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Abstract

We consider a branching random walk in a random space-time environment of disasters
where each particle is killed when meeting a disaster. This extends the model of the
“random walk in a disastrous random environment” introduced by [15]. We obtain a
criterion for positive survival probability, see Theorem 1.1.

The proofs for the subcritical and the supercritical cases follow standard arguments,
which involve moment methods and a comparison with an embedded branching
process with i.i.d. offspring distributions. However, for this comparison we need to
show that the survival rate of a single particle equals the survival rate of a single
particle returning to the origin (Proposition 3.1). We prove this statement by making
use of stochastic domination.

The proof of almost sure extinction in the critical case is more difficult and uses
the techniques from [8], going back to [1]. We also show that, in the case of survival,
the number of particles grows exponentially fast.
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1 Introduction

In this work we introduce a branching random walk on Zd in a killing random
environment. The process consists of particles performing a branching random walk in
continuous time. All particles jump independently at rate κ and give birth to children at
rate λ. The jump rate κ, the birth rate λ and the distribution q of the number of children
do not change over time and space, and are the parameters of the model.

We then consider this process in a random environment ω given by disasters in
space-time, defined as follows: The environment ω consists of a collection

(
ω(x)

)
x∈Zd

of i.i.d. random variables where ω(x) = (ω(x)(t))t≥0 is a Poisson process of rate one.
Whenever ω(x) has a jump at time t, all the particles occupying x at time t are killed.

We give an answer to the following question:
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A branching random walk among disasters

For which values of λ, κ and q is the probability that the branching random walk
survives strictly positive?

A priori, the answer might depend on the realization of the random environment, but
we will see that the survival probability is either zero, for almost all environments, or
strictly positive, for almost all environments.

Let us comment on the dependence on the parameters of the model: It is clear by
a coupling argument that increasing λ will increase the probability of survival, simply
because there are more particles. Similarly, replacing the distribution q of the number
of descendants by some distribution q̃ having a larger mean should also increase the
chance of survival. The dependence on κ is more tricky: If the jump rate is small, the
process is essentially frozen and remains concentrated on few sites, and can be killed
quickly if the environment is particularly unfavorable in a small area. If we increase κ,
the process will jump away from any small area that is atypical and see an environment
that is more average. However even in the best case particles will be killed at rate 1.

We will not fully resolve the dependence on κ, but instead connect the problem to the
survival rate in the one-particle model, which was studied in [15]. This correspondence
is similar to the connection between the random polymer model and branching random
walks in random space-time-environments, as explained in Section 1.3 in [5]. The proof
of extinction in the critical case borrows heavily from the proof given in [8], which
confirmed Conjecture 1 in [5].

Branching random walks in time-dependent environments have been studied exten-
sively in the context of the parabolic Anderson model, see [9], [6]. However, most papers
consider the solution to an SDE with random potential which describes the behavior of
the expectation of the number of particles in a branching random walk in random envi-
ronment, and not the actual particle system (a notable exception where the two models
are compared, is [14]). In addition, most papers have non-degeneracy conditions on the
killing rates which are violated by our environment. In particular, we point out that our
model differs from the branching random walks considered in [5] not only because time
is continuous instead of discrete, but also because disasters in the environment were
excluded in [5] (see formula (1.7)). The possibility of killing many particles at the same
site at once makes our model interesting but also creates some technical difficulties. For
a survey on the parabolic Anderson model and random walk in random potential, we
refer to [10].

The paper is organized as follows. In the remainder of Section 1 we define the process
and recall some previously known results about the one-particle model. Our main result,
stated in Section 1.3, is Theorem 1.1 which characterizes the set of parameters where
the survival probability is strictly positive.

The subcritical case of Theorem 1.1 follows immediately from the first moment
method, see Section 2.

In Section 3 we handle the supercritical case by comparing our process to an em-
bedded Galton-Watson process with i.i.d. offspring distributions. While this argument
is relatively short, it needs an auxiliary result (Proposition 3.1) about the one-particle
model. To prove the auxiliary result, we need uniform moment bounds (see Proposition
3.3) and a concentration inequality (see Proposition 3.9). The proofs of these propositions
make use of stochastic domination. These results can be found in Sections 3.1, 3.2 and
3.3, in which no branching processes occur.

Finally the critical case follows from a standard comparison to oriented site percola-
tion, presented in Section 4.1. To implement this argument we need two propositions,
the proofs of which are carried out in the remainder of Section 4.
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1.1 Definition and notation

We first define the branching random walk introduced above: We identify the nodes
of a tree with the set

N∗ :=

∞⋃
k=0

Nk =
{
x = (x1, ..., xk) : k ∈ N, x1, ..., xk ∈ N

}
.

We call |(x1, ..., xk)| =: k the height of v and write ∅ for the unique element of height 0,
which we call the root. Proceeding recursively we interpret (x1, ..., xk) as the the xth

k

child of (x1, ..., xk−1), for k ≥ 1. Fix now positive values κ and λ as well as a distribution
q = (q(k))k∈N on the natural numbers satisfying

m :=

∞∑
k=0

kq(k) <∞ and q(1) < 1. (1.1)

We associate to every node an exponential clock of rate λ, and whenever a clock rings
the node is removed and replaced by its children, where the number of children is
distributed according to q. The clocks and the numbers of descendants are independent.
We will write V (t) for the set of nodes that are alive at time t, starting with V (0) = {∅}.

Next, we extend this by associating to each node v alive at time t a position X(t, v) in
Zd. We let each particle perform a simple random walk in continuous time of jump rate
κ between its birth and the time when it is replaced by its children, independently from
everything else. The root initially starts in the origin, and all other nodes start at the
position occupied by their parent node at the time of birth.

For v ∈ V (t), it will be convenient to extend X(t, v) to a function X(·, v) : [0, t]→ Zd,
where for s ∈ [0, t] we set X(s, v) equal to the position occupied at time s by the unique
ancestor of v in V (s).

The process described so far is well-studied. Recall that the environment ω =(
ω(x)

)
x∈Zd consists of independent Poisson processes of rate 1 indexed by the sites of

Zd, which are independent of the random variables defined before. Let

δ(t, x) := ω(x)(t)− ω(x)(t−).

If δ(t, x) = 1, we say that there is a disaster at time t at x. The process we are interested
in is denoted (Z(t))t≥0, with

Z(t) :=
{
v ∈ V (t) : δ(s,X(s, v)) = 0 for all 0 ≤ s < t

}
⊆ V (t).

So Z(t) contains all particles v where no disaster occurred along the trajectory of v
before time t. Note that since we did not assume q(0) = 0 it is possible that a particle has
zero children, and the process may die out even without the influence of the environment.

We will use Q to denote the law of the environment, and P for the law of the branching
random walk. Typically we consider the processes Z(t) for fixed realizations of ω, and
then we write Pω for the conditional or quenched law. The annealed or averaged
law P is given by

P(Z ∈ ·) :=

∫
Pω(Z ∈ ·)Q(dω).

We denote the corresponding expectation by E. With a slight abuse of notation, we
also use E for the expectation with respect to Q. Occasionally we want to stress the
dependence on the parameters, in which case we write Pκ,λ and Pκ,λω .
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1.2 Previous results about the one-particle model

There is a close relationship between our model and the model considered in [15].
There, the process consists of a single particle performing random walk at rate κ among
disasters in the same way that particles in our model do. In this section we summarize
some known results.

Let (X(t))t≥0 be a simple random walk in continuous time, moving in Zd at a jump
rate κ > 0, with the corresponding probability measure denoted P . The environment
ω =

(
ω(x)

)
x∈Zd is the same as before. We let τ be the first time the random walk hits any

of the disasters, that is

τ := inf
{
t ≥ 0: δ(s,Xs) > 0

}
.

We are interested in the probability to survive until time t for a fixed realization of the
environment:

S(t) := Pω(τ ≥ t)

Note that by averaging over the environments one easily gets the annealed survival rate:

E[S(t)] =

∫
S(t)dQ = e−t.

We summarize the results of [15] in the following

Theorem. Define p : (0,∞)→ (−∞, 0) by

p(κ) := lim
t→∞

1

t
logS(t). (1.2)

Then

(i) The limit in (1.2) exists Q-almost surely and is deterministic, with

p(κ) = lim
t→∞

1

t
E[logS(t)] . (1.3)

(ii) For all κ > 0 we have p(κ) ≤ −1.

(iii) For any d we have limκ→0 p(κ) = −∞ and limκ→∞ p(κ) = −1.

(iv) There exists a critical rate κc = κc(d) ∈ (0,∞], such that

p(κ) < −1 if κ < κc
p(κ) = −1 if κ > κc

(v) For d ≥ 3 we have κc(d) <∞.

1.3 The main result

We are interested in the event

{Z survives} := {|Z(t)| > 0, ∀t ≥ 0} . (1.4)

Using the exponent p(κ) we prove the following criterion:

Theorem 1.1.

Pω(Z survives) > 0 Q-a.s. ⇐⇒ λ(m− 1) + p(κ) > 0 .

In analogy to classical branching processes, we define three regimes.

EJP 22 (2017), paper 67.
Page 4/34

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP75
http://www.imstat.org/ejp/


A branching random walk among disasters

Definition 1.2. We say that the process Z(t) is

subcritical if λ(m− 1) + p(κ) < 0,

critical if λ(m− 1) + p(κ) = 0,

supercritical if λ(m− 1) + p(κ) > 0.

An easy corollary is

Corollary 1.3.
P(Z survives) > 0 ⇐⇒ λ(m− 1) + p(κ) > 0 .

We define the event of local survival to be

{Z survives locally} := {0 is occupied for arbitrarily large times} .

Clearly
{Z survives } ⊇ {Z survives locally} .

Our proof of Theorem 1.1 shows in fact that the process survives locally in the supercrit-
ical case, so that the following holds.

Corollary 1.4. The process either has a positive probability to survive locally in almost
every environment, or it dies out with probability 1 in almost all environments. Moreover

Pω(Z survives locally) > 0 Q-a.s. ⇐⇒ λ(m− 1) + p(κ) > 0 .

Corollary 1.5. There exists c > 0 such that Q-almost surely

{Z survives } =
{

lim inf
t→∞

|Zt|e−ct > 0
}

For the proof see Remark 3.2.

Remark 1.6. By an obvious truncation argument, the assumption m < ∞ can be
dropped; if m =∞, we are in the supercritical case.

We do not make any assumption on the shape of p, so a priori it may be discontinuous
or may not be increasing in κ. In Corollary 4.1 in [7] continuity of p is proven for a
related class of models, but the relevant case of hard obstacles is excluded. However, if
we interpret p as the free energy of a polymer in random environment as in Section 3
of [4], it is reasonable to conjecture that p is concave. A proof might be attempted by
showing the following

Conjecture 1.7. Fix a branching mechanism with m > 1, and set

U :=
{

(κ, λ) : Pκ,λ
(
Z survives

)
> 0
}
⊆ (0,∞)2.

Then U is a convex set.

1.4 Some more notation

Before we start with the proof of Theorem 1.1, we collect some notation that will be
useful at various points throughout this work. We first extend the definition of Z to the
case where we may have more than one initial particle.

We call η = (ηx)x∈Zd a configuration, and let Zη denote the process as defined
before, except that we start with ηx particles in x, all of which evolve independently
but in the same environment. If A ⊆ Zd and R ≥ 0 is an integer we record the special
configuration (A,R) where each site x ∈ A is occupied by R particles, that is

(A,R)x := R1A(x) for all x ∈ Zd. (1.5)
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For A ⊆ Zd we use ZA instead of Z(A,1) for the process started from exactly one particle
on every site in A. For t > 0 and η a configuration we use

Z{t}×η =
(
Z{t}×η(s)

)
s≥t (1.6)

to denote the process started at time t with ηx particles occupying each site x, and we
use Z{t}×A if η is equal to (A, 1).

