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Introduction

The question of the Gaussianity of a phenomenon is a historical and fundamen-
tal problem in statistical literature. This type of information can be crucial in
many application problems: oceanography and waves behavior, hydrology and
climatology, agronomy, neurology and spike behavior, insurance and finance, as-
trophysics. For instance, in this latter application, during the last decade a large
number of researchers joined efforts to decide whether the Cosmic Microwave
Background (CMB) temperature is Gaussian or not.

The problem of determining whether an i.i.d random sample comes from a
Gaussian distribution has been studied extensively. In the case where the mean
and the variance of the random variable are known, one can use a classical
goodness-of-fit test. However, if these parameters need to be estimated the test of
Lillifors and a variant of the Cramer-Von Mises test, with estimated parameters,
are well adapted. These tests are no more distribution-free and depend on the
true value of the parameters. The p−values must be obtained by simulations.

The situation becomes more complicated when the sample comes from a sta-
tionary stochastic process satisfying some mixing conditions. For this type of
problem, some tests have been designed to determine whether the one dimen-
sional marginals are Gaussian. We can cite, by way of illustration: the Eps test
[12] based on the empirical characteristic function; the test built by Lobato and
Velasco [22] that uses a test of symmetry and kurtosis; the test of Subba and
Gabr [30] where the bi-spectral density is the basis for the test. A remarkable
exception is the test built in Cuesta-Albertos et al. [11]. There, the method for
constructing the test uses a one dimensional random projection, after which the
projected sample is subjected to a test that infers whether the one dimensional
marginal is Gaussian. Actually, the random projection procedure allows one to
test whether the whole distribution of the process is Gaussian or not, and hence
is not limited to marginal distributions.

In the present article, we deal with a real valued stationary isotropic random
field and we use the information given by level functionals of a single realisation
of the process to build a test of Gaussianity. The level functional is the Euler
characteristic (EC) of the excursion sets above some levels. Our first motivation
comes from the article [1] Section 7 (Model identification). In the aforementioned
paper, Adler suggests to use the EC of the excursion sets as a way to determine
what is the actual distribution of the observed process. His words can describe
better than ours the main goal “Suppose that we are given a real valued random
field f on R

3, which we observe on the unit cube [0, 1]3. Our problem is that
we are not certain what the distribution of the field is. For simplicity, we shall
assume that the choices are Gaussian and χ2, where both are assumed to be
stationary and isotropic. Then one way to choose between the two is to calculate,
from the data, an empirical Euler characteristic curve, .....” c.f. [1]. If the data
is Gaussian, then the theoretical curve is a very precise one (see Figures 1
and 9, left panels), depending on the second spectral moment of the process
and some other invariant quantities. Otherwise, if it is a χ2-process, Kramer
oscillator process or a shot noise process, a completely different curve appears
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(see Figures 6, 8 left panel, 10 left panel, and 11). In what follows, we offer a
methodology that tries to implement these ideas.

The idea of observing level functionals of a random field in order to infer
some information on the distribution of the field is not new. In [20], Lindgren
provides estimators for the second spectral moment of an univariate Gaussian
process that are based on the number of upcrossings at various levels. In [8],
Cabaña builds a test of isotropy, for a two dimensional random field, that is
based on the perimeter and the area of excursion sets. In [31], the covariance
function of a bivariate Gaussian field is inferred from the excursion sets Euler
characteristic. The same idea has inspired many precursors working in materials
science, see for instance [28], [24]. In those papers, the modelling of images or
slices of a two-phases materials (even more complicated) is achieved by using
a two dimensional stationary Gaussian field that has been thresholded at a
certain level. The observed data are the lengths of the respective two phases
along any line extracted from the image. The aim of these studies is to identify
the Gaussian covariance function. Let us also mention [2] where the authors
start from the observation of a neurological space-time signal at some moderate
levels and deduce some parameters that help in estimating the probability of
exceeding very high values. Not far from this thema, one can find the question of
exceedances or the study of extreme values, when considering high levels (see,
e.g., the seminal work of Rice [27] and [35]). We will not go further in that
direction and, at the opposite, stay with the observation of moderate levels.
In all the mentioned papers, the field that is under study is assumed to be
Gaussian. On the contrary, in the present paper, Gaussianity is not assumed
but has to be inferred without knowing the spatial correlation.

To be more precise, we aim at proving that the function that associates
u to the mean excursions EC at level u provides a kind of signature of the
distribution of the random field under study. Although a so complex information
as the knowledge of the whole distribution cannot be summarize in a single
function, our guess is that the shape of its graph could be enough to discriminate
between Gaussianity and non Gaussianity. Our main tool will be a Central
Limit Theorem for the EC of an excursion set of a stationary isotropic Gaussian
random field. This asymptotic normality takes place when the domain grows to
R

d. The result is proved in [13] with the help of a Breuer-Major Theorem [25].
We will also need some generalisations, extensions and explicit computations of
this result.

In particular, in the present work, we extend the results in [13] by showing
that the random variables

Zi
k = |Ti|−1/2 (ϕ(X,Ti, uk)− E[ϕ(X,Ti, uk)]) for i = 1, . . . ,m; k = 1, . . . , p;

with ϕ(X,Ti, uk) the EC of a standard Gaussian field X associated to the level
uk in the domain Ti and E[ϕ(X,Ti, uk)] the theoretical Gaussian mean of excur-
sions EC at level uk, are asymptotically jointly distributed as Gaussian when the
disjoint domains Ti grow up and satisfy asymptotic independence (see Propo-
sition 5 for further details). Furthermore, we provide a tractable expression of
the associated asymptotic variances (see Propositions 2 and 8).



846 E. Di Bernardino et al.

The aforementioned results are used to build a Gaussianity test for a standard
random field X. Indeed,

I. if the H0 hypothesis: “the random field X is Gaussian” holds true,

then the test statistic based on the sum of the scaled Zi
k’s follows an appropriate

chi-squared distribution. This case is for instance, illustrated by the pretty QQ-
plots alignments and high p−values of goodness-of-fit tests in Sections 4.1.3
and 5.1.

Conversely,

II. if the underlying standard random field X is not Gaussian with a given
second spectral moment (in particular if X is a χ2 or a Kramer oscillator
process),

we deliberately center again, as in the I. case, the Zi
k’s variables by using the

(wrong) theoretical Gaussian mean of excursions EC at level uk (see Equation
(6)) with the same second spectral moment.

In this case, we obtain a very small goodness-of-fit p−values for the chi-
squared distribution associated to the considered test statistics based on Zi

k’s
(see Sections 4.2.1 and 4.2.2). Then we are able to reject the H0 hypothesis
under considered alternatives. The crucial point is that the theoretical mean
of excursions EC has a very different shape in the Gaussian case with respect
to the considered alternatives: χ2-process or a Kramer oscillator process. This
evident difference allows us to easily discriminate between Gaussian and non
Gaussian setting.

As mentioned above, we consider two alternative hypothesis versus the Gaus-
sianity: χ2-process and Kramer oscillator process. These processes are chosen
for two types of reasons. First, the mean excursions EC curve for the consid-
ered processes can be analytically known. Secondly, they are typical examples of
models with specific properties: positive asymmetry or oscillation. This variety
of behaviors can cover real-life situations in the applications. For the same types
of reasons, we also consider a discontinuous shot noise process as an alternative.
However, due to the non-smoothness property of this process, we separate its
study in a specific section (see Section 6). A further discussion in this sense is
postponed to the conclusion section.

Main contributions of the paper. Under the assumption of stationarity
and isotropy for the Gaussian field X, we give a new explicit formula for the
second moment of the excursions EC (see Proposition 1 and Proposition 2).
We extend the results in [13] by showing a Central Limit Theorem for the joint
excursions EC concerned with different levels and disjoint domains (see Proposi-
tion 5). We also show finiteness of the asymptotic variance of the excursions EC
of a chi-square field (see Proposition 7). A numerically tractable formula for the
asymptotic variance in the univariate Gaussian case is given in Proposition 8.
We propose a statistical methodology to test the Gaussianity distribution and
we implement that on simulated data-sets to evaluate the finite-sample perfor-
mance of our strategy.
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Outline of the paper. Section 1 contains the general setting and the defini-
tion of the observation tool, namely the Euler characteristic of excursion sets. In
Section 2, we focus on the Gaussian hypothesis. Assuming that the field under
study X is a stationary isotropic Gaussian field, we give explicit formulas for
the first two moments of the excursions EC. We also recall the Central Limit
Theorem satisfied by the excursions EC when the domain tends to R

d (see
Theorem 4) and give an extension for the joint excursions EC concerned with
different levels and disjoint domains. It allows us to describe the situation in
term of a statistical model with observations whose distribution is known under
the null hypothesis H0. Section 3 is concerned with the study of two alternative
distributions of the observed random field: χ2 and Kramer oscillator. In both
cases, we give an explicit formula for the mean EC of excursion sets. Section 4 is
devoted to numerical illustrations for univariate processes. We generate trajec-
tory samples of stationary processes, Gaussian and non Gaussian, and compare
the theoretical mean function of the excursions EC and the empirical one. We
also build some chi-square statistics and associated goodness-of-fit tests in order
to quantify the deviation between Gaussian and non Gaussian case. At last, in
Section 5, we go further in the numerical study by considering two dimensional
random fields. We generate Gaussian and χ2 samples and compare with the
theoretical situation. All the random generations and numerical computations
are performed with R. In the last Section 6, we consider a shot noise process as a
potential alternative, giving a preliminar study that could lead to a more general
test of Gaussianity for non smooth processes. In order to keep the methodolog-
ical spirit of the present paper, we have reported the technical proofs to the
appendix section.

1. Setting

Let us start by introducing some definitions and terminology. Let X be a real
valued random field defined on Rd. We will sometimes call it a multivariate
process. We say that it is stationary if its distribution is invariant under trans-
lations in R

d and isotropic if its distribution is invariant under rotations in R
d.

Hence, the distribution of a stationary isotropic random field is invariant under
the action of the isometry group of Rd.

Assuming X is smooth enough, we write X ′ for its derivative, which is a
random vector field from R

d to R
d. We also write X ′′ for its second derivative.

For any t ∈ R
d, we denote by ∇2X(t) the 1

2d(d+1) random vector that contains
the upper coefficients of the symmetric Hessian matrix X ′′(t) and by X(t) the
d+ 1

2d(d+ 1) + 1 random vector (X ′(t),∇2X(t), X(t)).

Let us assume now that X is stationary, isotropic and centered. If almost
every realisation of X is of class C1, then the covariance matrix of X ′(0) has
the following form

E(X ′(0)X ′(0)t) = λ Id , (1)

for some λ > 0 usually named as second spectral moment.
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All over the paper, we consider a real valued random field X defined on R
d

that satisfies the following assumption.

Assumption (A). The random field X is stationary, isotropic, E(X(0)) = 0,
Var(X(0)) = 1 and almost all realisations belong to C3(Rd). For any fixed t in
R

d,

the covariance matrix of the random vector X(t) has full rank.

At last, the covariance function r is such that,

ψ(t) → 0 when ‖t‖ → +∞ and ψ ∈ L1(Rd) ,

where ψ(t) = max
(∣∣∣∂kr

∂tk
(t)
∣∣∣ ; k = (k1, . . . , kd) ∈ N

d, k1 + . . .+ kd ≤ 4
)
.

Remark. Assumption (A) could appear too strong for the task described in
this paper. Actually, we are not interesting in working under the weakest as-
sumption, our aim is rather to provide a methodology that applies for any
dimension d. Since the theoretical tools that we use are mainly derived from
[13], we chose to work with the same assumption setting as in this paper.

Notations.

• for any u ∈ R and any compact T ⊂ R
d, we call “excursion set of X above

the level u within the domain T” the following set {t ∈ T : X(t) ≥ u},
• pZ(.) denotes the probability density function of any random vector Z

(assuming it exists),
• | · | denotes without any ambiguity, either the absolute value, or the d-

dimensional Lebesgue measure.

