose conditions C1–C5 hold, and further assume that ηij
is normally distributed. Then, for sufficiently large m and n, we obtain that

max
i∈I

‖P�Ẑγ̂i − P�{Q(X) + PP�}Zγi‖2
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= Op(
√
r/n

√
r +

√
r
√
log(m)) +Op(m

−ν
√
r) +Op(bm,n) and (27)

max
i∈I

|σ̂η,ii − ση,ii|

= Op(
√
log(m)/n+ p/n+ r/

√
n) +Op(bm,n/

√
n), (28)

where ν is as in condition C4 and

bm,n =
√
rnCard(I∗)−1

∑
i∈I1∩I∗

‖(AΣ−1
X A�)−1/2(Aβi)‖22

+nCard(I∗)−1Card(I∗ ∩ I1)1/2
√ ∑

i∈I∗∩I1

‖(AΣ−1
X A�)−1/2(Aβi)‖22

with ΣX ∈ Rp×p being the asymptotic covariance of the design matrix X.

The proof can be found in Appendix C. The Restricted-PCA algorithm first
adjusts the main effect X via a restricted least-squares on an selected initial
subset, followed by estimating the latent factors using the restricted residual
matrix with the row indices corresponding to the initial subset I∗. In practice, I∗
can be selected by the empirical posterior probability as in [20], the unadjusted
p-values as in [16], or the prior information as in [17]. The number of alternative
hypotheses in the initial subset I∗ affects the performance of the estimated
latent factors, resulting in two additional terms (i.e., bm,n) on the asymptotic
variance in (27) and (28). Note that both terms are of the order Card(I∗ ∩
I1)/Card(I∗)× n

√
r if the signals Aβi’s under the alternative are comparable

and bounded, which is asymptotically ignorable under condition C5. Under the
local alternative that Aβi is of order n

−1/2, the term bm,n would go to zero if√
rCard(I∗ ∩ I1)/Card(I∗) goes to zero. This indicates that the choice of the

initial subset is flexible.
(27) implies that Ẑγ̂i obtained from the Restricted-PCA algorithm does not

converge to its true counterpart Zγi, but in the form of {Q(X) + PP�}Zγi.
Thus, the Restricted-PCA algorithm produces biased estimators in the sense
that it projects Ẑγ̂i into a sub-space spanned by Q(X) and P . However, the
additional space spanned by the connection matrix P induced by restricted least-
squares is sufficient to verify the sufficient condition of Proposition 2. Compared
to previous methods ([20]; [16]; [17]), the restricted PCA algorithm has a formal
theoretical justification. The good theoretical properties of the Restricted-PCA

algorithm are essential to derive the consistency of the proposed F̂DP
ad

λ (t); see
Theorem 1 for details.

5. Simulation studies

In this section, we gauge the performance of our proposed procedure on the basis
of one important metric: the accuracy of the estimated FDP, via simultaneously
testing k linear constraints in the large dimensional linear factor model (11). It
is well known that lifestyle, geography, and biotic factors are at least as impor-
tant as genetic divergence in modulating gene expression variation in humans.
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This enables us to use one-way ANOVA to model the gene differentiation, where
lifestyle, geography, and biotic factors serve as common factors (observed and
unobserved) and the idiosyncratic error explains some genetic factors that con-
tribute limit to the observed differentiation such as methylation. To make the
simulation more realistic, the model setup and parameters are calibrated from a
real data set in a biological environment, detecting differentially expressed genes
in peripheral blood leukocyte samples from desert nomadic, mountain agrarian,
and coastal urban Moroccan Amazigh individuals ([18]).

Model setup: one-way ANOVA model

(1) To mimic the biological environment of detecting differentially expressed
genes across three geographically defined populations ([18]), we set the
large dimensional linear factor model (11) to

Yij = βi1Xj1 + βi2Xj2 + βi3Xj3 + εij , i = 1, . . . ,m, j = 1, . . . , n,

where Xj1 = 1, Xj2 = I(j ∈ mountain agrarian), and Xj3 = I(j ∈
desert nomadic), with I(·) denoting an indicator function. Each simulated
replication consists of m tests and n samples. The samples are split into
three equal sizes of groups parameterized by X, where the first column
parameterizes the intercept, and the second and the third columns denote
group membership.

(2) We are interested in testing whether these three groups show differential
expression on each gene i (i.e., Yi�), that is,

H0i : βi2 = βi3 = 0 v.s. H1i : βi2 �= 0 or βi3 �= 0.

For each simulated replication, 5% of the tests have nonzeros βi2 or βi3

with the order C/
√
n, where C is a constant. The reference level βi1 is

randomly sampled from a standard normal distribution.
(3) It is well known that microarray gene expression data are confounded

with some batch effects ([19]), such as individual’s age and gender, result-
ing in strong correlation between genes. Many of these batch effects are
unfortunately unknown to statisticians or unavailable in many public gene
expression data repositories ([9]). Based on these observations, we assume
the following latent factor structure on εij as

εij = γi1Zj1 + γi2Zj2 + ηij ,

to account for the potential dependence among the genes induced by some
unobservable batch effects. Here, Zj1 and Zj2 are discrete random vari-
ables, which are i.i.d. taking values −1 and 1 with equal probability 0.5,
and γi1 and γi2 are sampled from a standard normal distribution.

(4) The idiosyncratic errors η�j used to account for limited genetic variation
are sampled from a multivariate normal distribution with mean 0 and
covariance matrix Ση = (ση,i1i2)m×m with ση,i1i2 = ρ|i1−i2| and ρ =
0.9. One can easily verify that the AR(1) covariance structure satisfies
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the weak dependence assumption (13). The results for other covariance
structures, for example, the banded and blocked covariance structures,
are numerically similar to those for the AR(1) covariance structure.

To determine the initial subset used in the Restricted-PCA algorithm, we adopt
the variance filter proposed in [6] to select 95% of tests with smaller σ̂E,ii
throughout Sections 5 and 6. Unless otherwise specified, we set the tuning pa-
rameter λ = 0.2 and the threshold t = 0.01.

5.1. FDP estimate: From negative dependence to consistency

We first confirm that F̂DP
ad

λ (t) in (19) can consistently estimate the true FDP
of the oracle factor-adjusted p-values. For this purpose, we set βi2 = βi3 =
C/

√
n for i ∈ I1 with C = 6, 12, respectively. The number of tests m and the

sample size n are calibrated from two real data sets (m = 10177, n = 46 in
[18] and m = 4397, n = 166 in [26]). From Figure 1(a)-(d), when the signal is
6/

√
n, the estimated FDP and the true FDP follow a 45 degree line, and as m

and n increase, the variation decreases. Remarkably, from Figure 1(e)-(h), the
estimated and the true FDPs tend to exhibit a negative dependence pattern as
the signals increase. According to the discussion given in [24], the reason can
be explained as follows. When the signals are large enough (i.e., βi2 = βi3 =
12/

√
n) such that all of the p-values under the alternative are smaller than the

threshold t = 0.01, the slope of any two replications is approximated roughly
as −m0

m1
× t (−0.19 in our setting). Rigorous proofs of this negative dependence

pattern can found in Appendix D. Moreover, under the strong signal setting,

the true FDP is expressed as V ad(t)
m1+V ad(t)

, with the mean asymptotically close to
m0t

m1+m0t
= π0t

(1−π0)+π0t
= 0.16. This is confirmed by the x-axis of Figure 1(g)-(h).

In summary, the negative dependence pattern does not violate the consistency
of our FDP estimator, because the result of Theorem 1 is based on the deviation
between the estimated and the true values, a quantity that is analogous to the
length of the “negative” line, and as m and n increase, the length decreases.

5.2. Factor-adjusted procedure via various algorithms for estimating
the latent common factors

To demonstrate the effectiveness of the Restricted-PCA algorithm in estimating
the FDP, we adapt the factor-adjusted procedure by replacing the Restricted-
PCA algorithm with three algorithms for estimating the latent common factors
as follows.

PCA: similar to the Restricted-PCA algorithm except that the residuals are
obtained using unrestricted least-squares.

IRW-SVA: the iterative re-weighted surrogate variable analysis algorithm given
in [20]. For each iteration, it first calculates the empirical posterior prob-

ability as a weight vector, that is, P̂(βi = 0,γi �= 0 | Y,X, Ẑ(old)), and
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Fig 1. The F̂DP
ad

λ (t) given by the factor-adjusted (FA) procedure with the latent factors
estimated by the Restricted-PCA algorithm for various signals β ≡ βi2 = βi3 = C/

√
n,C =

6, 12, respectively. Here, the x-axis is the true FDP of the oracle factor-adjusted p-values with
the threshold t = 0.01, and the results are based on 500 replications.
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then updates Ẑ(new) using right singular vectors of a weighted matrix
obtained by multiplying the weight vector to the corresponding rows of
Y. Once the final estimation Ẑ is formed, γ̂i is it calculated through the

least-squares estimate based on the model Yi� = Xβi + Ẑγi + ηi�, as if Ẑ
was observed.

