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A branching random walk among disasters
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Abstract

We consider a branching random walk in a random space-time environment of disasters
where each particle is killed when meeting a disaster. This extends the model of the
“random walk in a disastrous random environment” introduced by [15]. We obtain a
criterion for positive survival probability, see Theorem 1.1.

The proofs for the subcritical and the supercritical cases follow standard arguments,
which involve moment methods and a comparison with an embedded branching
process with i.i.d. offspring distributions. However, for this comparison we need to
show that the survival rate of a single particle equals the survival rate of a single
particle returning to the origin (Proposition 3.1). We prove this statement by making
use of stochastic domination.

The proof of almost sure extinction in the critical case is more difficult and uses
the techniques from [8], going back to [1]. We also show that, in the case of survival,
the number of particles grows exponentially fast.
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1 Introduction

In this work we introduce a branching random walk on Z¢ in a killing random
environment. The process consists of particles performing a branching random walk in
continuous time. All particles jump independently at rate x and give birth to children at
rate A. The jump rate x, the birth rate A and the distribution ¢ of the number of children
do not change over time and space, and are the parameters of the model.

We then consider this process in a random environment w given by disasters in
space-time, defined as follows: The environment w consists of a collection (w(’“"))x czd
of i.i.d. random variables where w(®) = (w(*)(t));>( is a Poisson process of rate one.
Whenever w(*) has a jump at time ¢, all the particles occupying = at time ¢ are killed.

We give an answer to the following question:

*Technical University of Munich, Germany. E-mail: gantert@ma.tum.de, junk@tum.de


http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/17-EJP75
http://arXiv.org/abs/1608.02440
mailto:gantert@ma.tum.de, junk@tum.de

A branching random walk among disasters

For which values of A\, k and q is the probability that the branching random walk
survives strictly positive?

A priori, the answer might depend on the realization of the random environment, but
we will see that the survival probability is either zero, for almost all environments, or
strictly positive, for almost all environments.

Let us comment on the dependence on the parameters of the model: It is clear by
a coupling argument that increasing A will increase the probability of survival, simply
because there are more particles. Similarly, replacing the distribution ¢ of the number
of descendants by some distribution ¢ having a larger mean should also increase the
chance of survival. The dependence on « is more tricky: If the jump rate is small, the
process is essentially frozen and remains concentrated on few sites, and can be killed
quickly if the environment is particularly unfavorable in a small area. If we increase x,
the process will jump away from any small area that is atypical and see an environment
that is more average. However even in the best case particles will be killed at rate 1.

We will not fully resolve the dependence on «, but instead connect the problem to the
survival rate in the one-particle model, which was studied in [15]. This correspondence
is similar to the connection between the random polymer model and branching random
walks in random space-time-environments, as explained in Section 1.3 in [5]. The proof
of extinction in the critical case borrows heavily from the proof given in [8], which
confirmed Conjecture 1 in [5].

Branching random walks in time-dependent environments have been studied exten-
sively in the context of the parabolic Anderson model, see [9], [6]. However, most papers
consider the solution to an SDE with random potential which describes the behavior of
the expectation of the number of particles in a branching random walk in random envi-
ronment, and not the actual particle system (a notable exception where the two models
are compared, is [14]). In addition, most papers have non-degeneracy conditions on the
killing rates which are violated by our environment. In particular, we point out that our
model differs from the branching random walks considered in [5] not only because time
is continuous instead of discrete, but also because disasters in the environment were
excluded in [5] (see formula (1.7)). The possibility of killing many particles at the same
site at once makes our model interesting but also creates some technical difficulties. For
a survey on the parabolic Anderson model and random walk in random potential, we
refer to [10].

The paper is organized as follows. In the remainder of Section 1 we define the process
and recall some previously known results about the one-particle model. Our main result,
stated in Section 1.3, is Theorem 1.1 which characterizes the set of parameters where
the survival probability is strictly positive.

The subcritical case of Theorem 1.1 follows immediately from the first moment
method, see Section 2.

In Section 3 we handle the supercritical case by comparing our process to an em-
bedded Galton-Watson process with i.i.d. offspring distributions. While this argument
is relatively short, it needs an auxiliary result (Proposition 3.1) about the one-particle
model. To prove the auxiliary result, we need uniform moment bounds (see Proposition
3.3) and a concentration inequality (see Proposition 3.9). The proofs of these propositions
make use of stochastic domination. These results can be found in Sections 3.1, 3.2 and
3.3, in which no branching processes occur.

Finally the critical case follows from a standard comparison to oriented site percola-
tion, presented in Section 4.1. To implement this argument we need two propositions,
the proofs of which are carried out in the remainder of Section 4.
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1.1 Definition and notation

We first define the branching random walk introduced above: We identify the nodes
of a tree with the set

N* = U NF = {:C = (x1,..,zk): k€N, zq,...,21 € ]N}.
k=0

We call |(z1, ..., k)| =: k the height of v and write ) for the unique element of height 0,
which we call the root. Proceeding recursively we interpret (z1, ..., ) as the the xg‘
child of (x4, ...,xx—1), for k > 1. Fix now positive values « and A as well as a distribution
q = (q(k))ren on the natural numbers satisfying

m:= kq(k) <oco and q(1)<1. (1.1)
k=0

We associate to every node an exponential clock of rate A, and whenever a clock rings
the node is removed and replaced by its children, where the number of children is
distributed according to q. The clocks and the numbers of descendants are independent.
We will write V (¢) for the set of nodes that are alive at time ¢, starting with V' (0) = {0}.

Next, we extend this by associating to each node v alive at time ¢ a position X (¢,v) in
7. We let each particle perform a simple random walk in continuous time of jump rate
k between its birth and the time when it is replaced by its children, independently from
everything else. The root initially starts in the origin, and all other nodes start at the
position occupied by their parent node at the time of birth.

For v € V(t), it will be convenient to extend X (¢,v) to a function X (-,v): [0,¢] — Z<,
where for s € [0,t] we set X(s,v) equal to the position occupied at time s by the unique
ancestor of v in V (s).

The process described so far is well-studied. Recall that the environment w =
(w(””))zezd consists of independent Poisson processes of rate 1 indexed by the sites of
74, which are independent of the random variables defined before. Let

5(t, x) = w@(t) —w® (7).

If §(¢t,x) = 1, we say that there is a disaster at time ¢ at . The process we are interested
in is denoted (Z(t));>0, with

Z(t)={veV(t): (s, X(s,v)) =0forall 0 < s <t} C V().

So Z(t) contains all particles v where no disaster occurred along the trajectory of v
before time ¢. Note that since we did not assume ¢(0) = 0 it is possible that a particle has
zero children, and the process may die out even without the influence of the environment.

We will use @) to denote the law of the environment, and P for the law of the branching
random walk. Typically we consider the processes Z(t) for fixed realizations of w, and
then we write P, for the conditional or quenched law. The annealed or averaged
law P is given by

P(Ze:) = /Pw(Z € )Q(dw).

We denote the corresponding expectation by E. With a slight abuse of notation, we
also use E for the expectation with respect to (). Occasionally we want to stress the
dependence on the parameters, in which case we write P** and Pj’k.
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1.2 Previous results about the one-particle model

There is a close relationship between our model and the model considered in [15].
There, the process consists of a single particle performing random walk at rate x among
disasters in the same way that particles in our model do. In this section we summarize
some known results.

Let (X(t))i>0 be a simple random walk in continuous time, moving in Z“ at a jump
rate k > 0, with the corresponding probability measure denoted P. The environment
w = (w(m))m cza 18 the same as before. We let 7 be the first time the random walk hits any
of the disasters, that is

- inf{t >0: 3(s, X,) > o}.

We are interested in the probability to survive until time ¢ for a fixed realization of the
environment:
S(t) = P,(t>1)

Note that by averaging over the environments one easily gets the annealed survival rate:
B[S(t)] = / S(H)dQ = e,

We summarize the results of [15] in the following

Theorem. Define p: (0,00) — (—o0,0) by

o1
p(k) = tlggo glog S(t). (1.2)
Then

(i) The limit in (1.2) exists @-almost surely and is deterministic, with
=l 1IEI S(t (1.3)
p(r) = lim ~Eflog S(2)]. :

(ii) For all k > 0 we have p(k) < —1.
(iii) For any d we have lim,_,o p(x) = —oc and lim, o, p(k) = —1.

(iv) There exists a critical rate x. = k.(d) € (0, 0], such that

p(k) <=1 ifK < K,
p(k) =-1 ifK > kK,

(v) Ford > 3 we have k.(d) < co.

1.3 The main result

We are interested in the event
{Z survives} = {|Z(t)| > 0, Vt > 0} . (1.4)

Using the exponent p(x) we prove the following criterion:

Theorem 1.1.
P,(Z survives) >0 Q-a.s. < A(m—1)+p(k) >0.

In analogy to classical branching processes, we define three regimes.
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Definition 1.2. We say that the process Z(t) is

subcritical if Am—1)4p(k) <
critical if A(m—1)+p(k)
supercritical if Am —1)+ p(k) >

0
0
0

An easy corollary is
Corollary 1.3.
P(Z survives) > 0 < A(m —1)+p(k) > 0.

We define the event of local survival to be
{Z survives locally} := {0 is occupied for arbitrarily large times} .

Clearly
{Z survives } D {Z survives locally} .

Our proof of Theorem 1.1 shows in fact that the process survives locally in the supercrit-
ical case, so that the following holds.

Corollary 1.4. The process either has a positive probability to survive locally in almost
every environment, or it dies out with probability 1 in almost all environments. Moreover

P,(Z survives locally) >0 Q-a.s. <= A(m—1)+p(k)>0.

Corollary 1.5. There exists ¢ > 0 such that Q-almost surely
{Z survives } = {lifminf |Zile™ " > 0}
[— 00

For the proof see Remark 3.2.

Remark 1.6. By an obvious truncation argument, the assumption m < oo can be
dropped; if m = oo, we are in the supercritical case.