Euler characteristic. The Euler characteristic of a compact domain K in
Rd can be heuristically defined in the case d = 1 as the number of connected
components of K, or in the case d = 2 as the number of connected components
minus the number of holes in K. In the case where K is an excursion set {t ∈
T : X(t) ≥ u}, with T a rectangle in R

d and u a real number, there exists a
rather tractable formula that uses the theory of Morse functions (see [3] Chapter
9, for instance). It states that the Euler characteristic of {t ∈ T : X(t) ≥ u} is
equal to a sum of two terms. The first one only depends on the restriction of X
to the interior of T , it is given by the quantity ϕ(X,T, u) defined in Equation
(2) below. The second one exclusively depends on the behaviour of X on the
l-dimensional faces of T , with 0 ≤ l < d. From now on, we focus on the term
ϕ(X,T, u), named as “modified Euler characteristic” in [13], and we still call it
Euler characteristic (EC). It is defined by the following,

ϕ(X,T, u) =

d∑
k=0

(−1)kμk(T, u), where (2)

μk(T, u) = #{t ∈ T̊ : X(t) ≥ u, X ′(t) = 0, index(X ′′(t)) = d− k},

with T̊ the interior of T and the “index” stands for the number of negative
eigenvalues.
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Special case 1: dimension one. When d = 1, writing [0, T ] instead of T for
a while, Equation (2) becomes

ϕ(X, [0, T ], u) = #{local maxima of X above u in (0, T )} (3)

−#{local minima of X above u in (0, T )}.

Morse’s theorem says that this quantity is linked with the number of up-crossings,

U(X, [0, T ], u) = #{t ∈ [0, T ] : X(t) = u, X ′(t) ≥ 0} ,

by the relation

ϕ(X, [0, T ], u) + 1{X(0)>u,X′(0)<0} + 1{X(T )>u,X′(T )>0}

= U(X, [0, T ], u) + 1{X(0)>u}.

Taking expectation in both expressions and using stationarity yield the next
formula that we will use in the forthcoming sections, namely Sections 3 and 4,

E[ϕ(X, [0, T ], u)] = E[U(X, [0, T ], u)]. (4)

Special case 2: dimension two. When d = 2, Equation (2) can be rewrit-
ten in the following way. With the notations introduced within this equation,
μ0(T, u) denotes the number of local maxima above u, μ2(T, u) denotes the
number of local minima above u and μ1(T, u) the number of local saddle points
above u. Hence,

ϕ(X,T, u) = #{local extrema of X above u in T̊} (5)

− #{local saddle points of X above u in T̊}.

2. Under Gaussian hypothesis

In this section, we assume that X is Gaussian and satisfies Assumption (A)
described in Section 1.

2.1. First two moments of the Euler characteristic of an excursion
set

Let T be a cube in R
d. This section is devoted to explicit formulas for the first

two moments of ϕ(X,T, u). They are based on the decomposition in (2) and on
Rice formulas for the factorial moments of μk(T, u) (see for instance [3] Chapter
11 or [5] Chapter 6).

In particular, using the stationarity of X, the expectation can be computed
as follows

E[ϕ(X,T, u)] = (−1)d
∫
T

E[1[u,∞)(X(t)) det(X ′′(t)) |X ′(t) = 0] pX′(t)(0) dt
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= (−1)d |T | (2πλ)−d/2
E[1[u,∞)(X(0)) det(X ′′(0))] ,

where we recall that λ is the second spectral moment of X, see (1). Moreover, it
is proved in [3] Lemma 11.7.1, through a regression and due to Wick’s formula,
that

E[1[u,∞)(X(0)) det(X ′′(0))] = (−1)d (2π)−1/2 λd Hd−1(u) e
−u2/2 ,

where Hk stands for the Hermite polynomial of order k. Hence, the next formula
holds

E[ϕ(X,T, u)] = |T | (2π)−(d+1)/2 λd/2 Hd−1(u) e
−u2/2 . (6)

In what follows, we will be particularly interested in the next function

C(u) = (2π)−(d+1)/2 λd/2 Hd−1(u) e
−u2/2 , (7)

that yields E[ϕ(X,T, u)] = |T |C(u). Equation (7) shows that C(u) implicitly de-
pends on X through its dimension parameter d and its second spectral moment
λ. Whenever necessary in the next sections, we will emphasize this dependence
by writing C(u) = C(u, λ).

For the second moment, a so nice formula as (6) seems to be out of reach.
Nevertheless, in the next proposition, we express the second moment as an in-
tegral that can be numerically evaluated. Let us mention the paper [32] where a
similar formula is established but concerning another modified Euler character-
istic, namely the differential topology (DT) characteristic. In this reference, the
authors also give the second moment of the excursions DT characteristic as an
integral of conditional distribution functionals and they propose a Monte-Carlo
simulation method to evaluate these functions.

We will use the following functions, defined for u ∈ R and t ∈ R
d,

g(u) = E[1[u,∞)(X(0)) | det(X ′′(0))| ]
D(t) = (2π)2d det(λ2Id − r′′(t)2)

G(u, t) = E[1[u,∞)(X(0))1[u,∞)(X(t)) det(X ′′(0)) det(X ′′(t)) |X ′(0)

= X ′(t) = 0]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8)

In the one dimensional case, explicit formulas for the expectation functions g(u)
and G(u, t) are given in the numerical Section 4 (see Proposition 8).

Proposition 1. Assume that X is Gaussian and satisfies Assumption (A).
Then, for any u ∈ R, the map t 
→ G(u, t)D(t)−1/2 is integrable on any

compact set in R
d and

E[ϕ(X,T, u)2] =

∫
Rd

|T ∩ (T − t)|G(u, t)D(t)−1/2 dt+ |T | (2πλ)−d/2 g(u) .

Proof. Integrability comes from [13] Proposition 1.1 since X ∈ C3. In order to
compute the expectation of ϕ(X,T, u)2, let us start with (2). It yields
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ϕ(X,T, u)2 =
∑

0≤k≤d

μk(T, u) +
∑

0≤k≤d

μk(T, u)(μk(T, u)− 1)

+
∑

0≤k �=l≤d

(−1)k+lμk(T, u)μl(T, u).

The expectation of the first term is equal to

E[
∑

0≤k≤d

μk(T, u)] = E[ #{t ∈ T : X(t) ≥ u, X ′(t) = 0} ]

=

∫
T

E[1[u,∞)(X(t)) | detX ′′(t)| |X ′(t) = 0] pX′(t)(0) dt

= |T | g(u) pX′(0)(0) ,

where we have used Rice Formula to get the second line and stationarity as well
as the independence between X ′(0) and (X(0), X ′′(0)) to get the third one.

For the second and third terms, we introduce, for k, l = 1, . . . , d and s, t ∈ R
d,

F k,l
u (s, t) = E[1[u,∞)(X(s)) | detX ′′(s)|1Dk

(X ′′(s))

×1[u,∞)(X(t)) | detX ′′(t)|1Dl
(X ′′(t)) |X ′(s) = X ′(t) = 0],

where Dk denotes the set of symmetric matrices having index equal to d − k.
Hence, Rice Formula for the second factorial moment allows us to obtain

E[
∑

0≤k≤d

μk(T, u)(μk(T, u)− 1)] =

∫
T×T

(
∑

0≤k≤d

F k,k
u (s, t)) pX′(s),X′(t)(0, 0) dsdt.

Given that Dk∩Dl = ∅ for k 
= l, one can adapt the proof of the second moment
Rice formula to get

E[
∑

0≤k �=l≤d

(−1)k+lμk(T, u)μl(T, u)]

=

∫
T×T

(
∑

0≤k �=l≤d

(−1)k+lF k,l
u (s, t)) pX′(s),X′(t)(0, 0) dsdt.

Let us remark that∑
0≤k≤d

F k,k
u (s, t) +

∑
0≤k �=l≤d

(−1)k+lF k,l
u (s, t) = G(u, t− s) .

It yields

E[ϕ(X,T, u)2] =

∫
Rd

|T ∩ (T − t)|G(u, t) pX′(0),X′(t)(0, 0) dt+ |T | g(u) pX′(0)(0).

It remains to compute the probability density function of (X ′(0), X ′(t)). The co-

variance matrix of this vector is equal to

(
λId −r′′(t)

−r′′(t) λId

)
and so

pX′(0),X′(t)(0, 0) = D(t)−1/2. Hence the result.
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2.2. Asymptotic variance

In the next proposition, we let the cube T grow to R
d and we give a formula

for the asymptotic variance of ϕ(X,T, u). Actually, we consider

T (N) = {Nt : t ∈ T}

the image of a fixed cube T by the dilation t 
→ Nt and we let N grow to +∞.

Proposition 2. Assume that X is Gaussian and satisfies Assumption (A) and
let T be a cube in R

d. Then for any u in R,

lim
N→+∞

Var[|T (N)|−1/2 ϕ(X,T (N), u)] = V (u) < +∞

with

V (u) =

∫
Rd

(G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) , (9)

where C(u), g(u), G(u, t), D(t) have been defined in (7) and (8).

Proof. From Proposition 1, for a fixed cube T , we have

Var[|T |−1/2ϕ(X,T, u)]

=

∫
Rd

|T ∩ (T − t)|
|T | G(u, t)D(t)−1/2 dt

+ (2πλ)−d/2 g(u)− |T |−1 (Eϕ(X,T, u))2

=

∫
Rd

|T ∩ (T − t)|
|T | (G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) ,

where we have used the relation |T |2 =
∫
Rd |T ∩ (T − t)| dt to get the last line.

Hence, the asymptotic formula can easily be derived using Lebesgue dominated
convergence theorem conditionally to the fact that t 
→ G(u, t) D(t)−1/2−C(u)2

belongs to L1(Rd). This point is the matter of the next lemma.

Lemma 3. The map t 
→ G(u, t) D(t)−1/2 − C(u)2 belongs to L1(Rd).

The proof of Lemma 3 is postponed in the appendix section.

Beyond the existence of a finite asymptotic variance as stated in the previous
proposition, ϕ(X,T (N), u) satisfies a Central Limit Theorem.

Theorem 4 (Theorem 2.6 in [13]). Assume that X is Gaussian and satisfies
Assumption (A) and let T be a cube in R

d. Then for any u in R, the next
convergence holds in distribution

|T (N)|−1/2 (ϕ(X,T (N), u)− E[ϕ(X,T (N), u)])
L−→

N→∞
N (0, V (u)) , (10)

where N (0, V (u)) stands for the centered Gaussian distribution with variance
V (u) (see Equation (9)).
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2.3. Disjoint domains and various levels

We now consider two domains T1 and T2 that are disjoint and two levels u1 and
u2 that can be equal or not.

Proposition 5. Assume that X is Gaussian and satisfies Assumption (A).
(a) Let T1 and T2 be two cubes in R

d such that |T1| = |T2| and dist(T1, T2) > 0
and let u1 and u2 belong to R. For any integer N > 0, we introduce

Z
(N)
i = |T (N)

i |−1/2 (ϕ(X,T
(N)
i , ui)− E[ϕ(X,T

(N)
i , ui)]) for i = 1, 2.

As N → +∞,
(
Z

(N)
1 , Z

(N)
2

)
converges in distribution to a centered Gaussian

vector with diagonal covariance matrix

(
V (u1) 0

0 V (u2)

)
where V (ui) is pre-

scribed by (9).
(b) Let T be a cube in R

d and let u1 and u2 belong to R. For any integer N > 0,
we introduce

ζ
(N)
i = |T (N)|−1/2 (ϕ(X,T (N), ui)− E[ϕ(X,T (N), ui)]) for i = 1, 2.

As N → +∞,
(
ζ
(N)
1 , ζ

(N)
2

)
converges in distribution to a centered Gaussian vec-

tor with covariance matrix

(
V (u1) V (u1, u2)

V (u1, u2) V (u2)

)
, where V (ui) is prescribed

by (9) and V (u1, u2) is given by

V (u1, u2) =

∫
Rd

(G(u1, u2, t)D(t)−1/2 − C(u1)C(u2)) dt

+ (2πλ)−d/2 g(max(u1, u2))

with

G(u1, u2, t) = E[1[u1,∞)(X(0))1[u2,∞)(X(t)) det(X ′′(0)) det(X ′′(t)) |X ′(0)

= X ′(t) = 0].