FAMT: the factor analysis and multiple testing method given in [16]. Specif-
ically, it first obtains a hybrid residual matrix by combing subsets of re-
stricted and unrestricted residuals, and then applies the standard factor
analysis EM algorithm to learn a set of latent factors. The subsets are de-
termined using a preliminary p-value (unadjusted p-value) cut-off of 0.05.

Fig 2. The F̂DP
ad

λ (t) versus FDPad(t) for the factor-adjusted (FA) procedure with the latent
factors estimated by five algorithms (Oracle, Restricted-PCA, PCA, FAMT, and IRW-SVA),
respectively. Here, m = 4397, n = 165, βi2 = βi3 = 6/

√
n for i ∈ I1 with the threshold

t = 0.01, and the results are based on 500 replications.

To benchmark the performance of the above algorithms, we consider an oracle
procedure, where the true latent factors Z and factor loadings γi’s are directly

incorporated into F̂DP
ad

λ (t). This oracle procedure serves as a gold standard
because the factor-adjusted procedure with one of these algorithms attempts
to get as close as to the oracle one as possible. From Figure 2, the oracle pro-
cedure performs the best. Among these three algorithms, PCA estimates Zγi

by unrestricted least-squares. Because it ignores the fact that βi2 = βi3 = 0
for i ∈ I0, this estimator converges to Q(X)Zγi, a quantity orthogonal to the
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connection matrix P . In such a circumstance, the sufficient condition given in
Proposition 2 is not satisfied; the result is a lower estimated FDP as shown in
Figure 2(b). Compared with PCA, the cut-off value of 0.05 for the unadjusted
p-values is too subjective for FAMT to classify the true null and non-null sets
in an initial step. As a result, there are certain hypotheses in the true null that
are incorrectly identified as of statistical significance. Thus the hybrid resid-
ual matrix used in the subsequent factor analysis is unbalanced (with more
rows erroneously estimated from unrestricted least-squares). Consequently, the
FAMT-based factor-adjusted procedure fails to capture the true FDP when the
true value is large; see Figure 2(c) for details. In contrast, from Figure 2(b),
the Restricted-PCA algorithm borrows strength from both the restricted least-
squares estimate and the sparsity assumption on the selected initial subset, thus
is able to assist the factor-adjusted procedure to estimate the true FDP con-
sistently. Note that IRW-SVA obtains as good results as Restricted-PCA, as it
estimates space spanned by the latent factors Z well due to the powerful weight
vector, as shown in Figure 2(d).

5.3. Performance of the factor-adjusted procedure beyond normality

The results in Sections 5.1 and 5.2 have shown that the factor-adjusted proce-
dure can consistently estimate the true FDP when the idiosyncratic error η�j
is normally distributed. Does this conclusion hold for other types of distribu-
tions? Towards this end, we modify the model setup (4) given in Section 5.1
by replacing normal distribution on ηij with double exponential distribution, t
distribution with the number of degrees of freedom 3, and chi-squared distri-
bution with 3 degrees of freedom (a centered version so that it has mean 0),
respectively. To make a fair comparison, we independently sample ηij from each
designated distribution. Figure 3 supports the conjecture made in Section 3.4.
The factor-adjusted procedure in conjunction with Restricted-PCA continues
to correctly track the true pattern of FDP when the idiosyncratic error is of
double exponential distribution or t distribution with low degrees of freedom,
both having finite second moment and being symmetric with respect to zero.
Surprisingly, under the chi-squared distribution with degrees of freedom 3, the
factor-adjusted procedure performs quite well with reasonable variation, reveal-
ing that our method is robust against asymmetric distributions.

6. An application: Tackling batch effects in gene expression among
ethnic groups

In this section, we apply our method to a microarray data set with strong bath
effects. This data set is publicly available in the gene expression omnibus (GEO):
GSE5859, which contains the gene expression of 8793 genes for 166 subjects (60
European descent individuals from the Utah pedigrees of the Center d’Etude du
Polymorphism Humain (CEU), 41 Han Chinese in Beijing (CHB), 41 Japanese
in Tokyo (JPT), and 24 validation samples from Han Chinese of Los Angeles
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Fig 3. The F̂DP
ad

λ (t) versus FDPad(t) for the factor-adjusted (FA+Restricted-PCA) pro-
cedure when the idiosyncratic error ηij is independently sampled from double exponential
distribution, t distribution with the number of degrees of freedom 3, and chi-squared distribu-
tion with 3 degrees of freedom (a centered version so that it has mean 0), respectively. Here,
m = 4397, n = 165, β = βi2 = βi3 = 12/

√
n for i ∈ I1 with the threshold t = 0.01, and the

results are based on 500 replications.

(CHLA)). While the previous work in [26] found a large proportion of differen-
tially expressed genes among the populations or specific genetic polymorphisms,
some follow-up articles (e.g., [19]) questioned the validity of these results due
to strong batch effects. They argued that the pervasive signature of differential
expression observed in [26] is a systematic bias introduced during the sample
preparation or microarray expression measurement. Specifically, they found that
arrays used to measure expression for the CEU individuals were primarily pro-
cessed from year 2003 to 2004, whereas arrays used to measure expression for
the Asian descent individuals were all processed in 2005-2006. Other unobserved
variations may exist among the samples. We intend to further tackle the unob-
servable batch effects in gene expression among the four distinct groups using the
factor-adjusted procedure in conjunction with the Restricted-PCA algorithm.

The model setup is identical to that in the simulation studies except that
we compare four distinct groups here. Before conducting significance analysis,
genes that are not well expressed in tissue must be excluded as genes with little
variance in their expression are not proper candidates for differential expres-
sion. Moreover, genes with little variance tend to exacerbate the test statistics
and distort the associated p-values to zero. Based on this rationale, a prelim-
inary screening step is implemented to eliminate 50% of the genes using an
independent filter called overall sample variance; see [6] for details. For the
remaining 4397 genes, we calculated the unadjusted p-value, and four types
of factor-adjusted p-values based on the PCA, Restricted-PCA, IRW-SVA, or
FAMT algorithms, respectively; their corresponding histograms are shown in
Figure 4. The unadjusted p-values display troubling behavior, with most p-
values shrinking to zero, and this phenomenon further deteriorates with the
factor adjustment using the PCA, IRW-SVA, and FAMT algorithms. As a
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Fig 4. (a): Histogram of the unadjusted p-values resulting from tests of differential expression
among four groups without a latent factor structure; (b)-(e): Histogram of the factor-adjusted
p-values when the latent factors are estimated from Restricted-PCA, PCA, IRW-SVA, and
FAMT algorithms, respectively.

comparison, the factor-adjusted p-values induced by the Restricted-PCA al-
gorithm have a two-component mixture distribution with a peak component
at zero for the non-null p-values and a uniform distribution for the true null
p-values.

To further gauge the performance of our Restricted-PCA algorithm, we adapt
the factor-adjusted procedure as proposed in Section 3.2 with latent factors es-
timated from Restricted-PCA, PCA, IRW-SVA, and FAMT, respectively. From
Figure 5(a), we observe that the factor-adjusted procedure combined with PCA
severely underestimates FDP, as it estimates only one principal component and
by design this component is orthogonal to the design matrix. The same dilemma
occurs for the factor-adjusted procedure based on the FAMT algorithm. In par-
ticular, due to the instability of the method for selecting the number of latent
factors, IRW-SVA detects 23 principal components as the latent common factors.
The redundant components naturally lead to an inaccurate FDP estimator. In
contrast, Restricted-PCA estimates two principal components as surrogate vari-
ables for batch effects and incorporates them to correct the null distribution of
the factor-adjusted p-values. Hence, the Restricted-PCA based factor-adjusted
procedure provides more accurate estimation of FDP and finds fewer significant
genes at commonly used significance levels, as shown in Figure 5(d).
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Fig 5. Estimated FDP versus the number of rejected genes from 20 to 400 in multiples of 20
for the factor-adjusted (FA) procedure combined with four various algorithms, respectively.
Here, r denotes the estimated number of latent factors by each specific algorithm.