Moreover if (Z(t))t≥0 is some branching process and B ⊆ Zd, we let (ZB(t))t≥0

denote the truncated process consisting of all particles that have never left B:

ZB(t) :=
{
v ∈ Z(t) : X(s, v) ∈ B for all s ∈ [0, t]

}
. (1.7)

In the simple case where B = {−L, ..., L}d for some L ∈ N we simply write (ZL(t))t≥0.
We also use the following notation for the set of particles of (Zt)t≥0 occupying a site x at
time t:

Z(t) ∩ {x} := {v ∈ Z(t) : X(t, v) = x}. (1.8)

If η is a configuration, we denote the event that at time t every site is occupied by at
least ηx particles by

{η ≤ Z(t)} :=
{
ηx ≤

∣∣Z(t) ∩ {x}
∣∣ for all x ∈ Zd

}
. (1.9)

In the case where η = 1C for some C ⊆ Zd this is simply written as

{C ⊆ Z(t)} := {(C, 1) ≤ Z(t)} =
{
∀x ∈ C ∃v ∈ Z(t) such that X(t, v) = x

}
.

2 The subcritical case

Proof of Theorem 1.1 (subcritical case). Assume that

−ε := λ(m− 1) + p(κ) < 0.

For almost all environments ω, we can find T = T (ω) such that

S(t) = Pω(τ ≥ t) ≤ et(p(κ)+ ε
2 ) ∀t ≥ T.

Then we have for t ≥ T (ω)

Eω[|Z(t)|] = Eω

[ ∑
v∈V (t)

1{v survives until t}

]
= E[|V (t)|]S(t) = E[mM ]S(t) = eλ(m−1)tS(t) ≤ e− ε2 t, (2.1)

where M is a random variable whose law is Poisson with parameter λt. This implies
Z(t)→ 0 for almost all environments.

3 The supercritical case

For the proof in the supercritical case we will need to consider the random variable

S̃(t) := Pω(τ ≥ t,Xt = 0). (3.1)

It is intuitively clear that S̃(t) should decay to zero with the same exponential rate as
S(t), since the event {X(t) = 0} has probability decaying only with a polynomial rate,
and therefore its contribution should be dominated by the contribution of the event
{τ ≥ t}. This is stated in the following
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Proposition 3.1. It holds that

lim
t→∞

1

t
E[log S̃(t)] = p(κ) (3.2)

and

lim
t→∞

1

t
log S̃(t) = p(κ) for Q-almost all ω. (3.3)

Moreover for any t ≥ 0 we have

E[log S̃(t)] > −∞. (3.4)

Proof of Theorem 1.1 (supercritical case). Assume

λ(m− 1) + p(κ) > 0 . (3.5)

We will find a branching process with i.i.d. offspring distributions embedded in Z. More
precisely, we introduce a process (A(k))k∈N taking values in N, such that we have
A(k) ≤ |Z(kT )| for all k ∈ N and some T > 0. The claim then follows by showing that in
almost all environments the event {A(k) > 0 infinitely often} has positive probability.

Fix some large T , and set A(0) := 1 = |Z0| and

A(k) :=
∣∣∣{v ∈ Z(kT ) : X(iT, v) = 0 for all i = 0, ..., k

}∣∣∣
That is, for the process A we only consider particles that return to the origin at times
T, 2T, 3T, ... . Note that every particle that contributes to A(k) is the descendant of a
particle that contributed to A(k − 1).

To see that (A(k))k has i.i.d. offspring distributions, we recall from Section 1.4 the
notation Z(t) ∩ {0} and Zt,A. Using those, we can define the sequence (q(k))k∈N of
offspring distributions by

q(k)(j) = Pω
(∣∣Z(k−1)T,{0}(kT ) ∩ {0}

∣∣ = j
)

for j ∈ N.

Note that q(k) only depends on the environment in the interval [(k − 1)T, kT ), and (q(k))k
is therefore an i.i.d. sequence in the space of probability measures on N.

We let m(k) denote the expectation of q(k). By a well-known result on branching
processes with i.i.d. offspring distributions, see [16, 17], the survival probability of
(A(k))k∈N is positive for almost all environments if

E[log(1− q(1)(0))] > −∞ (3.6)

and
E[log(m(1))] > 0 . (3.7)

We can write m(1) as

m(1) =
∑
j∈N

jq(1)(j) =
∑
j

jPω
(∣∣Z(T ) ∩ {0}

∣∣ = j
)

= Eω
[
|Z(T ) ∩ {0}|

]
.

Recall the definition of S̃(t) in (3.1) By the same computation as in (2.1) we get

m(1) = eλ(m−1)T S̃(T ). (3.8)

In order to give a lower bound for the quantity in (3.6), we compare the branching
process to the random walk of a single particle: We choose a path by starting in the root,
and whenever there is more than one descendant, we follow its first child. Let F (t) be
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the event that this construction succeeds up to time t, that is the currently observed
particle always has at least one descendant. We have

Pκ,λ(F (t)) = E[(1− q(0))M ] = exp(−λtq(0))

where M is the number of branching events along this path. Note that M has distribution
Poisson(λt), so that 1 − q(1)(0) ≥ E[F (T )]S̃(T ). By (3.4) in Proposition 3.1 we see that
indeed

E
[

log(1− q(1)(0))
]
≥ −λTq(0) + E[log S̃(T )] > −∞.

We can now conclude: By (3.2) and (3.8), we find for every ε > 0 some T large enough
that

E[log(m(1))] ≥ T
(
λ(m− 1) + (p(κ)− ε)

)
.

By (3.5), we can satisfy (3.7) by choosing ε small enough, finishing the proof.

Remark 3.2. The proof shows in fact that in the supercritical case, the process survives
locally with positive probability. Using results of [17] about branching processes with
i.i.d. offspring distributions we also see that in the supercritical case, the number of
particles grows exponentially fast.

It remains to prove Proposition 3.1. This will take up most of Section 3: We start
by proving a uniform moment bound in Section 3.1 using comparison techniques from
[15] and some results about stochastic orders. In Section 3.2 we use this to get a
concentration inequality, which is necessary for the proof of Proposition 3.1 in Section
3.3.

3.1 A uniform moment bound

The following proposition is key to proving the concentration inequality in the next
section:

Proposition 3.3. For every δ ∈ (0, 1) there is some C > 0 such that

sup
x∈Zd

E
[
Pω(τ ≥ 1|X(1) = x)−δ

]
< C <∞.

For the proof we use an equivalence relation ≡ on Zd defined by

(y1, ..., yd) ≡ (z1, ..., zd) ⇐⇒ y1 = z1 mod 2.

We will identifyZd/≡ withZ2 = {0, 1}, and we use π : Zd → {0, 1} to denote the projection.
Let ω̃ be an environment on {0, 1}, consisting as usual of two independent Poisson
processes ω̃(0) and ω̃(1) of rate 1. We write π−1(ω̃) for the environment on Zd given by

(π−1(ω̃))(y) = ω(π(y)) for y ∈ Zd.

Note that this is a degenerate environment on Zd, where all sites that share an equiva-
lence class in ≡ experience the same disasters. We will slightly abuse notation by writing
E for the law of ω̃ as well.

First we need the following auxiliary lemma.

Lemma 3.4. Let (X̃(t))t∈[0,1] be simple random walk on {0, 1} of jump rate κ. Then for
any p ∈ (0, 1) we have

sup
i=0,1

E
[
Pκω̃
(
τ ≥ 1, X̃(1) = i

)−p]
<∞. (3.9)

while for p ∈ (0, 1
2 ) we have

sup
t∈[0,1]

E
[
Pκω̃
(
τ ≥ t, X̃(t) = 0

)−p]
<∞. (3.10)
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Proof. This is a modification of the proof of Lemma 2.4 in [15], where the integrability
of Pω̃(τ ≥ 1)−p is shown. We quickly sketch how the proof can be modified:

Note that the bound in (2.24) of [15] is actually a bound for Pω(τ ≥ t,X(t) = 1). By
slightly modifying the argument we obtain a similar bound for Pω(τ ≥ t,X(t) = 0), where
on the right hand side we have to replace C(t)C1(t)nt1−2p

1 by C(t)2C1(t)n−1t−p1 . It is clear
that this does not make a difference for the convergence of the sum appearing in the
display after (2.26), where the coefficients βn have to be replaced by

β′n :=
Γ(1− p)2Γ(2− 2p)n−1

Γ(2n(1− p))
t(2−2p)n−1.

This gives the first claim, and the second claim follows because the coefficients in that
sum can be chosen increasing in t. This is clear for C(t) and C1(t), and for n ≥ 1 and
p ∈ (0, 1

2 ) the β′n are increasing as well.

Proof of Proposition 3.3. By Lemma 2.2 in [15] we have

E
[
(Pκω (τ ≥ 1, X(1) = x))−δ

]
≤ E

[
(Pκπ−1(ω̃)(τ ≥ 1, X(1) = x))−δ

]
and dividing both sides by

(
Pκ(X(1) = x)

)−δ
gives

E
[
(Pκω (τ ≥ 1|X(1) = x))−δ

]
≤ E

[
(Pκπ−1(ω̃)(τ ≥ 1|X(1) = x))−δ

]
Moreover by (3.9) we have

sup
x∈Zd

E
[(
P
κ
2

π−1(ω̃)(τ ≥ 1|X(1) ≡ x)
)−δ]

<∞.

So the claim follows once we show that

E
[(
Pκπ−1(ω̃)(τ ≥ 1|X(1) = x)

)−δ] ≤ E[(P κ
2

π−1(ω̃)(τ ≥ 1|X(1) ≡ x)
)−δ]

(3.11)

For simplicity we only treat the case where x ≡ 0, noting that the case x ≡ (1, 0, ..., 0)

is similar. For a fixed environment ω̃, let N be the number of disasters in [0, 1]. We write
T1, ..., TN for the disaster times in increasing order, and E1, ..., EN for their locations. Let
us write PT1,...,TN resp. ET1,...,TN for the law resp. expectation of E1, ..., EN conditioned
on N and T1, ..., TN , which is simply the uniform distribution on {0, 1}N . Notice that for
any event A and function f : (0, 1]→ R we can write

ET1,...,TN
[
f(Pκπ−1(ω̃)(τ ≥ 1|A))

]
=

1

2N

∑
(e1,...,eN )∈{0,1}N

f(α(e1, ..., eN ))

where α is a measure on {0, 1}N defined by

α(e1, ..., eN ) := Pκ
(
π(X(T1)) = 1− e1, ..., π(X(TN )) = 1− eN

∣∣A).
Before we make use of this observation we introduce a different encoding for the

disaster locations which will be convenient later: Given a realization ω̃, we define its
configuration Iω̃ =

(
Iω̃(i)

)N
i=0

by

Iω̃ =
(
1{E1 = 0},1{E2 6= E1}, ...,1{EN 6= EN−1},1{EN = 0}

)
∈ {0, 1}N+1.

The intuition is that Iω̃ encodes the necessary jumps for the random walk. To see this
we notice that if {Iω̃(i) = 1} for some i ∈ {0, ..., N}, the process has to switch sites in
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[Ti, Ti+1) if it wants to survive and at time 1 end up in a location equivalent to 0. (Recall
that T0 = 0 and TN+1 = 1).

We let Σ ⊆ {0, 1}N+1 be the set of configurations with an even number of 1s. Observe
that PT1,...,TN (Iω̃ ∈ Σ) = 1, and that Iω̃ has the uniform distribution on Σ.

On the other hand, we define for a càdlàg process X on Zd its signature I as

I :=
(
π
(
X(T1)

)
, π
(
X(T2)−X(T1)

)
, ..., π

(
X(TN )−X(TN−1)

)
, π
(
X(1)−X(TN )

))
.