Comment. In [13] Theorem 2.5, the covariance V (u1, u2) is prescribed by a
series expansion.

Proof of Proposition 5. Concerning item (a), we first have to establish that the

fields Z
(N)
1 and Z

(N)
2 are asymptotically independent. Intuitively, it comes from

the fact that the distance between the cubes T
(N)
1 and T

(N)
2 goes to infinity

and the covariance function of X has a sufficient rate of decay at infinity due
to Assumption (A). Precisely, the asymptotic decorrelation is given in the next
lemma.

Lemma 6. Under assumptions of Proposition 5 and using the same notation,
it holds that

Cov
(
Z

(N)
1 , Z

(N)
2

)
→

N→+∞
0.
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Lemma 6 is proved in the appendix section. By using this result and Theo-

rem 4, we know that the covariance matrix of the random vector (Z
(N)
1 , Z

(N)
2 )

tends to

(
V (u1) 0

0 V (u2)

)
. One can use the same arguments as those in [13]

(which were inspired by the Breuer-Major Theorem of [25]) to establish that

any linear combination xZ
(N)
1 + yZ

(N)
2 has a Gaussian limit in distribution.

Item (b) is proved in [13], Theorem 2.5. The derivation of the integral form
of V (u1, u2) is obtained with similar calculations of those for the asymptotic
variance V (u) in (9).

2.4. Statistical model

We are now able to build a test for the H0 hypothesis: “the random field X is
Gaussian”.

Actually, we assume that X is observed through the family (Y i
k )1≤i≤m;1≤k≤p

where

Y i
k =

ϕ(X,Ti, uk)

|Ti|
, i = 1, . . . ,m ; k = 1, . . . , p ,

for disjoint domains T1, . . . , Tm that have the same large volume and are at
large distance one from each other, and various levels u1 ≤ . . . ≤ up. Under
these conditions, by using Proposition 5 and Equation (6), one can write the
following approximation valid under H0,

Y i
k ≈ C(uk, λ) + εik , i = 1, . . . ,m ; k = 1, . . . , p , (11)

where (εik)i,k is a mp-dimensional centered Gaussian vector with covariance

Cov(εik, ε
j
l ) = Cov(Y i

k , Y
j
l ) = δij V (uk, ul)/|Ti| . (12)

The deterministic value C(uk, λ) is given by Equation (7). It depends on the
level uk and on the standard field X only through its second spectral mo-
ment λ. For k = l, V (uk, ul) = V (uk) is given by (9), and for k 
= l, since
no explicit formula is available for V (uk, ul) in practise, it has to be esti-
mated.

Using the statistical model in (11)-(12), we will focus on two particular
cases.

(a) Diagonal case. We take m disjoint domains T1, . . . , Tm and m levels
u1, . . . , um, such that each level uk is associated to a single domain Tk. In
this setting we have m observations Y 1

1 , . . . , Y
m
m and a diagonal covariance

matrix equal to diag(V (u1)/|T1|, . . . , V (um)/|Tm|).
(b) Crossed case. We takem disjoint domains T1, . . . , Tm and p levels u1, . . . ,

up, such that different levels uk are associated to the same domain Ti. In
this setting we have mp observations (Y i

k )i,k and their covariance matrix
is given by (12).
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3. Under alternative hypothesis

3.1. χ2 hypothesis

In this section, we deal with χ2 distributions instead of Gaussian ones. Let us
fix s, a non negative integer, as the degrees of freedom.

We start with {Xi(.)}si=1, an independent sample of standard stationary
Gaussian fields on R

d that satisfy Assumption (A) of Section 1. We denote
by rX their covariance function and recall that rX(0) = 1. Consider now the
following stationary fields

χ2
s(·) =

s∑
i=1

(Xi(·))2 and Z(s)(·) = 1√
2s

(

s∑
i=1

(Xi(·))2 − s) .

Note that for any t ∈ R
d, χ2

s(t) is a chi-square random variable with s degrees
of freedom. One get readily that

E[Z(s)(0)] = 0, Var[Z(s)(0)] = 1, E[Z(s)(t)Z(s)(0)] = rX(t)2.

Therefore, Z(s) also satisfies Assumption (A). Moreover, its second spectral
moment is equal to λ with λ = −((rX)2)′′(0) = −2r′′X(0).

We are now interested in the expectation of the Euler characteristic of

{t ∈ T : Z(s)(t) ≥ u} = {t ∈ T : χ2
s(t) ≥ s+ u

√
2s} ,

for a fixed cube T ⊂ R
d and a fixed level u in R. A formula for the mean EC

of excursion sets of χ2 fields is given in [34], Theorem 3.5 (see also Theorem
15.10.1 in [3]). It applies in our context, although we have to handle carefully
with the second spectral moment of the Xi’s, which is equal to λ/2. It yields

E[ϕ(Z(s), T, u)] (13)

= |T |
(
λ

π

)d/2
e−(s+u

√
2s)/2 (s+ u

√
2s)(s−d)/2

2(s−2+2d)/2Γ(s/2)

× Pd,s(s+ u
√
2s)1[0,∞)(s+ u

√
2s) ,

where Pd,s(·) is a polynomial of degree d−1 with integer coefficients (see Section
3.3 in [34]). In particular, we stress that P1,s(u) = 1 and P2,s(u) = u− s+ 1.

Let us recall that, in dimension one, the mean Euler characteristic of the
excursion above the level u is equal to the mean number of upcrossings at level
u, see Equation (4). With this point of view, Formula (13) can also be found
in [29] for instance. Next proposition is concerned with the second moment in
dimension one, in the same spirit as Proposition 2.

Proposition 7. Let d = 1. Let us assume that the X ′
is are one dimensional

i.i.d. Gaussian processes that satisfy Assumption (A) for i = 1, . . . , s.
Then, for any u in R and T in [0,+∞), ϕ(Z(s), [0, T ], u) admits a finite

second moment.
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Morever, there exists vs(u) ∈ [0,+∞) such that

lim
T→+∞

1

T
Var[ϕ(Z(s), [0, T ], u)] = vs(u) .

The proof of Proposition 7 can be found in the appendix section.

3.2. Kramer oscillator hypothesis

We work in dimension d = 1. Let us consider the following system of stochastic
differential equations, well known as Kramer oscillator system,

dQ(t) = P (t)dt,

dP (t) = σdW (t)− (cP (t) + V ′(Q(t))dt,

}
(14)

where V (q) = a0q
4 − a1q

2 for positive constants a0 and a1, σ and c are also
positive constants, and W is a Brownian motion. The asymptotic properties of
such a system have been studied for instance in [36]. Besides, it is well known
that the Markov process (Q,P ) has an invariant measure μ that can be written
(up to a numerical constant factor) as

dμ(p, q) = exp

(
− 2c

σ2
(
p2

2
+ V (q))

)
dp dq.

From now on, we assume that (Q(0), P (0))’s distribution is proportional to μ, so
that (Q,P ) is stationary. Here, we are interested in the process Q. It is station-
ary, centered, but certainly not Gaussian since its distribution is proportional
to exp

(
− 2c

σ2V (q)
)
dq. Nevertheless, the distribution of its derivative process,

Q′ = P , is actually Gaussian with zero mean and variance equal to σ2

2c . An
application of Rice formula gives the mean number of upcrossings of Q in [0, T ]
at any level u and hence, using (4), we get

E[ϕ(Q, [0, T ], u)] = E[U(Q, [0, T ], u)]

= T

(
1√

2π(σ2/2c)

∫ ∞

0

p exp−(
c

σ2
p2)dp

)
pQ(u)

=
T σ

2
√
πc

pQ(u) with pQ(u) =
exp(− 2c

σ2V (u))∫
R
exp(− 2c

σ2V (q))dq
. (15)

Moreover, let us remark that a suitable choice of the parameters σ, c, a0, a1
allows us to get Var(Q(0)) = 1 and Var(Q′(0)) = λ, so that Q satisfies the
same moments constraints as the generic process X in Section 1. Actually, it is

sufficient to prescribe σ2

2c = λ and to solve the following non linear equation∫
R

exp
(
− 2c

σ2
(a0q

4 − a1q
2)
)
dq =

∫
R

q2 exp
(
− (

2c

σ2
(a0q

4 − a1q
2)
)
dq. (16)
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4. Univariate numerical illustrations

In this section, we focus on the one dimensional case and hence only deal with
univariate processes.

Both for Gaussian and alternative distributions, we first compare the the-
oretical formulas for the moments of excursions EC with the empirical ones,
obtained by Monte Carlo simulations. Secondly, we perform the test statistics
and calculate associated goodness-of-fit p−values. A graphical illustration of our
test is also provided by drawing QQ-plots.

4.1. Gaussian process

4.1.1. First and second moments: E[ϕ(X,T, u)] and V (u)

We rewrite Equations (6) and (9) of Section 2 in the case d = 1 under H0
hypothesis, i.e. when X is a stationary isotropic standard Gaussian process
with covariance function r and second spectral moment λ = −r′′(0):

E[ϕ(X,T, u)] = |T |C(u, λ) with C(u, λ) = (2π)−1 λ1/2 e−u2/2 , (17)

and Var[ϕ(X,T, u)] ∼ |T |V (u) as |T | → +∞, with

V (u) =

∫
R

(G(u, t)D(t)−1/2 − C(u, λ)2) dt+ (2πλ)−1/2 g(u) , (18)

where D(t) = (2π)2 (λ2 − r′′(t)2) and g(u), G(u, t) are given by (8). In the one
dimensional case, it yields

g(u) = E[1[u,∞)(X(0)) |X ′′(0)| ]
G(u, t) = E[1[u,∞)(X(0))1[u,∞)(X(t))X ′′(0)X ′′(t) |X ′(0) = X ′(t) = 0].

Our first task is now to provide formulas for g(u) and G(u, t) that can be numer-
ically evaluated. They will obviously include Gaussian integrals and, therefore,
we need to describe the Gaussian distributions that are involved.

On the one hand, introducing γ = r(4)(0), the covariance matrix of (X(0),

X ′′(0)) is

(
1 −λ
−λ γ

)
.

On the other hand, the conditional distribution

L(X(0), X(t), X ′′(0), X ′′(t) | X ′(0) = X ′(t) = 0)

is a 4-dimensional centered Gaussian distribution with covariance matrix given
by

Γ(t) = C11(t)− C12(t)C22(t)
−1C12(t)

T ,

where C11(t) is the covariance matrix of the vector (X(0), X(t), X ′′(0), X ′′(t)),
C22(t) is the covariance matrix of the vector (X ′(0), X ′(t)) and C12(t) is the
matrix of the covariances between those two vectors.
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We still need some extra notations:
• φ denotes the standard Gaussian density, Φ the standard Gaussian distribu-
tion, and Φ(·) = 1− Φ(·);
• for any (u, α,m) ∈ R

3, we introduce⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(0)(u, α,m) =

∫ ∞

u

Φ(αx+m)φ(x)dx ;

Q(1)(u, α,m) = −
∫ ∞

u

φ(αx+m)φ′(x)dx ;

Q(2)(u, α,m) = −
∫ ∞

u

φ′(αx+m)φ(x)dx ;

Q(3)(u, α,m) =

∫ ∞

u

Φ(αx+m)φ′′(x)dx.

In Proposition 8 below, we finally give explicit formulas for the functions g
and G. They will be useful to give a numerical evaluation of V (u) in (18) for
various values of u.

Proposition 8. Let X be a Gaussian process that satisfies Assumption (A).

1. For any u in R,

g(u) = λφ(u)

(
2Φ(

λu

(γ − λ2)1/2
)− 1

)
+

(
2γ

π

)1/2

Φ

((
γ

(γ − λ2)

)1/2

u

)
.

2. Let u ∈ R and t ∈ R be fixed. We denote by (lij)1≤i≥j≤4 the coefficients
of any lower triangular matrix L(t) such that L(t)L(t)T = Γ(t). Then

G(u, t) = (l41l31 + l42l32 + l43l33)Q
(0)

(
u

l11
,− l21

l22
,
u

l22

)
+(l42l31 + l41l32)Q

(1)

(
u

l11
,− l21

l22
,
u

l22

)
+l42l32 Q

(2)

(
u

l11
,− l21

l22
,
u

l22

)
+ l41l31 Q

(3)

(
u

l11
,− l21

l22
,
u

l22

)
.

