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Abstract

We study the weak error associated with the Euler scheme of non degenerate diffusion
processes with non smooth bounded coefficients. Namely, we consider the cases
of Hölder continuous coefficients as well as piecewise smooth drifts with smooth
diffusion matrices.
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1 Introduction

1.1 Setting

Let T > 0 be a fixed given deterministic final horizon and x ∈ Rd be an initial starting
point. We consider the following multidimensional SDE:

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], (1.1)

where the coefficients b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd ⊗ Rd are bounded
measurable in time and space and W is a Brownian motion on some filtered probability
space (Ω,F , (Ft)t≥0,P). We assume that the diffusion matrix a(t, x) := σσ∗(t, x) is
uniformly elliptic and at least Hölder continuous in time and space. We will consider
two kinds of assumptions for the drift coefficient b: either Hölder continuous in time
and space (as for the diffusion matrix), or piecewise smooth and having at most a finite
set of spatial discontinuities. These assumptions guarantee that (1.1) admits a unique
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Euler scheme of diffusions with non-smooth coefficients

weak solution, see e.g. Bass and Perkins [BP09], [Men11] from which the uniqueness to
the martingale problem for the associated generator can be derived under the current
assumptions.

Define now for a given N ∈ N∗ the time step h := T/N and set for all i ∈ [[1, N ]], ti :=

ih where from now on the notation [[·, ·]] is used to denote an interval of integers. Consider
the continuous Euler scheme associated with (1.1) whose dynamics writes Xh

0 = x and
for all t ∈ [0, T ]:

Xh
t = x+

∫ t

0

b(φ(u), Xh
φ(u))du+

∫ t

0

σ(φ(u), Xh
φ(u))dWu, (1.2)

where we set φ(u) = inf{(ti)i∈[[0,N−1]] : ti ≤ u < ti+1}.
A useful quantity to study, arising in many applicative fields from physics to finance,

is the so-called weak error which for a suitable real valued test function f writes:

d(f, x, T, h) := E[f(Xh,0,x
T )]− E[f(X0,x

T )], (1.3)

using the usual Markovian notations, i.e. Xh,0,x
T , X0,x

T respectively stand for the Euler
scheme and the diffusion at time T which start at point x at 0.

There is a huge literature concerning the weak error for smooth and/or non-degener-
ate coefficients, from the seminal paper of Talay and Tubaro [TT90], to the extensions
to the hypoelliptic framework [BT96a]. Under those conditions, the quantity d(f, x, T, h)

is of order h corresponding to the magnitude of the time step. In the non degenerate
framework (under some uniform ellipticity or hypoellipticity conditions) it is even possible
to take f to be a Dirac mass in the above expression (1.3). The associated convergence
rate remains of order h for the Euler scheme, see [KM02] [BT96b] and h1/2 in the more
general case of Markov Chain approximations, see e.g [KM00] in which the Brownian
increments appearing in (1.2) are replaced by i.i.d. sequences (ξi)i≥1 that are not
necessarily Gaussian. In the framework of Lipschitz coefficients we can also mention,
in the scalar case, the recent work of Alfonsi et al. [AJKH14], who obtained bounds
on the Wasserstein distances between the laws of the paths of the diffusion and its
Euler scheme. Anyhow, the case of non smooth coefficients, Hölder continuous or less,
has rarely been considered. Such cases might anyhow appear very naturally in many
applications, when the drifts have for instance discontinuities at some given interfaces
or when the diffusion coefficients are very irregular (random media).

In the framework of bounded non degenerate and Hölder continuous coefficients,
let us mention the work of Mikulevičius and Platen [MP91] who obtained bounds for
the weak error in (1.3) at rate hγ/2 where γ ∈ (0, 1) is the Hölder exponent of the
coefficients b, σ in (1.1) provided f ∈ C2+γ

b (Rd,R) (space of bounded functions with
bounded derivatives up to order two and γ-Hölder continuous second derivatives). This
regularity is essential in that work to apply Itô’s formula. Our approach permits to
establish that this bound holds true, up to an additional slowly varying factor in the
exponent, for the difference of the densities itself, which again corresponds to the
weak error (1.3) for a δ-function. We also mention the recent work of Mikulevičius et
al. [Mik12], [MZ15], concerning some extensions of [MP91] to jump-driven SDEs with
Hölder coefficients.

Finally, concerning numerical schemes for diffusions with non-regular coefficients,
we refer to the recent work of Kohatsu-Higa et al. [KHLY15] who investigate the weak
error for possibly discontinuous drifts and diffusion coefficients that are just continuous.
We are able to extend some of their controls to densities. Indeed, in the quoted work, the
authors investigate (1.3) for functions f that are at least continuous. We again have an
additional slowly varying factor in the exponent which is due to our smoothing approach.
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Euler scheme of diffusions with non-smooth coefficients

Our strategy is the following. Under the previous assumptions (stated after (1.1)),
both processes (Xt)t∈(0,T ] in (1.1) and (Xh

ti)i∈[[1,N ]] in (1.2) have densities, see e.g.
[KKM16] for the continuous process and Lemaire and Menozzi [LM10] for the scheme.
Let us denote them respectively for x ∈ Rd, 0 ≤ i < j ≤ N , by p(ti, tj , x, .) and ph(ti, tj , x, .)

for the processes starting at time ti from point x and considered at time tj . To study
the error (p− ph)(ti, tj , x, y) we introduce perturbed dynamics associated with (1.1) and
(1.2) respectively. Namely, for a small parameter ε, we mollify suitably the coefficients,
the mollification procedure is described in its whole generality in Section 2 and depends
on the two considered sets of assumptions indicated above, and consider two additional
processes with dynamics:

X
(ε)
t = x+

∫ t

0

bε(s,X
(ε)
s )ds+

∫ t

0

σε(s,X
(ε)
s )dWs,

X
h,(ε)
0 = x, X

h,(ε)
ti+1

= X
h,(ε)
ti + bε(ti, X

h,(ε)
ti )h+ σε(ti, X

h,(ε)
ti )(Wti+1

−Wti),

(1.4)

where bε, σε are mollified versions of b, σ. It is clear that both processes (X
(ε)
t )t∈(0,T ]

and (X
h,(ε)
ti )i∈[[1,N ]] have densities. The mollified coefficients indeed satisfy uniformly in

the mollification parameter the previous assumptions. Let us denote those densities for
x ∈ Rd, 0 ≤ ti < tj ≤ T by pε(ti, tj , x, .), phε (ti, tj , x, .) respectively.

The idea is now to decompose the global error as:

(p− ph)(ti, tj , x, y) = (p− pε)(ti, tj , x, y) + (pε − phε )(ti, tj , x, y) + (phε − ph)(ti, tj , x, y).

(1.5)

The key point is that the stability of the densities with respect to a perturbation has been
thoroughly investigated for diffusions and Markov Chains in Konakov et al. [KKM16].
The results of that work allow to control the differences p − pε, phε − ph. On the other

hand, since the coefficients bε, σε of (X
(ε)
t )t∈[0,T ], (X

h,(ε)
ti )i∈[[0,N ]] are smooth, the central

term pε − phε in (1.5) can be investigated thanks to the work of Konakov and Mammen
[KM02] giving the error expansion at order h on the densities for the weak error. The
key point is that the coefficients in the expansion depend on the derivatives of bε, σε
which explode when ε goes to zero. This last condition is natural in order to control
p− pε, phε − ph. Thus, two contributions need to be equilibrated to derive the global error
bounds. This will be done through a careful analysis of the densities (heat kernel) of
the processes with dynamics described in (1.1), (1.2), (1.4). The estimates required for
the error analysis will lead us to refine some bounds previously established by Il’in et al
[IKO62]. Let us indicate that this perturbative approach had also been considered by
Kohatsu-Higa et al. [KHLY15] but for the weak error (1.3) involving at least a continuous
function. Our approach, based on parametrix techniques, allows to handle directly the
difference of the densities, and gives, up to an additional factor going to zero with the
time step, the expected convergence rates.

1.2 Assumptions and main results

Let us introduce the following assumptions.

(A1) (Boundedness of the coefficients). The components of the vector-valued function
b(t, x) and the matrix-valued function σ(t, x) are bounded measurable. Specifically, there
exist constants K1,K2 > 0 s.t.

sup
(t,x)∈[0,T ]×Rd

|b(t, x)| ≤ K1, sup
(t,x)∈[0,T ]×Rd

|σ(t, x)| ≤ K2.
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(A2) (Uniform Ellipticity). The diffusion matrix a := σσ∗ is uniformly elliptic, i.e. there
exists Λ ≥ 1, ∀(t, x, ξ) ∈ [0, T ]× (Rd)2,

Λ−1|ξ|2 ≤ 〈a(t, x)ξ, ξ〉 ≤ Λ|ξ|2.

We consider two types of smoothness assumptions for the coefficients b, σ in (1.1).

(H) (Hölder drift and diffusion coefficient). The drift b and the diffusion coefficient
σ are time-space Hölder continuous in the following sense: for some γ ∈ (0, 1], κ < +∞,
for all (s, t) ∈ [0, T ]2, (x, y) ∈ (Rd)2,

|σ(s, x)− σ(t, y)|+ |b(s, x)− b(t, y)| ≤ κ{|s− t|γ/2 + |x− y|γ}.

Observe that the last condition also readily gives, thanks to the boundedness of σ, that
the diffusion matrix a = σσ∗ enjoys the same Hölder property.

(PS) (Piecewise smooth drift and Smooth diffusion coefficient). The drift b is
piecewise smooth with bounded derivatives outside of the discontinuity sets. Precisely,
b ∈ C2,4

b ([0, T ] × (Rd\I),Rd) where the set of possible discontinuities I writes as I :=

∪mi=1Si, m ∈ N. Here, for all i ∈ [[1,m]], Si is a smooth bounded submanifold of Rd (at
least C4) of dimension lower or equal to d − 1, i.e. Si := {x ∈ Rd : gi(x) = 0} for a
corresponding smooth function gi. We also assume that the (Si)i∈[[1,m]] do not intersect:
for all 1 ≤ i < j ≤ m, Sj ∩ Si = ∅.

On the other hand we assume that the diffusion coefficient σ is globally C2,4
b ([0, T ]×

Rd,Rd ⊗Rd).

We emphasize that, with the above definition, the discontinuity set of b only depends
on the spatial variable. A time-dependent discontinuity set could a priori also be
considered provided each of its components is the boundary of a smooth time-space
domain. Namely, considering for i ∈ [[1,m]], t ∈ [0, T ],Si(t) := {x ∈ Rd : gi(t, x) = 0}, the
smooth spatial submanifolds Si(t) should as well evolve smoothly in time. We consider
the case introduced in (PS) for simplicity.

From now on, we always assume conditions (A1)-(A2) to be in force. We say that
assumption (AH) (resp. (APS)) holds if additionally the coefficients satisfy (H) (resp.
(PS)). We will write that (A) holds whenever (AH) or (APS) is satisfied.

We will denote, from now on, by C a constant depending on the parameters appearing
in (A) and T . We reserve the notation c for constants that only depend on (A) but not on
T . The values of C, c may change from line to line. Other possible dependencies will be
explicitly specified.

Theorem 1.1 (Error for the Euler scheme of a diffusion with Hölder coefficients). Let
T > 0 be fixed and consider a given time step h := T/N , for N ∈ N∗. Set for i ∈
N, ti := ih. Under (AH), there exist C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ ti < tj ≤ T s.t.
(tj − ti) ≥ h1/(2−γ)and (x, y) ∈ (Rd)2:

pc(tj − ti, y − x)−1|(p− ph)(ti, tj , x, y)| ≤ C

(tj − ti)(1−γ)γ/2
h
γ
2−Cψ(h), (1.6)

where p, ph respectively stand for the densities of the diffusion X and its Euler approx-

imation Xh with time step h, for all (t, z) ∈ R+
∗ ×Rd, pc(t, z) := cd/2

(2πt)d/2
exp(−c |z|

2

2t ) and

ψ(h) = log3(h−1)
log2(h−1) where logk denotes for k ∈ N∗ the kth iterated logarithm. Let us observe

that ψ(h) −→
h→0

0. If we are now interested in the weak error in the sense of (1.3), for a

function f ∈ Cβ(Rd,R) (uniformly β-Hölder continuous functions), β ∈ (0, 1]:

|E[f(Xh,ti,x
tj )]− E[f(Xti,x

tj )]| ≤ Cfhγ/2, (1.7)
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using again the usual Markovian notations, i.e. Xh,ti,x
tj , Xti,x

tj respectively stand for the
Euler scheme and the diffusion at time tj which start at point x at ti.

Eventually, if we consider a smooth domain A ⊂ Rd (i.e. a connected open set at least
C2) with bounded boundary and non zero Lebesgue measure, we also get that for all
x ∈ Rd s.t. d(x, ∂A) ≥ (tj − ti)1/2hγ/2:

|E[I
X
h,ti,x
tj

∈A]− E[I
X
ti,x
tj
∈A]|

≤ C
{ 1

γd(x, ∂A)γ
Id(x,∂A)≥exp(− 1

γ ) + | ln(d(x, ∂A))|Id(x,∂A)<exp(− 1
γ ) + 1

}
hγ/2,

(1.8)

where d(., ∂A) stands for the distance to the boundary of A.

Remark 1.2. We point out that this result is to be compared with the one obtained by
Mikulevičius and Platen [MP91] for the weak error. The framework they considered is
similar to ours, and their main results consists in controlling at rate hγ/2 the weak error
d(f, x, T, h) = E[f(Xh,0,x

T )]− E[f(X0,x
T )] for a smooth function f ∈ C2+γ

b (Rd,R) (space of
bounded functions, with bounded derivatives up to order two and γ-Hölder continuous
second derivatives). The above theorem establishes that |d(f, x, T, h)| ≤ Chγ/2−Cψ(h) as
soon as f is measurable and satisfies the growth condition

∃c0 < c/(2T ), C0 > 0,∀x ∈ Rd, |f(x)| ≤ C0 exp(c0|x|2). (1.9)

This control can be useful for specific and relevant applications, like for instance
quantile estimation (that would involve functions of the form f(x) = I|x|≤K or f(x) =

I|x|≤K exp(c|x|)) that appear in many applications: default probabilities in mathematical
finance, fatigue of structures in random mechanics. We are able to find the expected
convergence rate up to a vanishing contribution. The rate hγ/2 again holds, without the
additional term, as soon as f ∈ Cβ(Rd,R), β ∈ (0, 1]. Some extensions to unbounded
functions f satisfying the growth condition (1.9) are described in Remark 3.2 of Section
3.3.

The contribution in ψ(h) appearing in (1.6), which slightly deteriorates the conver-
gence, seems to be, with our approach, the price to pay to get rid of any smoothness
on f . Observe anyhow that for indicator functions of smooth Borel sets, equation (1.8)
provides a better result than (1.6) as soon as the initial distance to the boundary satisfies
d(x, ∂A) ≥ (tj − ti)

1/2hγ/2 (see Section 3.3.2 for details). Observe that this control
improves in that case what could be derived from [KHLY15] in which continuous test
functions are considered.

Remark 1.3 (About the Convergence Rate). We also emphasize that the convergence
rate in hγ/2 is closer to a rate associated with a strong error. It indeed corresponds to
the typical magnitude of the quantity E[|Wh|γ ] ≤ cγhγ/2, which reflects the variations, on
one time-step of length h, of the Euler scheme with Hölder coefficients. Indeed, under
(AH), for all i ∈ [[0, N − 1]] :

E[ sup
u∈[ti,ti+1]

|b(u,Xh
u )− b(ti, Xh

ti)|] + E[ sup
u∈[ti,ti+1]

|σ(u,Xh
u )− σ(ti, X

h
ti)|]

≤ κ

{
hγ/2 + E[ sup

u∈[ti,ti+1]

|Xh
u −Xh

ti |
γ ]

}

≤ κ

{
hγ/2 + E[{ sup

u∈[ti,ti+1]

|σ(ti, X
h
ti)(Wu −Wti)|+K1h}2]γ/2

}
≤ chγ/2. (1.10)

These terms typically appear in the error analysis when there is low regularity of the
coefficients or of the value function v(t, x) := E[f(Xt,x

T )]. Under the previous assumptions,
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if the function f belongs to C2+γ
b (Rd,R), γ ∈ (0, 1) it is then well known, see e.g.

Friedman [Fri64] or Ladyzhenskaya et al. [LSU68] that v ∈ C1+γ/2,2+γ
b ([0, T ] × Rd,R).

Also v satisfies the parabolic PDE (∂tv + Ltv)(t, x) = 0, (t, x) ∈ [0, T ) × Rd, where Lt
stands for the generator of (1.1) at time t, i.e. for all ϕ ∈ C2

0 (Rd,R), x ∈ Rd,

Ltϕ(x) = b(t, x) · ∇xϕ(x) +
1

2
Tr(a(t, x)D2

xϕ(x)).

Recalling that t0 = 0, tN = T , we decompose the error as:

d(f, x, T, h) := E[f(Xh,0,x
T )]− E[f(X0,x

T )] =

N−1∑
i=0

E[v(ti+1, X
h,0,x
ti+1

)− v(ti, X
h,0,x
ti )]

=

N−1∑
i=0

E
[ ∫ ti+1

ti

{
∂sv(s,Xh,0,x

s ) +∇xv(s,Xh,0,x
s ) · b(ti, Xh,0,x

ti )

+
1

2
Tr(D2

xv(s,Xh,0,x
s )a(ti, X

h,0,x
ti ))

}
ds
]

=

N−1∑
i=0

E
[ ∫ ti+1

ti

{
∂sv + Lsv

}
(s,Xh,0,x

s )ds
]

+ E
[ ∫ ti+1

ti

{
∇xv(s,Xh,0,x

s ) · (b(ti, Xh,0,x
ti )− b(s,Xh,0,x

s ))

+
1

2
Tr(D2

xv(s,Xh,0,x
s )(a(ti, X

h,0,x
ti )− a(s,Xh,0,x

s )))
}
ds
]

=

N−1∑
i=0

E
[ ∫ ti+1

ti

{
∇xv(s,Xh,0,x

s ) · (b(ti, Xh,0,x
ti )− b(s,Xh,0,x

s ))

+
1

2
Tr
(
D2
xv(s,Xh,0,x

s )(a(ti, X
h,0,x
ti )− a(s,Xh,0,x

s ))
)}
ds
]
,

(1.11)

exploiting the PDE satisfied by v for the last equality. For a function f in C2+γ
b (Rd,R),

the spatial derivatives of v up to order two are globally bounded on [0, T ]. Indeed,
the classical Schauder estimates hold (see e.g. Theorem 5.2, p. 361 in [LSU68]). We
are thus led to control in (1.11) quantities similar to those appearing in (1.10). The
associated bound then precisely gives the convergence rate. The analysis extends if
f is simply Cβ(Rd,R), β ∈ (0, 1] and therefore possibly unbounded. In that case the
second derivatives yield an integrable singularity in time for the second order partial
derivatives. We refer to Proposition 3.4, which holds under the sole assumption (AH) for
multi-indices α, |α| ≤ 2, and to the proof of Theorem 1.1 in Section 3.4.1. Extensions
to locally β-Hölder functions f satisfying the growth condition (1.9) are discussed in
Remark 3.2.

Remark 1.4. Even though we have considered γ ∈ (0, 1], our analysis should extend to
the framework of Hölder spaces to γ ∈ (1, 2]. On the other hand, Theorem 1.1 specifies
the time-singularity in small time.

Remark 1.5. We feel that the bounds of Theorem 1.1 are relevant for functions which
are truly Hölder continuous, that is for coefficients that would involve some simple
transformations of the Weierstrass functions, see e.g. [Zyg36], or of an independent
Brownian sample path in order that (AH) is fulfilled. Indeed, for functions which are
just locally Hölder continuous, like the mapping x 7→ 1 + |x|α ∧K, α ∈ (0, 1], we think
that it would be more appropriate to study some local regularizations, close to the
neighborhoods of real Hölder continuity (0 and K1/α for the indicated example) and to
exploit that, outside of these neighborhoods, the usual sufficient smoothness is available.
For such coefficients we think that the convergence rates might be definitely better.
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Theorem 1.6 (Error for the Euler Scheme with Smooth Diffusion Coefficients and Piece-
wise Smooth Drift). Let T > 0 be fixed and (APS) be in force. With the notations of
Theorem 1.1 we have that:

- there exist C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ ti < tj ≤ T s.t. (tj − ti) ≥ h1/2 and
(x, y) ∈ (Rd)2:

pc(tj − ti, y − x)−1|(p− ph)(ti, tj , x, y)| ≤ C
(

h

(tj − ti)1/2

)1/(2d)−Cψ(h)

. (1.12)

- If d(y, I) (distance of the final point y to the spatial discontinuity set I) satisfies d(y, I) ≥
h1/2−ε for a fixed given ε ∈ (0, 1/2], then:

pc(tj − ti, y − x)−1|(p− ph)(ti, tj , x, y)| ≤ C
[( h

(tj − ti)1/2

)1/(d+1)−Cψ(h)

+
h1−Cψ(h)

d(y, I)

]
.