We do not make any assumption on the shape of p, so a priori it may be discontinuous
or may not be increasing in . In Corollary 4.1 in [7] continuity of p is proven for a
related class of models, but the relevant case of hard obstacles is excluded. However, if
we interpret p as the free energy of a polymer in random environment as in Section 3
of [4], it is reasonable to conjecture that p is concave. A proof might be attempted by
showing the following

Conjecture 1.7. Fix a branching mechanism with m > 1, and set
U= {(n,/\): P**(Z survives) > O} C (0,00)2.
Then U is a convex set.

1.4 Some more notation

Before we start with the proof of Theorem 1.1, we collect some notation that will be
useful at various points throughout this work. We first extend the definition of Z to the
case where we may have more than one initial particle.

We call = (7,),cz¢ a configuration, and let Z” denote the process as defined
before, except that we start with 7, particles in z, all of which evolve independently
but in the same environment. If A C Z% and R > 0 is an integer we record the special
configuration (A, R) where each site x € A is occupied by R particles, that is

(A,R), := R14(x) forallz e 7% (1.5)
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For A C Z we use Z4 instead of Z(4:1) for the process started from exactly one particle
on every site in A. For ¢t > 0 and 7 a configuration we use

ZUhn = (z{xn(s)) (1.6)

s>t

to denote the process started at time ¢ with 7, particles occupying each site z, and we
use Z1*4 if 5 is equal to (4, 1).

Moreover if (Z(t));>o is some branching process and B C Z4, we let (Z5(t))i>0
denote the truncated process consisting of all particles that have never left B:

Zp(t) = {v € Z(t): X(s,v) € B forall s € [0715}}. (1.7)

In the simple case where B = {—L, ..., L}? for some L € N we simply write (Z1,(t)):>o0-
We also use the following notation for the set of particles of (Z;);>¢ occupying a site x at
time ¢:

Zt)yNn{z} ={ve Z(): X(t,v) =z} (1.8)

If n is a configuration, we denote the event that at time ¢ every site is occupied by at
least 7, particles by

< Z(t)} = {nx <|2(t) N {x}| forall z Zd}. (1.9)
In the case where i = 1¢ for some C' C Z¢ this is simply written as
(CCzt)})={C1)<Z{t)}= {Vx € C' Jv € Z(t) such that X (t,v) = x}
2 The subcritical case
Proof of Theorem 1.1 (subcritical case). Assume that
—e:=Am—-1)+p(k) <O0.

For almost all environments w, we can find 7' = T'(w) such that

S(t) = P,(r >1t) <P+ v > T

Then we have for t > T(w)
EUJHZ(t)” =E, [ Z ]l{v survives until ¢}

veV(t)
= EB[|[V(t)[]S(t) = E[m™]S(t) = M=Vt (1) < e 3, (2.1)
where M is a random variable whose law is Poisson with parameter A\t. This implies
Z(t) — 0 for almost all environments. O
3 The supercritical case

For the proof in the supercritical case we will need to consider the random variable
S(t) = Py(r >t,X, =0). (3.1)

It is intuitively clear that S (t) should decay to zero with the same exponential rate as
S(t), since the event {X(¢) = 0} has probability decaying only with a polynomial rate,
and therefore its contribution should be dominated by the contribution of the event
{r > t}. This is stated in the following
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Proposition 3.1. It holds that

Jim %]E[log S(8)] = px) (3.2)
and 1 B
tlggo n log S(t) = p(k) for @-almost all w. (3.3)
Moreover for any t > 0 we have
E[log S(t)] > —oc. (3.4)

Proof of Theorem 1.1 (supercritical case). Assume
A(m —1)+p(k) > 0. (3.5)

We will find a branching process with i.i.d. offspring distributions embedded in Z. More

precisely, we introduce a process (A(k))ren taking values in IN, such that we have

A(k) < |Z(kT)| for all k € IN and some T > 0. The claim then follows by showing that in

almost all environments the event {A(k) > 0 infinitely often} has positive probability.
Fix some large T, and set A(0) := 1 = |Z| and

A(k) =

{1} € Z(kT): X(iT,v) = 0 forall i =0, ..., k}’

That is, for the process A we only consider particles that return to the origin at times
T,2T,3T,.... Note that every particle that contributes to A(k) is the descendant of a
particle that contributed to A(k — 1).

To see that (A(k))x has i.i.d. offspring distributions, we recall from Section 1.4 the
notation Z(t) N {0} and Z*“. Using those, we can define the sequence (¢®))yc of
offspring distributions by

¢®(j) = P, (| 2% VTV (kT) 0 {0}| = j) forj e NN,

Note that ¢(*) only depends on the environment in the interval [(k — 1), kT, and (¢*)),
is therefore an i.i.d. sequence in the space of probability measures on IN.

We let m(¥) denote the expectation of ¢(*). By a well-known result on branching
processes with i.i.d. offspring distributions, see [16, 17], the survival probability of
(A(k))ren is positive for almost all environments if

Eflog(1 — ¢"(0))] > —oo (3.6)

and
E[log(m™)] > 0. (3.7)

We can write m(1) as

m® =37 jg () = Zij(|Z(T) N{0}| =j) = E.[1Z(T) n {0}]] -

jEN
Recall the definition of §(t) in (3.1) By the same computation as in (2.1) we get
m) = =0T g(T), (3.8)

In order to give a lower bound for the quantity in (3.6), we compare the branching
process to the random walk of a single particle: We choose a path by starting in the root,
and whenever there is more than one descendant, we follow its first child. Let F(¢) be
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the event that this construction succeeds up to time ¢, that is the currently observed
particle always has at least one descendant. We have

PRA(F(t) = E[(1 — (0))"] = exp(~Atq(0))

where M is the number of branching events along this path. Note that M has distribution
Poisson(\t), so that 1 — ¢ (0) > E[F(T)]S(T). By (3.4) in Proposition 3.1 we see that
indeed
E[log(1 — q(l)(O))] > —ATq(0) + E[log S(T)] > —oo.
We can now conclude: By (3.2) and (3.8), we find for every ¢ > 0 some 7' large enough
that
Efllog(m™M)] > T(A(m — 1) + (p(k) — €)).

By (3.5), we can satisfy (3.7) by choosing ¢ small enough, finishing the proof. O

Remark 3.2. The proof shows in fact that in the supercritical case, the process survives
locally with positive probability. Using results of [17] about branching processes with
i.i.d. offspring distributions we also see that in the supercritical case, the number of
particles grows exponentially fast.

It remains to prove Proposition 3.1. This will take up most of Section 3: We start
by proving a uniform moment bound in Section 3.1 using comparison techniques from
[15] and some results about stochastic orders. In Section 3.2 we use this to get a
concentration inequality, which is necessary for the proof of Proposition 3.1 in Section
3.3.

3.1 A uniform moment bound

The following proposition is key to proving the concentration inequality in the next
section:

Proposition 3.3. For every § € (0,1) there is some C > 0 such that

sup E|P, (T > 1|X(1) = m)_6] < C < o0.
z€Z4

For the proof we use an equivalence relation = on Z? defined by
(yla"'ayd) = (Zla"'azd) — Y=z mod 2.

We will identify Z?/— with Zy = {0,1}, and we use 7: Z¢ — {0, 1} to denote the projection.
Let @ be an environment on {0,1}, consisting as usual of two independent Poisson
processes @(°) and @(") of rate 1. We write 7~ !(@) for the environment on Z¢ given by

(7 @)W =W fory e Z%.

Note that this is a degenerate environment on Z¢, where all sites that share an equiva-
lence class in = experience the same disasters. We will slightly abuse notation by writing
[E for the law of @ as well.

First we need the following auxiliary lemma.

Lemma 3.4. Let (X(t));c[0,1] be simple random walk on {0, 1} of jump rate . Then for
any p € (0,1) we have
sup E[PS (> 1,X(1) =i) 7] < cc. (3.9)
i=0,1

while for p € (0, ) we have

sup E[PE(T>t,X(t)=0)"] < cc. (3.10)
te[0,1]
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Proof. This is a modification of the proof of Lemma 2.4 in [15], where the integrability
of P;(r > 1)? is shown. We quickly sketch how the proof can be modified:

Note that the bound in (2.24) of [15] is actually a bound for P, (7 > ¢,X(t) = 1). By
slightly modifying the argument we obtain a similar bound for P, (7 > ¢, X (¢) = 0), where
on the right hand side we have to replace C(t)C1 (t)"t; %" by C(t)2Cy (t)"~'¢;”. It is clear
that this does not make a difference for the convergence of the sum appearing in the
display after (2.26), where the coefficients ,, have to be replaced by

(1 -p)°C2—2p)"" (2=2p)n—1
I'(2n(1 - p))
This gives the first claim, and the second claim follows because the coefficients in that

sum can be chosen increasing in ¢. This is clear for C(¢) and C;(¢), and for n > 1 and
p € (0, 1) the B, are increasing as well. O

=

Proof of Proposition 3.3. By Lemma 2.2 in [15] we have

E[(P5(1>1,X(1) =2)"°] SE[(Prag)(r > 1,X(1) =2))~]

and dividing both sides by (P*(X (1) = z)) ~° gives
E[(PS(r > 1|X(1) = 2))°] S B[Py (T > 1|1X(1) = z))~°]
Moreover by (3.9) we have

sup E[(Pf,l(m)(T >1|X(1) = x))fé] < 0.

VAl

So the claim follows once we show that

K

E[(P:,lm(T > 1)X(1) = x))*“] < E[(P; Loy (T 21X (1) = g;))*‘s} (3.11)

For simplicity we only treat the case where « = 0, noting that the case z = (1,0, ...,0)
is similar. For a fixed environment &, let N be the number of disasters in [0, 1]. We write
Ty, ..., Tn for the disaster times in increasing order, and Fj1, ..., En for their locations. Let
us write P77~ resp. ETtT~ for the law resp. expectation of E1, ..., Ey conditioned
on N and 71, ..., T, which is simply the uniform distribution on {0, 1}". Notice that for
any event A and function f : (0,1] — R we can write

. 1
Tt TN (P gy (m > 1]4))] = N Z fla(er,...,en))
(e1,...,en)€E{0,1} N
where « is a measure on {0, 1} defined by

a(eh...,eN) = P’i(ﬂ'(X(Tl)) =1- €1, ,F(X(TN» =1- 6N|A>.