The proof of this proposition is postponed in the appendix section.

In order to illustrate (17) and (18), we generate a 300 Monte-Carlo sample

of a stationary standard Gaussian process with covariance function r(t) = e−t2 .
Note that it implies the second spectral moment λ = 2. By using the Cholesky
function chol in R programm we are able to numerically evaluate L(t) matrix, for
all t. These quantities are necessary to build g, G and numerically approximate
the integral that gives the asymptotic variance V (u) (see Equation (18)). In
order to evaluate ϕ(X,T, u) on each realisation of X, we use Equation (3) for
various values of u. Comparison between theoretical formulas and empirical
counterparts are shown in Figure 1.
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Fig 1. Left: Theoretical u �→ E[ϕ(X,T, u)] from Equation (17) for |T | = 200 (full line). We

also display, for different levels u, the empirical counterpart Ê[ϕ(X,T, u)] (red dots) based
on 300 Monte Carlo simulations. We also display the associated empirical intervals. The
map u �→ |T |C(u, λ̂) from Equation (17), by using the estimated spectral moment λ̂ as in
Section 4.1.2, is represented in dashed line. Right: Theoretical u �→ V (u) from Equation (18)
for various values of u (black triangles) and empirical variance of |T |−1/2 ϕ(X,T, u) (red
dots) based on 300 Monte Carlo simulations with |T | = 200 and the same values of u. X(·)
is a Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance

function r(t) = e−t2 . In this case λ = 2.

4.1.2. Estimation of the second spectral moment

It has been already quoted that the second spectral moment of X, denoted by
λ, plays an important role in Equation (17). Actually, all the influence of X in
E[ϕ(X,T, u)] is summarised through this parameter. From our statistical point
of view, since we aim at inferring the distribution of X from observations of the
excursions of X, parameter λ is unknown a priori. It has to be estimated from
the observed level functionals X.
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We estimate γ = λ1/2 by using an unbiased estimator introduced by Lingren
[20] for stationary zero-mean Gaussian processes. It is based on p different levels
u1 < u2 < . . . < up by the following prescription,

γ̂ =

p∑
k=1

ckγ̂uk
, with γ̂uk

= 2π T−1 eu
2
k/2 ϕ(X, [0, T ], uk) . (19)

Actually, in the paper of Lingren, the number of up-crossings of level uk in the
interval [0, T ], namely U(X, [0, T ], uk), is used instead of ϕ(X, [0, T ], uk) (recall
the analogy described in Section 1). As a general rule, considering

p = 3 , (u1, u2, u3) = (−u, 0, u), with u =
2

3

√
V ar(X(t)) , c1 = c2 = c3 =

1

3

seems to be an acceptable choice (see discussion in [20]). In this case λ̂1/2 =
γ̂ = 1

3 (γ̂−u + γ̂0 + γ̂−u). An illustration of this estimation procedure is given in

Figure 2. This estimation of λ1/2 is also used in Figure 1 (left), dashed line.

Fig 2. Boxplot, based on 300 Monte Carlo simulations, of the ratio between theoretical value
λ1/2 and estimated value γ̂ given by (19). X(·) is a Gaussian univariate process (d = 1)

with E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 . In this case λ = 2.
We choose p = 3, c1 = c2 = c3 = 1

3
and u = (−2/3, 0, 2/3).

The same estimation strategy could be developed in the alternative hypoth-
esis framework as soon as we have at our disposal a closed formula linking the
mean EC with the second spectral moment (see for instance Equation (21) in
the univariate chi-square case).

4.1.3. Chi-square statistics

In the following we will consider particular sub-cases of the two cases presented
in Section 2.4, diagonal case (a) and crossed case (b). In particular, we focus on
the four next models.
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(a) Diagonal case. Each level uk is associated to a single domain Tk. We
have m observations Y 1

1 , . . . , Y
m
m in the statistical model (11).

(a.1) Case with same level u, i.e. u1 = . . . = um = u, and m disjoint
domains T1, . . . , Tm.

(a.2) Case with different levels u1 < . . . < um and m disjoint domains
T1, . . . , Tm.

(b) Crossed case. Different levels uk can be associated to the same domain
Ti. We have mp observations (Y i

k )1≤i≤m,1≤k≤p in (11).

(b.1) Case with one single domain T (m = 1) and p different levels u1 <
. . . < up.

(b.2) Case with m disjoint domains T1, . . . , Tm and p different levels u1 <
. . . < up.

We will now associate chi-square statistics with each of the four aforemen-
tioned models. For the diagonal case (a.1), we consider

Fa1 : =

m∑
i=1

(
ϕ(X,Ti, u)− E[ϕ(X,Ti, u)]√

|Ti|V (u)

)2

F̃a1 : =

m∑
i=1

⎛⎝ϕ(X,Ti, u)− Ê[ϕ(X,Ti, u)]√
V̂ ar(ϕ(X,Ti, u))

⎞⎠2

where E[ϕ(X,Ti, u)] = |Ti|C(u, λ) is given by (17) and V (u) is given by (18).

Furthermore, Ê and V̂ ar in F̃a1 are respectively the empirical mean and the
empirical variance on considered Monte-Carlo sample generations.

Under H0 hypothesis, a consequence of (11)-(12) is that both random vari-

ables Fa1 and F̃a1 are approximately χ2
m distributed, i.e. central chi-square with

m degrees of freedom. We evaluate Fa1 and F̃a1 on 300 Monte Carlo simulations.
We choose m = 3 and u = 1.2. The QQ-plot comparison between the obtained
empirical quantiles with the theoretical quantiles of a centered χ2

m distribution
is gathered in Figure 3 (first and second panels).

Consider now the diagonal case (a.2). Let

Fa2 : =

m∑
i=1

(
ϕ(X,Ti, ui)− E[ϕ(X,Ti, ui)]√

|Ti|V (ui)

)2

F̃a2 : =

m∑
i=1

⎛⎝ϕ(X,Ti, ui)− Ê[ϕ(X,Ti, ui)]√
V̂ ar(ϕ(X,Ti, ui))

⎞⎠2

where Ê and V̂ ar are respectively the empirical mean and the empirical variance
on considered Monte Carlo sample generations. By using again the statistical
model in (11)-(12), both Fa2 and F̃a2 are approximately χ2

m distributed. An
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Fig 3. QQ-plot based on 300 Monte Carlo simulations. First and second panels: quantiles
of Fa1, F̃a1 versus quantiles of the χ2

m distribution for m = 3 disjoint domains T1, T2, T3

with |Ti| = 200 and a single level u = 1.2. Third and fourth panels: quantiles of Fa2, F̃a2

versus quantiles of the χ2
m distribution for m = 3 disjoint domains T1, T2, T3 with |Ti| = 200

and different levels u1 = −1.2, u2 = 0, u3 = 1.2. X(·) is a Gaussian univariate process

(d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 with λ = 2.
See associated goodness-of-fit test p−values in Table 1.

illustration is presented in Figure 3 (third and fourth panels), by choosing 300
Monte Carlo simulations, m = 3, |Ti| = 200 and different levels u1 = −1.2, u2 =
0, u3 = 1.2. Furthermore, in Table 1 we display the goodness-of-fit test p−values
for Fa1, F̃a1, Fa2 and F̃a2 in Figure 3. Obtained p−values allow us to statistically
accept the χ2

m distribution for these test statistics. Moreover, we highlight how
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Table 1

Goodness-of-fit test p−values associated to test statistics Fa1, F̃a1, Fa2 and F̃a2 in
Figure 3. The considered process X(·) is a Gaussian univariate process (d = 1) with

E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 .

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

Fa1 0.7162 0.7519

F̃a1 0.6379 0.7585

Fa2 0.8933 0.9576

F̃a2 0.7518 0.7731

p−values increase when one evaluates the EC curve for several levels ui (see Fa2

and F̃a2 cases).
For the crossed case (b.1), let us now consider different levels u1 < . . . < up

and one single domain T , i.e. m = 1. Let us define

Fb1 := ||Λ−1(Z− E[Z])||2, F̃b1 := ||Λ̂−1(Z− Ê[Z])||2,

where Z is the p-dimensional Gaussian vector given by

Z =

(
ϕ(X,T, uk)

|T |1/2

)
1≤k≤p

,

Ê is the empirical mean on the Monte-Carlo simulations and the matrices Λ and
Λ̂ are defined below.

Let Γ = (V (uk, ul))1≤kl,≤p be the (theoretical) covariance matrix of Z and

let Λ stand for any square root of Γ. Similarly, let Γ̂ be the empirical covariance
matrix of Z evaluated on the Monte-Carlo sample generations, and let Λ̂ be
any of its square root matrix. Hence, Fb1 and F̃b1 are both approximately χ2

mp

distributed, with m = 1. An illustration of the behaviour of F̃b1 is presented
in Figure 4 (first panel), by choosing 300 Monte-Carlo simulations, m = 1,
|T | = 200 and p = 3 different levels u1 = −1.5, u2 = 0, u3 = 1.5.

Consider now the crossed case (b.2). In this setting we have m disjoint
domains T1, . . . , Tm and p different levels u1 < . . . < up. Let

Fb2 :=

m∑
i=1

||Λ−1(Zi − E[Zi])||2, F̃b2 :=

m∑
i=1

||Λ̂(i)
−1(Zi − Ê[Zi])||2,

where for any i ∈ {1, . . . ,m}, Zi is the p-dimensional Gaussian vector given by

Zi =

(
ϕ(X,Ti, uk)

|Ti|1/2

)
1≤k≤p

and Ê is the empirical mean on the Monte-Carlo simulations. Let Γ =
(V (uk, ul))1≤kl,≤p be the (theoretical) covariance matrix of Zi. Let Λ stand
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for any square root of Γ. Similarly, let Γ̂(i) be the empirical covariance matrix

of Zi evaluated on the Monte-Carlo sample generations, and let Λ̂(i) be any of

its square root matrix. Hence, ||Λ−1(Zi − E[Zi])||2 and ||Λ̂(i)
−1(Zi − Ê[Zi])||2

are both approximately χ2
p distributed.

Moreover, since for 1 ≤ i 
= j ≤ m, the Gaussian vectors Zi and Zj are
independent, Fb2 and F̃b2 are still centered χ2 distributed with now mp degrees
of freedom.

An illustration of the behaviour of F̃b2 is presented in Figure 4 (second panel),
by choosing 300 Monte Carlo simulations,m = 3 disjoint domains T1, T2, T3 with
|Ti| = 200 and p = 3 different levels u1 = −1.5, u2 = 0, u3 = 1.5. Furthermore, in

Table 2 we display the goodness-of-fit test p−values for F̃b1 and F̃b2 in Figure 4.
Obtained p−values allow us to statistically accept the chi-squared distribution
for these test statistics.

Fig 4. QQ-plot based on 300 Monte Carlo simulations. First panel: quantiles of F̃b1 versus
quantiles of the χ2

p distribution for m = 1, with |T | = 200 and p = 3 different levels u1 =

−1.5, u2 = 0, u3 = 1.5. Second panel: quantiles of F̃b2 versus quantiles of the χ2
mp distribution

for m = 3 disjoint domains T1, T2, T3 with |Ti| = 200 and p = 3 different levels u1 =
−1.5, u2 = 0, u3 = 1.5. X(·) is a Gaussian univariate process (d = 1) with E(X(0)) = 0,

Var(X(0)) = 1 and covariance function r(t) = e−t2 with λ = 2. See associated goodness-of-fit
test p−values in Table 2.

Table 2

Goodness-of-fit test p−values associated to test statistics F̃b1 and F̃b2 in Figure 4. The
considered process X(·) is a Gaussian univariate process (d = 1) with E(X(0)) = 0,

Var(X(0)) = 1 and covariance function r(t) = e−t2 .

GOF test p−values for χ2
mp Cramér-von Mises test Anderson-Darling test

F̃b1 (m = 1, p = 3) 0.7725 0.8548

F̃b2 (m = 3, p = 3) 0.9745 0.9886
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4.2. Alternative processes

In this section, we simulate trajectories of an alternative standard process Z.
We compare it with a standard Gaussian process X having the same second
spectral moment.