We notice that {I ∈ Σ} = {X(1) ≡ 0} and {I = Iω̃} = {τ ≥ 1, X(1) ≡ 0}, so that we can
introduce two probability measures µ and ν on Σ by setting

µ(I) := Pκ
(
I = I

∣∣X(1) = x
)

and ν(I) := P
κ
2

(
I = I

∣∣X(1) ≡ x
)
. (3.12)

Notice that we now have

Pκπ−1(ω̃)(τ ≥ 1|X(1) = x) = µ(Iω̃) and P
κ
2

π−1(ω̃)(τ ≥ 1|X(1) ≡ x) = ν(Iω̃).

So we have two probability measures which are evaluated at a random point Iω̃, and
we want to compare the expectations of f(µ(Iω̃)) and f(ν(Iω̃)) for the convex function
f(x) = x−δ.

For this we recall some results about stochastic orders: For two probability measures
µ and ν on Σ, we say that µ is majorized by ν, denoted µ �M ν, if

k∑
i=1

µ(ai) ≤
k∑
i=1

ν(bi) for all k = 1, ..., 2N ,

where Σ = {a1, ..., a2N } = {b1, ..., b2N }, and the ordering is chosen in such a way that

µ(a1) ≥ ... ≥ µ(a2N ) and ν(b1) ≥ ... ≥ ν(b2N ).

The intuition for µ �M ν is that the mass of µ is more spread out than the mass of ν,
so that the random evaluation µ(Iω̃) should be more random than ν(Iω̃). The following
result makes this precise in terms of the convex stochastic order:

Lemma 3.5 (Corollary 1.5.37 in [13]). We have µ �M ν if and only if

1

|Σ|
∑
σ∈Σ

f(ν(σ)) ≤ 1

|Σ|
∑
σ∈Σ

f(µ(σ)) for all convex functions f : (0, 1]→ R.

Indeed we have

Lemma 3.6. Let µ and ν be defined as in (3.12). Then µ �M ν.

Hence Lemma 3.5 implies

ET1,...,TN
[
f
(
µ(Iω̃)

)]
≤ ET1,...,TN

[
f
(
ν(Iω̃)

)]
for all convex functions f : (0, 1] → R. Inserting f : x 7→ x−δ, this in particular shows
(3.11) by taking expectations.

It remains to show Lemma 3.6. If Z is a càdlàg process, we call t a jump time of Z if
Z(t) 6≡ Z(t−), and we write RZ for the number of jumps times of Z in [0, 1].

Lemma 3.7. Let X resp. Y be simple random walks on Zd with jump rate κ resp. κ
2 .

Then
RY
∣∣{Y (1) ≡ x} �st RX

∣∣{X(1) = x}

where �st denotes stochastic domination.
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Proof. It is easier to show that

RY
∣∣{Y (1) ≡ x} �lr RX

∣∣{X(1) = x}

where �lr denotes domination in the likelihood ratio order, see for example Chapter 1.4
in [13], where it is also shown that �lr is stronger than �st.

We have to check that for k, l ∈ N of the same parity as x1 and such that |x1| ≤ k ≤ l,
the following holds:

Pκ(RX = k|X(1) = x)P
κ
2 (RY = l|Y (1) ≡ x) ≤ Pκ(RX = l|X(1) = x)P

κ
2 (RY = k|Y (1) ≡ x)

We apply the definition of conditional probability and cancel the terms that appear on
both sides (note that P

κ
2 (Y (1) ≡ x|RY = l) = 1 since l has the same parity as x1). Then

we can rewrite the equation as

P (Zk = x1)

P (Zl = x1)
≤ P (A = l)P (A′ = k)

P (A = k)P (A′ = l)
= 2l−k.

Here (Zi)i∈N is a discrete time simple random walk on Z, and A resp. A′ is a Poisson
random variable of parameter κ

d resp. κ
2d . But this inequality holds, since by the Markov

property
P (Zl = x1) ≥ P (Zk = x1)P (Zl−k = 0) ≥ P (Zk = x1)2−(l−k).

Now we are ready to show Lemma 3.6.

Proof. Let us define weights p0, ..., pN by p0 := T1, pN := 1− TN and pi := Ti+1 − Ti for
all other values of i. We note that µ and ν do not depend on the order of T1, ..., TN , and
therefore we can rearrange them to satisfy

p0 ≤ p1 ≤ ... ≤ pN . (3.13)

Now for k ∈ N, let Mk = (Mk(0), ...,Mk(N)) denote a random variable having the
multinomial distribution with k trials, and write Pk for its law. That is, k indistinguishable
balls are thrown in bins numbered 0, ..., N such that each ball independently lands in bin
i with probability pi, and Mk(i) is the final number of balls in bin i. We define

Ik :=
(
1{Mk(0) is odd}, ...,1{Mk(N) is odd}

)
∈ {0, 1}N+1. (3.14)

We will often use Ik interchangeably with the set {i : Mk(i) is odd} ⊆ JNK, where
JNK = {0, ..., N}. Consider random variables K and L taking values in N with

P (L = l) = Pκ(RX = l|X(1) = x) and P (K = k) = P
κ
2 (RY = k|Y (1) ≡ x).

Observe that by conditioning on RX and RY we get

µ(I) = E[PL(IL = I)] and ν(I) = E[PK(IK = I)] (3.15)

Indeed, conditional on a random walk having K jumps in [0, 1], each jumps occurs
in [Ti, Ti+1) with probability pi, independently of the other jump times, and the process
switches sites between Ti and Ti+1 exactly if there is an odd number of jumps in [Ti, Ti+1).

One might be tempted to think that we are done now, since for all fixed values k ≤ l
we can easily show that Pl(Il ∈ ·) �M Pk(Ik ∈ ·) holds: The distribution of Il can be
obtained from the distribution of Ik by the application of a doubly stochastic matrix, and
this is an equivalent characterization of �M , see for example Theorem 1.5.34 in [13].
Moreover from Lemma 3.7 we know that there exists a coupling between K and L such
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that K ≤ L holds with probability one. However the majorization order is not stable
under taking mixtures, so this does not give the conclusion.

Instead we define a partial order � on Σ by

(i0, ..., iN ) � (j0, ..., jN ) ⇐⇒
k∑
l=0

il ≤
k∑
l=0

jl for all k = 0, ..., N.

We will show in Lemma 3.8 that if we increase the number of jumps from 2k to 2k+ 2,
the mass in Σ will become less concentrated on the ”small values“ with respect to this
partial order, which is what we need to conclude:

First note that both µ and ν are decreasing in �, as defined in part (i) of Lemma 3.8
below. From (3.15) we see that this follows by taking expectations in (3.16), and noting
that both K and L are supported on the even numbers. Moreover we have

µ(A) ≤ ν(A) for all decreasing sets A.

To see this, recall from Lemma 3.7 that we can couple K and L such that K ≤ L holds
with probability one, and apply (3.15) together with (3.17). We have checked conditions
(1) and (2) from [2], and µ �M ν now follows from Theorem 3 in that work.

It remains to show

Lemma 3.8. (i) P2k(I2k ∈ ·) is decreasing in �. That is, for all I, J ∈ Σ we have

I � J =⇒ P2k(I2k = I) ≥ P2k(I2k = J). (3.16)

(ii) Let A ⊆ P(Σ) be a decreasing set, i.e. J ∈ A implies I ∈ A for all I with I � J .
Then

P2k+2(I2k+2 ∈ A) ≤ P2k(I2k ∈ A). (3.17)

Proof. For S ⊆ JNK we write Mk(S) :=
∑
i∈SMk(i). We recall the following fact about a

binomial random variable Bn,p with n trials and success probability p:

P (Bn,p is even) =
1

2

(
1 + (1− 2p)n

)
. (3.18)

Part (i): For S, T ⊆ JNK disjoint, we consider the function

fST (r) := P
(
Mk(i) is even ∀i ∈ S,Mk(j) is odd ∀j ∈ T

∣∣Mk(S ∪ T ) = r
)
.

Whenever S or T is the empty set, we drop it from the notation and just write fT or fS .
We first show (3.16) in two special cases:

Assume that I ⊆ J , with J \ I =: {a1, ..., a2m}. Let A be the event A := {I ⊆ I2k ⊆ J}
and set Sj := {a2j−1, a2j}. Then

P2k(I2k = I) = P2k(A)E
[ m∏
j=1

fSj (M2k(Sj))
∣∣∣A].

Clearly fSj (m) is only positive if m is even, and in this case fSj (m) ≥ fSj (m) follows
from (3.18). But this means

P2k(I2k = J) = P2k(A)E
[ m∏
i=1

fSj (M2k(Sj))
∣∣∣A] ≤ P2k(I2k = I).
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Next we assume that |I| = |J | and that I and J only differ in two coordinates, that is I =

I0 ∪{a} and J = I0 ∪{b} for some b < a. Let B be the event B :=
{
I0 ⊆ I2k ⊆ I0 ∪{a, b}

}
.

Then

P2k(I2k = I) =P (B)E
[
f ba
(
M2k({a, b})

)∣∣∣B]
≥P (B)E

[
fab
(
M2k({a, b})

)∣∣∣B] = P2k(I2k = J).

For the inequality we have used that for m odd we have

f ba(m) = P (Bm,p is even) ≥ P (Bm,p is odd) = fab (m)

where p = pb
pa+pb

. Note that a > b and (3.13) imply p ≤ 1
2 .

Now the general case follows from the observation that for any I � J we can find
I0 � ... � Ir such that I0 = I and Ir ⊆ J , and with the property that Ii+1 and Ii only
differ in two coordinates, as defined above.

Part (ii): We do this by constructing a coupling (I2k, I2k+2) with the property that
I2k � I2k+2 holds with probability one, from which (3.17) follows.

For this, let (B,A) be chosen from {(b, a) : 0 ≤ b ≤ a ≤ N} according to

P
(
(B,A) = (b, a)

)
= 2papb1{b < a}+ p2

a1{a = b}

and let M be independently sampled with the multinomial distribution with 2k trials. On
the event {A = B} we define I2k from M according to the definition, and set I2k+2 equal
to I2k.

In the case where B < A, we first fix the coupling on JNK \ {A,B} by

Il(i) := 1{M(i) is odd} for i /∈ {A,B} and l ∈ {2k, 2k + 2}.

Then we set R := M(A) +M(B) and p := pB
pA+pB

, and consider an independent random
variable U distributed uniformly in [0, 1]. From this we define

I2k(B) := 1{U ≤ P (BR,p is odd)}
I2k+2(B) := 1{U ≤ P (BR,p is even)}

Finally, for l equal to 2k or 2k + 2, we set

Il(A) := R− Il(B) mod (2). (3.19)

We claim that this is indeed the desired coupling. First note that we can sample
a realization of the multinomial distribution M2k+2 with 2k + 2 trials by sampling M

together with two additional balls A and B as described above. If the extra balls end up
in the same bin, then the parity of all coordinates of M and M2k+2 will agree, and we
can take I2k = I2k+2.

Otherwise adding A and B will flip the parity of M(A) and M(B). So conditionally
on {M(A) + M(B) = R} we have sampled I2k(B) and I2k+2(B) with the correct laws,
which then forces us to choose I2k(A) and I2k+2(A) as in (3.19).

But now (3.13) and B < A imply p = pB
pA+pB

≤ 1
2 , so from (3.18) we obtain

P (BR,p is odd) =
1

2
− 1

2
(1− 2p)R ≤ 1

2
≤ P (BR,p is even).

Therefore I2k(B) ≤ I2k+2(B), which implies I2k � I2k+2.
More precisely, if R is even we have

(I2k(B), I2k(A)) = (1, 1) =⇒ (I2k+2(B), I2k+2(A)) = (1, 1)
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so that I2k ⊆ I2k+2 with probability one. If R is odd, we note that

(I2k(B), I2k(A)) = (1, 0) =⇒ (I2k+2(B), I2k+2(A)) = (1, 0).