Before we make use of this observation we introduce a different encoding for the
disaster locations which will be convenient later: Given a realization w, we define its

configuration I; = (I@(i))i\io by

I = (]l{E1 — 0V, 1{Es # B}, o, 1{Ex # Ex_1}, 1{Ey = 0}) e {0, 1}V,

The intuition is that I; encodes the necessary jumps for the random walk. To see this
we notice that if {I;(i) = 1} for some i € {0, ..., N}, the process has to switch sites in
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[T;, T;+1) if it wants to survive and at time 1 end up in a location equivalent to 0. (Recall
that TO =0 and TN+1 = 1).

We let ¥ C {0,1}¥*! be the set of configurations with an even number of 1s. Observe
that P71 T~ (I, € X) = 1, and that I has the uniform distribution on .

On the other hand, we define for a cadlag process X on Z¢ its signature 7 as

7= (W(X(Tl)),W(X(Tg) — X(TV)), oo 7 (X(T) = X(Ty_1)), 7 (X(1) — X(TN))).

We notice that {Z € £} = {X(1) =0} and {Z = I;} = {r > 1, X(1) = 0}, so that we can
introduce two probability measures p and v on X by setting

u(I) =P (Z=1I|X(1)=2) and v(I):=P3(Z=1|X(1)=2z). (3.12)
Notice that we now have

Prig)(r>1{X(1) =2) = u(lz) and Pf,l (r>1X(1) =2) =v(ly).

(@)
So we have two probability measures which are evaluated at a random point I, and
we want to compare the expectations of f(u(l;)) and f(v(I3)) for the convex function
f(z) =a79%.
For this we recall some results about stochastic orders: For two probability measures
pand v on ¥, we say that u is majorized by v, denoted u <y, v, if

k k

> plai) <> v(b) forallk=1,..,2",

i=1 i=1
where ¥ = {aq,...,aon } = {b1, ..., b~ }, and the ordering is chosen in such a way that
plar) > ... > plaoy)  and  v(by) > ... > v(byw).

The intuition for p <, v is that the mass of i is more spread out than the mass of v,
so that the random evaluation ;(I;;) should be more random than v(I;). The following
result makes this precise in terms of the convex stochastic order:

Lemma 3.5 (Corollary 1.5.37 in [13]). We have i =) v if and only if

% Z F(w(o) < |%| Z f(u(o)) for all convex functions f : (0,1] — R.
cEY

oEX

Indeed we have
Lemma 3.6. Let i and v be defined as in (3.12). Then p <X v.
Hence Lemma 3.5 implies

BT [ (u(15))]) < BT [ (u(12)]

for all convex functions f : (0,1] — R. Inserting f : = — x~9, this in particular shows
(3.11) by taking expectations. O

It remains to show Lemma 3.6. If Z is a cadlag process, we call ¢ a jump time of Z if
Z(t) # Z(t~), and we write Rz for the number of jumps times of Z in [0, 1].

Lemma 3.7. Let X resp. Y be simple random walks on Z¢ with jump rate x resp. 5.
Then
Ry|[{Y(1)=2} =4 Rx|{X(1) =z}
where <,; denotes stochastic domination.
EJP 22 (2017), paper 67. http://www.imstat.org/ejp/
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Proof. It is easier to show that
Ry‘{Y(l) = l‘} jlr Rx‘{X(l) = 3?}

where =;, denotes domination in the likelihood ratio order, see for example Chapter 1.4
in [13], where it is also shown that <;,. is stronger than <,;.

We have to check that for k,[ € IN of the same parity as z; and such that |z1| < k </,
the following holds:

Pf(Rx = k|X(1) =2)P2(Ry =1[Y(1) =2) < P*(Rx =1|X(1) = 2)P3 (Ry = k|Y(1) = 2)

We apply the definition of conditional probability and cancel the terms that appear on
both sides (note that P2 (Y (1) = z|Ry = [) = 1 since I has the same parity as ;). Then
we can rewrite the equation as

i'i
=
I

. NP(A = k)

- =2l
P(Z =z1) ~ P(A=k)P(A' =1

Here (Z;);cn is a discrete time simple random walk on Z, and A resp. A’ is a Poisson
random variable of parameter % resp. 5;. But this inequality holds, since by the Markov
property

P(Zy =11) > P(Zy = 21)P(Z1_1, = 0) > P(Zy = 21)27 0, O

Now we are ready to show Lemma 3.6.

Proof. Let us define Weights Po,---s PN by Po = T, py i=1-— Ty and Di = dj41 — T; for
all other values of i. We note that i and v do not depend on the order of 71, ..., Ty, and
therefore we can rearrange them to satisfy

Now for k£ € NI, let M, = (My(0),..., My(N)) denote a random variable having the
multinomial distribution with k trials, and write P for its law. That is, k indistinguishable
balls are thrown in bins numbered 0, ..., V such that each ball independently lands in bin
i with probability p;, and My (7) is the final number of balls in bin i. We define

Iy, == (L{M(0) is odd}, ..., 1{M(N) is odd}) € {0, 1}V *'. (3.14)

We will often use 7, interchangeably with the set {i : M() is odd} C JNK, where
JNK = {0,..., N}. Consider random variables K and L taking values in IN with

P(L=1)=P"(Rx =1|X(1)=2) and P(K =k)=P2(Ry =k|Y(1)=2).
Observe that by conditioning on Rx and Ry we get
p(I)=E[PL(Z, =1) and v(I)=E[Px(Zkx =1)] (3.15)

Indeed, conditional on a random walk having K jumps in [0, 1], each jumps occurs
in [T}, T;+1) with probability p;, independently of the other jump times, and the process
switches sites between T; and T}, exactly if there is an odd number of jumps in [T}, T} 7).

One might be tempted to think that we are done now, since for all fixed values k <[
we can easily show that P(Z; € -) <y Pi(Zy € -) holds: The distribution of Z; can be
obtained from the distribution of Z; by the application of a doubly stochastic matrix, and
this is an equivalent characterization of <,;, see for example Theorem 1.5.34 in [13].
Moreover from Lemma 3.7 we know that there exists a coupling between K and L such

EJP 22 (2017), paper 67. http://www.imstat.org/ejp/
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that K < L holds with probability one. However the majorization order is not stable
under taking mixtures, so this does not give the conclusion.
Instead we define a partial order < on ¥ by

k
(i0s - in) X (Josnjn) = > i <Y ji forallk=0,..,N.

We will show in Lemma 3.8 that if we increase the number of jumps from 2k to 2k + 2,
the mass in Y will become less concentrated on the “small values” with respect to this
partial order, which is what we need to conclude:

First note that both i and v are decreasing in =, as defined in part (i) of Lemma 3.8
below. From (3.15) we see that this follows by taking expectations in (3.16), and noting
that both K and L are supported on the even numbers. Moreover we have

uw(A) <v(A) for all decreasing sets A.

To see this, recall from Lemma 3.7 that we can couple K and L such that K < L holds
with probability one, and apply (3.15) together with (3.17). We have checked conditions
(1) and (2) from [2], and p <j; ¥ now follows from Theorem 3 in that work. O

It remains to show

Lemma 3.8. (i) Py, (Zox € -) is decreasing in <. That is, for all I, J € ¥. we have

1< = Pyu(Zop=1) > Poy(Zop = J). (3.16)

(ii)) Let A C P(X) be a decreasing set, i.e. J € A impliesI € A forall I with I < J.
Then

Popio(Zopto € A) < Pop(Zo, € A). (3.17)

Proof. For S C JNK we write M;,(S) := > _,.g Mx(i). We recall the following fact about a
binomial random variable B,, , with n trials and success probability p:

P(B,,, is even) = (1 +(1— 2p)”)_ (3.18)

| =

Part (i): For S, T C JNK disjoint, we consider the function
f2(r) == P(Mj(4) is even Vi € S, My,(j) is odd Vj € T|M(SUT) =r).

Whenever S or 7 is the empty set, we drop it from the notation and just write f7 or f°.
We first show (3.16) in two special cases:

Assume that I C J, with J\ I =: {a1,..., a2, }. Let A be the event A :={I CZy, C J}
and set Sj = {agj_l, (Igj}. Then

Por(Zox = I) = Pop(A)E { ﬁ £5i (Mgk(sj))\A]

Clearly f®i(m) is only positive if m is even, and in this case f% (m) > fs, (m) follows
from (3.18). But this means

Py (Zop, = J) = sz(A)E[Hfsj (MQk(Sj))‘A} < Poy(Zor = I).

EJP 22 (2017), paper 67. http://www.imstat.org/ejp/
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Next we assume that |I| = |J| and that I and J only differ in two coordinates, thatis I =
IoU{a} and J = Iy U {b} for some b < a. Let B be the event B := {Iy C Ty, C I U{a,b}}.
Then

Por(Tox = ) =P(B)E| 2 (Max({a,b}) | B]
>P(B)E|f; (Mgk({a,b}))‘B] = Po(Top = J).
For the inequality we have used that for m odd we have

ffj(m) = P(Bpn,p is even) > P(B,, , is odd) = f'(m)

where p = .. Note that a > b and (3.13) imply p < 1.

Now the general case follows from the observation that for any I < J we can find
Ip = ... 2 I, such that Iy = I and I, C J, and with the property that I,;; and I; only
differ in two coordinates, as defined above.

Part (ii): We do this by constructing a coupling (Zox, Zok+2) with the property that
Tor, =X Zop42 holds with probability one, from which (3.17) follows.

For this, let (B, A) be chosen from {(b,a): 0 < b < a < N} according to

P((B, 4) = (b,)) = 2paps1{b < a} +p21{a = b}

and let M be independently sampled with the multinomial distribution with 2k trials. On
the event {A = B} we define Zy; from M according to the definition, and set Zsx12 equal
to Zoy.

In the case where B < A, we first fix the coupling on JNK\ {4, B} by

Z,(4) ;== 1{M(i) is odd} fori ¢ {A, B} and ! € {2k, 2k + 2}.