7. Concluding remarks

In this article, we provide a new method for accurately approximating the true
FDP when the test statistics follow a multivariate non-central chi-squared dis-
tribution with arbitrary covariance dependence; this method shares a similar
flavor with previous works based on the assumption of normality ([13]; [12]).
Our testing framework is constructed based on k independent multivariate nor-
mal random vectors with an arbitrary common covariance dependence structure,
where k is the number of degrees of freedom for each chi-squared test statis-
tic. Under assumptions (2) and (3), we theoretically approximate a valid FDP
expression for a large number of highly correlated chi-squared test statistics.
This new type of approximation is then used to simultaneously test k linear
constraints in a large dimensional linear factor model with a latent factor struc-
ture. The specific testing problem is solved via a factor-adjusted procedure,
which is more robust and powerful than the traditional unadjusted method,
because the latent common factors are taken into account at an early stage
before any tests are performed, resulting in a new ranking of the hypotheses
being tested. We further propose a Restricted-PCA algorithm to estimate the
latent common factors, and incorporate them to form a FDP estimator based
on the factor-adjusted p-values. Under some mild conditions, we show that this
estimator can consistently estimate the true FDP.
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To broaden the usefulness of the proposed procedure, we conclude the article
by identifying two possible research avenues. Theoretically, it would be of inter-
est to extend our testing framework to accommodate multivariate non-central
chi-squared distribution with large degrees of freedom. This situation is partic-
ularly useful in large-scale hypotheses testing problems with a nonparametric
alternative; see the generalized likelihood ratio principle in [15] for details. Em-
pirically, multiple testing procedures based on chi-squared test statistics are
popular in applications, such as the semiparametric inference for identifying
significantly activated voxels in brain imaging studies ([33]) and the genome-
wide SNP-set testing based on the logistic kernel machine model for assessing
the association between the genotyped SNP-set and disease risk ([30]). In both
scenarios, nonparametric functions are involved in addition to explanatory co-
variates, a setting which is more general than the large dimensional linear fac-
tor model. How to appropriately connect these extended models to our testing
framework and provide valid multiple testing procedures are topics for future
study.

Appendix A: Notation index

The following three tables summarize the most common recurring notations,
and indicate the section where each symbol is defined. As a convention, we
denote by ‖v‖2 the L2 norm of a vector v, and ‖M‖F = {tr(M�M)}1/2 the
Frobenius norm of an arbitrary matrix M, respectively. Moreover, we denoted
by MS1S2 the submatrix of M with the rows and columns corresponding to the
index sets S1 and S2, where S1 or S2 could be a single index i or j, or even a full
set. When S1 or S2 is a full set, we use a centerdot � to replace it for notational
simplicity.

Table 1

General notations

Symbol Description Section
m The total number of tests or units 2
I0 The true null set 2
I1 The alternative set 2
I The full set {i; i = 1, . . . ,m} 2
m0 The number of true null hypotheses 2
m1 The number of alternative hypotheses 2
n The number of repeated observations 3
k The degrees of freedom of the chi-squared test 2
k The number of linear constraints 3

i = 1, . . . ,m The indices used for the tests 3
j = 1, . . . , n The indices used for the observations 3
� = 1, . . . , k The indices used for the degrees of freedom 2

p The number of observable factors 3
r The number of latent factors 3

limm am The limit of the sequence of {am} exists 2
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Table 2

Notations related to the model Wi� = μ̃i + Z̃γ̃i + η̃i�
Symbol Description Section

W ∈ Rm×k The small panel of data matrix for test statistics 2

Z̃ ∈ Rk×r The latent factor matrix attached to W 2

γ̃i ∈ Rr The factor loadings associated with Z̃ 2
η̃ ∈ Rm×k The idiosyncratic error matrix attached to W 2

Ti = ‖Wi�‖22 The test statistic for testing μ̃i = 0 2
Pi = 1− χk(Ti; 0) The associated p-value for testing μ̃i = 0 2

V (t) The numbers of false rejections for Pis at the threshold t 2
R(t) The numbers of total rejections for Pis at the threshold t 2

FDP(t) The false discovery proportion for Pis at the threshold t 2

Table 3

Notations related to the model Yi� = Xβi + Zγi + ηi�
Symbol Description Section

Y ∈ Rm×n The observed panel data matrix 3
X ∈ Rn×p The observed design matrix 3
Z ∈ Rn×r The latent factor matrix attached to Y 3
γi ∈ Rr The factor loadings associated with Z 3

η ∈ Rm×n The idiosyncratic error matrix attached to Y 3
Tu
i The unadjusted test statistic for testing Aβi = 0 3

Pu
i The associated unadjusted p-value 3

T ad
i The oracle factor-adjusted test statistic for testing Aβi = 0 3

P ad
i The oracle factor-adjusted p-value 3

V ad(t) The numbers of false rejections for P ad
i s at the threshold t 3

Rad(t) The numbers of total rejections for P ad
i s at the threshold t 3

FDPad(t) The false discovery proportion for P ad
i s at the threshold t 3

T̂ ad
i , P̂ ad

i The realized versions of T ad
i and P ad

i 3

V̂ ad(t), R̂ad(t) The realized versions of V ad(t) and Rad(t) 3

F̂DP
ad

λ (t) The estimator of FDPad(t) 3

Ẑ The estimator of Z by Restricted-PCA 4
I∗ The initial subset used for Restricted-PCA 4
m∗ The cardinality of I∗ 4

Appendix B: Proofs of Proposition 1, Proposition 2, and Theorem 1

Before proving the main results in Section 2 and Section 3, we first present a
strong law of large numbers for weakly dependent data below.

Lemma 1. Let {xi,m, 1 ≤ i ≤ m,m ≥ 1} be a triangular array of real-
valued random variables. Suppose the following three conditions hold, that is
(1): |xi,m| ≤ 1 a.s.; (2):

∑
m≥1 am/m < ∞ with am = E{( 1

m

∑
i≤m xi,m)2};

(3): limq→∞ supi≤mq
sups<mq+1−mq

|xi,mq − xi,mq+s| = 0 a.s., for any subse-
quence {mq}∞q=1 that mq → ∞ and mq+1/mq → 1. Then,

lim
m→∞

1

m

∑
i≤m

xi,m = 0 a.s.
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Proof of Lemma 1 The result can be obtained using similar techniques as
thoses in Theorem 1 of [21]. By condition (2) that

∑
m≥1 am/m < ∞ and

Lemma 2 of [21], there exists an increasing sequence of integers {mq} such that∑
q≥1 amq < ∞ and mq+1/mq → 1. By Lemma 3 of [21], we can obtain that

mq
−1

∑
i≤mq

xi,mq → 0 a.s. Lemma 1 can be proved by applying a suitable

maximal inequality to interpolate between {mq, q ≥ 1}. Specifically, for mq ≤
m < mq+1,∣∣ 1

m

∑
i≤m

xi,m

∣∣
≤

∣∣ 1

mq

∑
i≤mq

xi,m

∣∣ + sup
1≤s≤mq+1−mq

∣∣ 1

mq

mq+s∑
i=mq+1

xi,m

∣∣
≤

∣∣ 1

mq

∑
i≤mq

xi,m − 1

mq

∑
i≤mq

xi,mq

∣∣ + ∣∣ 1

mq

∑
i≤mq

xi,mq

∣∣
+ sup

s<mq+1−mq

∣∣ 1

mq

mq+s∑
i=mq+1

xi,m

∣∣
≤ 1

mq

∑
i≤mq

|xi,m − xi,mq |+
∣∣ 1

mq

∑
i≤mq

xi,mq

∣∣ + sup
s<mq+1−mq

∣∣ 1

mq

mq+s∑
i=mq+1

xi,m

∣∣
≤ sup

i≤mq

sup
s<mq+1−mq

|xi,mq+s − xi,mq |+
∣∣ 1

mq

∑
i≤mq

xi,mq

∣∣
+ sup

s<mq+1−mq

∣∣ 1

mq

mq+s∑
i=mq+1

xi,m

∣∣,
where the second term converges to zero almost surely asmq → ∞. By condition

(1) that |xi,mq+s| ≤ 1, the third term is bounded by
mq+1−mq

mq
→ 0. The first

term is asymptotically negligible by condition (3) that xi,mq −xi,mq+s converges
to zero uniformly. Combining the above results together, the proof is completed.
�

Proof of Proposition 1 Whenever necessary, we use superscript {}m to
emphasize that the vector or matrix therein depends on m. We first prove (6).

The expectation of I(Pi ≤ t | Z̃) is derived as

P
(
Pi ≤ t | Z̃

)
= P

(
Ti ≥ χ−1

k (1− t; 0) | Z̃
)

= P
(
‖Wi�‖22 ≥ χ−1

k (1− t; 0) | Z̃
)

= P
(
‖μ̃i� + Z̃γ̃i + η̃i�‖22 ≥ χ−1

k (1− t; 0) | Z̃
)

= P

(∥∥∥ μ̃i� + Z̃γ̃i

(ση̃,ii)1/2
+

η̃i�
(ση̃,ii)1/2

∥∥∥2

2
≥ χ−1

k (1− t; 0)

ση̃,ii

∣∣∣ Z̃)
= 1− χk

(χ−1
k (1− t; 0)

ση̃,ii
;λ1i

)
, (29)
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where λ1i = ‖μ̃i� + Z̃γ̃i‖22/ση̃,ii. From (29), the goal is to show that

R(t)/m−
m∑
i=1

P
(
Pi ≤ t | Z̃

)
/m

a.s.−→ 0. (30)

We first show a weaker version of (30), that is,

m∑
i=1

I(Pi ≤ t | Z̃)/m−
m∑
i=1

P(Pi ≤ t | Z̃)/m a.s.−→ 0. (31)

As discussed in Section 2.1, the conditional distribution P(Pi ≤ t | Z̃) depends
on m. Hence, we write xi,m = I(Pi ≤ t | Z̃) − P(Pi ≤ t | Z̃). By Lemma 1, the
conclusion (31) holds if we can verify the three conditions of Lemma 1. The first
condition is trivial as xi,m ≤ 1 a.s. To verify the second condition, it suffices to
show that

am = E{ 1

m

∑
i≤m

xi,m}2 = O(m−δ), for some δ > 0. (32)

Starting from (32), we note that

E{ 1

m

∑
i≤m

xi,m}2

= var
(
m−1

m∑
i=1

I(Pi ≤ t | Z̃)
)

= m−2
m∑
i=1

var
(
I(Pi ≤ t | Z̃)

)
+m−2

∑ ∑
i �=i∗

cov
(
I(Pi ≤ t | Z̃), I(Pi∗ ≤ t | Z̃)

)
. (33)

The first term in (33) is Op(m
−1) due to the fact that var

(
I(Pi ≤ t | Z̃)

)
≤ 1

4 .