On the other hand, on {(I2k(B), I2k(A)) = (0, 1)} we can have either I2k+2 = I2k or
(I2k+2(B), I2k+2(A)) = (1, 0). In the second case we have strict inequality, I2k ≺ I2k+2.

3.2 A concentration inequality

We write
S(t, x) := Pω(τ ≥ t,X(t) = x).

With the previous moment bound at hand, we can now proceed to prove a concentration
inequality for the sequences

(
S(t, x)

)
t≥0

where the bounds do not depend on x. We
follow the proof of Proposition 3.2.1 in [5].

Proposition 3.9. There exist c > 0 and C > 0, such that ε ∈ (0, c) implies

Q
(∣∣ logS(t, x)− E[logS(t, x)]

∣∣ > εt
)
≤ 2 exp(−Cε2t) (3.20)

for all t ∈ N and x ∈ Zd.

Proof. We will drop the dependence on t and x in the notation, and only write S for
S(t, x). Let ωi be the environment that contains all disasters (t, y) of ω except for those

with t ∈ [i− 1, i). We now consider the filtration
(
Fi
)t
i=0

with

Fi := σ
(
ω(y)(s) : s < i, y ∈ Zd)

and the random variables
(
Si
)t
i=1

given by

Si := Pωi(τ ≥ t,X(t) = x).

Notice that E[logSi|Fi] = E[logSi|Fi−1]. Now by Lemma A.1 in [5], we obtain

Q
(∣∣ logS − E[logS]

∣∣ > εt
)
≤ 2 exp(−Cε2t)

for some explicit constant C > 0 once we have shown that

E
[
eδ| logS−logSi|

∣∣∣Fi−1

]
≤ A

holds for some δ > 0 and for some A > 0 not depending on i, t or x. We have S ≤ Si, and
therefore

eδ| logS−logSi| =
( S
Si

)−δ
=
(∑
y,z

αy,zηy,z

)−δ
(3.21)

where
αy,z := Pωi

(
X(i− 1) = y,X(i) = z

∣∣τ ≥ t,X(t) = x
)

and
ηy,z := P (i−1,y),(i,z)

ω

(
τ ≥ i

)
.

Here P (r,y),(s,z) is the law of a random walk starting at time r in y and conditioned to
end up in z at time s. To see that (3.21) holds true, note that

αy,z = Pωi
(
X(i− 1) = y,X(i) = z, τ ≥ t,X(t) = x

)
/Si.
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To compute the expectation of the r.h.s. of (3.21), consider, for i fixed, the sigma algebra

F∗ := σ
(
ω

(y)
i (s) : s < t, y ∈ Zd

)
From our choice of ωi we clearly have Fi−1 ⊆ F∗, and ηy,z is independent of F∗ while
αy,z is F∗ measurable. So using Jensen’s inequality we obtain

E
[( S
Si

)−δ∣∣∣F∗] ≤∑
y,z

αy,zE
[
η−δy,z

]
=
∑
y,z

αy,zE
[
(Pω(τ ≥ 1|X(1) = z − y)−δ

]
By Proposition 3.3 we have

sup
y,z
E
[
Pω
(
τ ≥ 1

∣∣X(1) = z − y
)−δ]

= c <∞

and therefore

E
[( S
Si

)−δ∣∣∣Fi−1

]
≤ c E

[∑
y,z

αy,z

∣∣∣Fi−1

]
= c.

3.3 Proof of Proposition 3.1

Equipped with this concentration inequality we can now prove Proposition 3.1. We
follow the proof of Proposition 2.4 in [3].

Proof of Proposition 3.1. We start with (3.4), where we first argue that it is enough to
assume t ∈ N. We take any t > 0 and set s := btc. Then

E[log S̃(t)] ≥E[log S̃(s)] + E[logPω(τ ≥ t− s,X(t− s) = 0)]

≥E[log S̃(s)]− 1

δ
log sup

r∈[0,1]

E
[(
Pω(τ ≥ r,X(r) = 0)

)−δ]
. (3.22)

Here we take δ ∈ (0, 1
2 ), and for the second line we used Jensen’s inequality. The second

term in (3.22) is finite by (3.10). For the first term we have

E[log S̃(s)] ≥ E
[

log

s∏
i=1

P (i)
ω (τ ≥ i,X(i) = 0)

]
= s logP (X(1) = 0) + s E[logPω(τ ≥ 1|X(1) = 0)].

where P (i) is the law of a random walk started at time i− 1 at the origin. Note that the
first term in the last line does not depend on ω. But for all δ ∈ (0, 1) we have

E[logPω(τ ≥ 1|X(1) = 0)] = −1

δ
E
[

log
(
Pω(τ ≥ 1|X(1) = 0)−δ

)]
≥ −1

δ
logE

[
Pω(τ ≥ 1|X(1) = 0)−δ

]
> −∞,

where we used Jensen’s inequality, and the integrability follows from Proposition 3.3.
From (3.2) and the concentration inequality (3.20) we obtain (3.3) by a simple Borel-

Cantelli argument. Now to prove (3.2), we remark that the existence of the limit

p̃(κ) = lim
t→∞

1

t
E[log S̃(t)]

can be shown by subadditivity as usual, but this is not even necessary for our claim.
Clearly we have

lim sup
t→∞

1

t
E[log S̃(t)] ≤ p(κ).
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We now prove the other direction, where by (3.22) it is enough to consider t ∈ N. Note
that for any x ∈ Zd we have

Pω(τ ≥ 2t,X(2t) = 0) ≥ Pω(τ ≥ t,X(t) = x)P t,x(τ ≥ 2t,X(2t) = 0).

Since P t,x(τ ≥ 2t,X(2t) = 0) has the same law as Pω(τ ≥ t,X(t) = x), we conclude that

E[logS(2t, 0)] ≥ 2E[logS(t, x)]. (3.23)

For γ > 0 we consider a box Bt := {x ∈ Zd : ‖x‖ ≤ γt} and the event At := {X(t) ∈ Bt}.
Using standard large deviation techniques, we can choose γ large enough such that

logP (Act) < tp(κ) ∀t ≥ t0.

Consequently we have

p(κ) = lim
t→∞

1

t
E[logPω(τ ≥ t)] = lim

t→∞

1

t
E[logPω(τ ≥ t, At)] . (3.24)

Take now ε := t−
3
4 and apply the fractional moments method:

E[logPω(τ ≥ t, At)] =
1

ε
E
[

log
(
Pω(τ ≥ t, At)ε

)]
≤ 1

ε
logE

[
Pω(τ ≥ t, At)ε

]
=

1

ε
logE

[( ∑
x∈Bt

S(t, x)
)ε]

(3.25)

≤ 1

ε
logE

[ ∑
x∈Bt

S(t, x)ε
]

(3.26)

=
1

ε
log

∑
x∈Bt

E
[
eε(logS(t,x)−E[logS(t,x)])

]
eεE[logS(t,x)], (3.27)

where we get (3.25) from Jensen’s inequality, and the inequality in (3.26) comes from

the general estimate
(∑N

j=1 aj

)ε
≤
∑N
j=1 a

ε
j for nonnegative a1, . . . , aN and 0 < ε < 1.

For the left factor of the summands in (3.27) we compute, using (3.20),

E
[

exp
(
ε(logS(t, x)− E[logS(t, x)]

)]
≤ 1 +

∫ ∞
1

Q
(∣∣ logS(t, x)− E[logS(t, x)]

∣∣ > t
3
4 log u

)
du

≤ 1 + 2

∫ ∞
1

e−Ct
1
2 (log u)2du := c(t).

Then we are left with

E[logPω(τ ≥ t, At)] ≤
1

ε
log c(t) +

1

ε
log

∑
x∈Bt

eεE[log S(t,x)]

≤ 1

ε
log c(t) +

1

ε
log |Bt|+

1

2
E[logS(2t, 0)],

where we have used (3.23). Dividing by t and taking limits, taking into account (3.24),
we obtain

lim inf
t→∞

1

2t
E[logS(2t, 0)] ≥ p(κ).
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4 The critical case

4.1 Proof of Theorem 1.1 in the critical case

In this section we apply the technique going back to [1], where it was used to show
that the critical contact process dies out. We consider the critical process and assume
that it survives, showing that this leads to a contradiction.

For this we find a supercritical oriented site percolation process induced by the
branching process in such a way that an infinite cluster in the percolation implies global
survival of the branching process. In this coupling the event that a site is open can be
decided by considering local events of the branching process, i.e. an event that only
depends on a finite space-time box. The probability of this local event therefore depends
continuously on the parameters of the model, so that the comparison to supercritical
percolation still holds true if we push the parameters slightly into the subcritical phase.
Since we know that the process dies out in this case, we have a contradiction.

This technique was also used in [8] for a discrete time, non-degenerate version of our
model.

Proof of Theorem 1.1 (critical case). Fix κ and λ such that

λ(m− 1) + p(κ) = 0. (4.1)

At the same time assume that

Pκ,λ(Z survives) > 0. (4.2)

For the contradiction we first consider the process in an environment with a higher
disaster rate, making the process subcritical: Let us introduce the rate at which disasters
appear as a new parameter of the model (until now, it was fixed to be 1). Denote by
Qα the law such that

(
ω(x)

)
x∈Zd is a collection of independent Poisson processes of rate

α > 0, and write Pα,κ,λ for the annealed measure Qα ⊗ Pκ,λω . Let p(α, κ) be the survival
rate of a single particle in this environment (defined as in (1.2) but with an environment
with disaster rate α). We show at the end of this section that for any δ > 0 we have

λ(m− 1) + p(1 + δ, κ) < 0. (4.3)

Now using the same arguments as in the proof of the subcritical part of Theorem 1.1,
(4.3) implies that for all δ > 0 we have

P1+δ,κ,λ(Z survives) = 0. (4.4)

The contradiction will come from a coupling with oriented percolation, showing that for
δ small enough we have

P1+δ,κ,λ(Z survives) > 0. (4.5)

Consider a box Dn := {−n, ...n}d. Recalling the notation from Section 1.4, we consider
for s, L, T ∈ R+, x, y ∈ Zd and n, S ∈ N the event

As,y(L, T, n, S) :=

{
∃x ∈ {L, ..., 3L} × {−L, ..., L}d−1, t ∈ [5T, 6T ]

such that (x+Dn, S
2) ≤ Z{s}×(y+Dn,S

2)

{−5L,...,5L}×{−3L,...,3L}d−1(t).

}
(4.6)

(The reason to use S2 on the r.h.s. of (4.6) will become clear later). In words, A0,0 =

A0,0(L, T, n, S) is the event that starting from configuration (Dn, S
2) at time 0, those

particles will propagate such that at some time t ∈ [5T, 6T ] we find a copy x+Dn of Dn

where again every site is occupied by at least S2 particles. Because we consider the
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truncated process, the event has to be achieved by particles which do not leave a certain
space-time box.

We now state the key proposition which says that under the assumption (4.2), we can
make the probability for (an auxiliary version of) A0,0 arbitrarily large:

Proposition 4.1. Assume (4.2). For every ε > 0 there exist L, T > 0 and n, S ∈ N such
that

P1,κ,λ

(
∃x ∈ {L+ n, ..., 2L+ n} × {−L, ..., L}d−1, t ∈ [T, 2T ]

such that (x+Dn, S
2) ≤ Z(Dn,S

2)

{−L,...,3L}×{−L,...,L}d−1(t)

)
> 1− ε. (4.7)

We will use this to give an estimate for the probability of As,y that holds uniformly for
all s and y in some space-time box:

Proposition 4.2. Assume (4.2). For every ε′ > 0 there exist L′, T ′ > 0 and n, S ∈ N such
that

inf
{
P1,κ,λ (As,y(L′, T ′, n, S)) : s ∈ [0, T ′], y ∈ {−L′, ..., L′}d

}
> 1− ε′.