Then we set R := M(A) + M(B) and p := pAppr , and consider an independent random

variable U distributed uniformly in [0, 1]. From this we define

Toe(B) := 1{U < P(Bpg,, is odd)}
Tok+2(B) :=1{U < P(Bg, is even)}

Finally, for [ equal to 2k or 2k + 2, we set
Zi(A) ;== R—T7;(B) mod (2). (3.19)

We claim that this is indeed the desired coupling. First note that we can sample
a realization of the multinomial distribution My o with 2k + 2 trials by sampling M
together with two additional balls A and B as described above. If the extra balls end up
in the same bin, then the parity of all coordinates of M and Moo will agree, and we
can take Zo; = Zog+o-

Otherwise adding A and B will flip the parity of M (A) and M (B). So conditionally
on {M(A) + M(B) = R} we have sampled Z5;(B) and Zo,+2(B) with the correct laws,
which then forces us to choose Zy;(A) and Zo,12(A) as in (3.19).

But now (3.13) and B < A imply p = pAppr < % so from (3.18) we obtain

. 1 1 1
P(Br,ypis odd) = 5 — (1 - 2p)F < 3
Therefore Zoi(B) < Zokt2(B), which implies Zop, < Zogyo.

More precisely, if R is even we have

< P(Bpg, is even).

(Zok(B), Lok (A)) = (1, 1) = (Zak+2(B), Tar+2(A)) = (1,1)

EJP 22 (2017), paper 67. http://www.imstat.org/ejp/
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so that Zy;, C Zoi4+2 with probability one. If R is odd, we note that
(Zok(B), I2k(A)) = (1,0) = (Zak+2(B), Zak42(4)) = (1,0).

On the other hand, on {(Zz2x(B),Z2k(A)) = (0,1)} we can have either Zo;19 = Ty Or
(Zok+2(B), Zak4+2(A)) = (1,0). In the second case we have strict inequality, Zor, < Zog2-
O

3.2 A concentration inequality

We write
S(t,x) = P,(r > t,X(t) = x).

With the previous moment bound at hand, we can now proceed to prove a concentration
inequality for the sequences (S(t,x))t>0 where the bounds do not depend on z. We
follow the proof of Proposition 3.2.1 in [5].

Proposition 3.9. There exist ¢ > 0 and C > 0, such that ¢ € (0, ¢) implies
Q(| log S(t,x) — Ellog S(t,z)]| > Et) < 2exp(—Ce?t) (3.20)

forallt € N and = € Z°.

Proof. We will drop the dependence on ¢t and « in the notation, and only write S for
S(t,z). Let w; be the environment that contains all disasters (¢, y) of w except for those

with ¢ € [i — 1,4). We now consider the filtration (]—'i)z:o with
Fi = J(w(y)(s): s <iye€Zb
and the random variables (Si);l given by
S; =P, (T >t,X(t) = x).
Notice that E[log S;|F;] = E[log S;|F;—1]. Now by Lemma A.1 in [5], we obtain
Q(|log S — E[log S]| > et) < 2exp(—Ce>t)
for some explicit constant C' > 0 once we have shown that

E[e(ﬂ log S—log S|

}_i—1] <A

holds for some § > 0 and for some A > 0 not depending on i, ¢t or z. We have S < S;, and

therefore G s
edllog S-log Sil (g) = (Zayny) (3.21)
1 Y,z
where
oy, =P, (X(i—-1)=y,X(i) = Z’T >t,X(t) = x)
and

My, = PS03 (1> 4),

Here P("¥):(:2) is the law of a random walk starting at time r in y and conditioned to
end up in z at time s. To see that (3.21) holds true, note that

Qy :Pwi(X(ifl) =y, X(@)=2z71>tX(t) ::c)/Si.

EJP 22 (2017), paper 67. http://www.imstat.org/ejp/
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To compute the expectation of the r.h.s. of (3.21), consider, for i fixed, the sigma algebra
F* = a(wl(y)(s): s <tyez)

From our choice of w; we clearly have F;_; C F*, and 7, . is independent of 7* while
oy, is F* measurable. So using Jensen’s inequality we obtain

]EKS%)*‘;‘]:*} < Zay,zE[n;ﬁ ] = ZaWE{(Pw(T >1X(1)=2— y)—a}

By Proposition 3.3 we have

supE{Pw(T >1/X(1) = zfy)fé} =c< o0

Y,z

and therefore g s
E|(5)

3.3 Proof of Proposition 3.1

.7-},1} <ck [ Z Q.

Y,z

.7:1‘71} =c. O

Equipped with this concentration inequality we can now prove Proposition 3.1. We
follow the proof of Proposition 2.4 in [3].

Proof of Proposition 3.1. We start with (3.4), where we first argue that it is enough to
assume ¢t € IN. We take any ¢ > 0 and set s := [¢t|. Then

E[log S(t)] >E[log S(s)] + E[log Py(r >t — 5, X(t — 5) = 0)]

— llog sup E[(PW(T >r,X(r)= O))_é] (3.22)

>Eflog S(s)] - w
rel0,

Here we take § € (0, %) and for the second line we used Jensen’s inequality. The second
term in (3.22) is finite by (3.10). For the first term we have

Ellog S(s)] > E [mg [P =i x0) = 0)}
i=1
= slog P(X (1) = 0) 4+ s Ellog P, (7 > 1]X (1) = 0)].

where P() is the law of a random walk started at time i — 1 at the origin. Note that the
first term in the last line does not depend on w. But for all 6 € (0,1) we have

Ellog P, (1 > 1|X (1) = 0)] = —%E[log (Po(r > 1|X(1) = 0)"?)]

> —%ng[Pw(T > 1|1X(1) =0)"°] > —o0,

where we used Jensen’s inequality, and the integrability follows from Proposition 3.3.
From (3.2) and the concentration inequality (3.20) we obtain (3.3) by a simple Borel-
Cantelli argument. Now to prove (3.2), we remark that the existence of the limit

_ .1 5
p(r) = lim ~Ellog S(¢)]
can be shown by subadditivity as usual, but this is not even necessary for our claim.
Clearly we have
1 -
lim sup ;E[log S(t)] < p(k).

t—o00
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We now prove the other direction, where by (3.22) it is enough to consider ¢t € IN. Note
that for any x € Z? we have

P,(1 >2t, X(2t) = 0) > P,(7 > t, X(t) = x) P"*(7 > 2t, X (2t) = 0).
ince P** (1 > 2t, t) = as the same law as P, (7 > ¢, t) = x), we conclude that
Si Pt ( 2t,X(2t) =0) h h 1 P,( X(t) ) lude th
Eflog S(2t,0)] > 2IE[log S(t, x)]. (3.23)

For v > 0 we consider a box B; = {x € Z%: ||z|| < 4t} and the event A; := {X(t) € B;}.
Using standard large deviation techniques, we can choose v large enough such that

log P(Af) < tp(k) Vt > to.
Consequently we have
1 1
p(k) = tlgr{)l(} ;]E[log P,(r>1t)] = tl;rrolO ;]E[log P,(r>tA)]. (3.24)
Take now ¢ := ¢t~ 1 and apply the fractional moments method:
Ellog P, (T > t, A¢)] = %E[log (Po(r>t,A)°)]

< élogE[Pw(T >t A7 = élogE[( 3 S(t,x))j (3.25)

rEB;
< flogE[ 3 S(t,m)e} (3.26)
TE By
— 710g Z E[es(logS(t,z)flE[logS(t,m)])]es]E[log S(t,m)]’ (327)
rE By

where we get (3.25) from Jensen’s inequality, and the inequality in (3.26) comes from
€

the general estimate (Z;\;l aj) < Z;\Ll a; for nonnegative ai,...,ay and 0 < e < 1.

For the left factor of the summands in (3.27) we compute, using (3.20),

E [exp (=(log S(t, ) — Ellog S(t, x)])}
> 3
<1 —|—/ Q<| log S(t,x) — Ellog S(t,z)]| > t4 logu>du
1
<1+ 2/ e=C12 (g’ gy = c(t).
1
Then we are left with

1 1
Ellog P, (T > t, A¢)] < —loge(t) + — log Z esFllog S(t,2)]
€ € € By

1 1 1
< R logc(t) + - log |By| + §E[log S(2t,0)],

where we have used (3.23). Dividing by ¢ and taking limits, taking into account (3.24),
we obtain
1
lim inf Q—E[log S(2t,0)] > p(k). O

t—o00 t
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4 The critical case

4.1 Proof of Theorem 1.1 in the critical case

In this section we apply the technique going back to [1], where it was used to show
that the critical contact process dies out. We consider the critical process and assume
that it survives, showing that this leads to a contradiction.

For this we find a supercritical oriented site percolation process induced by the
branching process in such a way that an infinite cluster in the percolation implies global
survival of the branching process. In this coupling the event that a site is open can be
decided by considering local events of the branching process, i.e. an event that only
depends on a finite space-time box. The probability of this local event therefore depends
continuously on the parameters of the model, so that the comparison to supercritical
percolation still holds true if we push the parameters slightly into the subcritical phase.
Since we know that the process dies out in this case, we have a contradiction.

This technique was also used in [8] for a discrete time, non-degenerate version of our
model.

Proof of Theorem 1.1 (critical case). Fix x and X such that

A(m —1) +p(k) =0. (4.1)
At the same time assume that

]P””\(Z survives) > 0. (4.2)

For the contradiction we first consider the process in an environment with a higher
disaster rate, making the process subcritical: Let us introduce the rate at which disasters
appear as a new parameter of the model (until now, it was fixed to be 1). Denote by
@“ the law such that (w(“’))w czd is a collection of independent Poisson processes of rate
a > 0, and write P®** for the annealed measure Q* ® P"*. Let p(a, ) be the survival
rate of a single particle in this environment (defined as in (1.2) but with an environment
with disaster rate «). We show at the end of this section that for any § > 0 we have

A(m —=1)+p(1+6,k) < 0. (4.3)

Now using the same arguments as in the proof of the subcritical part of Theorem 1.1,
(4.3) implies that for all 6 > 0 we have

P15 (Z survives) = 0. (4.4)

The contradiction will come from a coupling with oriented percolation, showing that for
0 small enough we have
P95 (Z survives) > 0. (4.5)

Consider a box D,, := {—n,...n}?. Recalling the notation from Section 1.4, we consider
for s, L,T € Rt, 2,y € Z¢ and n, S € IN the event

3 L,.. 3L —L,...L}* 1 t e [5T,6T
A*Y(L,T,n,S) ::{ v el Fxd ; €l ] ) } (4.6)

2 {S}X(y+D7z7S2)
such that (z + D,,,5%) < Z{_5L _____ SLYx{_3L,  3L}d-1
(The reason to use S? on the r.h.s. of (4.6) will become clear later). In words, A%0 =
AYO(L,T,n,S) is the event that starting from configuration (D,,, S?) at time 0, those
particles will propagate such that at some time ¢ € [57, 67| we find a copy = + D,, of D,
where again every site is occupied by at least S? particles. Because we consider the
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truncated process, the event has to be achieved by particles which do not leave a certain
space-time box.