For the second term, the covariance is given by

P
(
Pi ≤ t, Pi∗ ≤ t | Z̃

)
− P

(
Pi ≤ t | Z̃

)
P

(
Pi∗ ≤ t | Z̃

)
= P

(
‖μ̃i� + Z̃γ̃i + η̃i�‖22 ≥ χ−1

k (1− t; 0),

‖μ̃i∗� + Z̃γ̃i∗ + η̃i∗�‖22 ≥ χ−1
k (1− t; 0)

∣∣∣ Z̃)
−

{
1− χk

(χ−1
k (1− t; 0)

ση̃,ii
;λ1i

)}{
1− χk

(χ−1
k (1− t; 0)

ση̃,i∗i∗
;λ1i∗

)}
.

Without loss of generality, we assume ρη̃,ii∗ > 0, while the calculation is similar
for ρη̃,ii∗ ≤ 0. By definition,

{
(η̃i�/(ση̃,ii)

1/2, η̃i∗�/(ση̃,i∗i∗)
1/2)�, � = 1, . . . , k

}
are independent and each follows a bivariate normal distribution with mean 0
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and covariance matrix Σii∗ = (σi′ j′ )2×2 with σ11 = σ22 = 1, σ12 = σ21 = ρη̃,ii∗ .
Consequently, we decompose η̃i� and η̃i∗� as

η̃i�/(ση̃,ii)
1/2 = (ρη̃,ii∗)

1/2c+ (1− ρη̃,ii∗)
1/2u and

η̃i∗�/(ση̃,i∗i∗)
1/2 = (ρη̃,ii∗)

1/2c+ (1− ρη̃,ii∗)
1/2v,

where u = (u1, . . . , uk)
�, v = (v1, . . . , vk)

�, and c = (c1, . . . , ck)
�. In particu-

lar, {u�, v�, c�}k�=1 are mutually independent standard normal random variables.
Then, the first term of the (i, i∗)-th covariance can be expressed in terms of
{u,v, c} as,

P
(
‖μ̃i� + Z̃γ̃i + η̃i�‖22 ≥ χ−1

k (1− t; 0),

‖μ̃i∗� + Z̃γ̃i∗ + η̃i∗�‖22 ≥ χ−1
k (1− t; 0)

∣∣∣ Z̃)
=P

(∥∥∥ μ̃i� + Z̃γ̃i + (ση̃,ii)
1/2(ρη̃,ii∗)

1/2c

(ση̃,ii)1/2(1− ρη̃,ii∗)1/2
+ u

∥∥∥2

2
≥ χ−1

k (1− t; 0)

ση̃,ii(1− ρη̃,ii∗)
,

∥∥∥ μ̃i∗� + Z̃γ̃i∗ + (ση̃,i∗i∗)
1/2(ρη̃,ii∗)

1/2c

(ση̃,i∗i∗)1/2(1− ρη̃,ii∗)1/2
+ v

∥∥∥2

2
≥ χ−1

k (1− t; 0)

ση̃,i∗i∗(1− ρη̃,ii∗)

∣∣∣ Z̃)
=

∫
P

(∥∥∥ μ̃i� + Z̃γ̃i + (ση̃,ii)
1/2(ρη̃,ii∗)

1/2c

(ση̃,ii)1/2(1− ρη̃,ii∗)1/2
+ u

∥∥∥2

2
≥ χ−1

k (1− t; 0)

ση̃,ii(1− ρη̃,ii∗)
,

∥∥∥ μ̃i∗� + Z̃γ̃i∗ + (ση̃,i∗i∗)
1/2(ρη̃,ii∗)

1/2c

(ση̃,i∗i∗)1/2(1− ρη̃,ii∗)1/2
+ v

∥∥∥2

2
≥ χ−1

k (1− t; 0)

ση̃,i∗i∗(1− ρη̃,ii∗)

∣∣∣ Z̃, c)
φ(c)dc

=

∫ {
1− χk

( χ−1
k (1− t; 0)

ση̃,ii(1− ρη̃,ii∗)
;λ

′

1i

)}{
1− χk

( χ−1
k (1− t; 0)

ση̃,i∗i∗(1− ρη̃,ii∗)
;λ

′

1i∗

)}
φ(c)dc,

(34)

where

φ(c)dc =

k∏
�=1

φ(c�)dc1 . . . dck,

λ
′

1i = ‖(μ̃i� + Z̃γ̃i)/(ση̃,ii)
1/2 + (ρη̃,ii∗)

1/2c‖22/(1− ρη̃,ii∗),

λ
′

1i∗ = ‖(μ̃i∗� + Z̃γ̃i∗)/(ση̃,i∗i∗)
1/2 + (ρη̃,ii∗)

1/2c‖22/(1− ρη̃,ii∗).

For notational simplicity, we set q=(ρη̃,ii∗)
1/2, Gi(q)=

χ−1
k (1−t;0)

ση̃,ii(1−ρη̃,ii∗ )
, λi(q)=λ

′

1i,

and denote by fk(t;λ) the density function of χk(t;λ). By assumption (3) and
Cauchy-Schwarz inequality,

∑
i �=i∗ |ρη̃,ii∗ |1/2

m(m− 1)
≤

{
∑ ∑
i �=i∗

|ρη̃,ii∗ |}1/2{
∑ ∑
i �=i∗

1}1/2

m(m− 1)
= O(m−δ/2) → 0. (35)

Denote by A and Ac the set of indices of (i, i∗) in
{
(i, i∗); i �= i∗

}
such that

ρη̃,ii∗ → 0 and its complement, respectively. By (35), #{Ac}/{m(m− 1)} =
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O(m−δ/2) with # being the counting operator. For (i, i∗) ∈ A, Gi(q) → Gi(0) =
χ−1

k (1−t;0)

ση̃,ii
and λi(q) → λ1i. For each non-central chi-squared distribution func-

tion χk(·; ·) appeared in (34) and (i, i∗) ∈ A, we apply Taylor expansion with
respect to q, that is,

χk

( χ−1
k (1− t; 0)

ση̃,ii(1− ρη̃,ii∗)
;λ

′

1i

)
Δ
= χk

(
Gi((ρη̃,ii∗)

1/2);λi((ρη̃,ii∗)
1/2)

)
= χk(Gi(q);λi(q))

= χk(Gi(0);λi(0))

+
{∂χk(Gi(q);λi(q))

∂Gi

∂Gi(q)

∂q
+

∂χk(Gi(q);λi(q))

∂λi

∂λi(q)

∂q

}∣∣∣
q=0

q

+
1

2

[
∂2χk(Gi(q);λi(q))

∂G2
i

{∂Gi(q)

∂q

}2

+ 2
∂2χk(Gi(q);λi(q))

∂Gi∂λi

∂Gi(q)

∂q

∂λi(q)

∂q

+
∂2χk(Gi(q);λi(q))

∂λ2
i

{∂λi(q)

∂q

}2

+
∂χk(Gi(q);λi(q))

∂Gi

∂2Gi(q)

∂q2

+
∂χk(Gi(q);λi(q))

∂λi

∂2λi(q)

∂q2

]∣∣∣
q=0

q2 +R(|q|3),

where

∂χk(Gi(q);λi(q))

∂Gi
= fk(Gi(q);λi(q)),

∂χk(Gi(q);λi(q))

∂λi
=

1

2
χk+2(Gi(q);λi(q))−

1

2
χk(Gi(q);λi(q)),

∂2χk(Gi(q);λi(q))

∂Gi∂λi
=

1

2
fk+2(Gi(q);λi(q))−

1

2
fk(Gi(q);λi(q)),

∂2χk(Gi(q);λi(q))

∂G2
i

=
1

2
fk−2(Gi(q);λi(q))−

1

2
fk(Gi(q);λi(q)),

∂2χk(Gi(q);λi(q))

∂λ2
i

=
1

4
χk+4(Gi(q);λi(q))−

1

2
χk+2(Gi(q);λi(q))

+
1

4
χk(Gi(q);λi(q)),

∂Gi(q)

∂q
=

χ−1
k (1− t; 0)

ση̃,ii
× 2q

(1− q2)2
,

∂2Gi(q)

∂q2
=

χ−1
k (1− t; 0)

ση̃,ii
×

{ 2

(1− q2)2
+

8q2

(1− q2)3

}
,

∂λi(q)

∂q
=

2

1− q2
× c�{(μ̃i� + Z̃γ̃i)/(ση̃,ii)

1/2 + cq}

+
2q

(1− q2)2
× ‖(μ̃i� + Z̃γ̃i)/(ση̃,ii)

1/2 + cq‖22,

∂2λi(q)

∂q2
=

2

1− q2
× ‖c‖22

+
8q

(1− q2)2
× c�{(μ̃i� + Z̃γ̃i)/(ση̃,ii)

1/2 + cq}

+
{ 2

(1− q2)2
+

8q2

(1− q2)3

}
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×‖(μ̃i� + Z̃γ̃i)/(ση̃,ii)
1/2 + cq‖22.