Note that As,y is a local event, i.e. it depends only on the process in some finite
space-time box. Therefore its probability depends continuously on the parameters, and
we get the following

Corollary 4.3. Assume (4.2). For every ε > 0 there exists L, T > 0 as well as n, S ∈ N
and δ > 0 such that

inf
{
P1+δ,κ,λ (As,y(L, T, n, S)) : s ∈ [0, T ], y ∈ {−L, ..., L}d

}
> 1− ε.

We will now argue that Corollary 4.3 ensures that the process survives with positive
probability by a comparison to oriented percolation on N2. We follow the arguments
from chapter I.2 in [12].

We call a path (k0, l0), ..., (km, lm) in N2 an oriented path if for all i = 0, ...,m− 1 we
have ki+1 = ki + 1 and either li+1 = li or li+1 = li + 1. Fix L, T, n and S. Let us call the
point (k, l) ∈ N2 occupied if there exist (t, x) with

(x+Dn, S
2) ≤ Z(Dn,S

2)(t)

and such that (t, x) is in the space-time box[
5Tk, 5T (k + 1)

)
×
{
L(−2k + 4l − 1), ..., L(−2k + 4l + 1)

}
×
{
− L, ..., L

}d−1
. (4.8)

Finally we call a point (k, l) open if there is an oriented path (k0, l0), ..., (km, lm) with
(k0, l0) = (0, 0) and (km, lm) = (k, l), and such that (ki, li) is occupied for all i = 1, ...,m.
We write

η(k, l) = 1

if (k, l) is open, and η(k, l) = 0 otherwise.
This defines a random process (η(k, l))(k,l)∈N2 ∈ {0, 1}N2

from every realization of

the process (Z(Dn,S
2)(t))t≥0, and an easy observation is that if η(k, l) = 1 for infinitely

many points (k, l), then the original process must have survived. The next proposition
compares (η(k, l))(k,l)∈N2 to an independent oriented site percolation

(η̃(k, l))(k,l)∈N2 .

That is, for (η̃(k, l))(k,l)∈N2 every point (k, l) 6= (0, 0) is occupied independently with
probability p ∈ (0, 1), and we set

η̃(k, l) := 1
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if (k, l) is reachable from (0, 0) along an oriented path of occupied points, and η̃(k, l) = 0

otherwise. For two realizations (η(k, l))(k,l) and (η̃(k, l))(k,l), we will say that η dominates
η̃ if η(k, l) ≥ η̃(k, l) holds for every (k, l).

Proposition 4.4. Assume (4.2). For every p ∈ (0, 1), we can find values L, T > 0, n ∈ N,
S ∈ N and δ > 0 such that (η(k, l))(k,l)∈N2 induced by(

Z(Dn,S
2)(t)

)
t≥0

with parameters (1 + δ, κ, λ) can be coupled with (η̃(k, l))(k,l)∈N2 in such a way that η
dominates η̃ with probability one.

This now gives the contradiction, since we can find p ∈ (0, 1) such that

P
(
η̃(k, l) = 1 for infinitely many (k, l)

)
> 0.

Proposition 4.4 then implies that

P1+δ,κ,λ
(
Z(Dn,S

2) survives
)
> 0 for some δ > 0.

Clearly this also implies P1+δ,κ,λ(Z{0} survives) > 0 and therefore contradicts (4.4).

Proof of (4.3). Let ωα and ωβ be independent environments of disaster rates α and β,

respectively, and note that ωα+β
d
= ωα + ωβ. Here, ωα + ωβ denotes the environment

which contains both the disasters of ωα and of ωβ . We write τα and τβ for the extinction
times in ωα and ωβ and get, using (1.3), that

p(α+ β, κ) = lim
t→∞

1

t
E
[

logPωα+ωβ (τα ∧ τβ ≥ t)
]

= p(α, κ) + lim
t→∞

1

t
E[logPωα+ωβ (τβ ≥ t|τα ≥ t)]

≤ p(α, κ) + lim
t→∞

1

t
logE

[
Pωα+ωβ (τβ ≥ t|τα ≥ t)

]
= p(α, κ)− β,

where the last inequality follows from Jensen’s inequality.

Proof of Corollary 4.3. From Proposition 4.2 we get L, T , n and S such that

inf
s∈[0,T ],y∈{−L,...,L}d

P1,κ,λ (As,y(L, T, n, S)) > 1− ε

2
.

Using the notation from the previous claim, we note that

Pκ,λω1+ωδ
(As,y(L, T, n, S)) = Pκ,λω1

(As,y(L, T, n, S))

on the event E :=
{
ωδ has no disasters in [0, 6T ]×{−5L, ..., 5L}×{−3L, ..., 3L}d−1

}
. But

the Q-probability of E goes to 1 for δ → 0, and therefore the claim follows from

inf
s∈[0,T ],y∈{−L,...,L}d

P1+δ,κ,λ (As,y(L, T, n, S)) ≥
(

1− ε

2

)
Q(E) .

Proof of Proposition 4.4. We construct (η(k, l))(k,l)∈N2 recursively. Assume that we have
{η(k, l) : k ≤ K, l ≤ K} for some K ∈ N. Since η(K + 1, l) = 0 unless either η(K, l) = 1 or
η(K, l − 1) = 1, we assume that at least one of the latter random variables has the value
1. So we have

(x+Dn, S
2) ≤ Z(Dn,S

2)(t)
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for some (t, x) in either the space-time box from (4.8) (with K = k) or satisfying

(t, x) ∈
[
5TK, 5T (K + 1)

)
×
{
L(−2K + 4l − 5), ..., L(−2K + 4l − 3)

}
×
{
− L, ..., L

}d−1
.

Clearly η(K + 1, l) = 1 holds if we find (t′, x′) such that

(Dn + x′, S2) ≤ Z{t}×(x+Dn,S
2)(t′)

where t′ ∈ [5T (K + 1), 5T (K + 2)) and

x′ ∈
{
L(−2(K + 1) + 4l − 1), ..., L(−2(K + 1) + 4l + 1)

}
×
{
− L, ..., L

}d−1
.

Corollary 4.3 shows that for any ε > 0, we can choose L, T > 0, n ∈ N, s ∈ N and δ > 0

such that this happens with probability at least 1− ε, and it is clear that this probability
does not depend on K or l.

So we have constructed a percolation (η(k, l))(k,l)∈N2 where each point is open with
high probability, but not independently. To address this we define a distance between
two sets S1, S2 ⊆ N by

d(S1, S2) := inf{|x1 − x2| : x1 ∈ S1, x2 ∈ S2}

We notice that the restriction to a truncated process in Corollary 4.3 ensures that
the percolation is 2-dependent. This means that conditioned on {η(k, l) : k ≤ K}, the
collections (η(K + 1, l))l∈S1 and (η(K + 1, l))l∈S2 are independent for any sets S1, S2 ⊆ N
with d(S1, S2) > 2.

Theorem B26 in [12] then ensures that we can couple (η(K + 1, l))l≤K+1 with an
independent family of Bernoulli random variables (η̃(K+1, l))l≤K+1 such that η dominates
η̃, and such that η̃(K + 1, l) = 1 holds with probability at least (1 − 5

√
ε)2 if either

η(K, l − 1) = 1 or η(K, l) = 1.

It is clear that the key step is to prove Proposition 4.1 and Proposition 4.2 about the
local events As,y(L, T, n, S). For this we consider the numbers N resp. M of particles
leaving a space-time box through the top resp. the faces, rigorously defined in Section
4.3. Well established techniques for branching processes show that if the process
survives we can expect N +M to be large, which we show in some technical lemmas in
Section 4.2.

The construction we outlined before requires us to have more control on where
exactly those particles exit the box, so we let N(u, θ) count the number of particles
exiting through the orthant described by θ of the face in direction u, and we use M(u, θ)

for the number of particles exiting through the corresponding orthant of the top. The
formal definition is again deferred until Section 4.3. Using an FKG inequality we obtain
in Section 4.3 that we can expect all the N(ei, θ) and M(u, θ) to be large on the event of
survival, at least if we increase the number S2 of particles initially on each site of Dn.

Having done all of this we can finally prove Propositions 4.1 and 4.2 in Section 4.4,
finishing the proof of Theorem 1.1.

4.2 Some technical lemmas

Recall that we have fixed λ, κ and q such that (4.2) holds. We first show that we
can make the survival probability arbitrarily close to 1 by enlarging the set of initially
occupied sites. This is part (i) of Lemma 4.5 below.

Part (ii) concerns particles that survive locally until time 1 by using only two sites.
We obtain that (with high probability) many particles will achieve this if we start with a
large enough number of particles at the origin.

EJP 22 (2017), paper 67.
Page 20/34

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP75
http://www.imstat.org/ejp/


A branching random walk among disasters

Part (iii) shows that with high probability, starting from N particles occupying the
origin, at time 1 we end up with a configuration where every site of Dn is occupied by
many particles. We need this to be a local event, so we restrict ourself to particles that
do not leave certain boxes.

Lemma 4.5. (i) For every ε > 0 there is n ∈ N with

P
(
ZDn survives

)
> 1− ε.

(ii) Recall (1.8). For every ε > 0 and M ∈ N, there is an N ∈ N such that

P
(∣∣Z({0},N)

{0,e1} (1) ∩ {0}
∣∣ ≥M) > 1− ε.

(iii) Recall (1.9). For every ε > 0 and n, S ∈ N, there is an N ∈ N such that

min
{
P
(
(ne1 +Dn, S) ≤ Z({0},N)

ne1+Dn
(1)
)
,P
(
(Dn, S) ≤ Z({0},N)

Dn
(1)
)}

> 1− ε .

Proof. Part (i): Define a collection (Yx)x∈Zd with Yx := 1{|Z{x}(t)| > 0 ∀t > 0}. We have

P
(
|ZDn(t)| > 0 ∀t

)
= P

( ∑
x∈Dn

Yx > 0
)

= E
[
Pω

( ∑
x∈Dn

Yx > 0
)]

Writing Sn :=
∑
x∈Dn Yx we have

Pω
(
Sn = 0

)
≤ Pω (|Sn − Eω[Sn]| ≥ Eω[Sn]) ≤ Varω(Sn)(

Eω[Sn]
)2 (4.9)

Now, due to the spatial ergodic theorem (see Theorem 4.9 in [11]), we have 1
|Dn|Eω[Sn]→

E
[
Eω[Y0]

]
> 0 for almost all ω, while

1

|Dn|
Varω

(
Sn
)

=
1

|Dn|
∑
x∈Dn

Varω(Yx)→ E
[
Varω(Y0)

]
Q-a.s.,

where we used the fact that {Yx, x ∈ Zd} are independent with respect to Pω. We
conclude from (4.9) that Pω(Sn = 0)→ 0 almost surely and therefore P (Sn = 0)→ 0 as
well.

Part (ii): For v ∈ N∗ a node in our tree (recall Section 1.1), let B(v) denote the event
that v

• does not branch before time 1

• satisfies X([0, 1], v) ⊆ {0, e1} and X(1, v) = 0

• and is not killed by the environment until time 1.

For any α ∈ (0, 1] we let A(α) be the event

A(α) := {Pω(B(∅)) ≥ α}.

Note that the eventsA(α) are increasing as α ↓ 0 and that their union over all α ∈ (0, 1]∩Q
has probability 1. So for any η > 0 we can find α > 0 small enough that

Q(A(α)) ≥ 1− η

Now starting with N initial particles at the origin in an environment ω ∈ A(α), the
number of particles v such that B(v) occurs dominates the number of successes of a
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binomial random variable with N trials and success probability α. Clearly we can choose
N large enough such that

P
(

Bin(N,α) ≥M
)
≥ 1− η.