We now state the key proposition which says that under the assumption (4.2), we can
make the probability for (an auxiliary version of) A%C arbitrarily large:

Proposition 4.1. Assume (4.2). For every ¢ > 0 there exist L, T > 0 and n, S € IN such
that

such that (x + D,,, S?) < 7(Dr,5%)

PpLeA Jrxe{L+n,.,2L+n} x {~L,....,L}* 1 t € [T,2T]
{—L,...,SL}><{—L,...,L}d*1(t)

) >1-—e. (4.7)

We will use this to give an estimate for the probability of A%¥ that holds uniformly for
all s and y in some space-time box:

Proposition 4.2. Assume (4.2). For every ¢’ > 0 there exist L', T’ > 0 and n, S € IN such
that
inf {]PW (AY(L',T'n,8)): s € [0,T),y € {~L, ... L’}d} >1-¢.

Note that A%Y is a local event, i.e. it depends only on the process in some finite
space-time box. Therefore its probability depends continuously on the parameters, and
we get the following

Corollary 4.3. Assume (4.2). For every ¢ > 0 there exists L, T > 0 as well asn,S € IN
and § > 0 such that

inf {]P”‘S""’\ (A*¥(L,T,n,8)): s € [0,T],y € {~L, ...,L}d} 1.

We will now argue that Corollary 4.3 ensures that the process survives with positive
probability by a comparison to oriented percolation on IN?2. We follow the arguments
from chapter 1.2 in [12].

We call a path (ko, o), ..., (km, l,n) in IN? an oriented path if foralli = 0,...,m — 1 we
have k;41 = k; + 1 and either ;11 =[; or l;41 = ; + 1. Fix L,T,n and S. Let us call the
point (k,1) € N? occupied if there exist (¢, z) with

(z + Dy, S%) < ZP57) (1)
and such that (¢, z) is in the space-time box
d—1
[5Tk,5T(k+1)) x {L(—2k+ 4l —1),...,L(=2k+4l+ 1)} x { = L,...,.L}" . (4.8)

Finally we call a point (k,!) open if there is an oriented path (ko,lo), ..., (km, L) With
(ko,lo) = (0,0) and (kL) = (k,1), and such that (k;, ;) is occupied for all i = 1,...,m.
We write

n(k,1) =1

if (k,1) is open, and 7(k, ) = 0 otherwise.
This defines a random process (7(k,1)) % nen> € {0, 1}]N2 from every realization of

the process (Z(D"’SQ)(t))tZO, and an easy observation is that if n(k,l) = 1 for infinitely
many points (k,!), then the original process must have survived. The next proposition
compares (1(k,1)),en> to an independent oriented site percolation

Nk, 1) (k1yenz -

That is, for (7(k,[))x,en> every point (k,1) # (0,0) is occupied independently with
probability p € (0, 1), and we set

n(k,l) =1
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if (k,1) is reachable from (0, 0) along an oriented path of occupied points, and 7(k,1) =0
otherwise. For two realizations (7(k,[))x,;) and (7(k, 1)) (), we will say that ) dominates
7 if n(k,l) > n(k,1) holds for every (k,1).

Proposition 4.4. Assume (4.2). For every p € (0,1), we can find values L,T > 0,n € NN,
S € N and § > 0 such that (n(k,1)),en> induced by

(Z(Dn,Sz) (t))tzo

with parameters (1 + 0, , ) can be coupled with (7(k,1))x,)en> in such a way that n
dominates 7) with probability one.

This now gives the contradiction, since we can find p € (0, 1) such that
IP(7j(k, 1) = 1 for infinitely many (k,[)) > 0.
Proposition 4.4 then implies that
]PH‘S”"/\(Z(D"’SQ) survives) > 0  for some § > 0.

Clearly this also implies P*+%%:*(Z{%} survives) > 0 and therefore contradicts (4.4). O

Proof of (4.3). Let w, and wg be independent environments of disaster rates « and j3,

respectively, and note that w,4g 4 wq +wg. Here, w, + wg denotes the environment
which contains both the disasters of w, and of wg. We write 7, and 74 for the extinction
times in w, and wg and get, using (1.3), that

1
pla+ B,k) = tlim EE[log Pootws(Ta N7 > t)]
o1
= p(a, k) + tlinolo gE[log Pyptws (18 > tTa > t)]
o1
<pla,k) + tlgrolo n log B[P, 1w, (T8 > tlTa > 1)] = p(a, k) — B,
where the last inequality follows from Jensen’s inequality. O

Proof of Corollary 4.3. From Proposition 4.2 we get L,T, n and S such that

nf P AL T, 8)) > 1 S
s€[0,T],ye{—L,...,L}d 5

Using the notation from the previous claim, we note that
Ky A s, K, s,
Py (AYY(L,T,n,S)) = PE(A*Y(L,T,n, S))

on the event E := {ws has no disasters in [0,67] x {—5L, ...,5L} x {—3L,...,3L}*~1}. But
the Q-probability of F goes to 1 for § — 0, and therefore the claim follows from

inf PSRN (A5Y(L Ton, S)) > (1— 2 )QE). 0
sE[QT],yg%fL,...,L}d ( (L, T,m, ))_( Q)Q( )

Proof of Proposition 4.4. We construct (n(k, 1)) ,en> Tecursively. Assume that we have
{n(k,l) : k < K,l < K} for some K € N. Since n(K + 1,1) = 0 unless either n(K,l) =1 or
n(K,l — 1) = 1, we assume that at least one of the latter random variables has the value
1. So we have

(z + Dy, 82) < 2P (1)
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for some (t, z) in either the space-time box from (4.8) (with K = k) or satisfying
(t,z) € [BTK,5T(K +1)) x {L(—2K + 41 —=5),...,L(-2K + 41— 3)} x { = L, ...,L}’H.
Clearly n(K + 1,1) = 1 holds if we find (¢/, z’) such that
(D, +x/752) < Z{t}x(erDn,Sz)(t/)

where ¢’ € [5T(K +1),5T(K + 2)) and

¥ e {L(—2K+1)+ 4 — 1), , L(=2(K + 1) + 4l + D)} x { = L,..,L}*".
Corollary 4.3 shows that for any € > 0, we can choose L,T > 0,n € N, s INand § > 0
such that this happens with probability at least 1 — ¢, and it is clear that this probability
does not depend on K or .

So we have constructed a percolation (7(k,[)),)en> where each point is open with
high probability, but not independently. To address this we define a distance between
two sets S1, .52 C IN by

d(51752) = inf{|x1 — $2| X € 5171‘2 S SQ}

We notice that the restriction to a truncated process in Corollary 4.3 ensures that
the percolation is 2-dependent. This means that conditioned on {n(k,{): k¥ < K}, the
collections (n(K + 1,1))1es, and (n(K + 1,1))es, are independent for any sets 57,52 C IN
with d(Sl, Sg) > 2.

Theorem B26 in [12] then ensures that we can couple (n(K + 1,1))i<x+1 with an
independent family of Bernoulli random variables (77(KX+1,{));<x+1 such that n dominates
7, and such that 77(K + 1,1) = 1 holds with probability at least (1 — /z)? if either
n(K,l—1)=1orn(K,l)=1. O

It is clear that the key step is to prove Proposition 4.1 and Proposition 4.2 about the
local events A*Y(L,T,n,S). For this we consider the numbers N resp. M of particles
leaving a space-time box through the top resp. the faces, rigorously defined in Section
4.3. Well established techniques for branching processes show that if the process
survives we can expect N + M to be large, which we show in some technical lemmas in
Section 4.2.

The construction we outlined before requires us to have more control on where
exactly those particles exit the box, so we let N(u, ) count the number of particles
exiting through the orthant described by 6 of the face in direction u, and we use M (u, 6)
for the number of particles exiting through the corresponding orthant of the top. The
formal definition is again deferred until Section 4.3. Using an FKG inequality we obtain
in Section 4.3 that we can expect all the N(e;,0) and M (u,#) to be large on the event of
survival, at least if we increase the number S2 of particles initially on each site of D,,.

Having done all of this we can finally prove Propositions 4.1 and 4.2 in Section 4.4,
finishing the proof of Theorem 1.1.

4.2 Some technical lemmas

Recall that we have fixed A, k and ¢ such that (4.2) holds. We first show that we
can make the survival probability arbitrarily close to 1 by enlarging the set of initially
occupied sites. This is part (i) of Lemma 4.5 below.

Part (ii) concerns particles that survive locally until time 1 by using only two sites.
We obtain that (with high probability) many particles will achieve this if we start with a
large enough number of particles at the origin.
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Part (iii) shows that with high probability, starting from N particles occupying the
origin, at time 1 we end up with a configuration where every site of D,, is occupied by
many particles. We need this to be a local event, so we restrict ourself to particles that
do not leave certain boxes.

Lemma 4.5. (i) For everye > 0 there isn € IN with
P(ZP~ survives) > 1 —e.
(ii) Recall (1.8). For everye > 0 and M € N, there is an N € IN such that

IP(|Z§§?8};§V>(1) n{0}| > M) >1-c

(iii) Recall (1.9). For everye > 0 and n, S € N, there is an N € IN such that

min {IP((nel +D,,5) < 2N (1)), P((D,, 5) < ng}’N)(l))} >1-c.