Similarly to Section 4.1.3, we now consider a test statistic. For sake of brevity,
we only focus on the diagonal case (a.1) with a unique level u and m disjoint
domains T1, . . . , Tm, and we introduce

D :=
m∑
i=1

⎛⎝ϕ(Z, Ti, u)− E[ϕ(X,Ti, u)]√
V̂ ar(ϕ(Z, Ti, ui))

⎞⎠2

, (20)

where E[ϕ(X,Ti, u)] is the mean Euler characteristic of the excursions ofX given

by (6) with d = 1 and V̂ ar(ϕ(Z, Ti, ui)) is the empirical variance on considered
Monte-Carlo sample generations. In order to use this empirical variance, one
has to be sure that the variance of the Euler characteristic of the excursions of
Z is finite. We recall that this is the case when Z is chi-square distributed (see
Proposition 7).

Under H0 hypothesis, the D statistic is asymptotically distributed as a chi-
square with m degrees of freedom.

4.2.1. First alternative: χ2 process

In conformity with Section 3.1, we consider

Z(s)(·) = 1√
2s

(χ2
s(·))− s) with χ2

s(·) =
∑

1≤i≤s

Xi(·)2 ,

where the Xi’s are independent copies of a stationary standard Gaussian process
with covariance function r(t) = e−t2/2. Hence, we get λ = −2r′′(0) = 2 and then
the obtained process Z(s) has the same variance and the same second spectral
moment λ as the previous Gaussian one presented in Section 4.1.

In the first and third panels of Figure 5, we display the boxplot for the ratio
between the empirical mean of 300 Monte Carlo values of ϕ(Z(s), T, u) and the
theoretical mean given by (13) in the case d = 1, i.e.,

E[ϕ(Z(s), T, u)] = |T |
(
λ

π

)1/2
(s+ u

√
2s)(s−1)/2

2s/2Γ(s/2)
e−(s+u

√
2s)/2 1[0,∞)(s+u

√
2s).

(21)
This expectation has to be compared with the expectation given by (17) whenX
is a stationary standard Gaussian process with second spectral moment λ = 2.
Therefore, in the second and fourth panels of Figure 5, we display the boxplot
for the ratio between the empirical 300 Monte Carlo mean value of ϕ(Z(s), T, u)
and the Gaussian theoretical expectation given in (17).
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Fig 5. First and third panels: Boxplot for the ratio between the empirical 300 Monte Carlo
values of ϕ(Z(s), T, u) and the theoretical mean given by Equation (21). Second and fourth
panels: Boxplot for the ratio between the same empirical values and the theoretical mean in
the Gaussian case given by Equation (17). In both cases λ = 2. The degrees of freedom s is
chosen equal to 2 and 10 respectively.

Remark. When the degrees of freedom s tend to infinity, the CLT implies
that Z(s) tends in distribution to a stationary centered Gaussian process with
covariance function equal to t 
→ r(t)2, which implies a variance equal to 1
and a second spectral moment equal to 2 (exactly as the Gaussian process X
considered in Section 4.1). On the other hand, using Stirling approximation for
the Γ function, one can prove that the right-hand side of (21) tends to the
right-hand side of (17), i.e.,

E[ϕ(Z(s), T, u)] → |T |λ1/2 (2π)−1 e−u2/2, when s → ∞.

See also Formula (3.4) in [29] for the same remark. The comparison between
the second and fourth panels in Figure 5, as well as Figure 6, illustrate this
convergence.

In Figure 7 below, we show the QQ-plot of the test statistic D (see (20))
versus the quantiles of χ2

m. Since the considered chi-square process Z(s) is not
Gaussian, a deviation can be observed. In order to quantify how we are really
able to reject the null hypothesis H0 under the alternative, in Table 3 we display
the generated p−values for the goodness-of-fit test of D. One can easily see that
this test allows us to reject the fact that the considered underlying process Z(s)

is Gaussian. This is particularly evident if one compares these p−values with
those in Tables 1 and 2.

Figure 7 shows a huge deviation from the bisector of the first orthant in
the case s = 2 whereas this deviation is less significant in the case s = 10.
It emphasizes the convergence in distribution of Z(s) towards a Gaussian as s
tends to infinity.

4.2.2. Second alternative: Kramer oscillator process

In this section we generate a 300 Monte-Carlo sample of a Kramer oscillator
process as defined in Section 3.2. In order to obtain a process Q with zero
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Fig 6. Boxplots of the empirical 300 Monte Carlo values of ϕ(Z(s), T, u) for the considered
chi-square univariate process Z(s) and different values of u. Red points represent the the-
oretical means given by Equation (21) for the same values of u; blue ones are the Gaussian
means given by Equation (17). In this case λ = 2, |T | = 200, s = 2 (left panel) and s = 10
(right panel).

mean, unit variance and second spectral moment equal to 2, we solve Equation
(16) and choose

σ = 2 , c = 1 , a0 = 1 , a1 = 2.3373 , C = 4.886.

The generation procedure is the following. We define a discretized schema to
simulate the solution (Q(t), P (t)) of the stochastic differential system in (14).
Actually, we use the Metropolization of the Euler-Verlet schema with a sufficient
small discretization step. The interested reader is referred to Algorithm 2.11
(Generalized Hybrid Monte-Carlo) in [19].
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Fig 7. QQ-plot: quantiles of D versus quantiles of the χ2
m distribution for fixed level u = 1.2

and m = 6 disjoint domains. Here |Ti| = 200 for i ∈ {1, . . . ,m}. The dashed red line repre-
sents the bisector of the first orthant. We take 300 Monte Carlo simulations. The considered
process Z(s)(·) is a chi-square univariate process (d = 1) with s = 2 (first panel), s = 10
(second panel), E(Z(s)(0)) = 0, Var(Z(s)(0)) = 1 and λ = 2. See associated goodness-of-fit
test p−values in Table 3.

Table 3

Goodness-of-fit test p−values associated to test statistics D in Figure 7 versus a χ2
m

distribution with m = 6. The considered process Z(s)(·) is a chi-square univariate process
(d = 1) with E(Z(s)(0)) = 0, Var(Z(s)(0)) = 1 and λ = 2.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D with s = 2 7e-08 2e-06
D with s = 10 0.0003 2e-06
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The comparison between the (theoretical) expectation given by (15) and the
empirical one is shown in left panel of Figure 8 below.

Fig 8. Left: Theoretical u �→ E[ϕ(Q,T, u)] from Equation (15) for |T | = 200 (full line).

We also display, for different levels of u, the empirical counterpart Ê[ϕ(Q,T, u)] (red dots),
with associated empirical intervals, based on 300 Monte Carlo simulations. Right: QQ-plot:
quantiles of D versus quantiles of the χ2

m distribution for fixed level u = 1.2 and m = 6 disjoint
domains. The dashed red line represents the bisector of the first orthant. Here |Ti| = 200 for
i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. Q(·) is a Kramer oscillator process
as defined in Section 3.2 with E(Q(0)) = 0, Var(Q(0)) = 1 and second spectral moment λ = 2.
See associated goodness-of-fit test p−value in Table 4.

Furthermore, as we did in previous Section 4.2.1, we also consider the D test
statistic. The QQ-plot of D versus χ2

m distribution is shown in right panel of
Figure 8. Since the considered process Q is not Gaussian, a strong deviation is



870 E. Di Bernardino et al.

observed. It allows us to reject the H0 hypothesis. To quantify this deviation
we present the generated p−values for the goodness-of-fit test associated to D
in Table 4.

Table 4

Goodness-of-fit test p−value associated to test statistic D in Figure 8 (right) versus a χ2
m

distribution with m = 6. The considered process Q(·) is a Kramer oscillator process as
defined in Section 3.2 with E(Q(0)) = 0, Var(Q(0)) = 1 and second spectral moment λ = 2.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D 0.000097 2e-06

5. Bivariate numerical illustration

In this section, we focus on two dimensional random fields. For both Gaussian
and chi-square distributions, we apply the same methodology as in the previous
section. In particular, we use the test statisticD introduced in (20), its definition
being not specific to dimension one.

5.1. Under H0 hypothesis

We consider a stationary centered Gaussian random field X = {X(t) : t ∈ R
2}.

Its restriction to a finite regular grid included can be seen as a model for a
grey level image. The modified Euler characteristic of an excursion set in the
rectangle domain T above level u is given by Equation (5). On the other hand,
Equation (6) in dimension d = 2 gives its expectation,

E[ϕ(X,T, u)] = |T |C2(u, λ) with C2(u, λ) = (2π)−3/2 λu e−u2/2. (22)

In what follows, we generate a 300 Monte-Carlo sample of a bivariate sta-
tionary centered Gaussian random field X with covariance function r(t) =

e−||t||2 , t ∈ R
2. In that case, E(X(0)) = 0, Var(X(0)) = 1 and the second

spectral moment λ is equal to 2. We use (5) in order to compute ϕ(X,T, u) for
a fixed cube T and various values of u. The local extremum points of X are
given by the R function extrema2dC in the EMD package. To identify the saddle
points, we find all the stationary points of X in the considered domain T (i.e.,
all the points with an associated null gradient function) and we exclude the
points previously identified as local extremum points.

In the left panel of Figure 9, the comparison between the theoretical mean
given by (22) and the empirical mean based on the simulations is illustrated.

In the right panel, we consider the chi-square statistic D introduced in (20)
for a unique level u and m disjoint domains T1, . . . , Tm. The considered process
is now the Gaussian bivariate process X.

Furthermore, in Table 5, we display the goodness-of-fit test p−values for D.
The obtained high p−values allow us to statistically accept the χ2

m distribution
for the test statistic D.
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Fig 9. Left: Theoretical u �→ E[ϕ(X,T, u)] from Equation (22) for |T | = 196 (full line).

We also display, for different levels u, the empirical counterpart Ê[ϕ(X,T, u)] (red dots),
with associated empirical intervals, based on 300 Monte Carlo simulations. Right: QQ-plot:
quantiles of D versus quantiles of the χ2

m distribution for fixed level u = 1.2 and m = 3 disjoint
domains. Here |Ti| = 196 for i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. X(·) is

a Gaussian bivariate process (d = 2) with covariance function r(t) = e−||t||2 , t ∈ R2. In
this case E(X(0)) = 1, Var(X(0)) = 1 and λ = 2. See associated goodness-of-fit test p−value
in Table 5.

5.2. Alternative: χ2 bivariate process

As an alternative to hypothesis H0, let us consider

Z(s)(·) = 1√
2s

(χ2
s(·))− s) with χ2

s(·) =
∑

1≤i≤s

Xi(·)2 ,
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Table 5

Goodness-of-fit test p−value associated to test statistic D in Figure 9 (right) versus a χ2
m

distribution with m = 3. The considered process X(·) is a Gaussian bivariate process
(d = 2) with covariance function r(t) = exp(−||t||2). In this case λ = 2.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D 0.8879 0.8685

where the Xi’s are independent copies of a centered stationary Gaussian two
dimensional field with covariance function r(t) = e−||t||2/2. As described in Sec-
tion 3.1, for any fixed t ∈ R

2, χ2
s(t) has a central χ2 distribution with s degrees

of freedom. Furthermore, the field Z(s) is centered, stationary and its covariance
function is given by r(t) = e−||t||2 . Hence its variance is equal to 1 and its second
spectral moment is equal to λ = −2r′′(0) = 2. The expectation of ϕ(Z(s), T, u)
is given by (13) with d = 2.

We generate a sample of 300 realisations of the bivariate process Z(s) for s = 2
on a fixed cube T . We use Equation (5) to empirically compute ϕ(Z(2), T, u) for
various values of u. On the other hand, Equation (13) yields the following in
the case d = s = 2,

E[ϕ(Z(2), T, u)] = |T |
(

λ

4π

)
(2u+ 1) e−(u+1) 1[0,∞)(u+ 1). (23)

In the left panel of Figure 10, we compare Equation (23) and its empirical
counterpart based on the Monte Carlo simulations of Z(2). In the right panel,
we show the QQ-plot of the test statistic D versus the χ2

m distribution, where D
is computed with the realisations of Z(2). Since the considered chi-square process
Z(2) is not Gaussian, a large deviation can be observed. Associated generated
p−value for the goodness-of-fit test of D is given in Table 6. This quantifies how
we are really able to reject the null hypothesis H0 under the alternative.