Then we can conclude since

P
(∣∣∣Z({0},N)

{0,e1} (1) ∩ {0}
∣∣∣ ≥M) ≥ Q(A(α))P (ξN ≥M) ≥ (1− η)2 ≥ 1− ε

holds for η small enough.
Part (iii): Let D̃n be equal to either Dn or ne1 + Dn. We fix an enumeration D̃n =

{x1, ..., x(2n+1)d} of the sites, and introduce the quantity

S(x) := Pω
(
τ ≥ 1, X(1) = x,X([0, 1]) ⊆ D̃n

)
.

Here we use Pω for the law of a single particle which does not branch and which is killed
by the environment ω with τ denoting its extinction time. For α ∈ (0, 1] we consider
events

A(α) :=
{

min{S(x) : x ∈ D̃n} ≥ α
}
.

Fix η > 0. By the same argument as before we find that Q(A(α)) ≥ 1− η holds for some
α > 0 small enough. We now choose N := m(2n+ 1)d for some large m. Letting W ⊆ N∗
denote the set of initial particles, we partition W (deterministically) in such a way that

W = W1 ∪· · · · ∪· W(2n+1)d with |Wi| = m ∀i = 1, ..., (2n+ 1)d.

Now for w ∈Wi let Bi(w) be the indicator function of the event that the particle w

• does not branch before time 1

• satisfies X([0, 1], w) ⊆ D̃n and X(1, w) = xi and

• is not killed by the environment until time 1.

Let B be the event

B :=
{ ∑
w∈Wi

Bi(w) ≥ S for all i = 1, ..., |D̃n|
}
.

Noticing that P (Bi(w) = 1) = e−λS(xi) we conclude that for ω ∈ A(α) we have

Pω(B) =

|D̃n|∏
i=1

Pω

(∑
w ∈WiBi(w) ≥ R

)
≥ P

(
Bin(m, e−λα) ≥ R

)(2n+1)d

But now it is clear that we can choose m large enough that Pω(B) ≥ 1− η on A, hence

P
(

(D̃n, S) ≤ Z({0},N)

D̃n
(1)
)
≥
∫
A(α)

Pω(B)dQ ≥ (1− η)2 ≥ 1− ε

holds for η small enough.

In the following, we think of A ⊆ Zd as a large set, so that {ZA dies out} is an event of
small probability. In the next lemma we state the familiar property that survival can only
happen if the number of particles goes to infinity. Looking at the process as a random
tree embedded in space-time, this means that there are many particles occupying the
top of a space-time box.

Lemma 4.6. For every A ⊆ Zd we have

P
(
ZA survives

)
= P

(
ZA survives, lim

t→∞
|ZA(t)| =∞

)
.

EJP 22 (2017), paper 67.
Page 22/34

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP75
http://www.imstat.org/ejp/


A branching random walk among disasters

Proof. Define constants

α := Q
(

At least one disaster occurs at the origin before time 1
)

= 1− e−1 (4.10)

β := P
((
Z{0}(t)

)
0≤t≤1

stays at the origin and does not branch
)

= e−λ−κ. (4.11)

Let Ft be the sigma algebra generated by the environment, the branching times and the
particle positions up to time t. Then for any t we have

P(ZA dies out|Ft) ≥ α|Z
A(t)|β|Z

A(t)|.

Letting t go to infinity, the left side converges to the indicator function 1{ZA dies out} ∈
{0, 1}. However, if for some K we have |ZA(t)| < K for arbitrarily large t, the limit
inferior of the right hand side will be bounded away from 0. Therefore the event{

ZA survives, |ZA(t)| < K for arbitrarily large t
}

has probability 0. Now

P
(
ZA survives, lim sup

t→∞
|ZA(t)| <∞

)
= lim
K→∞

P
(
ZA survives, |ZA(t)| < K for arbitrarily large t

)
= 0.

We also need the following general result:

Lemma 4.7. Let m,S ≥ 1 and consider random variables (X0, ..., Xm) taking values in
{0, 1}m+1 (not necessarily independent). Then

m∏
i=0

P
(
Xi = 0

)S ≤ P (Xi = 0 for all i) +
( m

m+ 1

)(m+1)S

.

Proof. For I ⊆ JmK = {0, ...,m} let us define

pI := P ({i : Xi = 0} = I).

We need to show that

m∏
i=0

(
pJmK +

∑
{i}⊆I(JmK

pI

)S
≤ pJmK +

( m

m+ 1

)(m+1)S

. (4.12)

Observe that the left hand side takes a maximum over all values of
(
pI : I 6= JmK

)
at

pI = 0 for |I| < m and

pJmK\{i} =
1− pJmK

m+ 1
for i = 0, ...,m.

Then (4.12) reads (m+ pJmK

m+ 1

)(m+1)S

≤ pJmK +
( m

m+ 1

)(m+1)S

.

Since the function on the left hand side is convex in pJmK while the right hand side is
linear, the conclusion follows by checking that the inequality indeed holds for pJmK equal
to 0 and to 1.
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4.3 Space-time boxes and an FKG-inequality

Let us define the random variables mentioned at the end of Section 4.1. Note that
we can think of the process (Zη(t))0≤t≤T as a process in space-time, which we want to
emphasize by writing

[0, T ]× Zη :=
{

(t, v) : 0 ≤ t ≤ T, v ∈ Zη(t)
}
⊆ [0, T ]×N∗.

For convenience we also define the sign of zero to be 1, that is

sign (x) := 1x≥0 − 1x<0 for x ∈ Z. (4.13)

For L ∈ N and T > 0 we now consider a space-time box B ⊆ R×Zd of the form

B := [0, T ]× {−L, ..., L}d.

We denote the top of this box by

T(L, T ) := {T} × {−L, ..., L}d.

We can divide T in the left and right parts T(L, T, 1) and T(L, T,−1), given by

T(L, T, u) :=
{

(T, x) ∈ T (L, T ) : sign x1 = u
}

for u ∈ {±1}.

Moreover let U := {±ei : i = 1, ..., d} and for u ∈ U let F(L, T, u) denote the face in
direction u, given by

F(L, T, u) := [0, T ]×
(
{−L, ..., L}i−1 × {0} × {−L, ..., L}d−i + Lu

)
.

We need to partition both the top and the sides even further: Let Θ := {±1}d−1 and note
that for every θ ∈ Θ and u ∈ {±1} we find an orthant given by

T(L, T, u, θ) := {(T, x1, ..., xd) ∈ T(L, T, u) : sign xj = θj−1 ∀j = 2, ..., d}.

Similarly an orthant on the face F(L, T,±ei) has the form

F(L, T,±ei, θ) :=
{

(t, x1, ..., xd) ∈ F(L, T, u) : sign xj = θj ∀j < i, sign xj = θj−1 ∀j > i
}
.

We further denote the boundary of B by ∂B, that is

∂B(L, T ) := T(L, T ) ∪
⋃
u∈U

F(L, T, u).

Note that the bottom {0} × {−L, · · · , L} of the box is not part of the boundary. For all
these quantities we sometimes omit the dependence on L and T if it is clear from the
context. See also Figure 1 for an example in d = 2.

Let η be a configuration as defined in Section 1.4. For u ∈ U and θ ∈ Θ let

Nη(L, T, u, θ)

count the number of particles leaving B through F(L, T, u, θ). That is, Nη(L, T, u, θ)

is the number of times such that a particle of Zη hits ∂B for the first time at some
(t, x) ∈ F(L, T, u, θ), formally defined as the cardinality of the set{

(t, v) ∈ [0, T ]× Zη : X(t, v) ∈ F(L, T, u, θ), X(s, v) /∈ ∂B ∀s < t
}
.

Furthermore for u ∈ {±1} and θ ∈ Θ let Mη(L, T, u, θ) count the particles exiting B
through T(L, T, u, θ), so that

Mη(L, T, u, θ) :=
∣∣{v ∈ Zη(T ) : X(T, v) ∈ T(L, T, u, θ), X(s, v) /∈ ∂B ∀s < T

}∣∣.
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Z2

R+

T(L, T,−1)

F(L, T,−e1)

T(L, T, 1, 1) F(L, T, e1, 1)

Figure 1: The space-time box B
in the case d = 2. The relevant
part of the boundary is subdivided
in the following way: The left
and right parts T(−1) and T(1)

of the top, and the faces F(e1)

and F(−e1) in direction e1. Each
of these is again subdivided in 2

orthants, denoted T(±1,±1) and
F(±e1,±1).

We use Mη and Nη to refer to the vectors

Mη(L, T, ·, ·) ∈ N(2d) and Nη(L, T, ·, ·) ∈ N(d2d).

Moreover we record the following shorthand notation for later use:∑
Mη(L, T ) :=

∑
u∈{±1},θ∈{−1,1}d−1

Mη(L, T, u, θ) (4.14)

∑
Nη(L, T ) :=

∑
u∈U,θ∈{−1,1}d−1

Nη(L, T, u, θ). (4.15)

We have the following FKG inequality.

Theorem 4.8. Let η1 and η2 be two configurations, and denote by V η1 and Ṽ η2 two
independent realizations of the process started from η1 resp. η2. We let Zη1 , Mη1 and
Nη1 (resp. Z̃η2 , M̃η2 and Ñη2) be defined as above for the processes started from η1

(resp. η2). Moreover let

f, g : N(2d) ×N(d2d) → R+

be increasing. Then

E
[
f
(
Mη1 , Nη1

)
g
(
M̃η2 , Ñη2

)]
≥ E

[
f
(
Mη1 , Nη1)

]
E
[
g(M̃η2 , Ñη2)

]
(4.16)

An intuitive explanation is that if many particles of V η1 survive and occupy any given
orthant then this increases the chance that many particles of Ṽ η2 are alive in any other
orthant, since they are affected by the same disasters.

Proof of Theorem 4.8. We will show that for almost all realizations of V η1 and Ṽ η2 we
have ∫

f
(
Mη1(ω), Nη1(ω)

)
g
(
M̃η2(ω), Ñη2(ω)

)
Q(dω)

≥
∫
f
(
Mη1(ω), Nη1(ω)

)
Q(dω)

∫
g
(
M̃η2(ω), Ñη2(ω)

)
Q(dω)

(4.17)
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Taking expectation with respect to the law of V η1 and Ṽ η2 then yields the claim. Think of
the processes as trees, recalling Section 1.1. Now conditioned on V η1 and Ṽ η2 we can
find K ∈ N and

0 = U0 < U1 < ... < UK < UK+1 = T

such that both trees are constant on [Uk, Uk+1) for all k = 0, ...,K. That is, neither V η1

nor Ṽ η2 jumps or branches in [0, T ] \ {U1, ..., UK}. Consider

χ(k, x) := 1
{

no disaster occurs at x in the interval [Uk, Uk+1)
}
.

Let G := σ(χ(k, x) : 0 ≤ k ≤ K,x ∈ Λ) and note that Mη1 , Nη1 , M̃η2 and Ñη2 are G-
measurable and increasing in χ. Since f and g are increasing this means that both

f(Mη1 , Nη1) and g(M̃η2 , Ñη2)

are also increasing in χ. Therefore (4.17) follows from the FKG inequality, see Corollary
2.12 in [11]. In this case the law of {χ(k, x) : 0 ≤ k ≤ K,x ∈ Λ} trivially satisfies the FKG
lattice condition since it is a product measure.

We obtain the following

Corollary 4.9. For any L,K,K ′ ∈ N, T > 0, any configuration η and any S ∈ N we have∏
θ∈Θ,u∈U

P
(
MSη(L, T, u, θ) ≤ K

)
≤ P

(∑
Mη(L, T ) ≤ d2dK

)
+ (d2d)−d2dS (4.18)

∏
θ∈Θ,u∈{±1}

P
(
NSη(L, T, u, θ) ≤ K

)
≤ P

(∑
Nη(L, T ) ≤ 2dK

)
+ (2d)−2dS (4.19)

and
P
(∑

NSη(L, T ) ≤ K
)
P
(∑

MSη(L, T ) ≤ K ′
)

≤P
(∑

Mη(L, T ) +
∑

Nη(L, T ) ≤ K +K ′
)

+ 4−S
(4.20)

Proof. We will show only the proof of (4.18) since the other claims follow in the same
way. Let I := U ×Θ, so that |I| = d2d. Fix an environment ω and for (u, θ) ∈ I define

Xu,θ := 1{Mη(L, T, u, θ) > K}.