Proof. Part (i): Define a collection (Y,),czqs with Y, := 1{|Z{*}(t)| > 0 V¢ > 0}. We have

P (122 ()] > 0 Vt) :IP( DR >0) :E[Pw( DR >oﬂ

zeD,

Writing S, = > Y, we have

€D,

Po(S0 = 0) < Py (IS0 — EulSul] > EufSa]) < ~2%e(5n)

> < 4 (4.9)
(EulSa)

Now, due to the spatial ergodic theorem (see Theorem 4.9 in [11]), we have ﬁEw [Sn] —
E[E,,[Yo]] > 0 for almost all w, while

1
| D

Var,,(S,) = ﬁ Z Var, (Y,) — E[Var,(Yo)] Q-as.,

xeD,

where we used the fact that {Y,,z € Z9} are independent with respect to P,. We
conclude from (4.9) that P, (S, = 0) — 0 almost surely and therefore P (S,, = 0) — 0 as
well.

Part (ii): For v € IN* a node in our tree (recall Section 1.1), let B(v) denote the event
that v

¢ does not branch before time 1
+ satisfies X ([0,1],v) C {0,e1} and X(1,v) =0
* and is not killed by the environment until time 1.

For any « € (0,1] we let A(«) be the event
Ala) = {Pu(B()) > a}.

Note that the events A(«) are increasing as « | 0 and that their union over all « € (0, 1]NQ
has probability 1. So for any > 0 we can find o > 0 small enough that

Q(A(@) 21—

Now starting with N initial particles at the origin in an environment w € A(«), the
number of particles v such that B(v) occurs dominates the number of successes of a
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binomial random variable with [V trials and success probability a. Clearly we can choose
N large enough such that
P(Bin(N,a) > M) >1—n.

Then we can conclude since

P(| 2" {0} = M) = QA P(ex = M) = (1 =) = 1 -=

holds for 1 small enough. _
Part (iii): Let D, be equal to either D,, or ne; + D,,. We fix an enumeration D,, =
{%1, ..., Z(2n41)a} Of the sites, and introduce the quantity

S(x) = Pu(r > 1,X(1) = 2, X([0,1]) C f)n).

Here we use P, for the law of a single particle which does not branch and which is killed
by the environment w with 7 denoting its extinction time. For a € (0, 1] we consider
events

Ala) = {min{S(x) Lz €Dy} > a}.

Fix > 0. By the same argument as before we find that Q(A(«)) > 1 — n holds for some
a > 0 small enough. We now choose N := m(2n + 1)? for some large m. Letting W C IN*
denote the set of initial particles, we partition W (deterministically) in such a way that

W=Wi- UWauiye with|[W;[=mVi=1,..,(2n+1)%
Now for w € W; let B;(w) be the indicator function of the event that the particle w

* does not branch before time 1
» satisfies X ([0, 1],w) C D,, and X(1,w) = z; and
* is not killed by the environment until time 1.

Let B be the event

B:={ Y Biw)=Sforalli=1,..|Dl}.
weW;

Noticing that P(B;(w) = 1) = e~*S(x;) we conclude that for w € A(a) we have

(2n+1)¢
)

But now it is clear that we can choose m large enough that P,,(B) > 1 — n on A, hence

P((Dn8) < 28N W) > [ RUBIQ>(1-n)?>1-¢
D A@)

holds for n small enough. O

In the following, we think of A C Z as a large set, so that {Z4 dies out} is an event of
small probability. In the next lemma we state the familiar property that survival can only
happen if the number of particles goes to infinity. Looking at the process as a random
tree embedded in space-time, this means that there are many particles occupying the
top of a space-time box.

Lemma 4.6. For every A C Z¢ we have

P(Z* survives) = P(Z* survives, Jim 1 ZA(t)] = 00).
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Proof. Define constants

a:=Q (At least one disaster occurs at the origin before time 1) =1—¢! (4.10)

B = P((Z{O}(t))0<t<1 stays at the origin and does not branch) =e AR (4.11)

Let F; be the sigma algebra generated by the environment, the branching times and the
particle positions up to time ¢. Then for any ¢t we have

P(Z* dies out|F;) > ol 2" ®IglZ" )],

Letting ¢ go to infinity, the left side converges to the indicator function 1{Z* dies out} €
{0,1}. However, if for some K we have |Z4(t)| < K for arbitrarily large ¢, the limit
inferior of the right hand side will be bounded away from 0. Therefore the event

{Z* survives,|Z*(t)| < K for arbitrarily large ¢}
has probability 0. Now
P (Z* survives, limsup |Z*(t)| < o)
t—o0

= lim P(Z* survives,|Z*(t)| < K for arbitrarily large ¢) = 0. O

K—oo

We also need the following general result:

Lemma 4.7. Let m, S > 1 and consider random variables (X, ..., X,,,) taking values in
{0,1}™*! (not necessarily independent). Then

m (m+1)S
[]P(x:=0)° < P(X, =0 forall i) + (L)
P m+1

Proof. For I C JmK = {0,...,m} let us define
pr:=P{i: X;=0}=1).

We need to show that

N s m \ (m+1)s

[1 (ot > 21) <pomct (=) . (4.12)
. . m+1

=0 {i}CICImK

Observe that the left hand side takes a maximum over all values of (pj I # JmK) at
pr =0 for [I| < m and

1 — pamk .
Pimk\{i} = Tl fori=0,...,m.

Then (4.12) reads

Cn+phw)wwns

m (m+1)S
m+1 )

< -
< Pamk + (m +1
Since the function on the left hand side is convex in p;,,x while the right hand side is
linear, the conclusion follows by checking that the inequality indeed holds for p;,,x equal
to 0 and to 1. O
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4.3 Space-time boxes and an FKG-inequality

Let us define the random variables mentioned at the end of Section 4.1. Note that
we can think of the process (Z"(t))o<t<T as a process in space-time, which we want to
emphasize by writing

[0,T] x Z":={(t,v): 0< t <T,ve Z"(t)} C[0,T] x IN*.
For convenience we also define the sign of zero to be 1, that is
sign (z) =150 — 1«9 forz € Z. (4.13)
For L € IN and T > 0 we now consider a space-time box B C R x Z? of the form
B:=[0,7T] x {~L,...,L}".
We denote the top of this box by
T(L,T) = {T} x {-L,...,L}%.
We can divide T in the left and right parts T(L,7,1) and T(L, T, —1), given by
T(L,T,u) ={(T,z) € T(L,T): signz; =u} forue {+1}.

Moreover let U = {£e; : i = 1,...,d} and for u € U let F(L,T,u) denote the face in
direction u, given by

F(L,T,u) = [0,7] x ({~L,.... L} x {0} x {~L,...,L}*" + Lu).

We need to partition both the top and the sides even further: Let © := {+1}9~! and note
that for every 6 € © and u € {£1} we find an orthant given by

T(L,T,u,0) ={(T,z1,...,zq) € T(L,T,u): signz; = 0,1 Vj =2,....d}.
Similarly an orthant on the face IF(L, T, te;) has the form
F(L, T, %e;,0) = {(t, 21, xq) € F(L, T,u): sign z; = 0; Vj < d,sign a; = 0;_1 Vj > z}
We further denote the boundary of B by JB, that is

OB(L,T) = T(L,T)U | | F(L,T,u).
ueU
Note that the bottom {0} x {—L,--- , L} of the box is not part of the boundary. For all
these quantities we sometimes omit the dependence on L and 7' if it is clear from the

context. See also Figure 1 for an example in d = 2.
Let 1 be a configuration as defined in Section 1.4. For u € i/ and 0 € O let

Nn (L7 T? u’ 0)

count the number of particles leaving B through F(L,T,u,). That is, N"(L,T,u,0)
is the number of times such that a particle of Z" hits B for the first time at some
(t,z) € F(L,T,u,0), formally defined as the cardinality of the set

{(t,v) €0, T] x Z": X(t,v) € F(L,T,u,0), X(s,v) ¢ OB Vs < t}.

Furthermore for u € {£1} and 6 € © let M"(L, T, u,d) count the particles exiting B
through T(L, T, u,0), so that

M™(L,T,u,0) = |{veZ"T): X(T,v) € T(L,T,u,0), X(s,v) ¢ OBVs <T}|
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N ]R+

T(L,T,=1)

/ Figure 1: The space-time box B

in the case d = 2. The relevant

F(L, T, —ey) | part of the boundary is subdivided

[~ in the following way: The left

and right parts T(—1) and T(1)

/ of the top, and the faces F(e;)

e At & and F(—e;) in direction e¢;. Each

of these is again subdivided in 2

72 orthants, denoted T(+1,+1) and
F(Ley, £1).

2\ 2

T(L,T,1,1) F(L, T, ey, 1)

We use M" and N" to refer to the vectors
M™L,T,-,-) € ]N(Qd) and N'(L,T,-,-) € ]N(d2d),

Moreover we record the following shorthand notation for later use:

> MUL,T) = > M"(L, T, u,6) (4.14)
ue{£1},0e{-1,1}d-1
> NL,T) = > N(L, T, u,0). (4.15)

ueld,0e{—1,1}d-1

We have the following FKG inequality.

Theorem 4.8. Let n; and 1, be two configurations, and denote by V™ and V2 two
independent realizations of the process started from 1, resp. ns. We let Z™, M™ and
N™ (resp. Z’72 M™ and N ) be defined as above for the processes started from 1
(resp. n2). Moreover let

frg: NCD 5 (@D 5 g+
be increasing. Then
]E[f(M"l,Nm)g(M"Q,N’“)] > E[f(M"l,N”l)]E{g(]\Af’h,N"?)} (4.16)

An intuitive explanation is that if many particles of V" survive and occupy any given
orthant then this increases the chance that many particles of V2 are alive in any other
orthant, since they are affected by the same disasters.

Proof of Theorem 4.8. We will show that for almost all realizations of V" and V" we
have

[ O @), N7 ()9 (317 (), §7()) Q(d)

- N (4.17)
> [ 107 @), N7 @) Q) [ 93T (), F7())Q(d)
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Taking expectation with respect to the law of V"' and V" then yields the claim. Think of
the processes as trees, recalling Section 1.1. Now conditioned on V' and V"2 we can
find K € N and

0:U0<U1<...<UK<UK+1:T

such that both trees are constant on [Uk,Ugy1) for all k =0, ..., K. That is, neither V'
nor V"2 jumps or branches in [0,7] \ {U1, ..., Uk }. Consider

x(k,z) :== 1{no disaster occurs at z in the interval [Uy, Uy41)}.