Particularly, R(|q|3) = fR(w1, . . . , wk)O(|q|3) with fR(w1, . . . , wk) being a poly-
nomial function of w1, . . . , wk with the highest order as 3. Using the above for-
mulas and the fact that

∫
c�φ(c�)dc� = 0,

∫
c2�φ(c�)dc� = 1, (34) can be further

simplified as{
1− χk

(χ−1
k (1− t; 0)

ση̃,ii
;λ1i

)}{
1− χk

(χ−1
k (1− t; 0)

ση̃,i∗i∗
;λ1i∗

)}
+

[{1

2
χk+2(Gi(0);λ1i)−

1

2
χk(Gi(0);λ1i)

}
×

{1

2
χk+2(Gi∗(0);λ1i∗)−

1

2
χk(Gi∗(0);λ1i∗)

}{
4k(λ1iλ1i∗)

1/2
}]

q2

−
{
1− χk(Gi∗(0);λ1i∗)

}
×

1

2

[{1

4
χk+4(Gi(0);λ1i)−

1

2
χk+2(Gi(0);λ1i) +

1

4
χk(Gi(0);λ1i)

}
{4kλ1i}

+fk(Gi(0);λ1i){2Gi(0)}
+

{1

2
χk+2(Gi(0);λ1i)−

1

2
χk(Gi(0);λ1i)

}
{2k + 2λ1i}

]
q2

−
{
1− χk(Gi(0);λ1i)

}
×

1

2

[{1

4
χk+4(Gi∗(0);λ1i∗)−

1

2
χk+2(Gi∗(0);λ1i∗) +

1

4
χk(Gi∗(0);λ1i∗)

}
×{4kλ1i∗}+ fk(Gi∗(0);λ1i∗){2Gi∗(0)}
+

{1

2
χk+2(Gi∗(0);λ1i∗)−

1

2
χk(Gi∗(0);λ1i∗)

}
{2k + 2λ1i∗}

]
q2 +R(|q|3).

By conditions (i), (ii), and (iii), all of the terms associated with q2 are upper
bounded and the bound does not depend on m, implying that the (i, i∗)-th
covariance is O(|ρη̃,ii∗ |). As a result, (33) is bounded by

O
(
m−1 +m−2

∑∑
(i,i∗)∈A

|ρη̃,ii∗ |+#{Ac}/m2
)
= O(m−δ/2).

This completes the proof of (32), and the condition (2) is satisfied. Now we
verify that the condition (3) holds. According to Lemma 2 of [21], there exists
a sequence of integers {mp} such that

∑
p amp < ∞ and mp+1/mp → 1. By the

continuity of the noncentral chi-squared distributions, |xi,mp+s − xi,mp | can be
bounded by

O
(∣∣∣‖Z̃mp+sγ̃

mp+s
i ‖22 − ‖Z̃mp γ̃

mp

i ‖22
∣∣∣ + ∣∣∣‖σmp+s

η̃,ii ‖22 − ‖σmp

η̃,ii‖
2
2‖22

∣∣∣).
Condition (ii) implies that

lim
p→∞

sup
i≤mp

sup
s<mp+1−mp

∣∣∣‖σmp+s
η̃,ii ‖22 − ‖σmp

η̃,ii‖
2
2

∣∣∣ = 0 a.s.
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Similarly, by condition (iii), we can obtain that

lim
p→∞

sup
i≤mp

sup
s<mp+1−mp

∣∣∣‖Z̃mp+sγ̃
mp+s
i ‖22 − ‖Z̃mp γ̃

mp

i ‖22
∣∣∣ = 0 a.s.

Combining the above two results, the condition (3) holds. As a result, (31) is
verified. By a similar argument in [13], (30) also holds; this directly completes
the proof of (6). The proof of (5) is analogous, hence we omit the details here.

Now we turn to prove (7). For ease of presentation, we denote by R(t) and

V (t) as
∑m

i=1

{
1− χk(

χ−1
k (1−t;0)

ση̃,ii
;λ1i)

}
and

∑
i∈I0

{
1− χk(

χ−1
k (1−t;0)

ση̃,ii
;λ0i)

}
, re-

spectively. Then,

lim
m→∞

[
FDP(t)−

∑
i∈I0

{
1− χk(

χ−1
k (1−t;0)

ση̃,ii
;λ0i)

}
∑m

i=1

{
1− χk(

χ−1
k (1−t;0)

ση̃,ii
;λ1i)

} ]

= lim
m→∞

{V (t)

R(t)
− V (t)

R(t)

}
= lim

m→∞

{V (t)/m0}
[
{R(t)−R(t)}/m

]
+ {R(t)/m}

[
{V (t)− V (t)}/m0

]
R(t)R(t)/(mm0)

= 0, a.s.

where the last equation holds by the results (5) and (6), R(t)/m ≥ t/2, and the
fact that R(t)/m and V (t)/m0 are bounded by 1. The proof of Proposition 1 is
completed. �

Proof of Proposition 2 We first verify the conclusion in (24). Motivated

by the structure of P̂ ad
i , we write P̂ ad

i = 1 − χk(‖Ŵad
i� ‖22; 0) with Ŵad

i� �
{σ̂η,iiA(X�X)−1A�}−1/2{Aβ̂i − A(X�X)−1X�Ẑγ̂i}. By more derivations,

Ŵad
i� is expressed as

Ŵad
i� = σ

1/2
η,ii/σ̂

1/2
η,ii{ση,iiA(X�X)−1A�}−1/2{Aβ̂i −A(X�X)−1X�Zγi}

−σ̂
−1/2
η,ii P�(Ẑγ̂i − Zγi)

= σ
1/2
η,ii/σ̂

1/2
η,iiW

ad
i� − σ̂

−1/2
η,ii P�(Ẑγ̂i − Zγi). (36)

For ease of presentation, let a = σ
−1/2
η,ii /σ̂

−1/2
η,ii and b = ‖σ̂−1/2

η,ii P�(Ẑγ̂i−Zγi)‖2.
By the sufficient condition, we have a →p 1 and b →p 0 uniformly for i ∈ I. By
definition, for any ε > 0, there exist a δ > 0 and sufficiently large m and n such
that when m > m and n > n, we have P(Ω1) ≥ 1 − ε and P(Ω2) ≥ 1 − ε with
Ω1 = {ω; |a(ω)− 1| < δ} and Ω2 = {ω; |b(ω)| < δ}. Then, when m > m, n > n,
and ω ∈ Ω1 ∩ Ω2,

m−1
0

∑
i∈I0

I
(
‖Ŵad

i� ‖2 ≥
√
χk(1− t; 0)

)
≤ m−1

0

∑
i∈I0

I
(
a‖Wad

i� ‖2 + b ≥
√

χk(1− t; 0)
)
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≤ m−1
0

∑
i∈I0

I
(
(1 + δ)‖Wad

i� ‖2 + δ ≥
√
χk(1− t; 0)

)
≤ m−1

0

∑
i∈I0

I
(
‖Wad

i� ‖2 ≥
√
χk(1− t; 0)/(1 + δ)− δ/(1 + δ)

)
. (37)

Similarly, when m > m, n > n, and ω ∈ Ω1 ∩ Ω2, we have

m−1
0

∑
i∈I0

I
(
‖Ŵad

i� ‖2 ≥
√
χk(1− t; 0)

)
≥ m−1

0

∑
i∈I0

I
(
‖Wad

i� ‖2 ≥
√
χk(1− t; 0)/(1− δ) + δ/(1− δ)

)
. (38)

By letting ε → 0 and δ → 0, (37) and (38) imply that, with a probability tending
to one,

lim
m,n→∞

m−1
0

∑
i∈I0

I
(
‖Ŵad

i� ‖2 ≥
√

χk(1− t; 0)
)

= lim
m,n→∞

m−1
0

∑
i∈I0

I
(
‖Wad

i� ‖2 ≥
√

χk(1− t; 0)
)
. (39)

Thus V̂ ad(t)/m0−V ad(t)/m0 converges to zero almost surely. (25) can be derived
in a similar way as (24), hence the proof is omitted. �

Proof of Theorem 1. By decomposition, for any fixed t > 0,∣∣F̂DP
ad

λ (t)− cFDPad(t)
∣∣

=
{cV ad(t)/m}

∣∣{Rad(t)− R̂ad(t)}/m
∣∣

{Rad(t)/m}{R̂ad(t)/m}

+
{Rad(t)/m}

∣∣{mπ̂0(λ)t− cV ad(t)}/m
∣∣

{Rad(t)/m}{R̂ad(t)/m}

≤
c
∣∣{Rad(t)− R̂ad(t)}/m

∣∣ + ∣∣{mπ̂0(λ)t− cV ad(t)}/m
∣∣

{Rad(t)/m}{R̂ad(t)/m}
. (40)

From (23), Rad(t)/m ≥ t/2 almost surely when m is sufficiently large. More-

over,
∣∣{Rad(t)− R̂ad(t)}/m

∣∣ is negligible by the sufficient condition and Propo-

sition 2. Thus, to bound (40), it suffices to consider
∣∣{mπ̂0(λ)t − cV ad(t)}/m

∣∣
and R̂ad(t)/m. By (24), (25), and Proposition 2, it is straightforward to show
that

lim
m→∞

V̂ ad(t)/m = t, a.s.

lim
m→∞

R̂ad(t)/m = {π0 × t+ (1− π0)× F1(t)}. a.s.

As a result, R̂ad(t)/m ≥ t/2 as m is sufficiently large. Similarly,

π̂0(λ)t = {m− R̂ad(λ)}t/{m(1− λ)} = [1− R̂ad(λ)/m]t/(1− λ)
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converges to [π0+(1−π0){1−F1(λ)}/(1−λ)]t = cπ0t almost surely. This together
with (22) implies that

∣∣{mπ̂0(λ)t−cV ad(t)}/m
∣∣ converges to zero almost surely,

which completes the proof of Theorem 1. �

Appendix C: Consistency of the Restricted-PCA algorithm

For notational simplicity, we denote by Žj , Λ̌e, γ̌i, σ̌η,ii and Zj , Λe, γi, ση,ii the
associated estimators of Zj , Λe, γi, ση,ii based on the error matrices {Q(X) +
PP�}E�

I∗� and E�
I∗� in the Restricted-PCA algorithm, respectively.

Before proving Proposition 3, we present four useful lemmas below. Lemma 2
can be obtained directly through Bonferroni inequality. Lemma 3 consists of the
so-called Weyl’s Theorem and sin(θ) Theorem used in [14]. Hence, the proofs of
both lemmas are omitted here. The proofs of the last two lemmas involve more
tedious derivations than that in [3], [14], and [12], because we allow p and r to
grow to infinity at some polynomial rates. For completeness, we supply detailed
proofs for Lemma 4 and Lemma 5 in this Appendix.

Lemma 2. Let {χi,n}mi=1 be chi-squared distributed random variables with de-
grees of freedom n, then we should have

max
i=1,...,m

|n−1χi,n − 1| = Op(
√
log(m)/n).

Lemma 3. For any positive-semidefinite matrices M1 and M2, we have

|Λi,M1 − Λi,M2 | ≤ ‖M1 −M2‖F and

‖�i,M1
− �i,M2

‖2 ≤
√
2‖M1 −M2‖F

min{|Λi−1,M1 − Λi,M2 |, |Λi+1,M1 − Λi,M2 |}
,

where Λi,M’s and �i,M’s are the eigenvalues and eigenvectors of any positive-
semidefinite matrix M.

Lemma 4. Under conditions C1–C3, and assuming that ηij is normally dis-
tributed, we can obtain that

max
i∈I

|σ̌η,ii − ση,ii| = Op

(√
log(m)/n+ p/n+ r/

√
n
)
.

Lemma 5. Suppose conditions C1–C4 hold, and further assume that ηij is
normally distributed. Then, we can obtain that

max
i∈I

‖P�Žγ̌i − P�{Q(X) + PP�}Zγi‖2

= Op

(√
r/n

√
r +

√
r
√

log(m)
)
+Op(m

−ν
√
r).

Proof of Lemma 4 We prove the lemma in the following two steps. In the
first step, we demonstrate that maxi∈I

∣∣ση,ii − ση,ii

∣∣ = Op

{√
log(m)/n+ (r +

p)/n + r/
√
n + r2/n

}
, followed by extending the result to σ̌η,ii in the second

step.
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We first show that maxi∈I
∣∣ση,ii − ση,ii

∣∣ = Op

{√
log(m)/n + (r + p)/n +

r/
√
n + r2/n

}
. Note that ση,ii = n−1η�

i.ηi. with η� = Q(Z)Q(X)E�, where

Z and Q(Z) are analogously defined in Section 4. As a result, we have ση,ii =
n−1E�

i� Q(X)Q(Z)Q(X)Ei�, which leads to∣∣ση,ii − ση,ii

∣∣
=

∣∣n−1E�
i� Q(X)Q(Z)Q(X)Ei� − n−1η�

i�Q(X)Q(Z)Q(X)ηi�
+n−1η�

i�Q(X)Q(Z)Q(X)ηi� − ση,ii

∣∣
≤

∣∣n−1E�
i� Q(X)Q(Z)Q(X)Ei� − n−1η�

i�Q(X)Q(Z)Q(X)ηi�
∣∣

+
∣∣n−1η�

i�Q(X)Q(Z)Q(X)ηi� − ση,ii

∣∣. (41)

We then consider the above two parts separately. We first consider the second
part. Note that ηi� follows a multivariate normal distribution with mean zero
and covariance matrix ση,iiIn. As a result, η�

i�Q(X,Z)ηi�/ση,ii follows a chi-
square distribution of degree n − r − p. Thus, according to Lemma 2, we can
obtain that

max
i∈I

∣∣n−1η�
i�Q(X)Q(Z)Q(X)ηi� − ση,ii

∣∣
≤ max

i∈I

∣∣n−1η�
i�Q(X,Z)ηi� − ση,ii

∣∣
≤ max

i∈I

∣∣n−1η�
i�Q(X,Z)ηi� − (n− r − p)ση,ii/n

∣∣ + (r + p)/nmax
i∈I

ση,ii

= max
i∈I

ση,ii|n−1χn−r−p − (n− r − p)/n|+ (r + p)/nmax
i

ση,ii

= Op

(√
log(m)/n

)
+Op

(
(r + p)/n

)
.

We next consider the first part of (41). Note that

n−1E�
i� Q(X)Q(Z)Q(X)Ei�

= n−1η�
i�Q(X)Q(Z)Q(X)ηi� + 2n−1η�

i�Q(X)Q(Z)Q(X)Zγi

+n−1γ�
i Z

�Q(X)Q(Z)Q(X)Zγi. (42)

We then consider the three parts in (42) in the following two steps.
STEP I.We first consider n−1η�

i�Q(X)Q(Z)Q(X)ηi�−n−1η�
i�Q(X)Q(Z)Q(X)ηi�.

According to the results of Theorem 2 in [29] that tr{Q(Z)−Q(Z)}2 = Op(r
2/n),

we can obtain that

max
i∈I

∣∣n−1η�
i�Q(X)Q(Z)Q(X)ηi� − n−1η�

i�Q(X)Q(Z)Q(X)ηi�
∣∣

= max
i∈I

∣∣n−1η�
i�Q(X)

{
Q(Z)−Q(Z)

}
Q(X)ηi�

∣∣
≤

[
tr{Q(Z)−Q(Z)}2

]1/2
max
i∈I

n−1η�
i�Q(X)ηi� = Op(r/n

1/2),

where the last equality is due to the fact that maxi η
�
i�Q(X)ηi� = Op(n− p) by

Lemma 2.
STEP II. We next consider 2n−1η�

i�Q(X)Q(Z)Q(X)Zγi, which is less than
|2n−1η�

i�Q(Z)Zγi|. As Q(Z) is orthogonal to Z, the order of 2n−1η�
i�Q(Z)Zγi

is equivalent to that of 2n−1η�
i� {Q(Z)−Q(Z)}Zγi. By the results of Theorem



Estimation of false discovery proportion 1083

2 in [29] that tr{Q(Z)−Q(Z)}2 = Op(r
2/n), the above term is further bounded

as

max
i∈I

2n−1η�
i� {Q(Z)−Q(Z)}Zγi

≤
[
tr{Q(Z)−Q(Z)}2

]1/2 ×max
i∈I

|2n−1η�
i�Zγi|

= Op(r/
√
n)×Op(

√
log(m)/

√
n) = Op(r/n).

STEP III. We last consider n−1γ�
i Z

�Q(X)Q(Z)Q(X)Zγi. By condition C3
and the fact that tr(Z�Q(Z)Z) = Op(r

2) as demonstrated in [29], we obtain

max
i∈I

n−1γ�
i Z

�Q(X)Q(Z)Q(X)Zγi ≤ n−1 max
i∈I

‖γi‖2tr(Z�Q(Z)Z) = Op(r
2/n).