Table 6

Goodness-of-fit test p−value associated to test statistic D in Figure 10 (right) versus a χ2
m

distribution with m = 3. The considered processZ(2)(·) is a chi-square bivariate process

(d = 2) with covariance function r(t) = e−||t||2 . In this case E(Z(2))(0) = 1,
Var(Z(2)(0)) = 1 and λ = 2.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D 9.4e-05 3e-06

6. Non smooth processes: A case study

In this section, we sketch a preliminary study concerning non smooth processes.
For this purpose, the shot noise process is a convenient toy model. We will only
consider the one dimensional case pointing out two recent references that deal
with dimension two, [7] and [18].
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Fig 10. Left: Theoretical u �→ E[ϕ(Z(2), T, u)] from Equation (23) for |T | = 196 (full line).

We also display, for different levels u, the empirical counterpart Ê[ϕ(Z(2), T, u)] (red dots),
with associated empirical intervals, based on 300 Monte Carlo simulations. Right: QQ-plot:
quantiles of D versus quantiles of the χ2

m distribution for fixed level u = 3 and m = 3 disjoint
domains. Here |Ti| = 196 for i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. Z(2)(·)
is a chi-square bivariate process (d = 2) with covariance function r(t) = e−||t||2 . In this
case E(Z(2))(0) = 1, Var(Z(2)(0)) = 1 and λ = 2. See associated goodness-of-fit test p−value
in Table 6.

Let d = 1 and let us introduce the following shot noise process S,

S(t) =

⎛⎝∑
ξ∈Ψ

1[0,a](t− ξ)

⎞⎠− νa , t ∈ R , (24)

where a > 0 and Ψ is a homogeneous Poisson point process on R with intensity
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ν > 0. The process S is clearly stationary with zero mean and variance equal to
νa. Moreover, its values almost surely belong to the discrete set {k−νa, k ∈ N}.

In what follows, we still aim at testing the Gaussianity hypothesis. If a whole
trajectory of S could be observed, its discrete shape would clearly indicate
the right choice between Gaussian and shot noise. We now assume that only
excursion sets of S above a few levels are observed and we consider the number
of “upcrossings”. Note that the notion of upcrossings has to be properly defined
in this context, since S is not continuous. Actually, it is proved in [6] (see also
[16] for a different approach) that for any level u ∈ R \ {k− νa, k ∈ N} and any
interval T ,

E[U(S, T, u)] = |T | ν e−νa
∑
k≥0

(νa)k

k!
1{k<u+νa<k+1} . (25)

This formula, which obviously differs from (6), is an indicator that could enable
to discriminate between a Gaussian or a shot noise model.

In the following, we generate 300 trajectories of such a process on a fixed
interval T with a = ν = 1. Since aν = 1, then Var(S(0)) = 1. A comparison
between the theoretical expectation and the Monte-Carlo empirical mean is
presented in Figure 11. One can observe the evident different shape of the mean
EC curve compared to the Gaussian case (see Figure 1, left).

Fig 11. Theoretical u �→ E[U(S, T, u)] from Equation (25) for |T | = 200 (full line). We also

display, for different levels u, the empirical counterpart Ê[U(S, T, u)] (red dots) with associated
empirical intervals based on 300 Monte Carlo simulations. S(·) is a shot noise univariate
process (d = 1) defined by Equation (24) with a = ν = 1.

7. Conclusion

In the present paper, we have proposed a methodology to test whether a ran-
dom field defined on R

d is Gaussian. The test statistics are computed from the
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observation of a single realisation, precisely the Euler characteristic of excursion
sets at moderate levels is concerned. Our approach requires two theoretical in-
gredients that have to be valid under the Gaussian hypothesis: a Central Limit
Theorem satisfied by the Euler characteristic of excursion sets when the domain
tends to R

d, and a closed formula that gives the mean Euler characteristic of
the excursion sets. We have established both of them. We consider this method-
ological work as a first step, there are many open questions and possible future
researches extending and going further this work.

There are two major domains where the Gaussianity hypothesis is really rele-
vant and where our results could certainly be applied: neurology and cosmology.
The neurological signals that are collected when studying brain activity are com-
monly observed through their level sets (see [35] and [21]). A natural question
concerns the type of the signal distribution: Gaussian or Poisson? Gaussian or
Oscillator? The test that we have built, together with the alternatives that we
have considered, could be an appropriate tool for studying this problem. On
the other hand, in the analysis of the Cosmic Microwave Background (CMB)
radiation, the question of Gaussianity has been tackled in a huge amount of
publications (see [26] for a recent overview). In that context, the random field
under study is defined on the two dimensional celestial sphere. Hence, in order
to be applied, our methodology should be extended beyond the Euclidean case.
Let us mention that recent studies, like [10], [23], [9] for instance, contain the-
oretical results on high energy behavior of spherical random fields that could
provide the required background for a test of Gaussianity in the same spirit as
the one presented here.

Furthermore, it is not difficult to imagine that the same question of Gaus-
sianity is actually asked in other real-life situations, and that the potential
alternatives take various shapes, like a chi-square when the process under study
is always positive, or an oscillator when the process under study presents an al-
most periodic structure (sea waves) or a shot noise process when sudden peaks
are observed. Our methodology could also serve as a goodness-of-fit test in the
opposite way. For instance, in the area of geostatistics, the authors of [14] ob-
serve the Euler characteristic of excursion sets to detect abrupt changes on soil
data sets. They use as an a priori model for the data a chi-square random field. A
natural extension to this study could be a test of chi-square distribution versus
not chi-square.

In order to go further in this direction, it would be necessary to establish
Central Limit Theorems for the Euler characteristic of excursion sets for new
classes of processes or random fields. Beside the present work, we implemented
simulations that lead us to postulate that such a Central Limit Theorem could
exist, in particular for the two alternative processes that we have considered.

At last, another appealing question concerns the hypothesis that the process
under study is expected to satisfy, such as smoothness of the realisations and
fast decay of the covariance function. As already mentioned at the beginning of
the paper, Assumption (A) seems to strong at least in the one dimensional case.
Indeed, let us remark that in that case, two important results of Section 2 remain
valid under weaker assumptions. Actually, on the one hand, the Rice formula
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gives the mean number of upcrossings under the only assumption of a finite
second spectral moment. On the other hand, it is well known that a sufficient
condition for the number of upcrossings to have a finite second moment is the
so-called Geman condition, which only requires that r′′, the second derivative
of the covariance function of X, exists and satisfies some integrability condition
near 0. Such considerations allows us to believe that the theoretical results that
we have presented deserve to be studied under weaker assumptions, even in
dimension greater than one. Another extension could concern non continuous
random fields, like the shot noise processes.

Appendix: Proofs

A.1. Proof of Lemma 3

The level u is fixed, so we do not refer to it in the following lines. For t ∈
R

d \ {0}, we define h(t) = G(u, t)D(t)−1/2 − C(u)2. We have to establish that
h is integrable on R

d. We already know that h is integrable on any compact set
of Rd, so it remains to study the behavior of h(t) for large ‖t‖.

We write K = 1
2d(d+ 1) + 1 and we introduce the function

(z, x) ∈ R
K = R

1
2d(d+1) × R 
→ f(z, x) = d̃et(z)1[u,∞)(x) ,

where d̃et(z) stands for the determinant of the d × d symmetric matrix whose
upper coefficient are given by the 1

2d(d+ 1) dimensional vector z.
Recall that we denote by X(.) the stationary and isotropic random vector

field (X ′(t),∇2X(t), X(t)), which has dimension D = d+ 1
2d(d+1)+1 = d+K.

We have

h(t) =

∫
R2K

f(ẍ1, x1)f(ẍ2, x2)
(
pX(0),X(t)(0, ẍ1, x1, 0, ẍ2, x2)

−pX(0)(0, ẍ1, x1)pX(t)(0, ẍ2, x2)
)
dx1dẍ1dx2dẍ2.

Let Σ be the covariance matrix of X(0) and, for any t ∈ R
d, let ΓX(t) be the

covariance matrix of (X(0),X(t)). The latter can be written by blocks, each of
one having dimension D ×D, as follows

ΓX(t) =

(
Σ Γ12(t)

Γ12(t)
T Σ

)
.

Moreover we know that all the terms of matrix ΓX(t) are uniformly bounded in
absolute value by ψ(t). Using Theorem 3.1 of [33] we get, for any z1, z2 in R

D,

pX(0),X(t)(z1, z2)− pX(0)(z1)pX(t)(z2)

= pX(0)(z1)pX(0)(z2)

⎛⎝ ∑
J∈ND×D,|J|>0

HAJ(z1,Σ)HBJ(z2,Σ)
Γ12(t)

J

J!

⎞⎠ ,

where
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• the sum runs over all D×D matrices J = (Jjk)1≤j,k≤D with non negative
integer entries and |J| =

∑
1≤j,k≤D Jjk > 0,

• AJ and BJ are D-dimensional indices defined by (AJ)j =
∑

1≤k≤D Jjk
and (BJ)k =

∑
1≤j≤D Jjk,

• Hk(z,Σ) = φΣ(z)
−1(− ∂

∂z )
kφΣ(z) for any D-dimensional index k and any

z ∈ R
D, with φΣ the probability density function of any D-dimensional

Gaussian vector N (0,Σ),
• MJ =

∏
1≤j,k≤D(Mjk)

Jjk for any matrix M = (Mjk)1≤j,k≤D,
• and J! =

∏
1≤j,k≤D(Jjk)!.

Thus

h(t) =

∫
R2K

f(x1) f(x2) pX(0)(0,x1) pX(0)(0,x2)

×

⎛⎝ ∑
J,|J|>0

HAJ((0,x1),Σ)HBJ((0,x2),Σ)
Γ12(t)

J

J!

⎞⎠ dx1dx2.

We can bound |h(t)| in the following form

|h(t)| ≤
∑

J,|J|>0

ψ(t)|J|

J!
D(AJ)D(BJ), (26)

where

D(AJ) =

∫
RK

|f(x1)HAJ((0,x1),Σ)| pX(0)(0,x1) dx1

≤ E

(
|d̃et(∇2X(0))HAJ((0,∇2X(0), X(0)),Σ)|

)
≤ E(d̃et(∇2X(0)2)1/2 E

(
HAJ((0,∇2X(0), X(0)),Σ)2

)1/2
≤ ψ(0)d E

(
HAJ((0,∇2X(0), X(0)),Σ)2

)1/2
, (27)

where the last inequality is a consequence of expanding d̃et(∇2X(0)) as a mul-
tivariate polynomial function of degree d evaluated at the coordinates of the
matrix X ′′(0).

We now concentrate on HAJ((0,∇2X(0), X(0)),Σ). Following [33], we have

HAJ((0,x),Σ) = E

[(
Σ−1((0,x) + iZ)

)AJ
]
,

where Z is any D-dimensional centered Gaussian random vector with covariance
matrix Σ. Remember that Σ is the covariance matrix of X(0) = (X ′(0),∇2X(0),

X(0)), so it can be factorized as Σ =

(
λId 0
0 Σ1

)
where Σ1 has size K × K.

Hence Σ−1 =

(
λ−1Id 0

0 Σ−1
1

)
and Z can be expanded as Z = (Z0, Z1) where

Z0 is a d-dimensional centered Gaussian vector with covariance matrix λId and
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Z1 is a K-dimensional centered Gaussian vector with covariance matrix Σ1, Z0

and Z1 being independent. Then

Σ−1((0,x) + iZ) =
(
iλ−1Z0,Σ

−1
1 (x+ iZ1)

)
,

where the two blocks of coordinates are independent. So

HAJ((0,x),Σ) = H
A

(0)
J

(0, λId)HA
(1)
J

(x,Σ1),

where the D-dimensional vector AJ is equal to (A
(0)
J , A

(1)
J ) with blocks of re-

spective size d and K.