(1.13)

- In the special case σ(t, x) = σ, i.e. constant diffusion coefficient1, the previous bound
improves to:

pc(tj − ti, y− x)−1|(p− ph)(ti, tj , x, y)| ≤ C
[( h

(tj − ti)1/2

)1/d−Cψ(h)

+
h1−Cψ(h)

d(y, I)

]
. (1.14)

Remark 1.7. This result emphasizes that, as soon as the drift is irregular, a true diffusion
coefficient deteriorates the convergence rate. This is clear since, in that case, the
difference of the densities pε − phε in (1.5) involves higher derivatives of densities of
processes with mollified coefficients which are more explosive (see Section 3.4).

We also mention that the distance of the final point to the discontinuity set plays
an important role. The global control (1.12) improves to (1.13) as soon as h1−1/(2d) ≤
C(T )d(y, I).

Eventually, if the diffusion coefficient does not depend on space, we find, up to the
additional term in ψ(h), the usual convergence rate for the weak error if d = 1 as soon
as c0(tj − ti)1/2 ≤ d(y, I) for any given c0 > 0.

However, our regularization approach clearly feels the dimension, when doing e.g.
Hölder inequalities on neighborhoods of the discontinuity sets, and the convergence
rates decrease with the dimension.

Let us carefully mention that considering the following weak error d(f, x, ti, tj , h) :=

E[f(Xh,ti,x
tj )] −E[f(Xti,x

tj )] for smooth functions f and not Dirac masses as we do, should
improve the convergence rates and in particular allow to get rid of the terms in ψ(h)

through a careful investigation of the derivatives of the associated heat kernels. We refer
to the estimates of Proposition 3.4 that could be refined when considering an additional
integration w.r.t. to the final variable.

1.3 On some related applications

1.3.1 Some approximating dynamics for interest rates

A very popular model for interest rates in the financial literature is the Cox-Ingersoll-Ross
process with dynamics:

dXt = (a− kXt)dt+ σ|Xt|1/2dWt, (1.15)

for given parameters σ, k, a > 0. From the numerical viewpoint, the behavior of the Euler
scheme is not standard. For a given time-step h, the strong error was indeed proved to

1the case of an inhomogeneous diffusion coefficient independent of x, i.e. σ(t, x) = σ(t) could also be
handled provided the Gaussian part is simulated exactly in a modified Euler scheme.
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Euler scheme of diffusions with non-smooth coefficients

be, as in the usual Lipschitz case, of order h1/2 in Berkaoui et al. [BBD08] provided a is
not too small. On the other hand, numerical experiments in Alfonsi [Alf05] emphasized
very slow convergence, of order (− lnh)−1, for small values of a. This convergence order
has been established by Gyöngy and Rásonyi [GR11].

Of course the dynamics in (1.15) does not enter our framework, since it is closer to
the dynamics of a Bessel-like process whose density does not satisfy Gaussian bounds.
However, we could introduce for positive parameters η,K, which are respectively meant
to be small and large enough, the dynamics:

dXt = (a− kXt)dt+ (η + σ|Xt|1/2 ∧K)dWt. (1.16)

The diffusion coefficient σ̃(x) = (η + σ|x|1/2 ∧K) is then uniformly elliptic, 1/2 Hölder
continuous and bounded. On the other hand the drift is not bounded but the analysis of
Theorem 1.1 would still hold true thanks to the work of Konakov and Markova [KM15]
that allows to get rid of the linear drift through a suitable transformation. We would then
derive a convergence of order h1/4−Cψ(h) at least for the associated Euler scheme on the
densities (see also Remark 1.5). Even though the marginals in (1.16) enjoy Gaussian
bounds, see e.g. [DM10], the expected properties for an interest rate dynamics, mean
reverting and positivity, should hold with some high probability. Also, the difference
between the approximate dynamics in (1.16) and the original one in (1.15) might be
investigated through stochastic analysis tools (occupation times).

1.3.2 Extension to some kinetic models

The results of Theorems 1.1 and 1.6 should extend without additional difficulties to the
case of degenerate diffusions of the form:

dX1
t = b(t,Xt)dt+ σ(t,Xt)dWt,

dX2
t = X1

t dt,
(1.17)

denotingXt = (X1
t , X

2
t ), under the same previous assumptions (AH) or (APS) on b, σ. The

sensitivity analysis when we consider perturbations of the non-degenerate components,
i.e. for a given ε > 0:

dX
1,(ε)
t = bε(t,X

(ε)
t )dt+ σε(t,X

(ε)
t )dWt,

dX
2,(ε)
t = X

1,(ε)
t dt,

(1.18)

has been performed by Kozhina [Koz16] following [KKM16]. The key point is that under
(A), the required parametrix expansions of the densities associated with the solutions of
equation (1.17), (1.18) were established in [KMM10]. The analysis of the derivatives of
the heat kernel, that would require to extend the results of Section 3 to the considered
degenerate setting will concern further research.

The paper is organized as follows. We first introduce a suitable mollification procedure
of the coefficients in Section 2 and derive from the stability results of Konakov et al.
[KKM16] how the error of the mollifying procedure is then reflected on the densities.
This allows to control the terms p − pε and phε − ph in (1.5). We then give in Section 3
some pointwise bounds on the derivatives of the heat-kernels with mollified coefficients.
From these controls and the previous error expansion obtained for the Euler scheme
with smooth coefficients by Konakov and Mammen [KM02], we are able to control the
remaining term pε − phε in (1.5). We then establish our main estimates equilibrating
the two errors. Eventually, Section 4 is dedicated to the proof of the controls stated
in Section 3. These proofs are based on the parametrix expansions of the underlying
densities following the Mc-Kean and Singer approach [MS67].
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Euler scheme of diffusions with non-smooth coefficients

2 Mollification of the coefficients and stability results

For the error analysis, in order to apply the strategy described in the introduction,
we first need to regularize in an appropriate manner the coefficients. The mollifying
procedures differ under our two sets of assumptions.

2.1 Mollification under (AH) (Hölder continuous coefficients)

In this case both coefficients b, σ need to be globally regularized in time and space.
We introduce the mollified coefficients defined for all (t, x) ∈ [0, T ]×Rd and ε > 0 by

bε,S(t, x) := b(t, ·) ∗ ρε(x), σε,S(t, x) := σ(t, ·) ∗ ρε(x), (2.1)

where ∗ stands for the spatial convolution and for ε > 0, ρε is a spatial mollifier, i.e. for
all x ∈ Rd,

ρε(x) := ε−dρ(x/ε), ρ ∈ C∞(Rd,R+),

∫
Rd
ρ(y)dy = 1, |supp(ρ)| ⊂ K,

for some compact set K ⊂ Rd. The subscript S in bε,S , σε,S appears to emphasize that
the spatial convolution is considered. We will also need a mollification in time when the
coefficients are inhomogeneous. Up to a symmetrization in time of the coefficients b, σ,
i.e. we set for all (t, x) ∈ [0, T ]×Rd, b(−t, x) = b(t, x), σ(−t, x) = σ(t, x) we can define:

bε(t, x) = bε,S(., x) ? ζε2(t), σε(t, x) = σε,S(., x) ? ζε2(t), (2.2)

where ? stands for the time convolution and for s ∈ R, ζε2(s) := ε−2ζ(s/ε2), ζ being a
scalar mollifier with compact support in [−T, T ]. The complete regularization in the
spatial and time variable reflects the usual parabolic scaling. This feature will be crucial
to balance the singularities appearing in our analysis (see Propositions 3.4, 3.7 and their
proofs below). We have the following controls.

Proposition 2.1 (First Controls on the Mollified Coefficients). Assume that (AH) is in
force. Then, there exists C ≥ 1 s.t. for all ε > 0,

∆ε,b := sup
(t,x)∈[0,T ]×Rd

|b(t, x)− bε(t, x)| ≤ Cεγ ,

∆ε,σ := sup
(t,x)∈[0,T ]×Rd

|σ(t, x)− σε(t, x)| ≤ Cεγ ,

∀η ∈ (0, γ), ∆ε,σ,η := ∆ε,σ + sup
t∈[0,T ]

|(σ − σε)(t, .)|η ≤ C(εγ + εγ−η),

(2.3)

where for a given function f : Rd → R, we denote for η ∈ (0, 1), |f |η := sup
(x, y) ∈ (Rd)2,

x 6= y

|f(x)−f(y)|
|x−y|η .

Proof. Write first for all (t, x) ∈ [0, T ]×Rd:

b(t, x)− bε,S(t, x) :=

∫
Rd
{b(t, x)− b(t, y)}ρε(x− y)dy =

∫
Rd
{b(t, x)− b(t, x− zε)}ρ(z)dz.

From the Hölder continuity of b assumed in (H) and the above equation, we deduce that
bε,S satisfies (H) as well and that:

sup
(t,x)∈[0,T ]×Rd

|(b− bε,S)(t, x)| ≤ Cρεγ , Cρ := κ

∫
K

|z|γρ(z)dz. (2.4)

The same analysis can be performed for the term σε,S , so that σε,S satisfies (H) and
sup(t,x)∈[0,T ]×Rd |(σ − σε,S)(t, x)| ≤ Cρεγ . From (H), we also have that bε,S , σε,S are both
γ/2-Hölder continuous in time uniformly in ε > 0. Repeating the previous arguments
replacing ρε by ζε2 , we deduce sup(t,x)∈[0,T ]×Rd |(bε,S − bε)(t, x)|+ sup(t,x)∈[0,T ]×Rd |(σε,S −
σε)(t, x)| ≤ Cζεγ , which eventually yields:
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sup
(t,x)∈[0,T ]×Rd

|(b− bε)(t, x)|+ sup
(t,x)∈[0,T ]×Rd

|(σ − σε)(t, x)| ≤ Cεγ .

This gives the controls concerning the sup norms in (2.3).
Let us now turn to the Hölder norm. Observe first that, for all t ∈ R+, (x, y) ∈ (Rd)2:

{σ(t, x)− σε,S(t, x)} − {σ(t, y)− σε,S(t, y)}

=

∫
Rd

{
[σ(t, x)− σ(t, x− zε)]− [σ(t, y)− σ(t, y − zε)]

}
ρ(z)dz,

{σε(t, x)− σε,S(t, x)} − {σε(t, y)− σε,S(t, y)}

=

∫
R

{
[σε,S(t− ε2u, x)− σε,S(t, x)]− [σε,S(t− ε2u, y)− σε,S(t, y)]

}
ζ(u)du.

It readily follows from the γ-Hölder continuity in space of σ (resp. the γ-Hölder continuity
in space and the γ/2-Hölder continuity in time of σε,S) that the following controls hold:

|[σ(t, x)− σε(t, x)]− [σ(t, y)− σε(t, y)]| ≤ C(|x− y|γ ∧ εγ) ≤ C|x− y|ηεγ−η,
|(σ − σε)(t, .)|η ≤ Cεγ−η, η ∈ (0, γ). (2.5)

This completes the proof. �
We will need as well some controls on the derivatives of the mollified coefficients.

Proposition 2.2 (Controls on the Derivatives of the Mollified Coefficients). Under the
assumptions of Proposition 2.1, we have that there exists C ≥ 1 s.t. for all ε ∈ (0, 1) and
for all multi-index α, |α| ∈ [[1, 4]]:

sup
(t,x)∈[0,T ]×Rd

|Dα
x bε(t, x)|+ sup

(t,x)∈[0,T ]×Rd
|Dα

xσε(t, x)| ≤ Cε−|α|+γ ,

sup
t∈[0,T ]

|Dα
xσε(t, .)|γ ≤ Cε−|α|.

(2.6)

Also, there exists a constant C s.t.:

sup
(t,x)∈[0,T ]×Rd

|∂tσε(t, x)| ≤ Cε−2+γ , sup
t∈[0,T ]

|∂tσε(t, .)|η ≤ Cε−2+γ−η, ∀η ∈ (0, γ]. (2.7)

Proof. For all multi-index α, |α| ∈ [[1, 4]] and (t, x) ∈ [0, T ]×Rd and all ε > 0:

Dα
xσε,S(t, x) =

∫
Rd
σ(t, z)Dα

xρε(x− z)dz =

∫
Rd

[σ(t, z)− σ(t, x)]Dα
xρε(x− z)dz.

Indeed, setting for all x ∈ Rd, gε(x) :=
∫
Rd
ρε(x − z)dz = 1 we have Dα

x gε(x) :=∫
Rd
Dα
xρε(x− z)dz = 0. Thus, since |Dα

xρε(x− z)| ≤ ε−(|α|+d)|Dα
wρ(w)||

w=
(x−z)
ε

, we derive:

|Dα
xσε,S(t, x)| ≤

∫
Rd
|σ(t, z)− σ(t, x)|ε−(|α|+d)|Dα

wρ(w)|
w=

(x−z)
ε
dz

≤ κε−|α|+γ
∫
Rd

(
|z − x|
ε

)γ
ε−d|Dα

wρ(w)|
w=

(x−z)
ε
dz ≤ cε−|α|+γ ,

exploiting the Hölder continuity assumption (H) for σ in the last but one inequality and
the assumptions on ρ for the last one. Similarly, we derive for all (t, x, y) ∈ [0, T ]× (Rd)2

and all ε > 0:

|Dα
xσε,S(t, x)−Dα

xσε,S(t, y)| ≤
∫
Rd
|σ(t, x− z)− σ(t, y − z)|ε−(|α|+d)|Dα

wρ(w)|w= z
ε
dz

≤ Cκε−|α||x− y|γ .

The same bounds hold for bε,S as well. The previous controls readily imply (2.6) since
the additional time convolution does not have any impact here.

Equation (2.7) is derived proceeding similarly for the time convolution, exploiting as
well the γ/2-Hölder continuity in time of σε,S . This completes the proof. �
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2.2 Mollification under (APS) (piecewise smooth drift and smooth diffusion
coefficient)

In this case we only need to regularize the drift in a neighborhood of the disconti-
nuities. Let us denote by m ∈ N∗, the finite number of spatial discontinuity sets and
write I := ∪mi=1Si, where we recall from (APS) that each Si := {x ∈ Rd : gi(x) = 0} is
a smooth (at least C4) bounded submanifold of Rd of dimension di lower or equal to
d− 1. For a given parameter ε > 0, define its neighborhood Vε(I) := ∪mi=1Vε(Si), where
for i ∈ [[1,m]], Vε(Si) := {z ∈ Rd : −ε ≤ dS(z,Si) ≤ ε}. Here, dS(·,Si) stands for the
signed distance to Si. This function has the same smoothness as the boundary Si (see
e.g. Lemma 14.16 and its proof p. 355 in [GT98]). By convention, for di ≥ 1, we choose
dS(x,Si) to be positive for points x being in the bounded region with bounded boundary
Si.

The fact is now that we set bε(t, x) = b(t, x) on Rd\Vε(I) and perform a smooth
mollification on the neighborhood Vε(I) of the discontinuity sets. A possible way to
proceed is the following. Introduce for all i ∈ [[1,m]], ∂Vi,1ε := {x ∈ Rd : dS(x,Si) =

−ε}, ∂Vi,2ε := {x ∈ Rd : dS(x,Si) = ε}. Denoting by
(

Π∂Vi,jε (x)
)
j∈{1,2}

the projection of x

on the corresponding boundary (∂Vi,jε )j∈{1,2} of Vε(Si), which is again well defined on
Vε(Si), we set for all (t, x) ∈ [0, T ]× Vε(Si):

bε(t, x) := b
(
t,Π∂Vi,1ε (x)

)
exp

(1

4

)
exp

(
− 1

4− dS(x,∂Vi,1ε )2

ε2

)

+b
(
t,Π∂Vi,2ε (x)

)
exp

(1

4

)
exp

(
− 1

4− dS(x,∂Vi,2ε )2

ε2

)
,

where dS(x, ∂Vi,jε ), j ∈ {1, 2} stands for the signed distance of x to the corresponding
boundary ∂Vi,jε and is again a smooth function. Observing that for x ∈ ∂Vi,1ε (resp.
x ∈ ∂Vi,2ε ) we indeed have dS(x, ∂Vi,2ε )2 = 4ε2 (resp. dS(x, ∂Vi,1ε )2 = 4ε2) we indeed have

that for (t, x) ∈ [0, T ]×∂Vε(Si) = [0, T ]×
(
∂Vi,1ε ∪∂Vi,2ε

)
, bε(t, x) = b(t, x) and bε is smooth

(as Si on Vε(Si)). Thus bε is at least C4 in the space variable.

Of course we have that |(b − bε)(t, x)| ≤ CIx∈Vε(I) which is not necessarily small.
Anyhow, for all q > 1, since the (Si)i∈[[1,m]] are bounded, we derive as well:

‖b− bε‖Lq([0,T ]×Rd) = {
∫ T

0

dt

∫
Rd
|(b− bε)(t, x)|qdx}1/q ≤ C{

∫ T

0

dt

∫
Vε(I)

dx}1/q

≤ CIε1/qT 1/q.

(2.8)

Recall indeed that since the (Si)i∈[[1,m]] have zero Lebesgue measure and smooth bound-
ary, for the thickened neighborhoods

(
Vε(Si)

)
i∈[[1,m]]

, we have for all i ∈ [[1,m]], |Vε(Si)| :=∫
Vε(Si) dx ≤ Cε. This is clear for a bounded portion of hyperplane. The smoothness of the

boundary allows to locally map Vε(Si) with a bounded neighborhood of a hyperplane if Si
has dimension d−1. For submanifolds of smaller dimension d− i, i > 1, the straightening
of the boundary can be done in the corresponding dimension d− i+ 1 and the associated
neighborhood would be smaller, namely |Vε(Si)| ≤ Cεd−(d−i) ≤ Cεi. We take the worst
bound for simplicity.

Observe as well that the following control holds for the derivatives of the mollified
coefficient. For all multi-index α, |α| ≤ 4, there exists C ≥ 1 s.t. for all (t, x) ∈ [0, T ]×Rd:

|∂αx bε(t, x)| ≤ C{ε−|α|Ix∈Vε(I) + Ix 6∈Vε(I)}. (2.9)
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Under the considered assumptions it is not necessary to mollify the diffusion coefficients.
We thus set for all (t, x) ∈ [0, T ] ×Rd, σε(t, x) = σ(t, x), in order to keep homogeneous
notations under our two running assumptions for the drift.

2.3 Stability results

Recall now that under (AH) or (APS) equation (1.1) admits a density (see e.g. [She91]
under (AH) or Proposition 1 in [KKM16] under (APS)), i.e. for all 0 ≤ s < t ≤ T, x ∈
Rd, B ∈ B(Rd),P[Xt ∈ B|Xs = x] =

∫
B
p(s, t, x, y)dy. The same holds for the Euler

scheme in (1.2) (see e.g. Theorem 2.1 in [LM10]), for all 0 ≤ ti < tj ≤ T, x ∈ Rd,P[Xh
tj ∈

B|Xh
ti = x] =

∫
B
ph(ti, tj , x, y)dy. These properties remain valid for the respective

perturbed diffusion and Euler scheme whose coefficients correspond to the procedures
described in Section 2.1 and Section 2.2 depending on whether assumption (AH) or
(APS) is in force. We denote the densities associated with the perturbed diffusion and
discretization scheme by pε and phε respectively.

Let us now state the sensitivity result following from Theorems 1 and 2 in [KKM16].

Theorem 2.3 (Main Sensitivity Result). Define for q ∈ (d,+∞] and η ∈ (0, 1] the quanti-
ties:

∆ε,b,q := sup
t∈[0,T ]

‖(b− bε)(t, ·)‖Lq(Rd),

∆ε,σ,η := sup
t∈[0,T ]

‖σ(t, ·)− σε(t, ·)‖L∞(Rd) + sup
t∈[0,T ]

|σ(t, .)− σε(t, .)|η.