Combining all of these results above, we have completed the first step of the
proof for Lemma 4.

We next consider the second step of Lemma 4. Note that {Q(X) +PP�}E�

can be written as {Q(X)+PP�}Zγ�+{Q(X)+PP�}η�. As a result, {Q(X)+
PP�}E� also follows a latent factor structure of dimension r. Thus, by the
results in the first step of the proof, we can obtain that

max
i∈I

∣∣σ̌η,ii − ση,ii

∣∣ = Op

{√
log(m)/n+ (r + p)/n+ r/

√
n+ r2/n

}
.

This completes the proof of Lemma 4. �

Proof of Lemma 5 Similar to the proof of Lemma 4, we only need to prove
that

max
i∈I

‖P�Zγi − P�Zγi‖2 = Op

(√
r/n

√
r +

√
r
√
log(m)

)
+Op

(
m−ν

√
r
)
.

By Cauchy–Schwarz inequality, we can obtain

‖P�Zγi − P�Zγi‖2
= ‖P�Zγi − P�Zγi + P�Zγi − P�Zγi‖2
≤

√
2‖P�Zγi − P�Zγi‖2 +

√
2‖P�Zγi − P�Zγi‖2. (43)

We then consider the above two terms separately. The first term of (43) can be
bounded by

‖P�Zγi − P�Zγi‖22
= (γi − γi)

�
(
Z�PP�Z

)
(γi − γi)

≤ (γi − γi)
�

( k∑
�=1

Z�P�P�
� Z

)
(γi − γi).

Note that Z�P� are i.i.d. with mean zero and identity matrix of dimension r,
due to the fact that P�P = Ik. Hence, the trace of

∑k
�=1 Z

�P�P�
� Z is Op(r).

As a result,

max
i∈I

‖P�Zγi − P�Zγi‖2
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≤
√
rmax

i∈I
‖γi − γi‖2

=
√
rmax

i∈I
‖n−1Z

�Q(X)Zγi + n−1Z
�Q(X)ηi� − γi‖2

≤
√
r/nmax

i∈I
‖Z�Q(X)Zγi − Z�Q(X)Zγi‖2

+
√
r/nmax

i∈I
‖Z�Q(X)ηi�‖2. (44)

We consider the above two parts separately. First note that

‖Z�Q(X)Zγi − Z�Q(X)Zγi‖22
= γ�

i Z
�Q(X)(Z− Z)(Z− Z)�Q(X)Zγi

≤ ‖γi‖22 × tr
{
Z�(Z− Z)(Z− Z)�Z

}
≤ n‖γi‖22 × tr

{
(Z− Z)(Z− Z)�

}
.

Moreover, according to condition C3, we have maxi ‖γi‖22 = O(1). Consequently,
we only need to consider tr

{
(Z−Z)�(Z−Z)

}
. According to condition C4, one

can easily verify that

tr
{
(Z− Z)�(Z− Z)

}
=

∑
e≤r

‖�e − Z�e‖22 = Op(rm
−2ν).

Here, (Z�1, . . . ,Z�r) = Z. Consequently, we have

√
r/nmax

i∈I
‖Z�Q(X)Zγi − Z�Q(X)Zγi‖2 = Op

(
m−νr/

√
n
)
. (45)

We next consider the second part of (44). By Cauchy–Schwarz inequality, we
have

‖Z�Q(X)ηi�‖22 ≤ 2‖(Z− Z)�Q(X)ηi�‖22 + 2‖Z�Q(X)ηi�‖22.
The first part can be further bounded as

max
i∈I

‖(Z− Z)�Q(X)ηi�‖22
= max

i∈I
η�
i�Q(X)

(
Z− Z

)(
Z− Z

)�Q(X)ηi�

≤ tr
{
(Z− Z)(Z− Z)�

}
×max

i∈I
η�
i�Q(X)ηi�

= Op(m
−2νrn).

For the second part, similar derivations yield that

max
i∈I

‖Z�Q(X)ηi�‖22
= max

i∈I
η�
i�Q(X)ZZ�Q(X)ηi�

≤ max
i∈I

η�
i�ZZ

�ηi�

= n×max
i∈I

(Z�ηi�/
√
n)�(Z�ηi�/

√
n)

= n×max
i∈I

χi,r = Op

(
n(r +

√
r
√

log(m))
)
.
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Consequently, combining the above two results, we have

√
r/nmax

i∈I
‖Z�Q(X)ηi�‖2 = Op

(√
r/n

√
r +

√
r
√
log(m)

)
. (46)

Combining the results in (45) and (46) yields that

max
i∈I

‖P�Zγi − P�Zγi‖2 = Op

(√
r/n

√
r +

√
r
√

log(m)
)
+Op

(
m−νr/

√
n
)
.

(47)
We next consider the second term of (43). Note that

‖P�Zγi − P�Zγi‖22
= γ�

i (Z− Z)�PP�(Z− Z)γi

≤ ‖γi‖22 × λmax(PP�)× tr
{
(Z− Z)�(Z− Z)

}
= ‖γi‖22 × λmax(P�P)× tr

{
(Z− Z)�(Z− Z)

}
= ‖γi‖22 × tr

{
(Z− Z)�(Z− Z)

}
.

As a result, we can obtain that

max
i∈I

‖P�Zγi − P�Zγi‖2
≤ Op(

√
rm−ν)×max

i∈I
‖γi‖2

≤ Op(
√
rm−ν)×max

i∈I

{√
2‖γi‖2 +

√
2‖γi − γi‖2

}
= Op(

√
rm−ν). (48)

Combining these results in (47) and (48), we thus have

max
i∈I

‖P�Zγi − P�Zγi‖2 = Op

(√
r/n

√
r +

√
r
√
log(m)

)
+Op

(√
rm−ν

)
,

(49)
which completes the proof of Lemma 5. �

Proof of Proposition 3. To verify (27), based on the result of Lemma 5, it
suffices to prove that

max
i∈I

‖P�Ẑγ̂i − P�Žγ̌i‖2 = Op(bm,n).

Note that γ̂i = (Ẑ�Ẑ)−1Ẑ�Q(X)Ei� and γ̌i = (Ž�Ž)−1Ž�Q(X)Ei�. Then, for
any i ∈ I, we can have

‖P�Ẑγ̂i − P�Žγ̌i‖22
=‖P�Ẑ(Ẑ�Ẑ)−1Ẑ�Q(X)Ei� − P�Ž(Ž�Ž)−1Ž�Q(X)Ei�‖22
=‖P�{Ẑ(Ẑ�Ẑ)−1Ẑ� − Ž(Ž�Ž)−1Ž�}Q(X)Ei�‖22
=λmax(PP�)× E�

i� Q(X){Ẑ(Ẑ�Ẑ)−1Ẑ� − Ž(Ž�Ž)−1Ž�}2Q(X)Ei�
≤λmax(P�P)× ‖Ẑ(Ẑ�Ẑ)−1Ẑ� − Ž(Ž�Ž)−1Ž�‖2F × E�

i� Q(X)Ei�, (50)
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where λmax(�) represents the largest eigenvalue of any matrix therein. We first
consider E�

i� Q(X)Ei�. By Ei� = Zγi + ηi�, we have E�
i� Q(X)Ei� = η�

i�Q(X)ηi� +
2η�

i�Q(X)Zγi+γ�
i Z

�Q(X)Zγi. Note that ηi� follows a multivariate normal dis-
tribution with mean 0 and covariance matrix ση,iiIn. Thus, η

�
i�Q(X)ηi�/ση,ii

follows a chi-squared distribution with degrees of freedom n − p. By Lemma 2
and condition C2, we have maxi η

�
i�Q(X)ηi� = Op(n). In addition, by con-

dition C3 and the identification condition cov(Zj) = Ir, we can obtain that
maxi γ

�
i Z

�Q(X)Zγi ≤ nmaxi γ
�
i γi ≤ nγmax, with probability approaching

one. Combing these results, we have maxi E�
i� Q(X)Ei� = Op(n). We next con-

sider the first part of (50). By Cauchy-Schwarz inequality,

‖Ẑ(Ẑ�Ẑ)−1Ẑ� − Ž(Ž�Ž)−1Ž�‖2F
= ‖ẐẐ� − ŽŽ�‖2F /n2

= ‖ẐẐ� − ẐŽ� + ẐŽ� − ŽŽ�‖2F /n2

≤ 2‖ẐẐ� − ẐŽ�‖2F /n2 + 2‖ẐŽ� − ŽŽ�‖2F /n2

= 4‖Ẑ− Ž‖2F /n.