Let G := o(x(k,z): 0 < k < K,z € A) and note that Mm™ N™ M7 and N are G-
measurable and increasing in x. Since f and g are increasing this means that both

F(M™ N™) and g(anjﬁnz)

are also increasing in y. Therefore (4.17) follows from the FKG inequality, see Corollary
2.12in [11]. In this case the law of {x(k,z): 0 < k < K,z € A} trivially satisfies the FKG
lattice condition since it is a product measure. O

We obtain the following
Corollary 4.9. For any L, K, K’ € N, T > 0, any configuration n and any S € IN we have
1 PS(L,T.u6) < K) < ]P(ZM"(L,T) < d2dK> + (@29~ (a.18)
0O, ucld
[ PO(L.Tu0)<K)< IP(ZN"(L,T) < QdK) +(29)72's (4.19)
0cO,uc{+1}
and

IP(ZNSW(L,T) < K)]P(ZMS”(L,T) < K')

(4.20)
gIP(ZM”(L,T) +S NULT) < K+K’) 475

Proof. We will show only the proof of (4.18) since the other claims follow in the same
way. Let I :=U x ©, so that |I| = d2¢. Fix an environment w and for (u,6) € I define

Xug = 1{M"L,T,u,0)> K}.

Now consider independent copies of the tree indexed by I x {1,...,S}, each of which
is started from configuration 7 and evolves in the same environment. We use X, ¢ ; to
denote the realization of X, ¢ corresponding to the tree (u,,7) € I x {1,...,.S}, which is
now an independent family. Observe that

P,(Xue;=0foralli=1,..,8) > P,(M°(L,T,u,0) < K).
Together with Lemma 4.7 this implies

[T P. (M5"(L, T,u,0) < K) < Py(M"(L,T,u,0) < K for all u,§) + (d2¢)~%"S
u,0

< PM(ZMW(L,T) < deK) + (d2d>_d2ds

Finally the claim follows by taking expectations, and applying Theorem 4.8 to the left
hand side. O

The next lemma shows that we can make the probability on the right hand side of
(4.20) arbitrarily small: That is, if the process survives then there will be many particles
occupying the boundary of any space-time box:
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Lemma 4.10. Let (T}); and (L;); be two sequences increasing to infinity. Then for any
K > 0 and any configuration n have

limsupP (3" N(L;, Tj) + > M(L;,Ty) < K) < (2" dies out ).

j—o0

Proof. Let A; .= {—L;+1,---,L;—1}%, and consider the space-time box B; = [0, Tj] x A;.
We denote by Fi, 1, the sigma algebra generated by the environment in B; as well as
the branching times and positions of particles inside IB;. We will consider the process of
particles in Z" that have never left B;:

By ={(s,0) € 0.7 % 27 [ X (5.0l = Ly, IX(r: )l < L forallr <}
U {(T, v) € {T} x Z": | X (r,v)|| < L; forallr < T}.

Here || - || denotes the maximum norm. Note that (s,v) € E; implies that the particle v
has just left IB; (for the first time) at time s, either through one of the sides or through
the top. Clearly £ is 71, 7, measurable and we have |E;| = N"(L;,T;) + M"(L;, T}).
Now for (s,v) € [0,T] x Z" let D(s,v) be the indicator function of the event that v is
killed because

* there is a disaster at X (s, v) in the interval [s, s + 1]
¢ and v has no branching times and no jumps in [s, s + 1].

Then P(D(s,v) = 1) = af with the same « and § as in (4.10) and (4.11). We can write
P(Z" dies out|Fy, 1,) > P(D(s,v) = 1 for all (s,v) € E;|Fp, 1,) > /P15l (4.21)

For the last estimate, note that for (s,v) € E; the event D(s,v) = 1 is independent of
Fr,; 1, and that for (s1,v) # (s2,w) € E; we have

P(D(s1,v) = D(s2,w) =1) > P(D(s1,v) = 1)P(D(s2,w) = 1).

Now the same argument as in the proof of Lemma 4.6 applies: For j — oo the left hand
side of (4.21) converges to 1{Z" dies out}, while the right side will be bounded away
from zero whenever |E;| < K for infinitely many j. Therefore we have

limsup P(|E;| < K) < P(|Ej| < K i.0.) <P(Z" dies out). O
Jj—oo
4.4 Proof of the key propositions

We are now in a position to prove the missing Propositions from Section 4.1. Note that
there we have only used Proposition 4.2, however we obtain it by repeatedly applying
Proposition 4.1. For the proof of this first result we need to consider two cases depending
on the value of ¢. Since ¢ will in turn depend on the value ¢’ in the second proposition,
we choose to state those two cases in terms of ¢’ from the beginning: Given ¢’ > 0 we
choose € > 0 such that

1-e)">1-¢. (4.22)

With this value of € we can find § > 0 such that
min { (1 - (35)<2d>’1) (1 - (25)<d2d>’1) (1-6)31— 35} o (4.23)
By Lemma 4.5 we can find n € IN such that

IP(ZD” survives) > 1 — 6°. (4.24)
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Moreover let S be an integer such that

1 \d2%s 1248 s 52
mac{(1- ) (1-5a) 4}

Now one of the following two statements will be true, and we prove both propositions
separately in each case:

VL € IN we have ]P(ZéD“"S) survives) <1-26. (case 1)

3L € N such that ]P(ZIED"”S) survives) > 1 — 24. (case 2)

4.4.1 Proofin case 1

Proof of Proposition 4.1 in case 1. We first have to find a number R € N that is large
enough for our purposes: Let

« = min {]P((nel +D,,8% < Z}L(anu)),P((Dn, 52 < Z,goju))} >0.  (4.25)
Then choose R; such that
I-(1-a)fr>1-6

and set R, := R;(4n)?. Note that this ensures that any set A C Z? with |A| > R, contains
a subset A’ C A with |A’| > R; and such that for every two sites = # y € A’ we have
|z — y|loo > 4n. By part (iii) of Lemma 4.5 we find R3 such that

min {]P((ne1 + Dy, 8%) < Zﬁi‘jiﬁf(l)),?((pn,s% < ng}’R‘“’)(l))} >1-06.

Finally due to part (ii) of Lemma 4.5 we can choose R, large enough that

P(;Zg?j;f‘*)u) n{0}| > Rg) >1-4.

Now set
R = (max {Rl7 Rg,nR4})2.

The next step is to find L and 7. From Lemma 4.6 and the definition of n we obtain

lim lim IP(ZMD" (L,T) > 2dR) = lim P(Z2(T)| > 2'R) =1 - &%,
—00

T—o00 L—00

We can rewrite this by saying that for all T > T} there exists L(T") with
IP(ZMme) (L,T) > 2dR) > ]P(ZMD" (L,T) > 2dR) >1-6 VL>L(T). (4.26)

That is, the probability that there are 2¢ R particles at the top of a box [0, 7] x {—L, ..., L}¢
can be made large by choosing L and T large enough. We want a similar result for the
number of particles leaving through the sides of [0, 7] x {—L, ..., L}?. Using (4.26) and
(case 1) we can define two increasing sequences (Ly),>0 and (T)x>0, starting with Tp
the value used for (4.26) and L, := L(Tp) + 1. For k > 1 we proceed by

Lpy1 =max {Lk + 1, L(T, + 1)}
Tpsr =inf {T > T : ]P(ZM@mS)(LkH,T) > 2dR) <1- 25}.

Since T+ P(>. MP»(L,T) > 2¢R) is continuous we have

IP(ZM(D”’S)(L,C,Tk) < 2dR) — 95 forall k. 4.27)
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Note that our space-time box has 2¢ orthants in the top and d2¢ orthants in the faces.
We therefore apply Lemma 4.10 with K equal to (1 + d)2¢R + 1 and the sequences (L)
and (T%), defined before. We find that there exists ko such that for all k¥ > k; we have

(SO NPH(Le, Th) + > MPn (L, Th) < (d+ 1)2°R) < BP(ZD" dies out) < 4%,

M\w

We set L := Ly, and T" := T},. Then we have
3 D, D, d
= ZIP(ZN (L,T) + 3" MP"(L,T) < (d+1)2 R)

>IP(ZND"’S)(LT ) < d2?R ) (ZMD"’S )_2(13)*5.

For the second inequality we have used (4.20) and the definition of S. Together with
(4.27) we get

]P(ZN@“S)(L,T) < d2dR> <. (4.28)

Applying (4.19) together with the definition of S, and using the fact that by symmetry,
the value of IP(N(D"’SZ)(L7 T,u,6) < R) does not depend on 6 and u, we obtain
52

<5+ % <25 (4.29)

d2?
) 3

P (NP5 (L, T,u,0) < R
On the other hand (4.18) together with (4.27) and the definition of S shows
d
P (M PS5 (L, T, u,0) < R)? < 36. (4.30)

Remark 4.11. Clearly the probabilities in (4.29) and (4.30) do not depend on the choice
of # and u, a fact that we will use in the proof of Proposition 4.2.

Now we have to verify that the claim of proposition 4.1 is indeed satisfied with this
choice of L and T'. That is, we need to bound the probability that we find a copy of D,,
shifted to the correct space-time location, and such that every site is occupied by at least
S? particles of the truncated tree. We show that each of the following steps occurs with
high probability, independent of the choice of § € O:

1. The tree Z(P»5°) has many particles leaving through F(L, T, 1, 6).

2. There exist (t,z) € F(L, T, e1,0) such that the particles occupying z at time ¢ grow
into a fully occupied copy {t + 1} x (z + ne; + D,, S?) of (D, S?).

3. Consider now the box
= ([0,T) x {~L,....L}*) + (t + L, + ney)

The tree growing from {¢ + 1} x (x +ne; + Dy, S?) will have many descendants that
leave through the top T(1, —6) of B.

4. There is one particle at (f,7) € T(1,—6) that grows into a new copy of the box
{t +1} x (z + D,, S?), which now satisfies the necessary conditions.