Now consider independent copies of the tree indexed by I × {1, ..., S}, each of which
is started from configuration η and evolves in the same environment. We use Xu,θ,i to
denote the realization of Xu,θ corresponding to the tree (u, θ, i) ∈ I × {1, ..., S}, which is
now an independent family. Observe that

Pω
(
Xu,θ,i = 0 for all i = 1, ..., S

)
≥ Pω

(
MSη(L, T, u, θ) ≤ K

)
.

Together with Lemma 4.7 this implies∏
u,θ

Pω
(
MSη(L, T, u, θ) ≤ K

)
≤ Pω

(
Mη(L, T, u, θ) ≤ K for all u, θ

)
+ (d2d)−d2dS

≤ Pω
(∑

Mη(L, T ) ≤ d2dK
)

+ (d2d)−d2dS

Finally the claim follows by taking expectations, and applying Theorem 4.8 to the left
hand side.

The next lemma shows that we can make the probability on the right hand side of
(4.20) arbitrarily small: That is, if the process survives then there will be many particles
occupying the boundary of any space-time box:
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Lemma 4.10. Let (Tj)j and (Lj)j be two sequences increasing to infinity. Then for any
K > 0 and any configuration η have

lim sup
j→∞

P
(∑

Nη(Lj , Tj) +
∑

Mη(Lj , Tj) < K
)
≤ P

(
Zη dies out

)
.

Proof. Let Λj := {−Lj+1, · · · , Lj−1}d, and consider the space-time box Bj := [0, Tj ]×Λj .
We denote by FLj ,Tj the sigma algebra generated by the environment in Bj as well as
the branching times and positions of particles inside Bj . We will consider the process of
particles in Zη that have never left Bj:

Ej :=
{

(s, v) ∈ [0, T ]× Zη : ‖X(s, v)‖∞ = Lj , ‖X(r, v)‖∞ < Lj for all r < s
}

∪
{

(T, v) ∈ {T} × Zη : ‖X(r, v)‖ < Lj for all r ≤ T
}
.

Here ‖ · ‖∞ denotes the maximum norm. Note that (s, v) ∈ Ej implies that the particle v
has just left Bj (for the first time) at time s, either through one of the sides or through
the top. Clearly Ej is FLj ,Tj measurable and we have |Ej | = Nη(Lj , Tj) + Mη(Lj , Tj).
Now for (s, v) ∈ [0, T ] × Zη let D(s, v) be the indicator function of the event that v is
killed because

• there is a disaster at X(s, v) in the interval [s, s+ 1]

• and v has no branching times and no jumps in [s, s+ 1].

Then P(D(s, v) = 1) = αβ with the same α and β as in (4.10) and (4.11). We can write

P(Zη dies out|FLj ,Tj ) ≥ P
(
D(s, v) = 1 for all (s, v) ∈ Ej

∣∣FLj ,Tj) ≥ α|Ej |β|Ej |. (4.21)

For the last estimate, note that for (s, v) ∈ Ej the event D(s, v) = 1 is independent of
FLj ,Tj and that for (s1, v) 6= (s2, w) ∈ Ej we have

P(D(s1, v) = D(s2, w) = 1) ≥ P(D(s1, v) = 1)P(D(s2, w) = 1).

Now the same argument as in the proof of Lemma 4.6 applies: For j →∞ the left hand
side of (4.21) converges to 1{Zη dies out}, while the right side will be bounded away
from zero whenever |Ej | ≤ K for infinitely many j. Therefore we have

lim sup
j→∞

P(|Ej | < K) ≤ P(|Ej | ≤ K i.o.) ≤ P(Zη dies out).

4.4 Proof of the key propositions

We are now in a position to prove the missing Propositions from Section 4.1. Note that
there we have only used Proposition 4.2, however we obtain it by repeatedly applying
Proposition 4.1. For the proof of this first result we need to consider two cases depending
on the value of ε. Since ε will in turn depend on the value ε′ in the second proposition,
we choose to state those two cases in terms of ε′ from the beginning: Given ε′ > 0 we
choose ε > 0 such that

(1− ε)10 ≥ 1− ε′. (4.22)

With this value of ε we can find δ > 0 such that

min
{(

1− (3δ)(2d)−1
)(

1− (2δ)(d2d)−1
)

(1− δ)3, 1− 3δ
}
≥ 1− ε. (4.23)

By Lemma 4.5 we can find n ∈ N such that

P
(
ZDn survives

)
≥ 1− δ2. (4.24)
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Moreover let S be an integer such that

max
{(

1− 1

d2d

)d2dS

,
(

1− 1

2d

)2dS

, 4−S
}
≤ δ2

2
.

Now one of the following two statements will be true, and we prove both propositions
separately in each case:

∀L ∈ N we have P
(
Z

(Dn,S)
L survives

)
< 1− 2δ. (case 1)

∃L ∈ N such that P
(
Z

(Dn,S)
L survives

)
≥ 1− 2δ. (case 2)

4.4.1 Proof in case 1

Proof of Proposition 4.1 in case 1. We first have to find a number R ∈ N that is large
enough for our purposes: Let

α := min
{
P
(

(ne1 +Dn, S
2) ≤ Z{0}ne1+Dn

(1)
)
, P
(

(Dn, S
2) ≤ Z{0}Dn

(1)
)}

> 0. (4.25)

Then choose R1 such that

1− (1− α)R1 > 1− δ

and set R2 := R1(4n)d. Note that this ensures that any set A ⊆ Zd with |A| ≥ R2 contains
a subset A′ ⊆ A with |A′| ≥ R1 and such that for every two sites x 6= y ∈ A′ we have
‖x− y‖∞ ≥ 4n. By part (iii) of Lemma 4.5 we find R3 such that

min
{
P
(

(ne1 +Dn, S
2) ≤ Z({0},R3)

ne1+Dn
(1)
)
,P
(

(Dn, S
2) ≤ Z({0},R3)

Dn
(1)
)}

> 1− δ.

Finally due to part (ii) of Lemma 4.5 we can choose R4 large enough that

P
(∣∣Z({0},R4)

{0,e1} (1) ∩ {0}
∣∣ ≥ R3

)
> 1− δ.

Now set
R :=

(
max

{
R1, R2, nR4

})2
.

The next step is to find L and T . From Lemma 4.6 and the definition of n we obtain

lim
T→∞

lim
L→∞

P
(∑

MDn(L, T ) > 2dR
)

= lim
T→∞

P(|ZDn(T )| > 2dR) ≥ 1− δ2.

We can rewrite this by saying that for all T ≥ T0 there exists L(T ) with

P
(∑

M (Dn,S)(L, T ) > 2dR
)
≥ P

(∑
MDn(L, T ) > 2dR

)
≥ 1− δ ∀L ≥ L(T ). (4.26)

That is, the probability that there are 2dR particles at the top of a box [0, T ]×{−L, ..., L}d
can be made large by choosing L and T large enough. We want a similar result for the
number of particles leaving through the sides of [0, T ]× {−L, ..., L}d. Using (4.26) and
(case 1) we can define two increasing sequences (Lk)k≥0 and (Tk)k≥0, starting with T0

the value used for (4.26) and L0 := L(T0) + 1. For k ≥ 1 we proceed by

Lk+1 := max
{
Lk + 1, L(Tk + 1)

}
Tk+1 := inf

{
T > Tk : P

(∑
M (Dn,S)(Lk+1, T ) > 2dR

)
< 1− 2δ

}
.

Since T 7→ P(
∑
MDn(L, T ) > 2dR) is continuous we have

P
(∑

M (Dn,S)(Lk, Tk) ≤ 2dR
)

= 2δ for all k. (4.27)

EJP 22 (2017), paper 67.
Page 28/34

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP75
http://www.imstat.org/ejp/


A branching random walk among disasters

Note that our space-time box has 2d orthants in the top and d2d orthants in the faces.
We therefore apply Lemma 4.10 with K equal to (1 + d)2dR+ 1 and the sequences (Lk)k
and (Tk)k defined before. We find that there exists k0 such that for all k ≥ k0 we have

P
(∑

NDn(Lk, Tk) +
∑

MDn(Lk, Tk) ≤ (d+ 1)2dR
)
≤ 3

2
P
(
ZDn dies out

)
≤ 3

2
δ2.

We set L := Lk0 and T := Tk0 . Then we have

3

2
δ2 ≥ P

(∑
NDn(L, T ) +

∑
MDn(L, T ) ≤ (d+ 1)2dR

)
≥ P

(∑
N (Dn,S)(L, T ) ≤ d2dR

)
P
(∑

M (Dn,S)(L, T ) ≤ 2dR
)
− δ2

2
.

For the second inequality we have used (4.20) and the definition of S. Together with
(4.27) we get

P
(∑

N (Dn,S)(L, T ) ≤ d2dR
)
≤ δ. (4.28)

Applying (4.19) together with the definition of S, and using the fact that by symmetry,
the value of P

(
N (Dn,S

2)(L, T, u, θ) ≤ R
)

does not depend on θ and u, we obtain

P
(
N (Dn,S

2)(L, T, u, θ) ≤ R
)d2d ≤ δ +

δ2

2
≤ 2δ (4.29)

On the other hand (4.18) together with (4.27) and the definition of S shows

P
(
M (Dn,S

2)(L, T, u, θ) ≤ R
)2d ≤ 3δ. (4.30)

Remark 4.11. Clearly the probabilities in (4.29) and (4.30) do not depend on the choice
of θ and u, a fact that we will use in the proof of Proposition 4.2.

Now we have to verify that the claim of proposition 4.1 is indeed satisfied with this
choice of L and T . That is, we need to bound the probability that we find a copy of Dn

shifted to the correct space-time location, and such that every site is occupied by at least
S2 particles of the truncated tree. We show that each of the following steps occurs with
high probability, independent of the choice of θ ∈ Θ:

1. The tree Z(Dn,S
2) has many particles leaving through F(L, T, e1, θ).

2. There exist (t, x) ∈ F(L, T, e1, θ) such that the particles occupying x at time t grow
into a fully occupied copy {t+ 1} × (x+ ne1 +Dn, S

2) of (Dn, S
2).

3. Consider now the box

B :=
(
[0, T ]× {−L, ..., L}d

)
+ (t+ 1, x+ ne1)

The tree growing from {t+ 1}× (x+ne1 +Dn, S
2) will have many descendants that

leave through the top T(1,−θ) of B.

4. There is one particle at (t, x) ∈ T(1,−θ) that grows into a new copy of the box
{t+ 1} × (x+Dn, S

2), which now satisfies the necessary conditions.

First step: We have shown this in (4.29).
Second step: This will follow from our choice of R. We need to consider the geometry
of the set

R :=
{

(t, x) ∈ F(L, T, e1, θ) : ∃v ∈ Z(Dn,S
2)

L (t) s.t. x = X(t, v), X(s, v) /∈ ∂B ∀s < t
}
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of space-time-points where a particle leaves [0, T ] × {−L, ..., L}d through the orthant
F+(L, T, θ) for the first time. Observe that

N (Dn,S
2)(L, T, e1, θ) = |R|

Let I be the (finite) index set

I :=
(

(N)× {L} × (nZd−1)
)
∩ F(L, T, e1, θ).

Set H := [0, 1]× {0} × {0, ..., n− 1}d−1, so that we obtain a tiling with

F(L, T, e1, θ) ⊆
⋃

(ti,xi)∈I

(
(ti, xi) +H

)
.