Set ∆ε,η,q := ∆ε,b,q + ∆ε,σ,η. It holds under (A) that there exists Cη,q ≥ 1 s.t. for all
0 ≤ ti < tj ≤ T and (x, y) ∈ (Rd)2:

pc(tj − ti, y − x)−1
{
|(p− pε)(ti, tj , x, y)|+ |(ph − phε )(ti, tj , x, y)|

}
≤ Cη,q∆ε,η,q. (2.10)

Also, there exists C ≥ 1 s.t.:

Cη,q ≤ C exp(C((
η

2
∧ α(q))−1 + 1)( η2∧α(q))−1+1), α(q) :=

1

2
(1− d

q
). (2.11)

Remark 2.4 (Constraint on q). The constraint q > d in the above result is due to the fact
that to establish (2.10) in the case q < +∞, we are led to control quantities of the type

Q :=

∫ tj−ti

0

dt

∫
Rd
pc(t, x− w)|b− bε|(t, w)

1

((tj − ti)− t)1/2
pc
(
(tj − ti)− t, y − w

)
dw,

through Hölder’s inequality. The constraint q > d naturally appears in order to derive
Q ≤ C̄ Γ(α(q))

Γ(1+α(q))T
α(q)‖b− bε‖Lq(Rd) for a finite C̄ := C̄((A), T ) ≥ 1. We refer to the proof

of Lemma 2 in [KKM16] for additional details.

We point out that under (AH) the previous theorem will be used taking η small and
q = +∞, so that η

2 ∧ α(q) = η
2 and under (APS) with η = 1 and q ∈ (d,+∞) so that

η
2 ∧ α(q) = α(q).

Proof. Equation (2.10) readily follows from Theorems 1 and 2 in [KKM16]. The point
is here to specify the control (2.11) on the constant appearing in (2.10). Lemma 3 in
[KKM16], quantifies the explosive contributions for each term of the parametrix series
giving the difference of the densities. It holds for both the diffusion and the Euler
scheme, see Section 3.2 of [KKM16] for details, and yields:

Cη,q ≤
∑
r≥1

(r + 1)
C̄r+1

[
Γ(η2 ∧ α(q))

]r
Γ(1 + r(η2 ∧ α(q)))

T r(
η
2∧α(q)),

for a constant C̄ := C̄((A), T ) which does not depend on η or q.
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Introduce for θ ∈ (0, 1
2 ] the quantity:

I(T, θ) :=
∑
r≥1

(r + 1)
C̄r+1 [Γ(θ)]

r

Γ(1 + rθ)
T rθ.

One easily gets that for a given T > 0, there exists C̃ := C̃((A), T ) ≥ 1 independent of θ
as well such that:

I(T, θ) ≤ C
∑
r≥1

(r + 1)
C̃r+1 [Γ(θ)]

r

Γ(1 + rθ)
.

Set now r0 := d 1
θ e and write by monotonicity of the Γ function (see e.g. formula 8.363 (8)

in Gradstein and Ryzhik [GR14]):

I(T, θ) ≤ C
∑
k≥0

(k + 1)r0

∑
kr0≤r<(k+1)r0

{C̃Γ(θ)}r

Γ(1 + k)

≤ C
∑
k≥0

(k + 1)r0

Γ(k + 1)

∑
kr0≤r<(k+1)r0

{C̃(θ−1 + exp(−1))}r

≤ Cr2
0

∑
k≥0

(k + 1)

Γ(k + 1)
[{C̃(θ−1 + exp(−1))}r0 ]k+1 ≤ C exp(C̃(θ−1 + 1)θ

−1+1).

This gives (2.11) taking θ = η
2 ∧ α(q) and completes the proof.

From Theorem 2.3, we get the following key sensitivity results.

Lemma 2.5 (Sensitivity under (AH)). Under Assumption (AH), for η ∈ (0, γ) there exists
c ≤ 1 s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2:

|(p− pε)(ti, tj , x, y)|+ |(ph − phε )(ti, tj , x, y)| ≤ Cηεγ−ηpc(tj − ti, y − x), (2.12)

where Cη := Cη,∞ ≤ C exp(C((η2 )−1 + 1)( η2 )−1+1) for Cη,∞ as in (2.11).

Proof. The lemma derives from Theorem 2.3 with q = +∞ = and Proposition 2.1. The
bound on Cη follows observing as well that for η ∈ (0, γ), η

2 < γ
2 ≤

1
2 = α(∞) so that

η
2 ∧ α(∞) = η

2 .

Lemma 2.6 (Sensitivity under (APS)). Under Assumption (APS), for q > d there exists
c ≤ 1 s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2:

|(p− pε)(ti, tj , x, y)|+ |(ph − phε )(ti, tj , x, y)| ≤ Cqε1/qpc(tj − ti, y − x), (2.13)

where Cq := C1,q ≤ C exp(C(α(q)−1 + 1)α(q)−1+1) for C1,q as in (2.11).

Proof. Recall that under (APS), since the diffusion coefficient is smooth, there is no
need to regularize it and σ = σε. Thus, ∆ε,σ,1 = 0. From this observation and equation
(2.8), Theorem 2.3 then yields (2.13). The bound on Cq follows observing as well that for
q ∈ (d,+∞), 1

2 ∧ α(q) = α(q).

Let us mention that the constants Cη, Cq in equations (2.12) and (2.13) respectively
explode when η goes to 0 and q goes to d, which is precisely what we want in order to
have the fastest convergence rate w.r.t. ε. On the other hand, the explosion rates that
we have emphasized in (2.11) are crucial in order to equilibrate the global errors. This
step is performed in Section 3.4 below.

3 Error analysis and derivation of the main results

3.1 Stream line to the proofs of the main results

This Section is devoted to the proof of Theorems 1.1 and 1.6.
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Our main results are those controlling the difference of the densities, i.e. the
estimates given in equations (1.6) under (AH) and (1.13), (1.14) under (APS).

To obtain these bounds, the strategy is the following. Let 0 ≤ ti < tj ≤ T and
(x, y) ∈ (Rd)2 be given. One writes for ε > 0:

|p(ti, tj , x, y)−ph(ti, tj , x, y)| ≤ |p−pε|(ti, tj , x, y)+|pε−phε |(ti, tj , x, y)+|phε−ph|(ti, tj , x, y).

(3.1)
Now, one derives from the sensitivity Lemma 2.5 that, under (AH), for all η ∈ (0, γ):

|p(ti, tj , x, y)− ph(ti, tj , x, y)| ≤ Cηεγ−ηpc(tj − ti, y − x) + |(pε − phε )|(ti, tj , x, y). (3.2)

Similarly, Lemma 2.6 yields that, under (APS), for all q > d:

|p(ti, tj , x, y)− ph(ti, tj , x, y)| ≤ Cqε1/qpc(tj − ti, y − x) + |(pε − phε )|(ti, tj , x, y). (3.3)

To investigate and minimize the contributions in the error it thus remains from
equations (3.2) and (3.3) to precisely control the difference |pε − phε | in (3.1). Let us now
recall that, since the densities pε, phε are now respectively associated with a diffusion
process and its Euler scheme with smooth coefficients, they can be compared thanks to
the results in [KM02] adapted to the current inhomogeneous setting. We thus have that:

|(pε − phε )(ti, tj , x, y)| ≤ Cbε,σε,tj−tihpc(tj − ti, y − x), (3.4)

where Cbε,σε,tj−ti depends on the derivatives of bε, σε, it therefore explodes when ε goes
to 0, and exhibits as well a singularity in tj − ti.

The delicate and crucial point is that we must here precisely quantify this explosion.
A key ingredient, to proceed is the parametrix series representation for the densities of
the diffusion and its Euler scheme. These aspects are recalled in Section 3.2 below.

Importantly, the parametrix expansion of the density of Xti,x
tj in (1.1), i.e. for the

equation without mollified coefficients, also directly allows to derive, without any sen-
sitivity analysis, exploiting the controls on the derivatives of the density p(ti, tj , x, ·) of
Xti,x
tj w.r.t. x up to order 2 under (AH), the bounds in (1.7) and (1.8). The arguments

follow from cancellation techniques that are also crucial to derive our main estimates.
We first illustrate this approach in Section 3.3 which is dedicated to the proof of (1.7)
and (1.8) (integrated weak error).

The main results corresponding to the controls of the difference of the densities are
established in Section 3.4. As emphasized above, these results do rely on the sensitivity
analysis. They also require a careful analysis of the explosions of the higher order
derivatives of the involved heat kernels which need to be quantitatively controlled in
terms of the corresponding regularization procedure. The main result in that direction
is Proposition 3.4 below whose proof, which heavily exploits cancellation techniques,
is postponed to Section 4. It yields a precise control of the constant Cbε,σε in (3.4).
The main results of Theorems 1.1 and 1.6 are then derived in Section 3.4.1 and 3.4.2
respectively, balancing the errors appearing in (3.4), and (3.2) under (AH) or (3.3) under
(APS).

3.2 Parametrix representation of densities

From Section 2 in [KKM16], we derive that under (A) (i.e. the expansions below hold
under both (AH) and (APS)), for all ε ≥ 0 (the expansion below even holds for the initial
coefficients taking ε = 0), 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

pε(s, t, x, y) :=
∑
r∈N

p̃ε ⊗H(r)
ε (s, t, x, y), (3.5)
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Euler scheme of diffusions with non-smooth coefficients

where for 0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2:

Hε(u, t, z, y) := (Lεu − L̃ε,yu )p̃ε(u, t, z, y), (3.6)

and Lεu, L̃
ε,y
u respectively stand for the generators at time u of the processes

X
(ε)
t = z +

∫ t

u

bε(v,X
(ε)
v )dv +

∫ t

u

σε(v,X
(ε)
v )dWv, X̃

(ε),y
t = z +

∫ t

u

σε(v, y)dWv, (3.7)

i.e. for all ϕ ∈ C2(Rd,R), x ∈ Rd,

Lεuϕ(x) = 〈bε(u, x),∇xϕ(x)〉+
1

2
Tr
(
σεσ

∗
ε (u, x)D2

xϕ(x)
)
,

L̃ε,yu ϕ(x) =
1

2
Tr
(
σεσ

∗
ε (u, y)D2

xϕ(x)
)
.

Also p̃ε(u, t, z, y) := p̃yε(u, t, z, w)|w=y where p̃yε(u, t, z, .) stands for the density at time t of

the process X̃(ε),y starting from z at time u. We denote in (3.5), p̃ε ⊗ H(0)
ε (s, t, x, y) =

p̃ε(s, t, x, y) and for all r ≥ 1, p̃ε ⊗ H(r)
ε (s, t, x, y) =

∫ t
s
du
∫
Rd
p̃ε(s, u, x, z)H

(r)
ε (u, t, z, y)dz

where for r ≥ 2,

H(r)
ε (u, t, z, y) := Hε ⊗H(r−1)

ε (u, t, z, y)

:=

∫ t

u

dv

∫
Rd
Hε(u, v, z, w)H(r−1)

ε (v, t, w, y)dw.

More generally, the symbol ⊗ stands for the time-space convolution, i.e. for two
real valued functions f, g defined on [0, T ]2 × (Rd)2, 0 ≤ s < t ≤ T, f ⊗ g(s, t, x, y) :=∫ t
s
du
∫
Rd
f(s, u, x, z)g(u, t, z, y)dz. We also recall that under (APS), since the diffusion

coefficient is smooth we do not regularize it and denote in this case σε = σ.
To investigate the contribution pε − phε in (3.1) we will also use for 0 ≤ ti < tj ≤

T, (x, y) ∈ (Rd)2 the function:

pdε(ti, tj , x, y) :=
∑
r∈N

p̃ε ⊗h H(r)
ε (ti, tj , x, y), (3.8)

where the quantities at hand are the same as above and the symbol ⊗h replacing the ⊗
in (3.5) denotes the discrete convolution, i.e. for all r ≥ 1,

p̃ε ⊗h H(r)
ε (ti, tj , x, y) = h

j−i−1∑
k=0

∫
Rd
p̃ε(ti, ti+k, x, z)H

(r)
ε (ti+k, tj , z, y)dz.

Even though pdε(ti, tj , x, .) is not a priori a density, we will call it so with a slight abuse of
terminology. An important control, under (A), for the terms in the parametrix series is
the following:

∀0 ≤ s < t ≤ T,

|p̃ε ⊗H(r)
ε (s, t, x, y)| ≤

((1 ∨ T (1−γ)/2)c1)r+1
[
Γ(γ2 )

]r
Γ(1 + r γ2 )

pc(t− s, y − x)(t− s)
rγ
2 ,

∀0 ≤ ti < tj ≤ T,

|p̃ε ⊗h H(r)
ε (ti, tj , x, y)| ≤

((1 ∨ T (1−γ)/2)c1)r+1
[
Γ(γ2 )

]r
Γ(1 + r γ2 )

pc(tj − ti, y − x)(tj − ti)
rγ
2 ,

(3.9)

taking γ = 1 under (APS). We emphasize that those bounds are uniform w.r.t. ε ≥ 0 and
refer to [KM02] or Section 2 in [KKM16] for a proof.
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Euler scheme of diffusions with non-smooth coefficients

From the same references (see also Lemma 3.6 in [KM00]), we have that the density
of the Euler scheme also admits a similar parametrix representation. Introduce for
0 ≤ ti < tk ≤ T, (z, y) ∈ (Rd)2, the schemes:

X
h,(ε)
tk

= z +

k−1∑
l=i

(
bε(tl, X

h,(ε)
tl

)h+ σε(tl, X
h,(ε)
tl

)(Wtl+1
−Wtl)

)
,

X̃
h,(ε),y
tk

= z +

k−1∑
l=i

σε(tl, y)(Wtl+1
−Wtl). (3.10)

Viewed as Markov Chains, their generators write for all ϕ ∈ C2(Rd,R), x ∈ Rd:

Lh,εti ϕ(x) := h−1E[ϕ(X
h,(ε),ti,x
ti+1

)− ϕ(x)], L̃h,ε,yti ϕ(x) = h−1E[ϕ(X̃
h,(ε),y,ti,x
ti+1

)− ϕ(x)].

Define now for 0 ≤ ti < tj ≤ T, (z, y) ∈ (Rd)2 the Markov chain analogue of the
parametrix kernel H in (3.6) by:

Hh
ε (ti, tj , z, y) := (Lh,εti − L̃

h,ε,y
ti )p̃hε (ti + h, tj , x, y).

One gets the following parametrix representation for the density of the Euler scheme:

phε (ti, tj , x, y) :=

j−i∑
r=0

p̃ε ⊗h Hh,(r)
ε (ti, tj , x, y). (3.11)

Again, the subscript ε is meant to explicitly express the dependence on the mollified
coefficients. Also, the terms in the above series satisfy the controls of equation (3.9)
uniformly in ε ≥ 0.

3.3 Integrated weak error under (AH)

We first prove the statements concerning the integrated weak error in (1.7) and (1.8).
We insist that, in that case, no regularization of the coefficients is needed. We have the
following result:

Proposition 3.1 (Controls of the Derivatives.). Let T > 0 be fixed. Under (AH), there
exist constants C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2 and all multi-index
α, |α| ≤ 2:

|Dα
xp(s, t, x, y)| ≤ C

(t− s)|α|/2
pc(t− s, x− y). (3.12)

As a consequence we also derive that for tj = jh ∈ [0, T ] being fixed and setting for all
(t, x) ∈ [0, tj ] × Rd, v(t, x) := E[f(Xt,x

tj )], as soon as f is bounded, we have that for all

(t, x) ∈ [0, tj)×Rd:

|∇xv(t, x)| ≤ C

(tj − t)1/2
(3.13)

and for f ∈ Cβ(Rd,R), β ∈ (0, 1] (space of globally, and possibly unbounded, Hölder
continuous functions), we have for a multi-index α, |α| ≤ 2 and all (t, x) ∈ [0, tj)×Rd:

|Dα
xv(t, x)| ≤ C

(tj − t)(|α|−β)/2
. (3.14)

Proof. Equation (3.12) is a direct consequence of Proposition 3.4 below. This estimate
readily gives (3.13). On the other hand, we get that for f ∈ Cβ(Rd,R), β ∈ (0, 1], we
have for a multi-index α, |α| ≤ 2, (t, x) ∈ [0, tj)×Rd:

Dα
xv(t, x) =

∫
Rd
Dα
xp(t, tj , x, y)f(y)dy =

∫
Rd
Dα
xp(t, tj , x, y)(f(y)− f(x))dy,

recalling that Dα
x

∫
Rd
p(t, tj , x, y)dy = 0 for the last identity. This is precisely what we call

a cancellation technique. It allows here to exploit the spatial Hölder continuity of f to
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get rid of the time singularity appearing in (3.12) when |α| = 2, or to decrease the time
singularity appearing in (3.13). Hence, from (3.12):

|Dα
xv(t, x)| ≤ C|f |β

(tj − t)(|α|−β)/2

∫
Rd
pc(tj − t, y − x)

( |x− y|
(tj − t)1/2

)β
dy.

Equation (3.14) readily follows. Similar operations will be recurrent in the proof of
Proposition 3.4.

3.3.1 Proof of (1.7): Hölder final test function

Set thβ,γ := sup{(tk)k∈[[0,j]] : tk ≤ tj − hγ/β < tk+1} and Ihβ,γ := thβ,γ/h. In particular, if

γ ≥ β, thβ,γ = tj−1 and if β > γ, thβ,γ < tj−1.
Let v be the function defined in Proposition 3.1. It follows from Proposition 3.4 that

v ∈ Cβ/2,β([0, tj ]×Rd,R) ∩ C1,2([0, tj)×Rd,R). An expansion similar to (1.11) yields:

|E[f(Xh,ti,x
tj )− f(Xti,x

tj )]| ≤ |E[f(Xh,ti,x
tj )− v(thβ,γ , X

h,ti,x

thβ,γ
)]|

+C

Ihβ,γ−1∑
k=i

∫ tk+1

tk

dsE[{|∇xv(s,Xh,ti,x
s )|+ |D2

xv(s,Xh,ti,x
s )|}{|s− tk|γ/2 + |Xh,ti,x

s −Xh,ti,x
tk

|γ}]

=: (TL + TM )(h, ti, tj , x),

(3.15)

where TL stands for the contribution associated with the last step(s) and TM for the
other main steps.

From equation (3.14) in Proposition 3.1, one readily gets:

TM (h, ti, tj , x) ≤ Chγ/2
Ihβ,γ−1∑
k=i

∫ tk+1

tk

(1 +
1

(tj − s)1−β/2 )ds ≤ Chγ/2. (3.16)

The contribution TL requires a more careful treatment. Let us write:

TL(h, ti, tj , x) ≤ E[|f(Xh,ti,x
tj )− f(Xh,ti,x

tj−hγ/β
)|]

+E[|v(tj , X
h,ti,x
tj−hγ/β

)− v(tj − hγ/β , Xh,ti,x
tj−hγ/β

)|]

+
∣∣E[v(tj − hγ/β , Xh,ti,x

tj−hγ/β
)− v(thβ,γ , X

h,ti,x

thβ,γ
)]
∣∣

≤ E[|f(Xh,ti,x
tj )− f(Xh,ti,x

tj−hγ/β
)|]

+E[|v(tj , X
h,ti,x
tj−hγ/β

)− v(tj − hγ/β , Xh,ti,x
tj−hγ/β

)|]

+

∫ tj−hγ/β

thβ,γ

{
E[|∇xv(s,Xh,ti,x

s )||b(s,Xh,ti,x
s )− b(φ(s), Xh,ti,x

φ(s) )|

+
1

2
|D2

xv(s,Xh,ti,x
s )||a(s,Xh,ti,x

s )− a(φ(s), Xh,ti,x
φ(s) )|]

}
ds.