First step: We have shown this in (4.29).
Second step: This will follow from our choice of R. We need to consider the geometry
of the set

R = {(m) € F(L,T,e1,0): Jve 2P (1) s.t. o = X(t,v), X(s,0) ¢ OB Vs < t}
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of space-time-points where a particle leaves [0,7] x {—L, ..., L} through the orthant
F, (L, T,0) for the first time. Observe that

NDwS) (L T e1,0) = |R|
Let I be the (finite) index set
I= ((]N) x {L} x (nzdfl)) AF(L,T,e1,0).
Set H == [0,1] x {0} x {0,...,n — 1}971, so that we obtain a tiling with

]F(LaTaelae) g U ((t17x1)+H)
(ti i)l

On {N(D7“52)(L, T,e1,0) > R} at least one of the following statements will be true:

« There exist at least /R distinct indices (¢, z) € I such that
RNO((t,x)+ H) #0. (case A)
* There exists (tp, o) € I such that

RN ((to, o) + H)| > VR. (case B)

For both cases we let E, , be the indicator function of the event that (¢,v) € R grows
into a shifted copy of D,,:

E;, = ]l{(X(t,v) + D,, +neq, 52) < Zii};{l)jgf)}(l)}.

In (case A) note that VR > (4n)?R;, so we can find at least R, distinct indices (t;,z1),
..y (try, xR, ) € I such that

[ti —t;| >2 and |z; —2j|lcc >4n holds for all i # j.
Now choose (deterministically) some (s;,v;) € R with
(Si, X(Si, ’Ui)) S (ti, Q?i) + H.

Because of the truncation the events {E;, ,, = 1} and {E;, ,, = 1} are independent for
i # j. Moreover the probability that £, ,, = 1 is at least o, defined in (4.25). By our
choice of Ry we have

P(E(s,,) = 1 for some (s,v) € R) > 1 —0.

In (case B) we find y € z¢ + {L} x {0,...,n — 1} such that at least @ > R, particles
arrive at [tg,to + 1] x {y}. Let G be the event that

¢ at least R3 of those particles survive until time ¢5 + 1
 while not leaving the set {y,y + €1},
* and occupying y at time tg + 1.

By our choice of R4 and part (ii) of Lemma 4.5 we obtain

P(G) > P(‘Zgg?j;fﬂu) N {0}‘ > Rg) >1-04.
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Let now G’ be the event that at time ¢y + 2 every site of y + ne; + D,, is occupied by at
least S? descendants of the particles occupying y at time ¢, + 1. By our choice of Rz and
part (iii) of Lemma 4.5 we find that
P(G'|G) > P((ney + Dy, §2) < Z0 X WhE) (40 4 9)) > 1 -5
Now combining both cases and (4.29) yields
Jr € {L+n}x{-L,...,L}* 1 tc[0,T+1] dy—1
) ) ) 7 o (d2 ) o 2
(D 5%) > (1-(20) )(1-6 @31)
(5- th.(z 4+ Dy, §%) < Z{—L,...,L+2n}><{—L,...,L}d*1(t)

Third step: We now write P for P conditioned on the event in (4.31), and denote the
first such pair by (¢, z). From now on we consider the process

—_— x ns 2
(Z1(5)) 5, = (Zif{x—(LT?L}S; )(S))szt

started from {t} x (z + D,,, S?). Observe that under P, the process Z, is independent of
the process up to time . We consider a shifted space-time box

B = (t,z) +[0,T] x {~L,...,L}".

and let M (e, ) resp. M(—eq,#) count the number particles of Z, that leave B through

T(ey, ) resp. T(—ey, 6). By (4.30) we have
P(M(er,—0) > R) > 1— (35)2 "
Fourth step: On the event {M(e;, —0) > R} one of the following two cases will occur:
HEET(el,—o) (@} N ZL(T)] >o}) > VR (case A")
Jrg € T(ey,—0) suchthat |[{zo}NZL(T)| > VR. (case B’)

In (case A’) we note that v/R > (4n)%R;, and thus we find at least R, sites z;,...,zp, in

T(e1,—0), each occupied by at least one particle, with the property that
|lzi — 2|l > 2n+1 foralli+#j.
For z € T(e1, —0) we let E, be the indicator function of the event
— t+T}x{z
{@+ Dy, 82 < 28 g4 74 1)),

Because of the truncation the events {E; = 1} and {E;, = 1} are independent under P

forall i # j. Since P(E, = 1) > « the definition of R; implies
P(E; =1forsomei=1,..,Ry) >1—4.

x

Finally, in (case B’) our choice of R3 implies that
JP((E + Dy, 82) < ZUT D 1)) >1-4.
We have shown that
P (32 € T(e1, —0) s. th. (T + Dy, %) < Zp(t+T+1)) > (1 - (35)<d2d>’1) (1-9).

Since (t+ T+ 1,z) € [T,2T) x {L +n,...,2L +n} x {—L, ..., L}*~1, the claim now follows
from this together with (4.31) and our choice of §. O
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Proof of Proposition 4.2 in case 1. Set L' := 2L + n and 7" = 2T. Recall that in the
previous proof we chose 6 € © and u € {+e; }, and then bounded the probability of the
event that

» we find R particles in the orthant FF(u, ) in (4.30).

+ starting from those particles, we again find R particles in the orthant T(u, —6) of
the top of a shifted box in (4.29).

We now repeatedly apply this result, each time making a convenient choice for # and
u. We start with (s(9,y(©) := (s,y) from the statement of the proposition. Having
constructed (s, (@), .. (s, y(*)) we choose

Or+1 = —(sign yék), ...,sign y((ik)) €0

and ug1 equal to e; until the first & with ygk) > L’ + L, after which we alternate by
setting w;y; = —u;. By Proposition 4.1 we know that with probability at least (1 — ) we
find (s**+1, y(*+1) such that

s(F) (k) Dmg2
(y(kﬂ) + Dy, 52) < Z§<k>+}{x_(z,...;L}x{—)L,...,L}fH(S(kH) + S(k))

Note that by our choice for 6, and u; we have

« lyP|<2L < L'forallk>0andi=2,..,.d.

. y%k) e {L/,...,3L'} eventually: We achieve ygk) > L' + L after at most 4 applications,

and by alternating the sign of u; for : > k we ensure L' < y%“ < 3L forall i > k.

« s ¢ [5T",...,6T"] for some i > k: After 4 applications we have s(*) € [4T,...,87] =
[2T7,...,4T"]. Since y® remains in the target area, we can repeat the procedure
until s € [577,...,6T"].

Note that this requires between 4 and 10 applications of the proposition, so we have a
success probability of at least (1 —¢)10 > 1 —¢’. O

4.4.2 Proof in case 2

Proof of Proposition 4.1 in case 2: Take L € 2IN large enough for (case 2) to hold and fix
some large ¢ € IN. We introduce the two sites

L L L L
1._ f— — 2 = —_ —_—
z = (L+n72,...,2> and 2°: (0,27...72).

In the case d = 1 we read this as 2! = L + n and 22 = 0. On the event
2
{ZéD"’S ) survives }
2

we consider a random sequence (vy)ren Of particles by choosing vy from ZéD“’S )(tk)
in some deterministic way, say by choosing the minimal element in the lexicographical
order. This sequence enables us to make infinitely many trials to find a fully occupied
box at the required position:

For every k, denote by (Z ¥(s))s>tx the process obtained by taking vy as the new root
and considering only its descendants. We define random variables

i=1{(z'+ Dy, 5?) < Z¥(t(k+ 1))} forke N,ie {0,1}.
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We want to give a lower bound for the probability of {A} = 1} and {A? = 1}, so consider

M(z) = Ie{_ngff{,L}d {Po((z + Dy, 5%) < Zﬁ}L ..... 3LYyx{~L,..., L}dfl(t))}'

Setting now
o = min{E[M(z")], E[M(z%)]} > 0 (4.32)
we can choose k large enough for (1 — a)* < §. Finally T := kt and
Al = ]I{Z(LD"’SQ) survives, A} = 1 for some k < j < 2k}.
Observe that
Jz € {L+n,..,2L+n} x {~L,...,L}¥' t [T, 2T]}

{At =1} C Dn,S?
s.t. (v + D,,S?) < Z{(—L;...,)Z’)L}x{—L,A..7L}d—1(t)

and
PA'=1)>(1-2)(1-(1-a)f)>1-36>1—c¢. O

Proof of Proposition 4.2 in case 2: For this we choose the same values of L and 7', and

observe that by symmetry the value of a does not change when we flip the sign of any

coordinate in 2! = (21, ...,z}) or 22 = (2%, ...,22). So we choose them in such a way that

sign 2z} = —signy; forallj=2,..,dandi=1,2,

where y appeared in the statement of Proposition 4.2. Now define (z(i))iem by (1) =
y + 2! and

2=y 42t 4 2:(—1)3‘22 fori > 2.
j=2

Note that we have chosen the signs in such a way that for all ¢ we have
29D e{L+n} x{-L,.., L}
Let A! be the same indicator function as A} with 2! replaced by »(), and let A be defined
as A with A replaced by A}. On {A = 1} we find a minimal K, € {k, ..., 2k} such that
Aj, = 1. Thatis
1 2 {s}x (y+Dy,S?)
(=Y + Dy, 5%) < Z{fL,..‘L.},3L}><{73L ..... sy (K1) (4.33)

We now have to improve (4.33) so that it holds for some time in [57), ...,67]. For this we
define indicator functions

i . : i tyx(2V4+D,,,5? i .

Bt = ]1{3 Jj €{k,..2k}: (Z( ™+ Dy, §%) < Z{{—L}.iéL}><{—3L,<.).73L}d—1(t( ) +Jt)}'
So {B' = 1} is (up to shifts) the same event as {A! = 1} with z! replaced by 22 and
started from (z() 4+ D,,, S?) at some time ¢(), which we did not specify yet. Note that
from our choice of « in (4.32), the same argument as before yields

P(B'=1)>1-3§>1—¢ foralli.

We now recursiv~ely define (t(i))iem. Start from () := K¢, and assume we have found
tM .., t®), On {B" = 1} we find a minimal value K;; such that z(*?) 4 D,, is occupied
by at least S? particles at time ¢(*) + tK;, ;. Then we proceed by

t0HD = L Kk

Since t(+Y) — ¢ ¢ [T ..., 2T] we have

{AVZ EQ =..= §6 = 1} - As’y(L,T,n,S).
So the claim follows from our choice of € in (4.22) and because the event on the left hand
side has probability at least (1 — ¢)S. O
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