On {N (Dn,S
2)(L, T, e1, θ) > R} at least one of the following statements will be true:

• There exist at least
√
R distinct indices (t, x) ∈ I such that

R∩
(
(t, x) +H

)
6= ∅. (case A)

• There exists (t0, x0) ∈ I such that∣∣R∩ ((t0, x0) +H
)∣∣ ≥ √R. (case B)

For both cases we let Et,v be the indicator function of the event that (t, v) ∈ R grows
into a shifted copy of Dn:

Et,v := 1
{(
X(t, v) +Dn + ne1, S

2
)
≤ Z{t}×{X(t,v)}

x+ne1+Dn
(1)
}
.

In (case A) note that
√
R ≥ (4n)dR1, so we can find at least R1 distinct indices (t1, x1),

..., (tR1 , xR1) ∈ I such that

|ti − tj | ≥ 2 and ‖xi − xj‖∞ ≥ 4n holds for all i 6= j.

Now choose (deterministically) some (si, vi) ∈ R with

(si, X(si, vi)) ∈ (ti, xi) +H.

Because of the truncation the events {Esi,vi = 1} and {Esj ,vj = 1} are independent for
i 6= j. Moreover the probability that Esi,vi = 1 is at least α, defined in (4.25). By our
choice of R1 we have

P(E(s,v) = 1 for some (s, v) ∈ R) > 1− δ.

In (case B) we find y ∈ x0 + {L} × {0, ..., n − 1} such that at least
√
R
n ≥ R4 particles

arrive at [t0, t0 + 1]× {y}. Let G be the event that

• at least R3 of those particles survive until time t0 + 1

• while not leaving the set {y, y + e1},
• and occupying y at time t0 + 1.

By our choice of R4 and part (ii) of Lemma 4.5 we obtain

P(G) ≥ P
(∣∣∣Z({0},R4)

{0,e1} (1) ∩ {0}
∣∣∣ ≥ R3

)
≥ 1− δ.
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Let now G′ be the event that at time t0 + 2 every site of y + ne1 +Dn is occupied by at
least S2 descendants of the particles occupying y at time t0 + 1. By our choice of R3 and
part (iii) of Lemma 4.5 we find that

P(G′|G) ≥ P
(
(ne1 +Dn, S

2) ≤ Z{t0+1}×({y},R3)
ne1+Dn

(t0 + 2)
)
≥ 1− δ

Now combining both cases and (4.29) yields

P

(
∃x ∈ {L+ n} × {−L, ..., L}d−1, t ∈ [0, T + 1]

s. th.(x+Dn, S
2) ≤ Z(Dn,S

2)

{−L,...,L+2n}×{−L,...,L}d−1(t)

)
≥
(

1−(2δ)(d2d)−1
)

(1−δ)2 (4.31)

Third step: We now write P for P conditioned on the event in (4.31), and denote the
first such pair by (t, x). From now on we consider the process(

ZL(s)
)
s≥t :=

(
Z
{t}×(x+Dn,S

2)

x+{−L,...,L}d (s)
)
s≥t

started from {t} × (x+Dn, S
2). Observe that under P , the process ZL is independent of

the process up to time t. We consider a shifted space-time box

B := (t, x) + [0, T ]× {−L, ..., L}d.

and let M(e1, θ) resp. M(−e1, θ) count the number particles of ZL that leave B through
T(e1, θ) resp. T(−e1, θ). By (4.30) we have

P(M(e1,−θ) ≥ R) ≥ 1− (3δ)2−d
.

Fourth step: On the event {M(e1,−θ) ≥ R} one of the following two cases will occur:∣∣∣{x ∈ T(e1,−θ) :
∣∣{x} ∩ ZL(T )

∣∣ > 0
}∣∣∣ ≥ √R (case A’)

∃x0 ∈ T(e1,−θ) such that
∣∣{x0} ∩ ZL(T )

∣∣ ≥ √R. (case B’)

In (case A’) we note that
√
R ≥ (4n)dR1, and thus we find at least R1 sites x1, ..., xR1

in
T(e1,−θ), each occupied by at least one particle, with the property that

‖xi − xj‖∞ ≥ 2n+ 1 for all i 6= j.

For x ∈ T(e1,−θ) we let Ex be the indicator function of the event{
(x+Dn, S

2) ≤ Z{t+T}×{x}
x+Dn

(t+ T + 1)
}
.

Because of the truncation the events {Exi = 1} and {Exj = 1} are independent under P

for all i 6= j. Since P(Ex = 1) ≥ α the definition of R1 implies

P(Exi = 1 for some i = 1, ..., R1) ≥ 1− δ.

Finally, in (case B’) our choice of R3 implies that

P
(

(x+Dn, S
2) ≤ Z{t+T}×({x},R3)

x+Dn
(t+ T + 1)

)
≥ 1− δ.

We have shown that

P
(
∃x ∈ T(e1,−θ) s. th. (x+Dn, S

2) ≤ ZL(t+ T + 1)
)
≥
(

1− (3δ)(d2d)−1
)

(1− δ).

Since (t+ T + 1, x) ∈ [T, 2T ]× {L+ n, ..., 2L+ n} × {−L, ..., L}d−1, the claim now follows
from this together with (4.31) and our choice of δ.
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Proof of Proposition 4.2 in case 1. Set L′ := 2L + n and T ′ := 2T . Recall that in the
previous proof we chose θ ∈ Θ and u ∈ {±e1}, and then bounded the probability of the
event that

• we find R particles in the orthant F(u, θ) in (4.30).

• starting from those particles, we again find R particles in the orthant T(u,−θ) of
the top of a shifted box in (4.29).

We now repeatedly apply this result, each time making a convenient choice for θ and
u. We start with

(
s(0), y(0)

)
:= (s, y) from the statement of the proposition. Having

constructed
(
s(0), y(0)

)
, ...,

(
s(k), y(k)

)
we choose

θk+1 := −
(
sign y(k)

2 , ..., sign y(k)
d

)
∈ Θ

and uk+1 equal to e1 until the first k with y
(k)
1 ≥ L′ + L, after which we alternate by

setting ui+1 := −ui. By Proposition 4.1 we know that with probability at least (1− ε) we
find

(
s(k+1), y(k+1)

)
such that

(y(k+1) +Dn, S
2) ≤ Z{s

(k)}×(y(k)+Dn,S
2)

y(k)+{−L,...,3L}×{−L,...,L}d−1(s(k+1) + s(k))

Note that by our choice for θk and uk we have

• |y(k)
i | ≤ 2L ≤ L′ for all k ≥ 0 and i = 2, ..., d.

• y
(k)
1 ∈ {L′, ..., 3L′} eventually: We achieve y(k)

1 ≥ L′ +L after at most 4 applications,

and by alternating the sign of ui for i ≥ k we ensure L′ ≤ y(i)
1 ≤ 3L′ for all i ≥ k.

• s(i) ∈ [5T ′, ..., 6T ′] for some i ≥ k: After 4 applications we have s(i) ∈ [4T, ..., 8T ] =

[2T ′, ..., 4T ′]. Since y(i) remains in the target area, we can repeat the procedure
until s(i) ∈ [5T ′, ..., 6T ′].

Note that this requires between 4 and 10 applications of the proposition, so we have a
success probability of at least (1− ε)10 ≥ 1− ε′.

4.4.2 Proof in case 2

Proof of Proposition 4.1 in case 2: Take L ∈ 2N large enough for (case 2) to hold and fix
some large t ∈ N. We introduce the two sites

z1 :=
(
L+ n,

L

2
, ...,

L

2

)
and z2 :=

(
0,
L

2
, ...,

L

2

)
.

In the case d = 1 we read this as z1 = L+ n and z2 = 0. On the event{
Z

(Dn,S
2)

L survives
}

we consider a random sequence (vk)k∈N of particles by choosing vk from Z
(Dn,S

2)
L (tk)

in some deterministic way, say by choosing the minimal element in the lexicographical
order. This sequence enables us to make infinitely many trials to find a fully occupied
box at the required position:

For every k, denote by
(
Zk(s))s≥tk the process obtained by taking vk as the new root

and considering only its descendants. We define random variables

Aik := 1
{

(zi +Dn, S
2) ≤ Zk(t(k + 1))

}
for k ∈ N, i ∈ {0, 1}.
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We want to give a lower bound for the probability of {A1
k = 1} and {A2

k = 1}, so consider

M(z) := min
x∈{−L,...,L}d

{
Pω
(
(z +Dn, S

2) ≤ Z{x}{−L,...,3L}×{−L,...,L}d−1(t)
)}
.

Setting now
α := min{E[M(z1)],E[M(z2)]} > 0 (4.32)

we can choose k large enough for (1− α)k ≤ δ. Finally T := kt and

A1 := 1
{
Z

(Dn,S
2)

L survives, A1
j = 1 for some k ≤ j ≤ 2k}.

Observe that

{A1 = 1} ⊆

{
∃x ∈ {L+ n, ..., 2L+ n} × {−L, ..., L}d−1, t ∈ [T, 2T ]

s.t. (x+Dn, S
2) ≤ Z(Dn,S

2)

{−L,...,3L}×{−L,...,L}d−1(t)

}
and

P(A1 = 1) ≥ (1− 2δ)
(
1− (1− α)k

)
≥ 1− 3δ ≥ 1− ε.

Proof of Proposition 4.2 in case 2: For this we choose the same values of L and T , and
observe that by symmetry the value of α does not change when we flip the sign of any
coordinate in z1 = (z1

1 , ..., z
1
d) or z2 = (z2

1 , ..., z
2
d). So we choose them in such a way that

sign zij = −sign yj for all j = 2, ..., d and i = 1, 2,

where y appeared in the statement of Proposition 4.2. Now define (z(i))i∈N by z(1) :=

y + z1 and

z(i) := y + z1 +

i∑
j=2

(−1)jz2 for i ≥ 2.

Note that we have chosen the signs in such a way that for all i we have

z(i) ∈ {L+ n} × {−L, ..., L}d−1.

Let Ã1
i be the same indicator function as A1

i with z1 replaced by z(1), and let Ã be defined
as A with A1

i replaced by Ã1
i . On {Ã = 1} we find a minimal K1 ∈ {k, ..., 2k} such that

Ã1
K1

= 1. That is

(z(1) +Dn, S
2) ≤ Z{s}×(y+Dn,S

2)

{−L,...,3L}×{−3L,...,3L}d−1(tK1). (4.33)

We now have to improve (4.33) so that it holds for some time in [5T, ..., 6T ]. For this we
define indicator functions

B̃i := 1
{
∃ j ∈ {k, ...2k} : (z(i+1) +Dn, S

2) ≤ Z {t
(i)}×(z(i)+Dn,S

2)

{−L,...,3L}×{−3L,...,3L}d−1(t(i) + jt)
}
.

So {B̃i = 1} is (up to shifts) the same event as {A1 = 1} with z1 replaced by z2 and
started from (z(i) + Dn, S

2) at some time t(i), which we did not specify yet. Note that
from our choice of α in (4.32), the same argument as before yields

P(B̃i = 1) ≥ 1− 3δ ≥ 1− ε for all i.

We now recursively define (t(i))i∈N. Start from t(1) := K1t, and assume we have found
t(1), ..., t(i). On {B̃i = 1} we find a minimal value Ki+1 such that z(i+1) +Dn is occupied
by at least S2 particles at time t(i) + tKi+1. Then we proceed by

t(i+1) := t(i) +Ki+1k.

Since t(i+1) − t(i) ∈ [T, ..., 2T ] we have{
Ã = B̃2 = ... = B̃6 = 1

}
⊆ As,y(L, T, n, S).

So the claim follows from our choice of ε in (4.22) and because the event on the left hand
side has probability at least (1− ε)6.
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