Furthermore, by Lemma 3, we can obtain

‖Ẑ− Ž‖F
≤

√
2r‖m−1

∗ Ê�
I∗�ÊI∗� −m−1

∗ {Q(X) + PP�}E�
I∗�EI∗�{Q(X) + PP�}‖F /Kmin,

whereKmin = min2≤e≤r−1 min{|Λ̂e−1−Λ̌e|, |Λ̂e+1−Λ̌e|}. Using Cauchy-Schwarz
inequality again,

‖m−1
∗ Ê�

I∗�ÊI∗� −m−1
∗ {Q(X) + PP�}E�

I∗�EI∗�{Q(X) + PP�}‖F
=‖m−1

∗ {Q(X) + PP�}XB�
I∗�BI∗�X�{Q(X) + PP�}

+ 2m−1
∗ {Q(X) + PP�}XB�

I∗�EI∗�{Q(X) + PP�}‖F
≤
√
2‖m−1

∗ {Q(X) + PP�}XB�
I∗�BI∗�X�{Q(X) + PP�}‖F

+
√
2‖2m−1

∗ {Q(X) + PP�}XB�
I∗�EI∗�{Q(X) + PP�}‖F

=
√
2‖m−1

∗ {X(X�X)−1A�V−1AB�
Iini∩I1�}{X(X�X)−1A�V−1AB�

I∗∩I1�}�‖F
+
√
2‖2m−1

∗ {X(X�X)−1A�V−1AB�
I∗∩I1�}EI∗∩I1�{Q(X) + PP�}‖F ,

(51)

where V = A(X�X)−1A�. We next consider the above two parts separately.
We first consider the first part,

‖m−1
∗ {X(X�X)−1A�V−1AB�

I∗∩I1�}{X(X�X)−1A�V−1AB�
I∗∩I1�}�‖F

= m−1
∗ ‖(AB�

I∗∩I1�)
�V−1(AB�

I∗∩I1�)‖F
= m−1

∗ n‖(AB�
I∗∩I1�)

�(AΣ−1
X A�)−1(AB�

I∗∩I1�)‖F
≤ m−1

∗ n‖(AΣ−1
X A�)−1/2AB�

I∗∩I1�‖2F .

The second part in (51) can be derived in a similar way as

‖m−1
∗ {X(X�X)−1A�V−1AB�

I∗∩I1�}EI∗∩I1�{Q(X) + PP�}‖2F
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=m−2
∗ tr

[
{X(X�X)−1A�V−1AB�

I∗∩I1�}EI∗∩I1�{Q(X) + PP�}E�
I∗∩I1�

{X(X�X)−1A�V−1AB�
I∗∩I1�}�

]
=m−2

∗ ntr
[
EI∗∩I1�{Q(X) + PP�}E�

I∗∩I1�(AB�
I∗∩I1�)

�(AΣ−1
X A�)−1AB�

I∗∩I1�
]

≤m−2
∗ ntr

{
EI∗∩I1�E�

I∗∩I1�(AB�
I∗∩I1�)

�(AΣ−1
X A�)−1AB�

I∗∩I1�
}

≤m−2
∗ nλmax

(
EI∗∩I1�E�

I∗∩I1�
)
× tr

{
(AB�

I∗∩I1�)
�(AΣ−1

X A�)−1AB�
I∗∩I1�

}
=m−2

∗ nλmax

(
EI∗∩I1�E�

I∗∩I1�
)
× ‖(AΣ−1

X A�)−1/2(AB�
I∗∩I1�)‖2F . (52)

One can easily verify that λmax(m
−1n−1EE�) = Op(r

−1) by condition C3 and
the identification condition cov(Zj) = Ir. Thus, (52) is further bounded by

r−1m−2
∗ n2 × Card(I∗ ∩ I1)‖(AΣ−1

X A�)−1/2(AB�
I∗∩I1�)‖2F .

As a result, (51) can be bounded by

bm,n =
√
rm−1

∗ n‖(AΣ−1
X A�)−1/2(AB�

I∗∩I1�)‖2F
+m−1

∗ n× Card(I∗ ∩ I1)1/2‖(AΣ−1
X A�)−1/2(AB�

I∗∩I1�)‖F .

We next consider Kmin. Note that |Λ̂e−1 − Λ̌e| ≥ |Λ̌e−1 − Λ̌e| − |Λ̂e−1 − Λ̌e−1|.
By Lemma 3 again,

|Λ̂e−1 − Λ̌e−1|
≤ ‖m−1

∗ Ê�
I∗�ÊI∗� −m−1

∗ {Q(X) + PP�}E�
I∗�EI∗�{Q(X) + PP�}‖F

= Op(bm,n).

If we further assume that |Λ̌e−1 − Λ̌e| ≥ dm,n for some positive constant dm,n

and e = 2, . . . , r (see Theorem 2 in [12] for details), then |Λ̌e−1− Λ̌e| ≥ dm,n, for
any e = 2, · · · , r. Consequently, with a probability approaching one, 2Kmin ≥
min2≤e≤r |Λ̂e−1 − Λ̌e| ≥ dm,n > 0. Combing these two results, we can obtain
that

max
i∈I

‖P�Ẑγ̂i − P�Žγ̌i‖2 = Op(bm,n),

which completes the proof of (27).
Now let us turn to prove (28). By Lemma 4, it suffices to show that

max
i∈I

|σ̂η,ii − σ̌η,ii| = Op(bm,n/n
1/2).

To this end, for any i ∈ I,

|σ̂η,ii − σ̌η,ii|
= |E�

i� Q(X)Q(Ẑ)Q(X)Ei� − E�
i� Q(X)Q(Ž)Q(X)Ei�|/n

= |E�
i� Q(X){Q(Ẑ)−Q(Ž)}Q(X)Ei�|/n

≤ ‖Ẑ(Ẑ�Ẑ)−1Ẑ� − Ž(Ž�Ž)−1Ž�‖F /n× E�
i� Q(X)Ei�.

The above term is essentially the same as (50), which is of the order
Op(bm,n/n

1/2). �
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Appendix D: Negative dependence of the BH type estimator

For notational simplicity, we use a similar set of notations as those defined in
Section 2 to define the p-values (Pi, i = 1, . . . ,m), the p-values threshold (t), the
true null and non-null sets (I0 and I1), their corresponding cardinality (m0 and
m1), the number of false rejections (V (t)), the total number of total rejections
(R(t)), the true FDP (FDP(t)), and so forth. According to [4] and [27], we define
the BH type estimator for the true FDP as

F̂DPλ(t) =
mπ̂0(λ)t

R(t) ∨ 1
,

where π̂0(λ) = {m − R(λ)}/{m(1 − λ)} is an estimate of π0 and λ is a tuning
parameter that λ ≥ t.

Following [24], this part shows that the BH type FDP estimator (i.e., F̂DPλ(t))
shares a negative dependence pattern when all of the p-values under the alter-
native are smaller than the fixed threshold t. Under this condition, R(t) =
m1+V (t). Then for any two replications of experiments (use subscript l = 1, 2),

the slope of two pairs of points
[
{F̂DPλ(t)l,FDP(t)l}, l = 1, 2

]
can be derived

as

slope =
F̂DPλ(t)1 − F̂DPλ(t)2
FDP(t)1 − FDP(t)2

=
mπ̂0(λ)1t/R(t)1 −mπ̂0(λ)2t/R(t)2

V (t)1/R(t)1 − V (t)2/R(t)2

=
1

1− λ

{ mt/R(t)1 −mt/R(t)2
V (t)1/R(t)1 − V (t)2/R(t)2

−R(λ)1/R(t)1 −R(λ)2/R(t)2
V (t)1/R(t)1 − V (t)2/R(t)2

t
}
. (53)

We first analyze the first term of (53). Using the fact that Rl(t) = m1 + Vl(t),
for l = 1, 2, it can be simplified as

1

1− λ
× mt/R(t)1 −mt/R(t)2

V (t)1/R(t)1 − V (t)2/R(t)2

=
mt

1− λ
× R(t)2 −R(t)1

V (t)1R(t)2 − V (t)2R(t)1

=
mt

1− λ
× V (t)2 − V (t)1

V (t)1[m1 + V (t)2]− V (t)2[m1 + V (t)1]

= − mt

(1− λ)
× 1

m1
. (54)

(54) implies that the slope of two replications for the BH procedure in [4] is
−mt/m1. By similar technique and the fact that t ≤ λ, the second term can be
decomposed as

− t

1− λ
× R(λ)1/R(t)1 −R(λ)2/R(t)2

V (t)1/R(t)1 − V (t)2/R(t)2
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= − t

1− λ
× R(λ)1/R(t)1 −R(λ)1/R(t)2

V (t)1/R(t)1 − V (t)2/R(t)2

− t

1− λ
× [R(λ)1 −R(λ)2]/R(t)2

V (t)1/R(t)1 − V (t)2/R(t)2

=
t

1− λ
× R1(λ)

m1
− t

1− λ
× R1(t)

m1
× V (λ)1 − V (λ)2

V (t)1 − V (t)2
. (55)

Combing (54) and (55), we have slope = − mt
m1(1−λ)×[1−R1(λ)/m+R1(t)/m×Δ]

with Δ = V (λ)1−V (λ)2
V (t)1−V (t)2

. We conclude that the slope is negative if Δ > −m−R1(λ)
R1(t)

.
�
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