Expanding as in (1.11) the term |E[v(tj − hγ/β , Xh,ti,x
tj−hγ/β

) − v(thβ,γ , X
h,ti,x

thβ,γ
)]| with Itô’s

formula and using (1.10) we derive:

TL(h, ti, tj , x) ≤ CE[|Xh,ti,x
tj −Xh,ti,x

tj−hγ/β
|β ] + Chγ/2

∫ tj−hγ/β

thβ,γ

(1 +
1

(tj − s)1−β/2 )ds

≤ Chγ/2. (3.17)

Plugging (3.17) and (3.16) into (3.15) yields the required control in (1.7).
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Remark 3.2 (Extensions to functions f with subquadratic exponential growth). We stated
(1.7) for f ∈ Cβ(Rd,R) for simplicity. Observe anyhow that the above arguments can be
adapted to derive the expected convergence rate as soon as f is locally β-Hölder and
satisfies the growth condition:

∃C0 > 0,∀x ∈ Rd, |f(x)| ≤ C0 exp(c0|x|2), c0 ≤
c

4T
,

∀(x, y) ∈ (Rd)2, |x− y| ≤ 1, |f(x)− f(y)| ≤ C0|x− y|β exp(c0|x|2),
(3.18)

where c is as in equation (3.12). In that case, the controls of equations (3.13) and
(3.14) would write in the following way. There exists a constant C ≥ 1 s.t. for all
(t, x) ∈ [0, tj)×Rd:

|∇v(t, x)| ≤ C

(tj − t)1/2

∫
Rd
pc(tj − t, y − x) exp(c0|y|2)dy,

≤ C exp(2c0|x|2)

(tj − t)1/2

∫
Rd
pc(tj − t, y − x) exp(2c0|y − x|2)dy

≤ C exp(2c0|x|2)

(tj − t)1/2
,

∀α, |α| = 2, |Dα
xv(t, x)| ≤ C exp(2c0|x|2)

(tj − t)1−β/2 . (3.19)

Plugging (3.19) into (3.15) and (3.17) still yields, thanks to the condition on c0 in (3.18)
and (1.9), an integrable contribution.

3.3.2 Proof of (1.8): Indicator of a domain as test function

We have assumed A to be C2 domain and ∂A bounded. Let us denote by dS(·, ∂A) the
signed distance to the boundary, i.e. d(x, ∂A) > 0 for x ∈ A and d(x, ∂A) ≤ 0 for x 6∈ A.

It is known (see e.g. Lemma 14.16 and its proof p. 355 in [GT98]) that for δ > 0

small enough, on Vδ(A) := {y ∈ Rd : |dS(y, ∂A)| ≤ δ}, the function dS(·, ∂A) is C2 and
both the exterior and interior sphere conditions hold. The interior sphere condition
writes that for y ∈ Aδ := Vδ(A) ∩ A := {y ∈ Rd : 0 < dS(y, ∂A) ≤ δ} (interior points of
A whose distance to the boundary is lower or equal than δ), its orthogonal projection
on the boundary Π∂A(y) is also the unique point s.t. defining B(y, dS(y, ∂A)) := {z ∈
Rd : ‖z − y‖ ≤ dS(y, ∂A)}, B(y, dS(y, ∂A)) ∩ ∂A = Π∂A(y). The exterior sphere condition
writes similarly for the points y ∈ Vδ(A)\Ā := {y ∈ Rd : −δ ≤ dS(y, ∂A) < 0} (strictly
exterior points of A whose distance to the boundary is lower or equal than δ).

For such a δ, let us now write for 0 ≤ ti < tj ≤ T, x ∈ Rd:

E[I
X
h,ti,x
tj

∈A]− E[I
X
ti,x
tj
∈A]

={E[I
X
h,ti,x
tj

∈A]− E[fδ(X
h,ti,x
tj )]}+ {E[fδ(X

h,ti,x
tj )]− E[fδ(X

ti,x
tj )]}

+ {E[fδ(X
ti,x
tj )]− E[I

X
ti,x
tj
∈A]} =:

3∑
i=1

T δi ,

(3.20)

where

fδ(x) =


1, if x ∈ A,
exp(1) exp(−1/(1− dS(x,∂A)2

δ2 )), if x ∈ Vδ(A)\A,
0 if x 6∈ A ∪ Vδ(A).

(3.21)

Namely, fδ stands for a smooth approximation (at least C2) of the mapping x 7→ Ix∈A.
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Recalling again from the proof of Lemma 14.16 in [GT98] that for x ∈ Vδ(A),
∇xdS(x, ∂A) = n(Π∂A(x)), where n(Π∂A(x)) stands for the inner unit normal associ-
ated with the projection on the boundary, we get for x ∈ Vδ(A)\A:

∇fδ(x) = −2
dS(x, ∂A)n(Π∂A(x))

δ2

(
1− dS(x, ∂A)2

δ2

)−2

fδ(x). (3.22)

This yields in particular that |∇fδ|∞ = supx∈Vδ(A) |∇fδ(x)| ≤ Cδ−1. This last bound in
particular yields that there exists C ≥ 1 s.t. for all η ∈ (0, γ],

sup
x,y∈V2δ(A)

|fδ(x)− fδ(y)|
|x− y|η

≤ Cδ−η. (3.23)

Indeed, from the control on |∇fδ|∞ and the smoothness of fδ, we get for all x, y ∈ V2δ(A),
either |x − y| ≤ δ and |fδ(x) − fδ(y)| ≤ Cδ−1|x − y| ≤ Cδ−η|x − y|η, or |x − y| ≥ δ and
|fδ(x)− fδ(y)| ≤ C ≤ Cδ−η|x− y|η.

Now, the terms T δ1 and T δ3 in (3.20) can be handled similarly thanks to the Gaussian
upper bound that is satisfied, under (AH), by the density of both the diffusion and its
Euler scheme, see Proposition 3.4 or again [She91], Theorem 2.1 in [LM10]. Precisely,
with the notations of (3.20) and provided that δ ≤ (tj − ti)1/2:

|T δ1 + T δ3 | ≤ E[I
X
ti,x
tj
∈Vδ(A)

] + E[I
X
h,ti,x
tj

∈Vδ(A)
] ≤ Cδ

(tj − ti)1/2
exp

(
− cd(x, ∂A)2

tj − ti

)
, (3.24)

where d(x, ∂A) = |dS(x, ∂A)| stands for the nonnegative distance to the boundary.
Indeed, we have that locally, up to a change of coordinate, only one variable is orthogonal
to the straightened image of the hypersurface ∂A. We can thus integrate the Gaussian
bounds w.r.t. the other ones. This yields the above control.

Observe that to find the indicated convergence rate this imposes δ ≤ (tj − ti)1/2hγ/2

which specifies the admissible magnitude for the parameter δ. On the other hand,
to analyze T δ2 we recall from (3.23) that setting for all (t, x) ∈ [0, tj) × Rd, vδ(t, x) :=

E[fδ(X
t,x
tj )] the terminal function fδ is η-Hölder continuous, for all η ∈ (0, γ], with Hölder

modulus of continuity bounded by δ−η on V2δ(A). We will now establish, similarly to
(3.14), that for all multi-index α, |α| ≤ 2, (t, x) ∈ [0, tj)×Rd:

|Dα
xvδ(t, x)| ≤ C

(δ ∨ d(x, ∂A))η
1

(tj − t)(|α|−η)/2
. (3.25)

Recall indeed that

|Dα
xvδ(t, x)| =

∣∣∣∣∫
Rd
Dα
xp(t, tj , x, y)(fδ(y)− fδ(x))dy

∣∣∣∣
≤ C

(tj − t)|α|/2

∫
Rd
pc(tj − t, y − x)|fδ(y)− fδ(x)|dy,

(3.26)

exploiting Proposition 3.4 for the last inequality. Thus, from (3.21):

- if both x, y 6∈ Vδ(A), then fδ(x) = Ix∈A, fδ(y) = Iy∈A. If x ∈ (A ∪ Vδ(A))C , y ∈ A\Vδ(A),
or by symmetry y ∈ (A ∪ Vδ(A))C , x ∈ A\Vδ(A), then |x − y| ≥ δ ∨ d(x, ∂A). If now
x, y ∈ (A ∪ Vδ(A))C or x, y ∈ A\Vδ(A) then fδ(x) = fδ(y) yielding a trivial contribution in
(3.26).

- if x, y ∈ Vδ(A), then the control of the Hölder modulus gives: |fδ(x)− fδ(y)| ≤ Cδ−η|x−
y|η = C(δ ∨ d(x, ∂A))−η|x− y|η.
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- if x ∈ Vδ(A), y 6∈ Vδ(A) (resp. y ∈ Vδ(A), x 6∈ Vδ(A)) we can exploit the Hölder continuity
for y ∈ V2δ(A) (resp. x ∈ V2δ(A)) and the fact that |x − y| ≥ δ ∨ d(x, ∂A) for y 6∈ V2δ(A)

(resp. x 6∈ V2δ(A)).

In all cases, we have established that |fδ(x)− fδ(y)| ≤ C(δ ∨ d(x, ∂A))−η|x− y|η, which
plugged into (3.26) yields the control (3.25). Recall now that, again from Proposition
3.4, we have vδ ∈ Cη/2,η([0, tj ]×Rd) ∩ C1,2([0, tj)×Rd). In particular, vδ has the same
Hölder continuity modulus as fδ. We can as well assume w.l.o.g. that γ/η ≥ 1 so that
hγ/η ≤ h ≤ 1.

Exploiting now (3.25) in an expansion similar to (1.11) and (3.15), we get:

|T δ2 | ≤ |E[fδ(X
h,ti,x
tj )− fδ(Xh,ti,x

tj−hγ/η
)|+ |E[vδ(tj , X

h,ti,x
tj−hγ/η

)− vδ(tj − hγ/η, Xh,ti,x
tj−hγ/η

)]|+

+|E[vδ(tj − hγ/η, Xh,ti,x
tj−hγ/η

)− vδ(tj−1, X
h,ti,x
tj−1

)]|

+C

j−2∑
k=i

∫ tk+1

tk

dsE[{|∇xvδ(s,Xh,ti,x
s )|+ |D2

xvδ(s,X
h,ti,x
s )|}{|s− tk|γ/2

+|Xh,ti,x
s −Xh,ti,x

tk
|γ}]

≤ Chγ/2
{
E[(δ ∨ d(Xh,ti,x

tj , ∂A))−2η]1/2 + 1

+

∫ tj−hγ/η

ti

(1 +
1

(tj − s)1−η/2E[{δ ∨ d(Xh,ti,x
s , ∂A)}−2η]1/2)ds

}
, (3.27)

where the term |E[vδ(tj − hγ/η, Xh,ti,x
tj−hγ/η

)− vδ(tj−1, X
h,ti,x
tj−1

)]| is again expanded with Itô’s

formula which yields bounds similar to those appearing for the contributions associated
with the indexes k ∈ [[i, j − 2]].

Recalling as well that the Euler scheme satisfies the Aronson Gaussian bounds (see
Proposition 3.4 and Theorem 2.1 in [LM10] for details) we obtain for all s ∈ (ti, tj ]:

E[{δ ∨ d(Xh,ti,x
s , ∂A)}−2η]

≤ C
{

(δ ∨ d(x, ∂A))−2η +

∫
1
2d(x,∂A)≥d(y,∂A)

exp(−c |x−y|
2

s−ti )

(δ ∨ d(y, ∂A))2η

dy

(s− ti)d/2
}
.

Since on { 1
2d(x, ∂A) ≥ d(y, ∂A)} we have |x− y| ≥ |x−Π∂A(y)|− |Π∂A(y)− y| ≥ d(x,∂A)

2 ≥
d(y, ∂A), where Π∂A(y) again denotes the projection of y on the boundary ∂A, we get:

E[{δ ∨ d(Xh,ti,x
s , ∂A)}−2η]

≤ C
{

(δ ∨ d(x, ∂A))−2η +

∫
1
2d(x,∂A)≥d(y,∂A)

exp(− c
2
d(y,∂A)2

s−ti ) exp(− c
2
|x−y|2
s−ti )

(δ ∨ d(y, ∂A))2η

dy

(s− ti)d/2
}

≤ C
{

(δ ∨ d(x, ∂A))−2η + 1
}
.

Hence, since d(x, ∂A) ≥ (tj − ti)1/2hγ/2 ≥ δ, we get from (3.27)

|T δ2 | ≤ Chγ/2
{ 1

ηd(x, ∂A)η
+ 1
}
. (3.28)

The point is now to find the η ∈ (0, γ] maximizing Jx,A : η ∈ (0, γ] 7→ ηd(x, ∂A)η in order
to minimize the associated contribution in 1

ηd(x,∂A)η for T δ2 . Two cases occur:

- d(x, ∂A) ≥ exp(− 1
γ ). In that case for η ∈ (0, γ], J ′x,A(η) = d(x, ∂A)η(1 + η ln(d(x, ∂A)) ≥ 0

and the maximum over the constraint set is attained for η = γ and Jx,A(η) = γd(x, ∂A)γ .

EJP 22 (2017), paper 46.
Page 20/47

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP53
http://www.imstat.org/ejp/


Euler scheme of diffusions with non-smooth coefficients

- 0 < d(x, ∂A) < exp(− 1
γ ). The optimum is then attained for η = − 1

ln(d(x,∂A)) ∈ (0, γ). This

choice then yields: Jx,A(η) := 1
| ln(d(x,∂A))| exp(η ln(d(x, ∂A))) = 1

| ln(d(x,∂A))|e
−1.

This gives from (3.28) the global bound:

|T δ2 | ≤ Chγ/2
(

1 +
1

γd(x, ∂A)γ
Id(x,∂A)≥exp(− 1

γ ) + | ln(d(x, ∂A))|Id(x,∂A)<exp(− 1
γ )

)
. (3.29)

It is of course the last term above that becomes significant when the distance of the
starting point comes closer to the boundary. The global error estimate deriving from
(3.24), the previous computations on Jx,A and (3.29) is then better, up to a multiplicative
constant, than the one deriving from (1.6) as soon as 1

Jx,A(η) = | ln(d(x, ∂A))|e ≤ eh−Cψ(h)

which is equivalent to:

| ln(d(x, ∂A))| ≤ h−Cψ(h) ⇐⇒ d(x, ∂A) ≥ exp(−h−Cψ(h)). (3.30)

Since to apply the Aronson’s estimates for T δ1 , T
δ
3 (see again eq. (3.20)) we had already

assumed d(x, ∂A) ≥ (tj − ti)1/2hγ/2 ≥ h(1+γ)/2, we derive that the condition in (3.30) is
always fulfilled. It can indeed be easily checked that h(1+γ)/2 ≥ exp(−h−Cψ(h)) for h
small enough. Equation (1.8) now follows from (3.24) and (3.29).

Remark 3.3 (Extension to piecewise smooth domains.). Let us mention that results
similar to (1.8) could also be derived for domains A := ∩ni=1Ai that write as finite
intersections of smooth domains (Ai)i∈[[1,n]] with bounded boundaries, and therefore
have piecewise smooth boundary. In that case, d(x, ∂A) := infi∈{1,··· ,n} d(x, ∂Ai) is well
defined, but the corresponding signed distance can fail to be smooth, precisely close
to the resulting corners. Hence, fδ cannot be directly defined as above. Namely, some
additional mollification of the corresponding distance would be necessary as well.

3.4 Error expansion for the Euler scheme: Controls on the densities

From Theorem 1.1, Theorem 2.1 and their proofs in [KM02] we have with the
notations of the previous paragraph:

(pε−phε )(ti, tj , x, y) = (pε−pdε)(ti, tj , x, y)+h

∫ 1

0

(1−τ)
{
pdε⊗h(L̃ε.,∗−L̃.∗,ε)2pτ,hε (ti, tj , x, y)

}
dτ,

(3.31)
where we denote for 0 ≤ ti < tj ≤ T, τ ∈ [0, 1]:

pτ,hε (ti, tj , x, y) :=

j−i∑
r=0

p̃τε ⊗h Hh,(r)
ε (ti, tj , x, y),

∀(k, z) ∈ (i, j]]×Rd, p̃τε (ti, tk, x, z) :=

∫
Rd
p̃xε (ti, ti + τh, x, w)p̃zε(ti + τh, tk, w, z)dw.

Also, for l ∈ {1, 2}, t = ti+k, k ∈ [[0, j − i − 1]], (L̃εt,∗)
lφ(x, y) := (Lεt,ξ)

lφ(x, y))|ξ=x, and

(L̃∗,εt )lφ(x, y) := (L̄εt,ξ)
lφ(x, y))|ξ=y for

Lεt,ξφ(x, y) = 〈bε(t, ξ),∇xφ(x, y)〉+
1

2
Tr(aε(t, ξ)D

2
xφ(x, y)),

L̄εt,ξφ(x, y) =
1

2
Tr(aε(t, ξ)D

2
xφ(x, y)).

Observe that Lεtφ(x, y) = Lεt,∗φ(x, y), but more generally the operators do not coincide
anymore when iterated. Also, we indicate that the operators involved slightly differ
from [KM02] since we chose to use a Gaussian process without drift as proxy, see (3.7)
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and (3.10). Another difference is the fact that we deal with inhomogeneous coefficients,
and the notations L̃ε.,∗, L̃.

∗,ε in (3.31) are used to emphasize the time dependence of the
operators in the discrete convolution ⊗h. Anyhow, reproducing the proof of [KM02]
taking into account the indicated differences leads to the expression in (3.31).

We mention carefully that in order to analyze the contribution of the last term in the
r.h.s. of (3.31) no smoothness in time of the coefficients is needed. On the other hand,
such smoothness is clearly required to derive some convergence rates, since to control
pε − pdε we need to investigate the difference between time integrals and Riemann sums
(see Proposition 3.7 and its proof below).

The term
∫ 1

0
(1− τ){pdε ⊗h (L̃ε.,∗ − L̃.∗,ε)2pτ,hε (ti, tj , x, y)}dτ involves derivatives of the

coefficients and heat kernels up to order 4. The point is again that the derivatives of the
coefficients and kernels explode with ε going to 0 (see equation (2.6)). It is precisely this
aspect that deteriorates the convergence rate w.r.t. the usual smooth case. We carefully
mention that if σ(t, x) = σ, the previous contributions involve lower derivatives of the
heat kernel (up to order 2).

The key elements are now the following Propositions. The first one gives bounds for
the derivatives of the densities involved in the parametrix series (3.5), (3.8). The second
one controls the difference between the discrete and continuous convolutions in (3.31).

Proposition 3.4 (Controls for the derivatives of the densities). Let α, |α| ≤ 4 be a
multi-derivation index.

Under (AH), there exist constants C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ s < t ≤ T, (x, y) ∈
(Rd)2:

|Dα
x p̄ε(s, t, x, y)| ≤ C

(t− s)|α|/2
pc(t− s, y − x), |α| ≤ 2,

|Dα
x p̄ε(s, t, x, y)| ≤ C

(t− s)|α|/2
pc(t− s, y − x)(1 + ε−|α|+2(t− s)γ/2), |α| ∈ [[3, 4]],

|Dα
y p̄ε(s, t, x, y)| ≤ Cε−|α|+γ

(t− s)|α|/2
pc(t− s, y − x), |α| ≥ 1.

(3.32)

Under (APS), for all q > d, η ∈ (0, α(q)), α(q) = 1
2 (1 − d

q ), there exist constants

C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

|Dxp̄ε(s, t, x, y)| ≤ C

(t− s)1/2
pc(t− s, y − x),

|Dα
x p̄ε(s, t, x, y)|

≤ C

(t− s)|α|/2
pc(t− s, y − x)(1 + C̄η,qε

−|α|+2−η+(1/q)I|α|≥3(t− s)η/2), |α| ∈ [[2, 4]],

|Dyp̄ε(s, t, x, y)| ≤ C

(t− s)1/2
(1 + ε−ηCη(t− s)η/2)pc(t− s, y − x),

|Dα
y p̄ε(s, t, x, y)| ≤ C(1 + C̄η,qε

−|α|+1−η(t− s)η/2)

(t− s)|α|/2
pc(t− s, y − x), |α| ∈ [[2, 4]],

(3.33)

where C̄η,q = Cη × Cq with Cq as in Lemma 2.6 and Cη as in Lemma 2.5.
In the above expressions p̄ε can be any of the densities pε, p

d
ε , p

τ,h
ε uniformly in

τ ∈ [0, 1]. For pdε , p
τ,h
ε , the time variables s, t are taken on the time grid.

Remark 3.5 (Spatial Hölder continuity and heat-kernel bounds). We point out that the
previous controls (3.32) for p̄ε = pε would also hold under the sole spatial Hölder
continuity of the coefficients b, σ. This improves in some sense those of [IKO62] which
require smoothness in time of the coefficients. We get here the same pointwise controls
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for the derivatives of the non degenerate heat-kernel with spatial Hölder coefficients up
to order 2, uniformly in ε ∈ [0, 1].

Remark 3.6 (Constants in (3.33)). Even though we are currently considering (APS), the
associated small smoothing effect deriving from the regularization of the drift is the same
as for the sensitivities of densities under (AH), for which it was induced by the small
Hölder parameter for the difference of the diffusion coefficient and its regularization. In
both cases the constant Cη appears through the control of the corresponding parametrix
series, see the proofs of Theorem 2.3, Lemma 2.5 and Proposition 3.4 below.