For the first term, we note that H
A

(0)
J

(0, λId) = λ− 1
2 |A

(0)
J | H

A
(0)
J

(0) where

Hk(.) is the usual multidimensional Hermite polynomial of multi-order k.

Concerning the second term, we compute E

(
H

A
(1)
J

((∇2X(0), X(0)),Σ1)
2
)

thanks to a formula for multivariate Gaussian integrals that can be found in
[17] for instance (see equation (35) in this reference),

E

(
H

A
(1)
J

((∇2X(0), X(0)),Σ1)
2
)
=

∫
RK

H
A

(1)
J

(x,Σ1)
2 p∇2X(0),X(0)(x) dx

= 2|A
(1)
J |−D (A

(1)
J )! diag(Σ−1

1 )A
(1)
J

where diag(B) denotes the vector containing the diagonal coefficients of any
square matrix B.

Finally, since H
A

(0)
J

(0)2 ≤ (A
(0)
J )!,

E
(
HAJ((0,∇2X(0), X(0)),Σ)2

)
≤ (2‖Σ−1‖)|J| (AJ)!

where we have used that |A(0)
J |+ |A(1)

J | = |J| and (A
(0)
J )! (A

(1)
J )! = (AJ)!.

Note that for any D-dimensional index k = (k1, . . . , kD), we have |k|! ≤
D|k|(k)! (actually, |k|!

(k)! is a multinomial coefficient). Hence (AJ)j ! ≤
D
∑

1≤k≤D Jjk
∏

1≤k≤D Jjk! and so

(AJ)! =
∏

1≤j≤D

(AJ)j ! ≤ D|J| J!

Coming back to inequality (27) yields

D(AJ) ≤ ψ(0)d (2D‖Σ−1‖)|J|/2
√
J! .

The same inequality can be established for D(BJ). Hence, from (26) we get

|h(t)| ≤ ψ(0)2d ψ(t)
∑

J,|J|>0

(2D‖Σ−1‖ψ(t))|J|−1 .

The series in the right hand is convergent for ‖t‖ large enough. Indeed we can
choose A such that for ‖t‖ > A, we have 2D‖Σ−1‖ψ(t) ≤ η < 1 and so the
series is bounded by (1− η)−1.

The result follows since on the other hand, by assumption (A),∫
‖t‖>A

ψ(t)dt < +∞.
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A.2. Proof of Lemma 6

Without loss of generality, we can assume that |T1| = |T2| = 1 and that there
exists a and b in R

d such that T1 = a + [0, 1)d and T2 = b + [0, 1)d. Moreover,
since the distance between T1 and T2 is non negative, we have ‖b − a‖∞ > 1.
In the following lines, we denote δ = ‖b− a‖∞ − 1. We use the additivity of the

Euler characteristic to expand Z
(N)
1 as

Z
(N)
1 = N−d/2

∑
s∈IN

ϕ̃(θNa+sX, [0, 1)d, u1) ,

where

ϕ̃(X,T, u) = ϕ(X,T, u)− E[ϕ(X,T, u)],

θs stands for the shift operator and IN for the set of integer valued indices

[[0, N − 1]]d. The same holds for Z
(N)
2 . Hence, by stationarity

|Cov(Z(N)
1 , Z

(N)
2 )|

= N−d |
∑

s,s′∈IN

E
(
ϕ̃(X, [0, 1)d, u1) ϕ̃(θN(b−a)+s′−sX, [0, 1)d, u2)

)
|

≤
∑
s∈JN

|E
(
ϕ̃(X, [0, 1)d, u1) ϕ̃(θN(b−a)+sX, [0, 1)d, u2)

)
| ,

with JN = [[−N + 1, N − 1]]d.
It is proved in [13] Proposition 1.3 that, for a cube T in Rd and a level u in

R, the following expansion holds both a.s. and in L2(Ω).

ϕ̃(X,T, u) = (−1)d
∞∑
q=1

∑
n∈ND ;|n|=q

a(n, u)

∫
T

Hn(Y (t)) dt (28)

where D = d+ 1
2d(d+1)+1, Hn denotes the D dimensional Hermite coefficient

of multi-order n ∈ N
D and Y (t) = Λ−1X(t) with Λ any square root of the

covariance matrix of X(0). Moreover the Hermite coefficients a(n, u) are such
that for any q ≥ 1, ∑

n∈ND ;|n|=q

a(n, u)2 n! ≤ C qd (29)

where C is some positive constant that only depends on d,Λ and u.
Hence, thanks to (28) and to the orthogonality of Hermite polynomials, we

have for any τ ∈ Rd,

E
(
ϕ̃(X, [0, 1)d, u1) ϕ̃(θτX, [0, 1)d, u2)

)
=

∞∑
q=1

∫
[0,1]d

∫
[0,1]d

E (Fq(Y (t1), u1)Fq(Y (τ + t2), u2)) dt1dt2,
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where Fq(y, u) =
∑

n∈ND;|n|=q

a(n, u)Hn(y) , y ∈ R
D. One can adapt Arcones

inequality, for instance following the proof of [4] Lemma 1 step by step, to
establish that there exists a constant κ > 0 depending on the covariance function
of X such that

|E (Fq(Y (t1), u1)Fq(Y (τ + t2), u2))|

≤ κq ψ(τ + t2 − t1)
q

∑
n∈ND ; |n|=q

1

2
(a(n, u1)

2 + a(n, u2)
2)n!.

Let now η > 0 be fixed. Thanks to Assumption (A), we can choose N large
enough such that κψ(τ) ≤ 1/2 as soon as ‖τ‖ ≥ Nδ,

∫
‖t‖≥N

ψ(t) dt < η and

Nδ > 2. Hence, using (29), we deduce that for ‖τ‖ ≥ Nδ,∣∣E (ϕ̃(X, [0, 1)d, u1) ϕ̃(θτX, [0, 1)d, u2)
)∣∣

≤ C

∞∑
q=1

qd κq

∫
[0,1]d

∫
[0,1]d

ψ(τ + t2 − t1)
q dt1dt2

≤ C

( ∞∑
q=1

qd (1/2)q−1

) ∫
[−1,1]d

ψ(τ + t) dt .

Note that C stands here for a positive constant that may change from a line to

another. Coming back to the covariance of Z
(N)
1 and Z

(N)
2 yields

|Cov(Z(N)
1 , Z

(N)
2 )| ≤ C

∑
s∈JN

∫
[−1,1]d

ψ(N(b− a) + s+ t) dt

≤ 2C

∫
‖t‖≥N

ψ(t) dt ≤ 2C η.

Thus, Lemma 6 is proved.

A.3. Proof of Proposition 7

Firstly, let us remark that, since Z(s)(.) = 1√
2s
(χ2

s(.)−s), it is sufficient to prove

the statement of Proposition 7 for the process χ2
s instead of Z(s). Secondly, let us

recall the relation (4), so that we can replace ϕ(Z(s), [0, T ], u) by U(χ2
s, [0, T ], u)

in the proposition.
The finiteness of

Vs(T, u) := E[U(χ2
s, [0, T ], u)(U(χ2

s, [0, T ], u)− 1)]

is proved in [29] under the following conditions,

rX(t) = 1−λ2
t2

2
+λ4

t4

4
+o(t4) as t → 0 and rX(t) = o(t−α) as t → ∞ (30)
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for some positive finite constants λ2, λ4, α (see (4.1) and (4.2) in the cited paper).
They are clearly satisfied in our case since Assumption (A) is in force. This
establishes that U(χ2

s, [0, T ], u) admits a finite variance.
We now focus on the asymptotic variance as T goes to infinity. We will

actually prove that

lim
T→+∞

1

T

(
Vs(T, u)− (E[U(χ2

s, [0, T ], u)])
2
)

< +∞.

First, in a similar way as (13), let us remark that the expectation of U(χ2
s, [0, T ],

u) is proportional to T ,

Ks(u) :=
1

T
E[U(χ2

s, [0, T ], u)] =

(
λ

π

)1/2
e−u/2 u(s−1)/2

2s/2Γ(s/2)
. (31)

On the other hand, introducing the function G(x) = x1[0,∞)(x), Rice formula
for the above factorial moment gives

Vs(T, u) = 2

∫ T

0

(T − t) I(t) dt,

where

I(t) = E[G((χ2
s)

′(0))G((χ2
s)

′(t)) |χ2
s(0) = χ2

s(t) = u] pχ2
s(0),χ

2
s(t)

(u, u).

For computing this conditional expectation, we begin with the following one
that is easier to handle with. Let us define �X(t) = (X1(t), . . . , Xs(t)) and, for
z = (z1, · · · , zs) and w = (w1, · · · , ws) in R

s,

J(t, z,w) :=E[G((χ2
s)

′(0))G((χ2
s)

′(t)) | �X(0)= z, �X(t) = w, χ2
s(0) = χ2

s(t) = u].

Let us fix z and w such that ||z||2 = ||w||2 = u. In that case, we have

J(t, z,w) = 4E[G(
s∑

j=1

Xj(0)X
′
j(0))G(

s∑
j=1

Xj(t)X
′
j(t)) | �X(0) = z, �X(t) = w].

We will use, as is classical, the following regression model. For each j ∈{1, . . . , s},
we write

X ′
j(0) = α1(t)Xj(0) + β1(t)Xj(t) + ε1j(t)

X ′
j(t) = α2(t)Xj(0) + β2(t)Xj(t) + ε2j(t).

It is important to point out that, because of the independence, the coefficients
above do not depend on j. We readily obtain that

α1(t) =
r′X(t)rX(t)

1− r2X(t)
, β1(t) =

−r′X(t)

1− r2X(t)
, β2(t) = −α1(t), α2(t) = −β1(t).
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Thus

J(t, z,w) = 4E[G(
s∑

j=1

zj(α1(t)zj + β1(t)wj + ε1j(t)))

× G(
s∑

j=1

wj(β1(t)zj + α1(t)wj + ε2j(t)))]

= 4E[G(α1(t)u+ β1(t)〈w, z〉+
√
uσεW (t))

× G(α1(t)u+ β1(t)〈w, z〉+
√
uσεZ(t))]

= 4E[G(du(t) +
√
uσε(t)W (t))G(du(t) +

√
uσε(t)Z(t))],

where
σ2
ε(t) = −r′′X(0)− (α2

1(t) + β2
1(t) + 2α1(t)β1(t)rX(t))

is the variance of each ε1,j(t) or ε2,j(t),

W (t) =
1√

uσε(t)

s∑
i=1

wjε1,j(t) and Z(t) =
1√

uσε(t)

s∑
i=1

zjε2,j(t)

are independent N(0, 1) random variables, and du(t) = α1(t)u+ β1(t)〈w, z〉.
In particular, the latter shows that J(t, z,w) only depends on w and z

through their scalar product. So, from now on, for ease of notation, we will
write J(t, 〈z,w〉).

We have β1(t) → ∞ when t → 0 and du(t) = (α1(t) + β1(t))u − β1(t)u(1 −
1
u 〈w, z〉) →

t→0
−∞, for all w 
= z. The latter convergence is equivalent to −1

t .

Moreover, du(t) → 0 whenever t → ∞, because of Assumption (A).
Then we can write

J(t, 〈z,w〉) = 4uσ2
ε(t)E[G(

du(t)√
uσε(t)

+W (t))G( du(t)√
uσε(t)

+ Z(t))]

= 4uσ2
ε(t)

∞∑
k=0

d2uk(t)k!
(
Corr(W (t), Z(t)))k, (32)

where the last equality is a consequence of Mehler’s formula. The coefficients
duk(t) are given by

duk(t) =
1

k!

∫
R

G( du(t)√
uσε(t)

+ y)Hk(y)φ(y)dy

=
1

k!

∫ ∞

− du(t)√
uσε(t)

(
du(t)√
uσε(t)

+ y)Hk(y)φ(y)dy,

with φ the standard Gaussian density, and

Corr(W (t), Z(t)) =
〈z,w〉
uσ2

ε(t)
(−r′′X(t)− 2α1(t)β1(t)− (α2

1 + β2
1(t))rX(t)).
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Let us continue our study with the behaviour of J(t, 〈z,w〉) for t close to 0. Let
us start with the series. It holds

∞∑
k=0

d2uk(t)k! =

∫ ∞

− du(t)√
uσε(t)

(
du(t)√
uσε(t)

+ y)2φ(y)dy,

≤ 2((
du(t)√
uσε(t)

)2
∫ ∞

− du(t)√
uσε(t)

φ(y)dy +

∫ ∞

− du(t)√
uσε(t)

y2φ(y)dy).