Proposition 3.7 (Bounds for the difference between continuous and discrete time convo-
lutions). Under (AH), there exist C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2,
η ∈ (0, γ):

|(pε − pdε)(ti, tj , x, y)| ≤ Cηh(γ−η)/2pc(tj − ti, y − x). (3.34)

Under (APS), there exist C ≥ 1, c ∈ (0, 1] s.t. for all 0 ≤ ti < tj ≤ T, (x, y) ∈ (Rd)2,
q > d, η ∈ (0, α(q)):

|(pε−pdε)(ti, tj , x, y)| ≤ C̄η,q
(h| ln(h)|ε−(1+η)

(tj − ti)1/2
+
h1−η/2ε−(1+η)

(tj − ti)1/2
+hε−2+1/q

)
pc(tj − ti, y−x),

(3.35)
with α(q), C̄η,q as in Proposition 3.4.

If now d(y,Vε(I)) ≥ 2ε the previous bound improves to

|pε−pdε |(ti, tj , x, y) ≤ C̄η,q
(h| ln(h)|ε−(1+η)

(tj − ti)1/2
+
h1−η/2ε−(1+η)

(tj − ti)1/2
+

h1−η/2

d(y,Vε(I))

)
pc(tj− ti, y−x).

(3.36)
If d(y,Vε(I)) ≥ 2ε and additionally σ(t, x) = σ, i.e. constant diffusion term, then

|pε − pdε |(ti, tj , x, y) ≤ C̄η,q
(h| ln(h)|ε−η

(tj − ti)1/2
+
hε−(1+η)+1/q

(tj − ti)1/2
+

h1−η/2

d(y,Vε(I))

)
pc(tj − ti, y − x).

(3.37)

We postpone the proof of Propositions 3.4 and 3.7 to Section 4 for clarity. It now
remains to exploit Propositions 3.4, 3.7 and (3.31) to specifically control how the weak
error for the densities depends on the explosive norms of the mollified coefficients.

3.4.1 Proof of the main results for Hölder coefficients (Theorem 1.1 under
(AH))

Observe from Proposition 3.4 that, for all k ∈ [[i, j − 1]], (z, y) ∈
(
Rd
)2
, τ ∈ [0, 1],∣∣∣(L̃εtk,∗ − L̃∗,εtk ) pτ,hε (tk, tj , z, y)

∣∣∣ =
∣∣〈bε(tk, z), Dzp

τ,h
ε (tk, tj , z, y)

〉
+

1

2
Tr
(
(aε(tk, z)− aε(tk, y))D2

zp
τ,h
ε (tk, tj , z, y)

)∣∣∣∣ ≤ C

(tj − tk)
1−γ/2 pc(tj − tk, y − z).

Iterating the frozen operator, we obtain that
(
L̃εtk,∗ − L̃

∗,ε
tk

)2

pτ,hε (tk, tj , z, y) is a fourth

order differential operator which is the sum of the following typical terms:

blε(tk, z)b
m
ε (tk, z)D

2
zlzm

pτ,hε (tk, tj , z, y)

=: Ψε,τ,h
l,m (tk, tj , z, y),

blε(tk, z)
(

(amqε (tk, z)− amqε (tk, y))D3
zlzmzq

pτ,hε (tk, tj , z, y)
)

=: Ψε,τ,h
l,m,q(tk, tj , z, y),
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(almε (tk, z)− almε (tk, y))(aqrε (tk, z)− aqrε (tk, y))D4
zlzmzqzr

pτ,hε (tk, tj , z, y)

=: Ψε,τ,h
l,m,q,r(tk, tj , z, y), (3.38)

for l,m, q, r ∈ [[1, d]]. It is easy to see that the terms with fourth derivatives are the

most singular. Hence, to evaluate pdε ⊗h
(
L̃ε·,∗ − L̃

∗,ε
·

)2

pτ,hε (ti, tj , x, y), it is enough to

concentrate on:

pdε ⊗h Ψε,τ,h
l,m,q,r(ti, tj , x, y)

= h
(
almε (ti, x)− almε (ti, y)

)(
aqrε (ti, x)− aqrε (ti, y)

)
D4
zlzmzqzr

pτ,hε (ti, tj , x, y)

+h
∑

k∈[[i+1,d i+j2 e]]

∫
Rd
pdε(ti, tk, x, z)

(
almε (tk, z)− almε (tk, y)

)(
aqrε (tk, z)− aqrε (tk, y)

)
×D4

zlzmzqzr
pτ,hε (tk, tj , z, y)dz

+h
∑

k∈[[d i+j2 e+1,j−1]]

∫
Rd
pdε(ti, tk, x, z)

(
almε (tk, z)− almε (tk, y)

)(
aqrε (tk, z)− aqrε (tk, y)

)
×D4

zlzmzqzr
pτ,hε (tk, tj , z, y)dz

=: (T1 + T2 + T3)(ti, tj , x, y). (3.39)

The tools to control the above terms are (3.32) in Proposition 3.4 and the Hölder
continuity of the mollified coefficients under (AH). We readily derive:

|T1(ti, tj , x, y)| ≤ Ch(1 + ε−2(tj − ti)γ/2)

(tj − ti)2−γ pc(tj − ti, y − x). (3.40)

For the term T2 in (3.39), integrating once by parts, we obtain from (3.32) and (2.6) that:

|T2(ti, tj , x, y)| ≤ Cε−1+γ

(tj − ti)1−γ pc(tj − ti, y − x)
(

1 + ε−1(tj − ti)γ/2
)
. (3.41)

The term T3 in (3.39) can be handled using the same arguments and two integrations by
parts in order to get rid of the time singularities. After integrations by parts, the most
singular terms w.r.t. ε have the following form:

T31(ti, tj , x, y) := h
∑

k∈[[d i+j2 e+1,j−1]]

∫
Rd
pdε(ti, tk, x, z)Dzla

lm
ε (tk, z)Dzma

qr
ε (tk, z)

×D2
zqzrp

τ,h
ε (tk, tj , z, y)dz,

T32(ti, tj , x, y) := h
∑

k∈[[d i+j2 e+1,j−1]]

∫
Rd
D2
zlzm

pdε(ti, tk, x, z)
[
(almε (tk, z)− almε (tk, y))

×(aqrε (tk, z)− aqrε (tk, y))]D2
zqzrp

τ,h
ε (tk, tj , z, y)dz.

(3.42)

For T31, we obtain from inequality (3.32) in Proposition 3.4 and (2.6) that:

|T31(ti, tj , x, y)| ≤ Cε−2+2γpc(tj − ti, y − x)
∑

k∈[[d i+j2 e+1,j−1]]

h

(tj − tk)

≤ Cε−2+2γpc(tj − ti, y − x)

∫ tj−h

ti+tj
2

du

tj − u

≤ Cε−2+2γpc(tj − ti, y − x) |lnh| . (3.43)
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For T32, Proposition 3.4 and the spatial Hölder continuity of aε yield:

|T32(ti, tj , x, y)| ≤ Cε−2+γ

(tj − ti)1−γ pc(tj − ti, y − x). (3.44)

An upper-bound for T3 then follows summing (3.44) and (3.43). We then derive from
(3.40), (3.41) and (3.39) that: ∣∣∣∣pdε ⊗h (L̃ε·,∗ − L̃∗,ε· )2

pτ,hε (ti, tj , x, y)

∣∣∣∣
≤ C

( ε−2+γ

(tj − ti)1−γ +
h(1 + ε−2(tj − ti)γ/2)

(tj − ti)2−γ + ε−2+2γ |lnh|
)
pc(tj − ti, y − x). (3.45)

We thus eventually get from (3.31), (3.34) and (3.45):∣∣(pε − phε ) (ti, tj , x, y)
∣∣

≤C

{
Cηh

(γ−η)/2 + h

(
h

(tj − ti)2−γ +
ε−2+γ

(tj − ti)1−γ

(
1 +

ε−γ

(tj − ti)1−γ/2h
)

+ ε−2+2γ |lnh|
)}

× pc(tj − ti, y − x).

(3.46)

Without loss of generality we assume now that 0 ≤ tj − ti ≤ T ≤ 1. We also suppose that:(
h

(tj − ti)1−γ/2

)1/γ

≤ ε. (3.47)

We will check that (3.47) holds for the specific choice of the parameters ε, η which is
performed below.

We derive from equations (3.46), (3.47), together with (3.1), (3.2) that:∣∣(p− ph) (ti, tj , x, y)
∣∣

≤ C
{
Cη

(
εγ−η + h(γ−η)/2

)
+

hε−2+γ

(tj − ti)1−γ + hε−2+2γ |lnh|
}
pc(tj − ti, y − x).

(3.48)

Take now

Cηε
γ−η =

hε−2+γ

(tj − ti)1−γ ⇐⇒ ε =

(
h

(tj − ti)1−γ

)1/(2−η)

C−1/(2−η)
η .

For such a choice of a mollifying parameter we have for (tj − ti) ≥ h1/(2−γ):

εγ |lnh| =

(
h

(tj − ti)1−γ

)γ/(2−η)

C−γ/(2−η)
η |lnh| ≤ hγ/((2−γ)(2−η))C−γ/(2−η)

η |lnh| .

Assume for a while that η can be taken so that:

hγ/((2−γ)(2−η))C−γ/(2−η)
η | lnh| ≤ hγ/((2−γ)2) ⇐=

2(2− γ)

γ

ln2(h−1)

ln(h−1)
≤ η

2
, (3.49)

recalling as well that Cη ≥ 1 for the last assertion. Then, for (tj − ti) ≥ h1/(2−γ) if (3.49)
holds:

εγ |lnh| ≤ hγ/((2−γ)2) ≤ (tj − ti)γ/2.

Hence, from (3.48), if (3.49) holds:

|(p− ph)(ti, tj , x, y)| ≤ C
{
Cηh

(γ−η)/2 + C
2−γ
2−η
η

(
h

(tj − ti)1−γ

) γ−η
2−η }

pc(tj − ti, y − x)
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≤ C exp(C(2η−1 + 1)2η−1+1)
{
h(γ−η)/2 +

( h

(tj − ti)1−γ

) γ
2−η

1−γ/2
2−η

}
pc(tj − ti, y − x),(3.50)

using the bounds of Lemma 2.5 for the last inequality. The point is now to carefully

choose η := η(h). Let us consider the specific sequence η = η(h) := 2 log3(h−1)
log2(h−1) , where

we recall that for k ∈ N, logk(x) stands for the kth iterated logarithm of x. Observe
that this η(h) satisfies the condition (3.49) for h small enough. Setting βh := h−η and

αh := exp
(
C(2η−1 + 1)2η−1+1

)
, we get that:

log2(βh) = log(η log(h−1)) = log(2) + log4(h−1)− log3(h−1) + log2(h−1),

log2(αh) = log(C(2η−1 + 1)2η−1+1) = log(C) + (2η−1 + 1) log(2η−1 + 1)

= log(C) + (
log2(h−1)

log3(h−1)
+ 1) log(2η−1(1 +

η

2
))

= log(C) + (
log2(h−1)

log3(h−1)
+ 1){log(2η−1) + log(1 +

η

2
)}

= log(C) + (
log2(h−1)

log3(h−1)
+ 1){log3(h−1)− log4(h−1) + log(1 +

η

2
)}

= log2(h−1)− log2(h−1) log4(h−1)

log3(h−1)
+ log3(h−1)− log4(h−1) +Rh,

Rh := log(C) + log(1 +
log3(h−1)

log2(h−1)
)

{
log2(h−1)

log3(h−1)
+ 1

}
.

It is easily seen that there exists a finite constant C̄ > 0 s.t. for all h small enough,
Rh ≤ C̄ and that log2(βh) ≥ log2(αh)− C̄. By monotonicity of the exponential, recalling
as well that η ∈ (0, γ), we thus derive:(
β

1
2

h + β
1−γ/2
2−η

h

)
αh =

(
h−

η
2 + h−η

1−γ/2
2−η

)
exp(C(2η−1 + 1)2η−1+1) ≤ 2h−η(1/2+exp(C̄)). (3.51)

The previous choice of η yields that, since from Lemma 2.5 Cη ≤ Cαh, (3.47) is satisfied
as well. Plugging (3.51) into (3.50) we complete the proof of equation (1.6) in Theorem
1.1.

3.4.2 Proof of the main results for piecewise smooth coefficients (Theorem 1.6
under (APS))

Keeping the definitions of (3.38), the idea is to proceed as in the previous section from
equations (3.31), and (3.39). To emphasize the specificity of Assumptions (APS), due
to the approximation of the piecewise smooth drift, we begin with the special case
σ(t, x) = σ. In that framework, the only terms appearing in (L̃ε.,∗ − L̃∗,ε. )2pτ,hε are the

Ψε,τ,h
l,m introduced in (3.38). From equation (3.33) in Proposition 3.4, using a direct

control for the index k = i and a global integration by part for k > i, associated with the
bound of (2.9), we derive:

|[pdε ⊗h (L̃ε.,∗ − L̃∗,ε. )2pτ,hε ](ti, tj , x, y)| ≤ C
( C̄η,qε−η

(tj − ti)
hpc(tj − ti, y − x)

+h
∑

k∈[[i+1,j−1]]

∣∣∣ ∫
Rd

divz

(
pdε(ti, tk, x, z)bε(tk, z)

)
〈bε(tk, z),∇zpτ,hε (tk, tj , z, y)〉dz

∣∣∣)
≤ C

(
C̄η,qε

−ηpc(tj − ti, y − x)

+h
∑

k∈[[i+1,j−1]]

∫
Rd

( C̄η,qε
−η

(tk − ti)1/2
+ (1 + ε−1Iz∈Vε(I))

)
pc(tk − ti, z − x)

pc(tj − tk, y − z)
(tj − tk)1/2

dz
)
.
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The point is now to use the Hölder inequality to exploit that the set on which ∇zbε gives
an explosive bound is small. We get:

|[pdε ⊗h (L̃ε.,∗ − L̃∗,ε. )2pτ,hε ](ti, tj , x, y)| ≤ C
(
C̄η,qε

−ηpc(tj − ti, y − x)

+h
∑

k∈[[i+1,j−1]]

1

(tj − tk)1/2

{ C̄η,qε
−η

(tk − ti)1/2
pc(tj − ti, y − x)

+ε−1+1/q
(∫

Rd
pc(tk − ti, z − x)q̄pc(tj − tk, y − z)q̄dz

)1/q̄})
,

denoting by q̄ > 1 the conjugate of q, q−1 + q̄−1 = 1. Recall now that:(∫
Rd
pc(tk − ti, z − x)q̄pc(tj − tk, y − z)q̄dz

)1/q̄

=
( c(tj − ti)

(2π)(tk − ti)(tj − tk)

)d/(2q)
q̄−d/(2q̄)pc(tj − ti, y − x).

This yields:

|[pdε ⊗h (L̃ε.,∗ − L̃∗,ε. )2pτ,hε ](ti, tj , x, y)|

≤ C
(
C̄η,qε

−η +
1

α(q)
ε−1+1/q(tj − ti)α(q)

)
pc(tj − ti, y − x)

≤ CC̄η,qε
−1+1/qpc(tj − ti, y − x), (3.52)

as soon as ε1− 1
q−η ≤ 1 which holds true for η small enough (remember q > d).

Performing now in the general case, involving derivatives of the heat kernel up to
order 4, an integration by part similar to the one described for (3.39) and using the
Hölder inequality as above for the terms involving derivatives of bε, we derive from
(3.33) in Proposition 3.4, that for all q > d, η ∈ (0, α(q)):

|[pdε⊗h (L̃ε.,∗− L̃∗,ε. )2pτ,hε ](ti, tj , x, y)| ≤ C
{

1 + C̄η,qε
−(1+2η)(1 + εη| ln(h)|)

}
pc(tj− ti, y−x).

(3.53)
We thus get in whole generality, from (3.3), (3.31), (3.53) and (3.35) in Proposition

3.7:

|(p− ph)(ti, tj , x, y)| ≤ C
[
Cqε

1/q + C̄η,qhε
−(1+η)(1 + εη/2| ln(h)|)

+C̄η,q

(h| ln(h)|ε−(1+η)

(tj − ti)1/2
+
h1−η/2ε−(1+η)

(tj − ti)1/2
+ hε−2+1/q

)]
pc(tj − ti, y − x).

If now d(y,Vε(I)) ≥ 2ε, then, from (3.36) in Proposition 3.7:

|(p− ph)(ti, tj , x, y)| ≤ C
[
Cqε

1/q + C̄η,qhε
−(1+2η)(1 + εη| ln(h)|)

+C̄η,q

(h| ln(h)|ε−(1+η)

(tj − ti)1/2
+
h1−η/2ε−(1+η)

(tj − ti)1/2
+

h1−η

d(y,Vε(I))

)]
pc(tj − ti, y − x).

Eventually, if we additionally have that σ(t, x) = σ, (3.37) in Proposition 3.7 and (3.52)
yield:

|(p− ph)(ti, tj , x, y)| ≤ C
[
Cqε

1/q + C̄η,qhε
−1+1/q

+C̄η,q

(h| ln(h)|ε−η

(tj − ti)1/2
+
hε−(1+η)+1/q

(tj − ti)1/2
+

h1−η

d(y,Vε(I))

)]
pc(tj − ti, y − x).
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We then set Cqε1/q = C̄η,q
hε−2+1/q

(tj−ti)1/2
in the general case, i.e. for b, σ depending both on the

spatial variable and without any distance condition for the final point y. If d(y,Vε(I)) ≥
2ε, we take Cqε

1/q = C̄η,q
h1−η/2ε−(1+η)

(tj−ti)1/2
for a general σ and Cqε

1/q = C̄η,q
hε−(1+η)+1/q

(tj−ti)1/2

if σ(t, x) = σ. The results can be derived as in the previous section choosing η :=

η(h) = ψ(h), q := q(h) s.t. α(q) = 2ψ(h). For (1.12) and (1.13), we recall as well that if
d(y, I) ≥ h1/2−ε for a fixed given ε > 0 for a general σ and d(y, I) ≥ h1−ε for σ(t, x) = σ,
the condition d(y,Vε(I)) ≥ 2ε is met.

4 Proof of the technical results from Section 3

4.1 Proof of Proposition 3.4

4.1.1 Proof under (AH)

Let us establish the result for pε. We start from the parametrix representation of pε
obtained in (3.5). In all cases, we can readily derive from (3.7) (recall that X̃ε,y is a non
degenerate Gaussian process) and (2.6) in Proposition 2.2 that for the main term in the
expansion for all multi-index α, |α| ∈ [[1, 4]]:

|Dα
x p̃ε(s, t, x, y)| ≤ C

(t− s)|α|/2
pc(t− s, y−x), |Dα

y p̃ε(s, t, x, y)| ≤ Cε−|α|+γ

(t− s)|α|/2
pc(t− s, y−x).

(4.1)
Let us now concentrate on the remainder term:

Rε(s, t, x, y) :=
∑
i≥1

p̃ε ⊗H(i)
ε (s, t, x, y) = p̃ε ⊗ Φε(s, t, x, y),

Φε(s, t, x, y) :=
∑
i≥1

H(i)
ε (s, t, x, y).

We focus on the first two inequalities in (3.32), the last one can be proved similarly. The
ideas are close to those in [IKO62], but we need to adapt them since they considered
the “forward” version of the parametrix expansions. The key point is that, for Hölder
coefficients we have bounded controls for the derivatives of the remainder in the back-
ward variable up to order two. It is first easily seen for the first derivatives, since the
first order derivation gives an integrable singularity in time in the previous expansions.
Indeed, from (4.1) and (3.9), one readily gets the statement if |α| = 1. The case |α| ≥ 2 is
much more subtle and needs to be discussed thoroughly. Write indeed:

Dα
xRε(s, t, x, y) = lim

τ→0

∫ (t+s)/2

s+τ

du

∫
Rd
Dα
x p̃ε(s, u, x, z)Φε(u, t, z, y)dz +∫ t

(t+s)/2

du

∫
Rd
Dα
x p̃ε(s, u, x, z)Φε(u, t, z, y)dz

=: lim
τ→0

Dα
xR

τ
ε (s, t, x, y) +Dα

xR
f
ε (s, t, x, y). (4.2)

The contribution Dα
xR

f
ε (s, t, x, y) does not exhibit time singularities in the integral, since

on the considered integration set u− s ≥ 1
2 (t− s). Let us now recall the usual control on

the parametrix kernel under (AH), see e.g. Section 2 in [KKM16]. There exist c, c1 s.t.
for all 0 ≤ u < t ≤ T, (z, y) ∈ (Rd)2:

|Hε(u, t, z, y)| ≤ c1(1 ∨ T (1−γ)/2)

(t− u)1−γ/2 pc(t− u, z − y). (4.3)
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Inequality (4.3) for Hε then yields for all r ∈ N∗, 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

|H(r)
ε (s, t, x, y)| ≤ ((1∨T (1−γ)/2)c1)r

r−1∏
i=1

B(
γ

2
, 1+(i−1)

γ

2
)pc(t−s, y−x)(t−s)−1+ rγ

2 , (4.4)

with the convention
∏0
i=1 = 1. We thus derive that for all 0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2:

|Φε(s, t, x, y)| ≤ C

(t− s)1−γ/2 pc(t− s, y − x). (4.5)

Thus, from inequalities (4.1) and (4.5):

|Dα
xR

f
ε (s, t, x, y)| ≤ C

(t− s)(|α|−γ)/2
pc(t− s, y − x). (4.6)

The delicate contribution is indeed Dα
xR

τ
ε (s, t, x, y) for which we need to be more careful.

If |α| = 2 we exploit some cancellation properties of the derivatives of the Gaussian
kernels. Recall now that for an arbitrary w ∈ Rd, setting for 0 ≤ s < u ≤ T, Σε(s, u, w) :=∫ u
s
σεσ

∗
ε (v, w)dv,

p̃wε (s, u, x, z) =

exp

(
− 1

2 〈Σε(s, u, w)−1(z − x), z − x〉

)
(2π)d/2 det(Σε(s, u, w))1/2

,

D2
xixj p̃

w
ε (s, u, x, z) =

{(
Σ−1
ε (s, u, w)(z − x)

)
i

(
Σ−1
ε (s, u, w)(z − x)

)
j

−δij(Σ−1
ε (s, u, w))ii

}
p̃wε (s, u, x, z), ∀(i, j) ∈ [[1, d]]2, (4.7)

where for q ∈ Rd, we denote for i ∈ [[1, d]] by qi its ith entry. Hence, for all multi-index
α, |α| = 2: ∫

Rd
Dα
x p̃

w
ε (s, u, x, z)dz = 0. (4.8)

Introducing the centering function cαε (s, u, x, z) := (Dα
x p̃

w
ε (s, u, x, z)) |w=x, we rewrite:

Dα
xR

τ
ε (s, t, x, y) =

∫ (s+t)/2

s+τ

du

∫
Rd

(Dα
x p̃ε − cαε )(s, u, x, z)Φε(u, t, z, y)dz

+

∫ (s+t)/2

s+τ

du

∫
Rd
cαε (s, u, x, z)(Φε(u, t, z, y)− Φε(u, t, x, y))dz

:= (Rτ,1ε +Rτ,2ε )(s, t, x, y), (4.9)

exploiting the centering condition (4.8) to introduce the last term of the first equality. On
the one hand, the terms Dα

x p̃ε(s, u, x, z), c
α
ε (s, u, x, z) only differ in their frozen coefficients

(respectively at point z and x). Exploiting the Hölder property in space of the mollified
coefficients, it is then easily seen that:

|(Dα
x p̃ε − cαε )(s, u, x, z)| ≤ C|x− z|γ

(u− s)
pc(u− s, z − x) ≤ C

(u− s)1−γ/2 pc(u− s, z − x),

yielding an integrable singularity in time so that, from (4.5):

|Rτ,1ε (s, t, x, y)| ≤ C

(t− s)1−γ pc(t− s, y − x). (4.10)
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Let us now control the other contribution. The key idea is now to exploit the smoothing
property of the kernel Φε. Assume indeed that for A := {z ∈ Rd : |x− z| ≤ c(t− s)1/2}
(recall as well that u ∈ [s, s+t2 ]) one has:

|Φε(u, t, x, y)− Φε(u, t, z, y)| ≤ C |x− z|γ/2

(t− u)1−γ/4 pc(t− u, y − z). (4.11)

Then, we can derive from (4.1), (4.9) and (4.11):

|Rτ,2ε (s, t, x, y)| ≤C2

∫ (s+t)/2

s+τ

du

∫
A

|x− z|γ/2

(u− s)
pc(u− s, z − x)

1

(t− u)1−γ/4 pc(t− u, y − z)dz

+
C

(t− s)γ/4

∫ (s+t)/2

s+τ

du

∫
AC

|x− z|γ/2

(u− s)
pc(u− s, z − x){|Φε(u, t, z, y)|+ |Φε(u, t, x, y)|}dz.

(4.12)

From (4.5), we finally get on the considered time set:

|Rτ,2ε (s, t, x, y)| ≤ Cpc(t− s, y − x)

∫ (s+t)/2

s+τ

du
1

(u− s)1−γ/4
1

(t− u)1−γ/4

≤ C

(t− s)1−γ/2 pc(t− s, y − x),

which together with (4.10), (4.9), (4.6) and (4.2) gives the statement. It remains to
establish (4.11). From the definition of Φε and the smoothing effect of the kernel Hε in
(4.4), it suffices to prove that on the set Ā := {z ∈ Rd : |x− z| ≤ c(u′ − u)1/2}:

|Hε(u, u
′, x, w)−Hε(u, u

′, z, w)| ≤ C |x− z|γ/2

(u′ − u)1−γ/4 pc(u
′ − u,w − z), (4.13)

for u′ ∈ (u, t], u ∈ [s, (s+ t)/2]. Observe that Ā ⊂ A. Indeed, recalling that we want to
establish (4.11) on A if z 6∈ Ā, we get from (4.4):∫ t

u

du′
∫
Āc
|Hε(u, u

′, x, w)−Hε(u, u
′, z, w)||(

∑
i≥2

H(i)
ε )(u′, t, w, y)|dw

≤
∫ t

u

du′
∫
Āc

C

(u′ − u)1−γ/2 (pc(u
′ − u,w − x) + pc(u

′ − u,w − z))

× |x− z|
γ/2

(u′ − u)γ/4
C

(t− u′)1−γ pc(t− u
′, y − w)dw ≤ C |x− z|γ/2

(t− u)1−5γ/4
pc(t− u, y − z)

≤ C |x− z|γ/2

(t− u)1−γ/4 pc(t− u, y − z),

exploiting that z ∈ A, t − u ≥ 1
2 (t − s), and the usual convexity inequality |y−x|

2

t−u ≥
|y−z|2
2(t−u) −

|z−x|2
t−u ≥

|y−z|2
2(t−u) − 2c2 for the last but one inequality. On the other hand, on Ā we

get (4.11) from (4.13) and (4.4).

Let us turn to the proof of (4.13). We concentrate on the second derivatives in Hε

which yield the most singular contributions:

Tr((aε(u, x)− aε(u,w))D2
xp̃ε(u, u

′, x, w))− Tr((aε(u, z)− aε(u,w))D2
xp̃ε(u, u

′, z, w))

= Tr((aε(u, x)− aε(u, z))D2
xp̃ε(u, u

′, x, w))

−Tr((aε(u, z)− aε(u,w))(D2
xp̃ε(u, u

′, z, w)−D2
xp̃ε(u, u

′, x, w))) =: I + II. (4.14)
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Then, from (4.1),

|I| ≤ C
|x− z|γ

(u− u′)
pc(u

′ − u,w − x) ≤ C|x− z|γ/2

(u− u′)1−γ/4 pc(u
′ − u,w − x)

≤ C|x− z|γ/2

(u− u′)1−γ/4 pc(u
′ − u,w − z), (4.15)

using that z ∈ Ā for the second inequality, again combined with the convexity inequality
|x−w|2
u′−u ≥

|z−w|2
2(u′−u) −

|x−z|2
u′−u ≥

|z−w|2
2(u′−u) − c

2 for the last one. Now, from the explicit expression
of the second order derivatives in (4.7), (A2) and usual computations we also derive:

|II| ≤ C|z − w|γ

(u′ − u)

|z − x|γ/2

(u′ − u)γ/4
pc(u

′ − u,w − z) ≤ C|z − x|γ/2

(u′ − u)1−γ/4 pc(u
′ − u,w − z). (4.16)

This gives (4.13) and completes the proof for |α| ≤ 2.
Let us now turn to |α| ≥ 3. In those cases, the singularities induced by the derivatives

are not integrable in short time, even if we exploit cancellations. We are thus led to
perform integration by parts, deteriorating the bounds since these operations make the
derivatives of the mollified coefficients appear.

Recalling α ∈ Nd, denote by l a multi-index s.t. |l| = 2 and α − l ≥ 0 (where the
inequality is to be understood componentwise). From equations (4.2), (4.6), we only
have to consider the contribution Dα

xR
τ
ε (s, t, x, y). Write:

Dα
xR

τ
ε (s, t, x, y) = Dα−l

x

∫ (t+s)/2

s+τ

du

∫
Rd
Dl
xp̃ε(s, u, x, z)Φε(u, t, z, y)dz

= Dα−l
x

∫ (t+s)/2

s+τ

du

∫
Rd
gl,ε(s, u, x, z)Φε(u, t, z, y)dz, (4.17)

where gl,ε(s, u, x, z) := Dl
xp̃ε(s, u, x, z). Let us write introducing the cancellation term clε

introduced after (4.8):

Dα
xR

τ
ε (s, t, x, y) = Dα−l

x

∫ (s+t)/2

s+τ

du

∫
Rd

(gl,ε − clε)(s, u, x, z)Φε(u, t, z, y)dz

+Dα−l
x

∫ (s+t)/2

s+τ

du

∫
Rd
clε(s, u, x, z)(Φε(u, t, z, y)− Φε(u, t, x, y))dz

= Dα−l
x

∫ (s+t)/2

s+τ

du

∫
Rd

(gl,ε − clε)(s, u, x, x+ z)Φε(u, t, x+ z, y)dz

+Dα−l
x

∫ (s+t)/2

s+τ

du

∫
Rd
clε(s, u, x, x+ z)(Φε(u, t, x+ z, y)− Φε(u, t, x, y))dz. (4.18)

The purpose of that change of variable, already performed in [KM02], is that we get
integrable time singularities in the contributions Dα−l

x (gl,ε − clε)(s, u, x, x+ z). Anyhow,
the mollified coefficients bε, σε have explosive derivatives. From the definition of gl,ε and
(2.6) one easily gets that there exists c, C s.t. for all α, |α| ≤ 4:

|Dα−l
x (gl,ε − clε)(s, u, x, x+ z)| ≤ Cε−|α−l|

(u− s)1−γ/2 pc(u− s, z),

|Dα−l
x clε(s, u, x, x+ z)| ≤ Cε−|α−l|+γ

(u− s)
pc(u− s, z).

(4.19)

From (4.18) and (4.19) it thus remains to control the terms Dα−l
x Φε(u, t, z + x, y) and

Dα−l
x (Φε(u, t, x+ z, y)−Φε(u, t, x, y)) which are the most singular ones in Dα

xR
τ
ε (s, t, x, y).

To this end, we will establish by induction that the following control holds:

∃c, C, ∀0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2, ∀β, |β| ≤ 3, |Dβ
xH

(i)
ε (s, t, x, y)| ≤
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Ciε−|β|

(t− s)|β|/2
(t− s)−1+iγ/2

i−1∏
j=1

B(
γ

2
, 1 + (j − 1)

γ

2
)pc(t− s, y − x), (4.20)

with the convention that
∏0
j=1 = 1. Observe first that for |β| = 0 (no derivation), estimate

(4.20) readily follows from (4.4). Let us now suppose |β| > 0. Observe from the definition
of Hε that (4.20) is satisfied for i = 1. Let us assume it holds for a given i and let us
prove it for i+ 1. Write again:

Dβ
xH

(i+1)
ε (s, t, x, y) =

∫ t

(s+t)/2

du

∫
Rd
Dβ
xHε(s, u, x, z)H

(i)
ε (u, t, z, y)dz

+Dβ
x

∫ (s+t)/2

s

du

∫
Rd
Hε(s, u, x, x+ z)H(i)

ε (u, t, x+ z, y)dz =: (Ri,β1 +Ri,β2 )(s, t, x, y).

The term Ri,β1 is easily controlled by (4.20) for β = 0 and the induction hypothesis.
Observe also that, from Proposition 2.2 one derives similarly to (4.19) that:

|Dβ
xHε(s, u, x, x+ z)| ≤ Cε−|β|

(u− s)1−γ/2 pc(u− s, z).

Together with the induction hypothesis and the Leibniz rule for differentiation, this
allows to control Ri,β2 . The controls on {Ri,βj }j∈{1,2} give (4.20) for i+ 1. We eventually
derive (reminding that |l| = 2):

|Dα−l
x Φε(u, t, x+ z, y)| ≤ C

(t− u)(|α|−2)/2

ε−|α|+2

(t− u)1−γ/2 pc(t− u, y − (x+ z)). (4.21)

The spatial Hölder continuity of the derivatives of the kernel Φε could be checked
following the previous steps performed respectively to get the spatial Hölder continuity
of the kernel and the controls on its derivatives. One gets, on |z| ≤ c(t− u)1/2:

|Dα−l
x Φε(u, t, x+ z, y)−Dα−l

x Φε(u, t, x, y)|

≤ C|z|γ/2

(t− u)(|α|−2)/2

ε−|α|+2

(t− u)1−γ/4 pc(t− u, y − (x+ z)),

which together with (4.21), (4.19), (4.18) gives (proceeding as above for |z| ≥ c(t−u)1/2):

|Dα
xR

τ
ε (s, t, x, y)| ≤ Cε−|α|+2(t− s)γ/2

(t− s)|α|/2
pc(t− s, y − x).

The second equation of (3.32) follows for p̄ε = pε from the above control and (4.6), (4.2).
Observe that the control for the derivative w.r.t. y has additional singularity in ε. This is
clear since we directly differentiate the frozen mollified coefficients. Now the statements
readily hold for pdε , since the integration in time played no role in the previous compu-
tations. For phε , the only point that should be totally justified is the smoothing property

and Hölder continuity of the discrete Kernel Φhε (ti, tj , x, y) :=
∑j−i
r=1H

h,(r)
ε (ti, tj , x, y). The

smoothing property, equivalent of (4.20), has been investigated in [LM10]. The spatial
Hölder continuity can be derived as above.

4.1.2 Proof under (APS)

Let us now turn to the proof of the heat kernel bounds for pε under (APS), which almost
follows the same lines. Observe first that the result for |α| = 1 still follows from (4.1)
and (3.9). The key point is again that the derivative of the Gaussian kernel yields an
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integrable singularity. For |α| = 2, we still separate the contribution Rε(s, t, x, y) as in
(4.2) and again focus on limτ→0D

α
xR

τ
ε (s, t, x, y) which is the only term yielding a potential

singularity. With the notations of (4.9), it is sufficient to investigate Rτ,2ε (s, t, x, y). Indeed,
under (APS), equation (4.10) actually holds with γ = 1. We recall that to control
Rτ,2ε (s, t, x, y), the key estimate was (4.11). We aim at proving the different control, for
all u ∈ [s, t), for all η ∈ (0, 1]:

|Φε(u, t, x, y)− Φε(u, t, z, y)| ≤ Cε−η |x− z|
η

(t− u)3/4
pc(t− u, y − z), (4.22)

on A := {z ∈ Rd : |x − z| ≤ c[(t − s)1/2 ∧ ε]}. Then, we can derive from (4.1), (4.9) and
(4.22):

|Rτ,2ε (s, t, x, y)| ≤Cε−η
∫ (s+t)/2

s+τ

du

∫
A

|x− z|η

(u− s)
pc(u− s, z − x)

1

(t− u)3/4
pc(t− u, y − z)dz

+ C((t− s)1/2 ∧ ε)−η
∫ (s+t)/2

s+τ

du

∫
AC

|x− z|η

(u− s)
× pc(u− s, z − x){|Φε(u, t, z, y)|+ |Φε(u, t, x, y)|}dz.

Since the drift bε is uniformly bounded, uniformly in ε ∈ [0, 1], we have under (APS) the
following usual control on the parametrix kernel (see e.g. Section 2 in [KKM16]):

|Hε(u, t, z, y)| ≤ c1
(t− u)1/2

pc(t− u, y − z). (4.23)

Equation (4.23) for Hε then yields

|H(r)
ε (s, t, x, y)| ≤ cr1

r−1∏
i=1

B(
1

2
, 1 + (i− 1)

1

2
)pc(t− s, y − x)(t− s)−1+ r

2 , (4.24)

again with the convention
∏0
i=1 = 1. We thus derive |Φε(u, t, z, y)| ≤ C

(t−u)1/2
pc(t−u, y−z)

and |Φε(u, t, x, y)| ≤ C
(t−u)1/2

pc(t− u, y − x). We finally get on the considered time set:

|Rτ,2ε (s, t, x, y)| ≤ C((t− s)1/2 ∧ ε)−ηpc(t− s, y − x)

∫ (s+t)/2

s+τ

du
1

(u− s)1−η/2
1

(t− u)3/4

≤ C((t− s)1/2 ∧ ε)−η

η(t− s)3/4−η/2 pc(t− s, y − x).

It remains to establish (4.22). From the definition of Φε and the smoothing effect of the
kernel Hε in (4.24), it suffices to prove that on Ā := {z ∈ Rd : |x− z| ≤ c[(u′ − u)1/2 ∧ ε]}:

|Hε(u, u
′, x, w)−Hε(u, u

′, z, w)| ≤ C{ |x− z|
η

(u′ − u)3/4
((u′−u)1/2∧ε)−η}pc(u′−u,w−z), (4.25)

for u′ ∈ (u, t], u ∈ [s, (s+ t)/2]. The contributions associated with z ∈ ĀC can be handled
as above. To establish the above control we focus on the first order terms involving the
regularized coefficient with initial discontinuities. Indeed the second order contribution
can be analyzed as in (4.14), (4.15), (4.16), taking γ = 1 in those expressions. In
particular, the time singularity in (u− u′)3/4 in (4.25) precisely comes from those terms.
Recalling that under (APS) the driftless proxy does not depend on ε (since the diffusion
is smooth, see (3.10) in which one has σε = σ under (APS)), we denote its density by p̃
and write:

〈bε(u, x), Dxp̃(u, u
′, x, w)〉 − 〈bε(u, z), Dxp̃(u, u

′, z, w)〉

EJP 22 (2017), paper 46.
Page 33/47

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP53
http://www.imstat.org/ejp/


Euler scheme of diffusions with non-smooth coefficients

= 〈bε(u, x)− bε(u, z), Dxp̃(u, u
′, x, w)〉

+〈bε(u, z), Dxp̃(u, u
′, x, w)−Dxp̃(u, u

′, z, w)〉 := I + II.

On the one hand, from the mean value theorem and recalling that |Dxbε|∞ ≤ Cε−1 ≤
C((u′ − u)1/2 ∧ ε)−1 we get:

|I| ≤ C

(u′ − u)1/2

{
2|b|∞

( |x− z|
(u′ − u)1/2 ∧ ε

)η
I|x−z|>(u′−u)1/2∧ε

+ε−1|x− z|I|x−z|≤(u′−u)1/2∧ε

}
pc(u

′ − u,w − x)

≤ C((u′ − u)1/2 ∧ ε)−η |x− z|
η

(u′ − u)1/2
pc(u

′ − u,w − x)

≤ C((u′ − u)1/2 ∧ ε)−η |x− z|
η

(u′ − u)1/2
pc(u

′ − u,w − z),

using again a convexity inequality for the last control, recalling that z ∈ Ā. On the other
hand still from the mean value Theorem and usual controls on the derivatives of the
Gaussian density:

|II| ≤ C|x− z|
(u′ − u)

∫ 1

0

pc(u
′ − u,w − {z + λ(x− z)})dλ ≤ C|x− z|η

(u′ − u)(1+η)/2
pc(u

′ − u,w − z)

≤ C|x− z|η

(u′ − u)1/2((u′ − u)1/2 ∧ ε)η
pc(u

′ − u,w − z).