For the last integral, we use the upper bound∫ ∞

a

y2φ(y)dy ≤ aφ(a) +
1

a
φ(a),

that yields, as t → 0,

∞∑
k=0

d2uk(t)k! ≤ 2(2(− du(t)√
uσε(t)

)φ(
du(t)√
uσε(t)

) + (−
√
uσε(t)

du(t)
)φ(

du(t)√
uσε(t)

)) = O(1).

(33)
Thus, for 0 < t < δ, we have J(t, 〈z,w〉) ≤ Cuσ2

ε(t). Moreover, as this bound
only depends on u, it yields immediately that,

I(t) ≤ Cuσ2
ε(t) , for 0 < t < δ.

We now focus on the behaviour of I(t) for t close to +∞. We have

I(t) =
∫
Rs×Rs

J(t, 〈z,w〉) p 
X(0), 
X(t),χ2
s(0),χ

2
s(t)

(z,w, u, u) dz dw

=
us−2

(2π)s(1− r2X(t))s/2

×
∫
Ss−1×Ss−1

J(t, u〈τ1, τ2〉)e
−u(

1−rX (t)〈τ1,τ2〉
1−r2

X
(t)

)
dσs−1(τ1)dσs−1(τ2),

where σs−1 stands for the surface Lebesgue measure on S
s−1. A consequence of

Funk-Hecke formula says that, for any reasonable function F ,∫
Ss−1×Ss−1

F (〈τ1, τ2〉)dσs−1(τ1)dσs−1(τ2)

=
σs−1(S

s−1)2

2Ws−2

∫ π

0

F (cosψ) sins−2 ψ dψ,

with Ws the Wallis integral, i.e. Ws =
∫ π/2
0

sins(ψ)dψ. It implies

I(t) = 4us−2

(2π)s(1− r2X(t))s/2
σs−1(S

s−1)2

2Ws−2

×
∫ π

0

J(t, u cosψ) e
−u(

1−rX (t) cos ψ

1−r2
X

(t)
)
sins−2 ψ dψ.
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Following (32), we now expand J(t, x) as J(t, x) := 4uσ2
ε(t)
∑∞

k=0 Qk(t, x), so
that

1

T
Vs(u, T ) = 2

∫ T

0

(1− t

T
) I(t) dt

=

∫ T

0

(1− t

T
)

4us−1σ2
ε(t)

(2π)s(1− r2X(t))s/2
σs−1(S

s−1)2

Ws−2

×
∫ π

0

∞∑
k=0

Qk(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ dt.

In first place, let us study the limit when t → ∞ of the (k = 0)-term in the
integrand. We introduce the following notation,

I0(t) =
4us−1σ2

ε(t)

(2π)s(1− r2X(t))s/2
σs−1(S

s−1)2

Ws−2

×
∫ π

0

Q0(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ.

We have

I0(t) →
t→∞

4us−1(−r′′X(0))

(2π)s+1
e−uσs−1(S

s−1)2 = Ks(u)
2,

given that d2u0(t) →
t→∞

1

2π
, σs−1(S

s−1) =
2π

s
2

Γ( s2 )
and using (31). Therefore, recall-

ing the identity 2

∫ T

0

(1 − t

T
)dt = T , the first term of the asymptotic variance

is

lim
T→∞

2

∫ T

0

(1− t

T
)I0(t)dt−

1

T
(E[U(χ2

s, T, u)])
2

= lim
T→∞

2

∫ T

0

(1− t

T
)I0(t)dt− T Ks(u)

2

= 2

∫ ∞

0

(I0(t)−Ks(u)
2) dt. (34)

This last equality holds true if we show that the difference appearing into the
integrand is bounded by an L1(R) function, outside of a compact interval.

Actually, under (A), it is easy to prove that for t large enough, |I0(t) −
Ks(u)

2| ≤ C| du(t)√
uσε(t)

| ≤ Cψ(t). Hence, the limit (34) is established.

In the sequel we are going to study the asymptotic behaviour of the remaining
terms. Let us introduce

R(t) :=
4us−1σ2

ε(t)

(2π)s(1− r2(t))s/2
σs−1(S

s−1)2

2Ws−2
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×
∫ π

0

∞∑
k=1

Qk(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ.

So, by using (33), we obtain that for t large enough,

|
∞∑
k=1

Qk(t, u cosψ1)| ≤ |
(
Corr(W (t), Z(t))

)
|

∞∑
k=1

d2uk(t)k! ≤ Cψ(t).

This bound and Assumption (A) entail

lim
T→∞

2

∫ T

0

(1− t

T
)R(t)dt = 2

∫ ∞

0

R(t)dt. (35)

Summing up (13), (34) and (35) yield

lim
T→∞

1

T

(
Vs(T, u)− (E[U(χ2

s, [0, T ], u)])
2
)

= 2

∫ ∞

0

(I0(t)−Ks(u)
2)dt+ 2

∫ ∞

0

R(t)dt < ∞.

A.4. Proof of Proposition 8

1. Computation of g(u). By Equation (8), we have

g(u) = E[1[u,∞)(X(0)) |X ′′(0)| ]

=
1

2π(γ − λ2)1/2

∫ ∞

u

∫
R

|ẍ|e−
1

2(γ−λ2)
(γx2+2λxẍ+ẍ2)

dẍdx

=
1

2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

dx

∫
R

|ẍ|e−
1

2(γ−λ2)
(ẍ+λx)2

dẍ

Let us split the inner integral into ẍ > 0 and ẍ < 0, i.e.

1√
2π(γ − λ2)1/2

∫
R

|ẍ|e−
1

2(γ−λ2)
(ẍ+λx)2

dẍ := I1(x, λ, γ) + I2(x, λ, γ),

where

I1(x, λ, γ) =
1√

2π(γ − λ2)1/2

∫ ∞

0

ẍe
− 1

2(γ−λ2)
(ẍ+λx)2

dẍ

I2(x, λ, γ) =
1√

2π(γ − λ2)1/2

∫ ∞

0

ẍe
− 1

2(γ−λ2)
(ẍ−λx)2

dẍ = I1(x,−λ, γ).

We make the following change of variable, ẍ+λx
(γ−λ2)1/2

= y, to get

I1(x, λ, γ) =
1√
2π

∫ ∞

λx

(γ−λ2)1/2

((γ − λ2)1/2y − λx)e−
1
2y

2

dy
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= (γ − λ2)1/2φ(
λx

(γ − λ2)1/2
)− λxΦ(

λx

(γ − λ2)1/2
)

I2(x, λ, γ) = (γ − λ2)1/2φ(
λx

(γ − λ2)1/2
) + λxΦ(− λx

(γ − λ2)1/2
).

But it holds that Φ(x) = Φ(−x). Thus

I1(x, λ, γ) + I2(x, λ, γ)

= 2(γ − λ2)1/2φ(
λx

(γ − λ2)1/2
) + λx (2Φ(

λx

(γ − λ2)1/2
)− 1).

Summing up, we have

g(u) =
1√
2π

∫ ∞

u

e−
1
2x

2[
2(γ − λ2)1/2φ(

λx

(γ − λ2)1/2
)

+ λx (2Φ(
λx

(γ − λ2)1/2
)− 1)

]
dx.

Integrating by parts the second integral, we get that it is equal to

λφ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) +

2λ2

√
2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

φ(
λx

(γ − λ2)1/2
)dx,

yielding

g(u) = λφ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1)

+
2γ√

2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

φ(
λx

(γ − λ2)1/2
)dx.

The second term is equal to

2γ

2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

e
− λ2x2

2(γ−λ2) dx =
γ

π(γ − λ2)1/2

∫ ∞

u

e
− γx2

2(γ−λ2) dx

= (
2γ

π
)1/2Φ((

γ

(γ − λ2)
)1/2u).

Finally,

g(u) = λφ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) + (

2γ

π
)1/2Φ((

γ

(γ − λ2)
)1/2u).

2. Computation of G(u, t). Since Γ(t) is the covariance matrix of (X(0), X(t),
X ′′(0), X ′′(t)) conditioned to (X ′(0) = X ′(t) = 0), one can write

G(u, t) = E(1Z1>u1Z2>uZ3Z4) where Z = (Z1, Z2, Z3, Z4)
L
= N(0,Γ(t)). (36)



A test of Gaussianity based on the Euler characteristic of excursion sets 887

From now on, we remove the dependence on t. We begin by writing Z = LY,
where L is a lower triangular matrix such that LLT = Γ(t). Denoting by lij for
i ≥ j the elements of L, we have

Z1 = l11Y1 Z2 = l21Y1 + l22Y2 Z3 =

3∑
i=1

l3iYi Z4 =

4∑
i=1

l4iYi,

and the expectation (36) can be written as

G(u, t) =

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(
3∑

i=1

l3iyi)(
4∑

i=1

l4iyi)φ(y)dy.

By expanding the second sum, the integral can be written as the sum of the
following terms (starting with index i = 4 term)

I4 = l44

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(
3∑

i=1

l3iyi)y4φ(y)dy = 0,

I3 = l43

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(
3∑

i=1

l3iyi)y3φ(y)dy

= l43l33

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ(y1)φ(y2)dy1dy2

(∫
R

y23φ(y3)dy3

)
= l43l33 Q

(0)(
u

l11
,− l21

l22
,
u

l22
)

I2 = l42

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}

× (l31y1y2 + l32[(y
2
2 − 1) + 1])φ(y1)φ(y2)dy1dy2

= l42l32 Q
(0)(

u

l11
,− l21

l22
,
u

l22
)

+ l42l32

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ(y1)φ
′′(y2)dy1dy2

+ l42l31

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ
′(y1)φ

′(y2)dy1dy2

= l42l32 Q
(0)(

u

l11
,− l21

l22
,
u

l22
)− l42l32

∫ ∞

u
l11

φ′(
u

l22
− l21

l22
y1)φ(y1)dy1

− l42l31

∫ ∞

u
l11

φ(
u

l22
− l21

l22
y1)φ

′(y1)dy1

= l42l32(Q
(0)(

u

l11
,− l21

l22
,
u

l22
) +Q(2)(

u

l11
,− l21

l22
,
u

l22
))

+ l42l31 Q
(1)(

u

l11
,− l21

l22
,
u

l22
)

I1 = l41

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(
3∑

i=1

l3iyi)y1φ(y)dy
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= l41

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}(l31y1 + l32y2)y1φ(y1)φ(y2)dy1dy2

= l41l32

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ
′(y1)φ

′(y2)dy1dy2

+ l41l31 Q
(0)(

u

l11
,− l21

l22
,
u

l22
)

+ l41l31

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ
′′(y1)φ(y2)dy1dy2

= l41l31(Q
(0)(

u

l11
,− l21

l22
,
u

l22
) +Q(3)(

u

l11
,− l21

l22
,
u

l22
))

+ l41l32Q
(1)(

u

l11
,− l21

l22
,
u

l22
).

In this manner, we get the result.

Acknowledgments

The authors sincerely express their gratitude to the referees for their valuable
comments that help to motivate the study and make the paper clearer.

References

[1] Adler R. (2008). Some new random field tools for spatial analysis. Stochastic
Environmental Research and Risk Assessment, 22, 809–822. MR2430406

[2] Adler R. J., Bartz K., Kou S., Monod A. (2014). Estimating thresholding
levels for random fields via Euler characteristics. Preprint.

[3] Adler R. J., Taylor J. E. (2007). Random Fields and Geometry. Springer
Monographs in Mathematics. Springer. MR2319516

[4] Arcones M. A. (1994). Limit theorems for nonlinear functionals of a sta-
tionary Gaussian sequence of vectors. Annals of Probability, 22, 2242–2274.
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[6] Biermé H., Desolneux A. (2012). A Fourier approach for the level crossings
of Shot Noise processes with jumps. Journal of Applied Probability , 49(1),
100–113. MR2952884
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