The above estimates give (4.25) and concludes the proof for |α| = 2.
Let us turn to |α| ≥ 3. The idea is again to proceed as under (AH), up to a suitable

modification of the key estimate (4.20) which can now be localized and becomes for all
q > d:

∃c, C, ∀0 ≤ s < t ≤ T, (x, y) ∈ (Rd)2, ∀β, |β| ≤ 3,

|Dβ
xH

(i)
ε (s, t, x, y)| ≤

Ci(ε
−|β|

Ix∈Vε(I) + ε−|β|+1/q)

(t− s)|β|/2
(t− s)−1+iα(q)

×
i−1∏
j=1

B(α(q), α(q)j)pc(t− s, y − x), α(q) =
1

2
(1− d

q
), (4.26)

with
∏0
j=1 = 1. We again proceed by induction. Observe first that for |β| = 0 (no

derivation), estimate (4.26) readily follows from (4.23). Let us now suppose |β| > 0.
Observe as well from the definition of Hε that (4.26) is satisfied for i = 1. Let us assume
it holds for a given i and let us prove it for i+ 1. Write again:

Dβ
xH

(i+1)
ε (s, t, x, y) =

∫ t

(s+t)/2

du

∫
Rd
Dβ
xHε(s, u, x, z)H

(i)
ε (u, t, z, y)dz

+Dβ
x

∫ (s+t)/2

s

du

∫
Rd
Hε(s, u, x, x+ z)H(i)

ε (u, t, x+ z, y)dz =: (Ri,β1 +Ri,β2 )(s, t, x, y).

The term Ri,β1 is easily controlled by (4.26) that holds from the induction hypothesis for
i0 = 1 (direct differentiation of Hε) and β = 0 for the considered i (no differentiation of
H

(i)
ε ). Observe also that, similarly to (4.19), one has:

|Dβ
xHε(s, u, x, x+ z)| ≤

C(ε−|β|Ix∈Vε(I) + 1)

(u− s)1/2
pc(u− s, z). (4.27)
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Now, from the Leibniz rule for differentiation, (4.27) and the induction hypothesis, we
have:

|Ri,β2 (s, t, x, y)|

≤ Ci+1
i−1∏
j=1

B(α(q), α(q)j)
{ ∑
β̃,|β̃|≤|β|

(
|β|
|β̃|

)∫ (s+t)/2

s

du(t− u)−1+iα(q)

(u− s)1/2(t− u)(|β|−|β̃|)/2

×
∫
Rd
pc(u− s, z)(ε−|β̃|Ix∈Vε(I) + 1)(ε−(|β|−|β̃|)Ix+z∈Vε(I)

+ε−(|β|−|β̃|)+1/q)pc(t− u, y − x− z)dz
}

≤ Ci+1
i−1∏
j=1

B(α(q), α(q)j)
{ ∑
β̃,|β̃|≤|β|

(
|β|
|β̃|

)∫ (s+t)/2

s

du(t− u)−1+iα(q)

(u− s)1/2(t− u)(|β|−|β̃|)/2

×[pc(t− s, y − x)(ε−|β|Ix∈Vε(I) + ε−|β|+1/q)

+ε−|β|+1/q(

∫
Rd
pc(u− s, z)q̄pc(t− u, y − x− z)q̄dz)1/q̄

}
, (4.28)

denoting by q̄ > 1 the conjugate of q, q−1 + q̄−1 = 1 (see also Section 3.4.2 for similar
arguments). Recall now that:

(

∫
Rd
pc(u− s, z)q̄pc(t− u, y − x− z)q̄dz)1/q̄

=
( c(t− s)

(2π)(u− s)(t− u)

)d/(2q)
q̄−d/(2q̄)pc(t− s, y − x) ≤ C(u− s)−d/(2q)pc(t− s, y − x),

for u ∈ [s, (s+ t)/2]. Hence,

|Ri,β2 (s, t, x, y)| ≤ Ci+1

(t− s)|β|/2
i−1∏
j=1

B(α(q), α(q)j)
{∫ (s+t)/2

s

du(t− u)−1+iα(q)

(u− s)1/2(1+d/q)

}
×pc(t− s, y − x)(ε−|β|Ix∈Vε(I) + ε−|β|+1/q)

≤ Ci+1

(t− s)|β|/2
i−1∏
j=1

B(α(q), α(q)j)(t− s)−1+(i+1)α(q)

∫ 1/2

0

(1− u)−1+iα(q)u−1+α(q)du

×pc(t− s, y − x)(ε−|β|Ix∈Vε(I) + ε−|β|+1/q).

The controls on {Ri,βj }j∈{1,2} give (4.26) for i+ 1.
Estimate (4.26) yields for every multi-index l, |l| = 2:

|Dα−l
x Φε(u, t, x+z, y)| ≤ Cq

(t− u)(|α|−2)/2

Ix+z∈Vε(I)ε
−|α|+2 + ε−|α|+2+1/q

(t− u)1−α(q)
pc(t−u, y−(x+z)).

(4.29)
The spatial Hölder continuity of the derivatives of the kernel Φε could be checked
following the previous steps performed respectively to get the spatial Hölder continuity
of the kernel and the controls on its derivatives. One gets, on |z| ≤ c{(t− u)1/2 ∧ ε} for
all η ∈ (0, 1]:

|Dα−l
x Φε(u, t, x+ z, y)−Dα−l

x Φε(u, t, x, y)|

≤ Cqε
−η|z|η

(t− u)(|α|−2)/2

ε−|α|+2Ix+z∈Vε(I) + ε−|α|+2+1/q

(t− u)1−α(q)+η/2
pc(t− u, y − (x+ z)).

(4.30)

Now, equation (4.18) still holds under (APS), with gl,ε = gl, clε = cl, i.e. the driftless
proxy does not depend on ε. Also, the smoothness assumption on σ allows to improve
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(4.19). Precisely, there exist c, C s.t. for all α, |α| ≤ 4:

|Dα−l
x (gl − cl)(s, u, x, x+ z)| ≤ C

(u− s)1/2
pc(u− s, z), |Dα−l

x cl(s, u, x, x+ z)|

≤ C

(u− s)
pc(u− s, z),

which together with (4.29), (4.30), (4.18) and choosing α(q) > η gives (proceeding as
above for |z| ≥ c{(t− u)1/2 ∧ ε}):

|Dα
xR

τ
ε (s, t, x, y)| ≤ Cη,qε

−(η+|α|)+2+1/q(t− s)η/2

(t− s)|α|/2
pc(t− s, y − x).

The controls on the derivatives w.r.t. to the forward variables are derived similarly. We
here simply illustrate on the first term p̃ε ⊗Hε(s, t, x, y) of the parametrix series how the
derivatives must be handled. The stated controls would follow from inductions similar to
the previous ones. Write for a given multi-index β:

Dβ
y

(
p̃ε ⊗Hε(s, t, x, y)

)
=

∫ (s+t)/2

s

du

∫
Rd
p̃(s, u, x, z)Dβ

y {〈bε(u, z), Dz p̃(u, t, z, y)〉

+
1

2
Tr{(a(u, z)− a(u, y))D2

z p̃(u, t, z, y)}}dz +

lim
τ↓0

∫ t−τ

(s+t)/2

du

∫
Rd
Dβ
y

(
p̃(s, u, x, z)[〈bε(u, z), Dz p̃(u, t, z, y)〉

+
1

2
Tr{(a(u, z)− a(u, y))D2

z p̃(u, t, z, y)}]
)
dz := (Dβ

1 +Dβ
2 )(s, t, x, y).

We readily get from the controls of (4.1) that:

|Dβ
1 (s, t, x, y)| ≤ C

(t− s)(|β|−1)/2
pc(t− s, y − x), (4.31)

which is the expected control. Since a is smooth the terms involving the second deriva-
tives w.r.t. z in Dβ

2 can be handled performing the change of variables z′ = z+y as above
(see also [KM02] under the current smoothness assumption on the diffusion coefficient).
Let us thus focus on the contribution:

Dβ
21(s, t, x, y) := lim

τ↓0

∫ t−τ

(s+t)/2

du

∫
Rd
Dβ
y

(
p̃(s, u, x, z)〈bε(u, z), Dz p̃(u, t, z, y)〉

)
dz.

Consider first the case |β| = 1. Write:

Dβ,τ
21 (s, t, x, y) :=

∫ t−τ

(s+t)/2

du

∫
Rd
Dβ
y

(
p̃(s, u, x, z)〈bε(u, z), Dz p̃(u, t, z, y)〉

)
dz

=

∫ t−τ

(s+t)/2

du

∫
Rd
p̃(s, u, x, z)〈bε(u, z), Dβ

yDz p̃(u, t, z, y)〉dz

=

∫ t−τ

(s+t)/2

du

∫
Rd

[p̃(s, u, x, z)− p̃(s, u, x, y)]〈bε(u, z), Dβ
yDz p̃(u, t, z, y)〉dz

+

∫ t−τ

(s+t)/2

du

∫
Rd
p̃(s, u, x, y)〈bε(u, z)− bε(u, y), Dβ

yDz p̃(u, t, z, y)〉dz

=: [Dβ,τ
211 +Dβ,τ

212](s, t, x, y), (4.32)

recalling that for all y ∈ Rd,
∫
Rd
Dz p̃(u, t, z, y)dz = 0, so that Dβ

y

∫
Rd
Dz p̃(u, t, z, y)dz = 0,

for the last but one equality. Still from the controls of (4.1), we readily get:
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|Dβ,τ
211|

≤ C

(t− s)1/2

∫ t−τ

(s+t)/2

du

∫
Rd
|z − y|

{∫ 1

0

pc(u− s, y − x+ λ(z − y))dλI|z−y|≤(t−s)1/2

+(pc(u− s, z − x) + pc(u− s, y − x))I|z−y|>(t−s)1/2
} 1

(t− u)
pc(t− u, y − z)dz

≤ Cpc(t− s, y − x).

On the other hand:

|Dβ,τ
212](s, t, x, y)| ≤ Cpc(t− s, y − x)

∫ t−τ

(s+t)/2

du

∫
Rd
{I|z−y|≤ε

|z − y|
ε

+ I|z−y|>ε
|z − y|η

εη
}

× 1

(t− u)
pc(t− u, y − z)dz ≤

C

η
ε−η(t− s)η/2pc(t− s, y − x), η ∈ (0, 1].

We therefore eventually derive from the above controls, (4.32) and (4.31) that for |β| = 1

Dβ
y

(
p̃⊗Hε(s, t, x, y)

)
≤ Cpc(t− s, y − x){1 +

C

η
ε−η(t− s)η/2}.

Take now |β| ≥ 2, and let l be a multi-index s.t. |l| = 1 and β − l ≥ 0. Set for all
0 ≤ u < t ≤ T, (z, y) ∈ Rd, gl(u, t, z, y) := Dl

yDz p̃(u, t, z, y). Observe that there exists
C ≥ 1, |gl(u, t, z, y)| ≤ C(t − u)−1pc(t − u, y − z) and also, similarly to (4.27), for all

multi-index β̃, |β̃| ≤ 4, |Dβ̃
y gl(u, t, z + y, y)| ≤ C(t − u)−1pc(t − u, z). Rewrite now from

(4.32):

Dβ,τ
21 (s, t, x, y) = Dβ−l

y

∫ t−τ

(s+t)/2

du

∫
Rd

(p̃(s, u, x, z)− p̃(s, u, x, y))〈bε(u, z), gl(u, t, z, y)〉
)
dz

+Dβ−l
y

∫ t−τ

(s+t)/2

du

∫
Rd
p̃(s, u, x, y)〈bε(u, z)− bε(u, y), gl(u, t, z, y)〉dz,

recalling that
∫
Rd
gl(u, t, z, y)dz = 0 for the last equality. Now,

|Dβ,τ
21 (s, t, x, y)| =∣∣∣Dβ−l

y

∫ t−τ

(s+t)/2

du

∫
Rd

(p̃(s, u, x, z + y)− p̃(s, u, x, y))〈bε(u, z + y), gl(u, t, z + y, y)〉
)
dz

+Dβ−l
y

∫ t−τ

(s+t)/2

du

∫
Rd
p̃(s, u, x, y)〈bε(u, z + y)− bε(u, y), gl(u, t, z + y, y)〉dz

∣∣∣
≤ C

∑
β1, β2, β3,∑3
i=1 |βi| = |β| − 1

(|β1|, |β2|, |β3|)!
d∑
i=1

∫ t−τ

(s+t)/2

du

(∫
Rd
|Dβ1

y p̃(s, u, x, z + y)−Dβ1
y p̃(s, u, x, y)|

×|Dβ2
y b

i
ε(u, z + y)||Dβ3

y g
i
l(u, t, z + y, y)|dz

+

∫ t−τ

(s+t)/2

du

∫
Rd
|Dβ1

y p̃(s, u, x, y)||Dβ2
y b

i
ε(u, z + y)−Dβ2

y b
i
ε(u, y)||Dβ3

y g
i
l(u, t, z + y, y)|dz

)
,

where (|β1|, |β2|, |β3|)! =
(
∑3
i=1 |βi|)!∏3
i=1(|βi|!)

stands for the multinomial coefficients with entries

(|β|i)i∈[[1,3]]. Recall as well from (2.9) that we have the following control:

|Dβ2
y bε(u, z + y)−Dβ2

y bε(u, y)|

≤ C
((

1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)

) |z|
(t− s)1/2

I|z|>(t−s)1/2
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+
(
(1 + ε−|β|Iy∈V2ε(I))|z|I|z|≤ε

+
(
1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)

)
(
|z|
ε

)ηI|z|>ε
)
I|z|≤(t−s)1/2

)
≤ C

((
1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)

) |z|
(t− s)1/2

I|z|>(t−s)1/2

+
(
(1 + ε−|β|+1Iy∈V2ε(I))I|z|≤ε +

(
1 + ε−|β|+1(Iy+z∈Vε(I)

+Iy∈Vε(I)

)
I|z|>ε

))
(
|z|
ε

)ηI|z|≤(t−s)1/2
)
.

Thus,

|Dβ,τ
21 (s, t, x, y)| ≤ C

∑
β1, β2, β3,∑3
i=1 |βi| = |β| − 1

(|β1|, |β2|, |β3|)!

×
∫ t−τ

(s+t)/2

du

∫
Rd

∫ 1

0

dλ
{ |z|

(u− s)(|β1|+1)/2
pc(u− s, y − x+ λz)I|z|≤(t−s)1/2

+
|z|

(t− s)(|β1|+1)/2
(pc(u− s, y + z − x) + pc(u− s, y − x))I|z|>(t−s)1/2

}
×(1 + ε−|β|+1Iy+z∈Vε(I))

1

t− u
pc(t− u, z)dz

+

∫ t−τ

(s+t)/2

du

∫
Rd

pc(t− s, y − x)

(t− s)|β1|/2

{
(1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)))

|z|
(t− s)1/2

I|z|>(t−s)1/2

+{(1 + ε−|β|+1Iy∈V2ε(I))I|z|≤ε + (1 + ε−|β|+1(Iy+z∈Vε(I) + Iy∈Vε(I)))I|z|>ε}

I|z|≤(t−s)1/2(
|z|
ε

)η
} 1

t− u
pc(t− u, z)dz

≤ C

(t− s)|β|
pc(t− s, y − x)(1 + ε−|β|+1(

ε−η

η
+
ε1/q

α(q)
)),

recalling that the contribution in ε1/q

α(q) comes from the terms involving
Iy+z∈Vε(I)
(t−u)1/2

that can
be handled using Hölder inequalities similarly to (4.28). This gives the stated control.

4.2 Proof of Proposition 3.7

Write similarly to the proof of Theorem 2.1 in [KM02]:

(pε − pdε)(ti, tj , x, y) = (pε ⊗Hε − pε ⊗h Hε)(ti, tj , x, y) + (pε − pdε)⊗h Hε(ti, tj , x, y)

=
∑
r≥0

(pε ⊗Hε − pε ⊗h Hε)⊗h H(r)
ε (ti, tj , x, y), (4.33)

where we apply iteratively the first equality to get the second one. From (4.4) under
(AH) and (4.24) under (APS), the key point is thus to control pε ⊗Hε − pε ⊗h Hε. Write:

pε ⊗Hε − pε ⊗h Hε)(ti, tj , x, y)

=

j−i−1∑
k=0

∫ ti+k+1

ti+k

du

∫
Rd
{pε(ti, u, x, z)Hε(u, tj , z, y)− pε(ti, ti+k, x, z)Hε(ti+k, tj , z, y)}dz

=

j−i−1∑
k=0

{∫ ti+k+1

ti+k

du

∫
Rd
{[pε(ti, u, x, z)− pε(ti, ti+k, x, z)]Hε(u, tj , z, y)}dz

+

∫ ti+k+1

ti+k

du

∫
Rd
{pε(ti, ti+k, x, z)[Hε(u, tj , z, y)−Hε(ti+k, tj , z, y)]}dz

}
=: (Dd,1

ε +Dd,2
ε )(ti, tj , x, y). (4.34)
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• Bounds for the term Dd,1
ε .

- Under (AH), for k = 0, one readily gets from (4.3):∫ ti+1

ti

du
∣∣∣ ∫
Rd
{[pε(ti, u, x, z)− pε(ti, ti, x, z)]Hε(u, tj , z, y)}dz

∣∣∣
≤ Cpc(tj − ti, y − x)

∫ ti+1

ti

du

(tj − u)1−γ/2 ≤
Ch

(tj − ti)1−γ/2 pc(tj − ti, y − x)

≤ Chγ/2pc(tj − ti, y − x). (4.35)

On the other hand, from the parametrix expansion of the density in (3.5), one gets
that for all η ∈ (0, γ) and k ≥ 1, u ∈ [ti+k, ti+k+1]:

|pε(ti, u, x, z)− pε(ti, ti+k, x, z)| ≤
C

η

(u− ti+k)(γ−η)/2

(u− ti)γ/2
pc(u− ti, z − x). (4.36)

Write indeed, recalling that u ∈ [ti+k, ti+k+1]:

pε(ti, u, x, z)− pε(ti, ti+k, x, z) = p̃ε(ti, u, x, z)− p̃ε(ti, ti+k, x, z)

+
∑
l≥1

∫ ti+k

ti

ds

∫
Rd
p̃ε ⊗H(l−1)

ε (ti, s, x, w)
(
Hε(s, u, w, z)−Hε(s, ti+k, w, z)

)
dw

+
∑
l≥1

∫ u

ti+k

ds

∫
Rd
p̃ε(ti, s, x, w)H(l)

ε (s, u, w, z)dw =: (T1,ε + T2,ε + T3,ε)(ti, ti+k, u, x, z),

(4.37)

with the convention p̃ε ⊗H(0)
ε = p̃ε. Since p̃ε is a Gaussian non-degenerate kernel, and

that for k ≥ 1 we readily get from the mean value theorem:

|T1,ε(ti, ti+k, u, x, z)| ≤
C(u− ti+k)

(u− ti)
pc(u− ti, z − x) ≤ C(u− ti+k)(γ−η)/2

(u− ti)γ/2
pc(u− ti, z − x).

(4.38)
Also, from the definition of Φε following (4.1) and the associated control (4.5), we get:

|T3,ε(ti, ti+k, u, x, z)| ≤
∫ u

ti+k

ds

∫
Rd
p̃ε(ti, s, x, w)|Φε(s, u, w, z)|dw

≤ Cpc(u− ti, z − x)

∫ u

ti+k

ds

(u− s)1−γ/2

≤ C(u− ti+k)γ/2pc(u− ti, z − x).

(4.39)

For T2,ε, we again use some splitting in time. Write T2,ε(ti, ti+k, u, x, z) = (T21,ε +

T22,ε)(ti, ti+k, u, x, z) where:

T21,ε(ti, ti+k, u, x, z) :=

∫ ti+k

ti+k−(u−ti+k)

ds

∫
Rd
p̃ε(ti, s, x, w)

×(Φε(s, u, w, z)− Φε(s, ti+k, w, z))dw,

|T21,ε(ti, ti+k, u, x, z)| ≤
∫ ti+k

ti+k−(u−ti+k)

ds
(pc(u− ti, z − x)

(u− s)1−γ/2 +
pc(ti+k − ti, z − x)

(ti+k − s)1−γ/2

)
≤ C(u− ti+k)γ/2pc(u− ti, z − x), (4.40)

recalling that, since k ≥ 1, (u− ti) ≥ ti+k − ti ≥ 1
2 (u− ti) for the last inequality. For

T22,ε(ti, ti+k, u, x, z) :=
∑
l≥1

∫ ti+k−(u−ti+k)

ti

ds

∫
Rd
p̃ε ⊗H(l−1)

ε (ti, s, x, w)

×
(
Hε(s, u, w, z)−Hε(s, ti+k, w, z)

)
dw,
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we focus on the second order terms in the difference
(
Hε(s, u, w, z)−Hε(s, ti+k, w, z)

)
.

They are indeed the most singular. Note that on the considered time set 1
2 (u − s) ≤

(ti+k − s). We thus get (with similar arguments than those used to handle T1,ε):∣∣∣Tr
(
(a(s, w)− a(s, z))(D2

wp̃ε(s, u, w, z)−D2
wp̃ε(s, ti+k, w, z))

)∣∣∣
≤ C |z − w|

γ(u− ti+k)

(u− s)2
pc(u− s, z − w)

≤ C
( |z − w|

(u− s)1/2

)γ (u− ti+k)(γ−η)/2

(u− s)1−η/2 pc(u− s, z − w) ≤ (u− ti+k)(γ−η)/2

(u− s)1−η/2 pc(u− s, z − w).

The small loss on the time Hölder regularity index is here due to the fact we consider
the forward time component and the η is needed to integrate in time. We obtain:

|T22,ε(ti, ti+k, u, x, z)| ≤
C(u− ti+k)(γ−η)/2

η
pc(u− ti, z − x).

Plugging this last bound and the controls of (4.40), (4.39), (4.38) into (4.37) yields (4.36).
Now, from (4.35) and using (4.3) and (4.36) in (4.34), we get:

|Dd,1
ε |(ti, tj , x, y) ≤ Cηh(γ−η)/2pc(tj − ti, y − x). (4.41)

- Under (APS), since we want to get higher convergence rates, we need to use the
forward Kolmogorov equation in Dd,1

ε . Write for k ∈ [[1, j − i− 2]], u ∈ [tk, tk+1]:

pε(ti, u, x, z)− pε(ti, ti+k, x, z) = (u− ti+k)

∫ 1

0

(
∂vpε(ti, v, x, z)

)
v=ti+k+λ(u−ti+k)

dλ

= (u− ti+k)

∫ 1

0

(
(Lεv)

∗pε(ti, v, x, z)
)
v=ti+k+λ(u−ti+k)

dλ.

� If now σ(t, x) = σ, the term Hε in (4.34) only involves a first order derivative. We obtain:

|Dd,1
ε |(ti, tj , x, y)

≤ Ch
( j−i−2∑

k=1

∫ 1

0

dλ

∫ ti+k+1

ti+k

du

∫
Rd

[
|divz

(
bε(v, z)pε(ti, v, x, z)

)
|pc(tj − u, y − z)

(tj − u)1/2

+
1

2

∣∣〈a∇zpε(ti, v, x, z),∇z〈bε(u, z),∇z p̃ε(u, tj , z, y)〉〉
∣∣]
v=ti+k+λ(u−ti+k)

dz
)

+C

∫
[tj−1,tj ]

du

∫
Rd
|pε(ti, u, x, z)− pε(ti, tj−1, x, z)|

1

(tj − u)1/2
pc(tj − u, y − z)dz

+C
h

(tj − ti)1/2
pc(tj − ti, y − x). (4.42)

From the parametrix representation (3.5) of pε, it is again easily deduced similarly to
(4.36) that for any η ∈ (0, 1/2), u ∈ [tj−1, tj ]:

|pε(ti, u, x, z)− pε(ti, tj−1, x, z)| ≤
C

η

|u− tj−1|(1−η)/2

(u− ti)1/2
pc(u− ti, z − x).

Plugging this estimate in (4.42) and using as well (2.9) and (3.33) yields for all η ∈
(0, 1/2):

|Dd,1
ε |(ti, tj , x, y)

≤ Cηh
( j−i−2∑

k=1

∫ 1

0

dλ

∫ ti+k+1

ti+k

du

∫
Rd

[(
ε−1Iz∈Vε(I) +

ε−η

(v − ti)1/2

)
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×pc(v − ti, z − x)
pc(tj − u, y − z)

(tj − u)1/2
+ ε−η

pc(v − ti, z − x)

(v − ti)1/2

( ε−1

(tj − u)1/2
Iz∈Vε(I)

+
1

(tj − u)

)
pc(tj − u, y − z)

]
v=ti+k+λ(u−ti+k)

dz
)

+
Ch1−η/2

η(tj − ti)1/2
pc(tj − ti, y − x)

≤ Cη

( hε−(1+η)+1/q

α(q)(tj − ti)1/2−α(q)
+
h| ln(h)|ε−η

(tj − ti)1/2
+

h1−η/2

η(tj − ti)1/2

)
pc(tj − ti, y − x)

≤ C̄η,q

( hε−(1+η)+1/q

(tj − ti)1/2−α(q)
+
h| ln(h)|ε−η

(tj − ti)1/2
+

h1−η/2

(tj − ti)1/2

)
pc(tj − ti, y − x), (4.43)

recalling as well for the previous computations that u− v = (1− λ)(u− ti+k) ≤ h.

� For a general σ, an additional term appears in (4.42), which corresponds to the second
order terms in Hε for the indexes k ∈ [[1, j− i−2]]. The other contributions are controlled
similarly. We have to bound:

Ch

j−i−2∑
k=1

∫ 1

0

dλ

∫ ti+k+1

ti+k

du

∫
Rd

[∣∣ d∑
l,m=1

D2
zlzm

(
alm(ti, z)pε(ti, v, x, z)

)
Tr
(
(aε(u, z)− aε(u, y))D2

z p̃ε(u, tj , z, y)
)∣∣]

v=ti+k+λ(u−ti+k)
dz

≤ C̄η,qh
j−i−2∑
k=1

∫ 1

0

dλ

∫ ti+k+1

ti+k

du

∫
Rd

ε−(1+η)

u− ti
pc(u− ti, z − x)

1

(tj − u)1/2
px(tj − u, y − z)dz

≤ C̄η,q
h| ln(h)|ε−(1+η)

(tj − ti)1/2
.

This yields in the considered case:

|Dd,1
ε |(ti, tj , x, y) ≤ C̄η,q

(h| ln(h)|ε−(1+η)

(tj − ti)1/2
+

h1−η/2

(tj − ti)1/2

)
pc(tj − ti, y − x). (4.44)

• To control the term Dd,2
ε appearing in (4.34), let us first introduce:

(D̄d,21
ε,σ + D̄d,22

ε,σ )(ti, ti+k, u, tj , x, y) :=

C

∫
Rd
pc(ti+k − ti, z − x)|aε(u, z)− aε(u, y)− (aε(ti+k, z)− aε(ti+k, y))|

×pc(tj − ti+k, y − z)
tj − ti+k

dz

+
∣∣∣ ∫
Rd
pε(ti, ti+k, x, z)Tr

(
(aε(u, z)− aε(u, y))[D2

z p̃ε(u, tj , z, y)−D2
z p̃ε(ti+k, tj , z, y)]

)∣∣∣dz,
that correspond to the most singular contributions in Dd,2

ε as far as the time singularity
is concerned when the diffusion coefficient varies, i.e. σ(t, x) 6= σ.

- Under (AH). For D̄d,22
ε,σ we can exploit the Hölder continuity in time of the Gaussian

kernel p̃ε to derive, similarly to the computations performed above to investigate T22,ε,
that for all η ∈ (0, γ), k ∈ [[0, j − i− 2]], u ∈ [ti+k, ti+k+1]:

|D2
z p̃ε(u, tj , z, y)−D2

z p̃ε(ti+k, tj , z, y)| ≤ C (u− ti+k)(γ−η)/2

(tj − u)1+(γ−η)/2
pc(tj − ti+k, y − z).

From the spatial Hölder continuity of aε(u, ·), we get:

j−i−2∑
k=0

∫ ti+k+1

ti+k

du|D̄d,22
ε,σ |(ti, ti+k, u, tj , x, y) ≤ C

η
h(γ−η)/2pc(tj − ti, y − x). (4.45)
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On the other hand, for k = j − i− 1, (4.3) readily yields:∫ tj

tj−1

du|D̄d,22
ε,σ |(ti, ti+k, u, tj , x, y) ≤ C

∫ tj

tj−1

du

∫
Rd
pc(tj−1 − ti, z − x)

×
(pc(tj − u, y − z)

(tj − u)1−γ/2 +
pc(tj − tj−1, y − z)

(tj − tj−1)1−γ/2

)
dz ≤ Chγ/2pc(tj − ti, y − x).

(4.46)

Also, using the uniform γ/2-Hölder continuity in time of a we get:

|D̄d,21
ε,σ (ti, ti+k, u, tj , x, y)|

≤ C
∫
Rd
pc(ti+k − ti, z − x)|u− ti+k|γ/2

1

tj − ti+k
pc(tj − ti+k, y − z)dz

≤ Ch(γ−η)/2pc(tj − ti, y − x)(tj − ti+k)−1+η/2,

for η ∈ (0, γ), recalling u ∈ [ti+k, ti+k+1] for the last inequality. The difference of the first
order terms appearing in Dd,2

ε in (4.34) yields similar controls. From the above bound,
(4.45) and (4.46), we derive that under (AH):

|Dd,2
ε (ti, tj , x, y)| ≤ Cηh(γ−η)/2pc(tj − ti, y − x). (4.47)

- Under (APS), write:

j−i−1∑
k=0

∫ ti+k+1

ti+k

du|D̄d,22
ε,σ |(ti, ti+k, u, tj , x, y)

≤ C
(
h

d j−i−1
2 e∑

k=0

∫ ti+k+1

ti+k

du

∫
Rd
pc(ti+k − ti, z − x)

1

(tj − ti)3/2
pc(tj − u, y − z)dz

+

j−i−1∑
k=d j−i−1

2 e+1

∫ ti+k+1

ti+k

du

∫
Rd

d∑
l,m=1

∣∣∣D2
zlzm

(
pε(ti, ti+k, x, z)(a

lm
ε (u, z)− almε (u, y))

)∣∣∣
×|p̃ε(u, tj , z, y)− p̃ε(ti+k, tj , z, y)|dz

)
≤ C̄η,q

( h

(tj − ti)1/2
+

h1−η/2ε−(1+η)

(tj − ti)1/2−η/2

)
pc(tj − ti, y − x), (4.48)

where to derive the last inequality, we exploit (3.33), the time Hölder continuity of the
Gaussian density p̃ε for k ∈ [[d j−i−1

2 e+1, j−i−2]] and direct computations for k = j−i−1.
Also, the smoothness in time (Lipschitz continuity) of the diffusion coefficients gives for
η ∈ (0, 1],

|D̄d,21
ε,σ (ti, ti+k, u, tj , x, y)| ≤ Ch1−η/2pc(tj − ti, y − x)(tj − ti+k)−1+η/2. (4.49)

Let us now carefully mention that, under (APS), because of the irregularity of the
drift, it is very important as well to establish cautiously the bounds for the difference of
the first order terms. Introduce:

(D̄d,21
ε,b + D̄d,22

ε,b )(ti, ti+k, u, tj , x, y) :=

C

∫
Rd
pc(ti+k − ti, z − x)|bε(u, z)− bε(ti+k, z)|

1

(tj − ti+k)1/2
pc(tj − ti+k, y − z)dz

+
∣∣∣ ∫
Rd
pε(ti, ti+k, x, z)〈bε(u, z), Dz p̃ε(u, tj , z, y)−Dz p̃ε(ti+k, tj , z, y)〉

∣∣∣dz. (4.50)
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From the Lipschitz property in time of bε(·, z) we readily get:

D̄d,21
ε,b (ti, ti+k, u, tj , x, y) ≤ Ch

(tj − ti+k)1/2
pc(tj − ti, y − x). (4.51)

Also, recalling that ∂up̃ε(u, tj , z, y) + 1
2Tr
(
a(u, y)D2

z p̃ε(u, tj , z, y)
)

= 0, one readily gets:

D̄d,22
ε,b (ti, ti+k, u, tj , x, y) ≤ Ch

(tj − u)3/2
pc(tj − ti, y − x), (4.52)

which once integrated in time gives the expected control for k ∈ [[0, d j−i−1
2 e]]. The indexes

k ∈ [[d j−i−1
2 e+ 1, j − i− 1]] require a more careful treatment. Now, for such indexes and

u ∈ [ti+k, ti+k+1], using again the Kolmogorov equation satisfied by p̃ε and two spatial
integration by parts in z, one obtains from (3.33) the following global control:

D̄d,22
ε,b (ti, ti+k, u, tj , x, y)

≤ C(u− ti+k)

∫ 1

0

dλ
∑

l,m,q∈[[1,d]]

∫
Rd

[∣∣D2
zlzm

(
pε(ti, ti+k, x, z)b

l
ε(u, z)

)∣∣
×|Dzq p̃ε(v, tj , z, y)|

]
v=ti+k+λ(u−ti+k)

dz

≤ Ch

∫ 1

0

dλ

∫
Rd

( ε−(1+η)

(ti+k − ti)
+ ε−2Iz∈Vε(I)

)
pc(ti+k − ti, z − x)

×pc(tj − v, y − z)
(tj − u)1/2

∣∣∣
v=ti+k+λ(u−ti+k)

dz

≤ Chpc(tj − ti, y − x)
( ε−(1+η)

(tj − ti)(tj − u)1/2
+

ε−2+1/q

(tj − u)1/2+d/(2q)

)
, q > d. (4.53)

Plugging (4.53), (4.52) and (4.51) into (4.50) one derives:

j−i−1∑
k=0

∫ ti+k+1

ti+k

du
(
D̄d,21
ε,b (ti, ti+k, u, tj , x, y) + D̄d,22

ε,b (ti, ti+k, u, tj , x, y)
)

≤ Ch
( ε−(1+η)

(tj − ti)1/2
+ ε−2+1/q

)
pc(tj − ti, y − x).

(4.54)

We carefully, point out that, since q > d, this term will dominate the error associated
with the time discretization when compared to (4.48).

We will now improve this bound using the (unsigned) distance of the final point to the
neighborhood of the discontinuity sets d(y,Vε(I)). We cannot hope to improve the control
(4.52) for k ∈ [[0, d j−i−1

2 e]] and therefore focus on the indexes k ∈ [[d j−i−1
2 e+ 1, j − i− 1]].

For those indexes, performing one spatial integration by part in z from (4.50) yields:

j−i−1∑
k=d j−i−1

2 e+1

∫ ti+k+1

ti+k

duD̄d,22
ε,b (ti, ti+k, u, tj , x, y)

≤ C
j−i−1∑

k=d j−i−1
2 e+1

∫ ti+k+1

ti+k

du
(∫

Rd

( ε−η

(ti+k − ti)1/2
+ ε−1Iz∈Vε(I)

)
pc(ti+k − ti, z − x)

×|p̃ε(u, tj , z, y)− p̃ε(ti+k, tj , z, y)|
)
dz

≤ C

η

( h1−η/2ε−η

(tj − ti)(1−η)/2
pc(tj − ti, y − x) + R̄d,22

ε (ti, tj , x, y)
)
,

using the Hölder continuity in time of p̃ε for k ∈ [[d j−i−1
2 e + 1, j − i − 2]] and direct

computations for k = j − i− 1 in the second inequality and where
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R̄d,22
ε (ti, tj , x, y) := h1−η/2

j−i−2∑
k=d j−i−1

2 e+1

∫ ti+k+1

ti+k

du

(tj − u)1−η/2 ε
−1

×
∫
Rd
pc(u− ti, z − x)Iz∈Vε(I)pc(tj − u, y − z)dz

+ε−1

∫ tj

tj−1

du

∫
Rd
pc(u− ti, z − x)Iz∈Vε(I)

(
pc(tj − u, y − z) + pc(tj − tj−1, y − z)

)
dz.

Since |y− z|+ |z− x| ≥ |y− x| and (u− ti) ≥ 1
2 (tj − ti) we get that up to a modification of

c that for k ∈ [[d j−i−1
2 e+ 1, j − i− 1]] and u ∈ [ti+k, ti+k+1], s = u or u ∈ [tj−1, tj ], s = tj−1:

Iε(ti, ti+k, u, s, tj , x, y) := ε−1

∫
Rd
pc(u− ti, z − x)Iz∈Vε(I)pc(tj − s, y − z)dz

≤ Cε−1pc(tj − ti, y − x)

∫
Rd
Iz∈Vε(I)pc(tj − s, y − z)dz. (4.55)

Indeed, either |z − x| ≥ 1
2 |y − x| and in that case pc(u− ti, z − x) ≤ Cpc(tj − ti, y − x), or

|y − z| ≥ 1
2 |y − x|. In that case we use that pc(u− ti, z − x) ≤ C/(tj − ti)d/2 and write as

well:

exp
(
− c

2

|y − z|2

tj − s

)
≤ exp

(
− c

16

|y − x|2

(tj − s)

)
exp

(
− c

4

|y − z|2

(tj − s)

)
≤ exp

(
− c

16

|y − x|2

(tj − ti)

)
exp

(
− c

4

|y − z|2

(tj − s)

)
,

which also gives (4.55) modifying c.
Up to a change of coordinate, in order to straighten the boundary, we can write

(following the arguments of Section 3.3.2 that led to (3.24)):

Iε(ti, ti+k, u, s, tj , x, y)

≤ Cε−1pc(tj − ti, y − x)

∫ ε

−ε
exp

(
− |z̄ − dS(y,Vε(I))|2

2(tj − s)

) dz̄

(tj − s)1/2

≤ Cε−1pc(tj − ti, y − x)

∫ ε

−ε

dz̄

|z̄ − dS(y,Vε(I))|
,

where dS(y,Vε(I)) stands for the signed distance2 of y to the boundary of Vε(I). Since
we have assumed that for this part of the Proposition that |dS(y,Vε(I))| ≥ 2ε we get

|z̄ − dS(y,Vε(I))| ≥ |dS(y,Vε(I)| − |z̄| ≥ |dS(y,Vε(I)| − ε ≥ |dS(y,Vε(I))|
2

=:
d(y,Vε(I))

2
,

where d(y,Vε(I)) is the unsigned distance of y to the boundary of Vε(I). We finally
derive from the above computations (4.51) and (4.52):

j−i−1∑
k=0

∫ ti+k+1

ti+k

du(D̄d,21
ε,b + D̄d,22

ε,b )(ti, ti+k, u, tj , x, y)

≤ Cηh1−η/2
( ε−η

(tj − ti)1/2
+

1

d(y,Vε(I))

)
pc(tj − ti, y − x).

(4.56)

• Final derivation of the bounds.

2Since the discontinuity sets are bounded, we can for instance choose the distance to be positive for the
points inside the bounded domain associated with the boundary. Anyhow, this choice plays no role here.
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Recall first that:

|pε − pdε |(ti, tj , x, y) ≤ |(pε ⊗Hε − pε ⊗h Hε)|(ti, tj , x, y)

+
∑
r≥1

|(pε ⊗Hε − pε ⊗h Hε)| ⊗h |H(r)
ε |(ti, tj , x, y).

- Under (AH), we first plug (4.47), (4.41) into (4.34). The bound (3.34) of the proposition
then follows from the above inequality using (4.4).

- Under (APS).

� For a general σ(t, x) (which varies), we derive from (4.44), (4.48), (4.49), (4.54) and
(4.33), (4.4):

|pε − pdε |(ti, tj , x, y) ≤ C̄η,q
(h| ln(h)|ε−(1+η)

(tj − ti)1/2
+
h1−η/2ε−(1+η)

(tj − ti)1/2
+ hε−2+1/q

)
pc(tj − ti, y − x).

Using (4.56) instead of (4.54) when d(y,Vε(I)) ≥ 2ε yields:

|pε − pdε |(ti, tj , x, y)

≤ C̄η,q

(h| ln(h)|ε−(1+η)

(tj − ti)1/2
+
h1−η/2ε−(1+η)

(tj − ti)1/2
+

h1−η/2

d(y,Vε(I))

)
pc(tj − ti, y − x).

� For σ(t, x) = σ (fixed diffusion coefficient), when d(y,Vε(I)) ≥ 2ε, we derive from (4.43),
(4.56) that:

|pε − pdε |(ti, tj , x, y) ≤ C̄η,q

(h| ln(h)|ε−η

(tj − ti)1/2
+
hε−(1+η)+1/q

(tj − ti)1/2
+

h1−η/2

d(y,Vε(I))

)
pc(tj − ti, y − x).

Observe that in this case the contribution (D̄d,2j
ε,σ )j∈{1,2} vanish. The upper bound of

(4.48) thus does not appear. This completes the proof.
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