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Abstract

The Hammersley-Welsh bound (Quart. J. Math., 1962) states that the number cn of
length n self-avoiding walks on Zd satisfies

cn ≤ exp
[
O(n1/2)

]
µn
c ,

where µc = µc(d) is the connective constant of Zd. While stronger estimates have
subsequently been proven for d ≥ 3, for d = 2 this has remained the best rigorous,
unconditional bound available. In this note, we give a new, simplified proof of this
bound, which does not rely on the combinatorial analysis of unfolding. We also prove
a small, non-quantitative improvement to the bound, namely

cn ≤ exp
[
o(n1/2)

]
µn
c .

The improved bound is obtained as a corollary to the sub-ballisticity theorem of
Duminil-Copin and Hammond (Commun. Math. Phys., 2013). We also show that
any quantitative form of that theorem would yield a corresponding quantitative
improvement to the Hammersley-Welsh bound.
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1 Introduction

Fix d ≥ 2 and consider the hypercubic lattice Zd. A self-avoiding walk (SAW) is a
simple path in Zd, that is, a path that does not visit any vertex more than once. Self-
avoiding walk was introduced as a model of a linear polymer in a good solvent by Flory
and Orr [7, 19]. The rigorous study of self-avoiding walk leads to many questions that
are easy to state but difficult to solve, several of which are still open. See [17, 2] for
detailed introductions to the theory.

Write Ω for the set of self-avoiding walks, and let cn be the number of length-n
self-avoiding walks starting at the origin. Hammersley and Morton [9] observed that the
sequence (cn)n≥0 is submultiplicative, meaning that cn+m ≤ cncm for every n,m ≥ 0.
It follows by Fekete’s Lemma [6] that there exists a constant µc = µc(d), known as the
connective constant of Zd, such that

µnc ≤ cn ≤ µn+o(n)
c
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for every n ≥ 0. Submultiplicativity arguments alone do not give any control of the subex-
ponential correction to the growth of cn, and it is a major open problem to determine the
true asymptotics of cn when d = 2, 3, 4.

It is believed that in fact the number of self-avoiding walks satisfies

cn ∼ Cd


nγ2−1µnc d = 2

nγ3−1µnc d = 3

(log n)1/4µnc d = 4

µnc d ≥ 5.

n→∞

for some constants γ2, γ3 and Cd, where f(n) ∼ g(n) means that f(n)/g(n) → 1 as
n → ∞. For d ≥ 5 this conjecture was verified in the seminal work of Hara and Slade
[12, 11]. Rapid progress is being made on the four-dimensional case of the conjecture,
including most notably a proof of the analogous conjecture for four-dimensional weakly
self-avoiding walk by Bauerschmidt, Brydges, and Slade [1]. For d = 2, 3 the conjecture
is wide open.

The gap between what is conjectured and what is known for d = 2 is very large.
Nienhuis [18] used non-rigorous Coulomb gas methods to compute that γ2 = 43/32.
This conjectured value of γ2 is strongly supported by numerical evidence [16, 13], non-
rigorous conformal field theory arguments [4, 5], and by the theory of SLE [15] (see also
[8]). In spite of all this, the best rigorous, unconditional estimate on cn for d = 2 was
until now the following theorem of Hammersley and Welsh [10]. For d ≥ 3, a similar
stretched exponential bound with a better exponent was proven by Kesten [14], see also
[17, Section 3.3].

Theorem 1.1 (Hammersley-Welsh). Let d ≥ 2. Then

cn ≤ exp

[√
2π2n

3
+ o(n1/2)

]
µnc = exp

[
O(n1/2)

]
µnc

as n→∞.

In this note, we prove the following slight improvement to the Hammersley-Welsh
bound, which we show to be a corollary to the work of Duminil-Copin and Hammond [3]
on sub-ballisticity of the self-avoiding walk.

Theorem 1.2. Let d ≥ 2. Then cn ≤ exp
[
o(n1/2)

]
µnc as n→∞.

Along the way, we also present a simplified proof of the Hammersley-Welsh bound
(with a suboptimal constant in the exponent) that does not rely on either the combina-
torial analysis of ‘unfolding’ or the analysis of integer partitions. We believe that both
have been used in all published proofs of Hammersley-Welsh to date. We also believe
that this simplified method of proof will be useful for obtaining further improvements to
the bound in the future.

Let us briefly discuss the theorem of Duminil-Copin and Hammond. We will not in fact
use their main result, but rather an intermediate result of theirs concerning self-avoiding
bridges [3, Corollary 2.4 and Theorem 2.5]. A self-avoiding walk ω is a self-avoiding
bridge (SAB) if the dth coordinate of ω is uniquely minimized by its starting point, and
is maximized (not necessarily uniquely) by its endpoint. Let bn be the number of self-
avoiding bridges of length n starting at the origin. Probabilistically, Theorem 1.3 states
that for every fixed ε > 0, a uniformly chosen length n SAB is exponentially unlikely to
reach height εn, where the rate of exponential decay depends on ε (in some unknown
way) but is always positive. Note that a length n SAB cannot reach height greater than
n. We write ω : v → A to mean that ω starts at the vertex v and ends in the set A.
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Theorem 1.3 (Duminil-Copin and Hammond). Let d ≥ 2. There exists an increasing1

function φ = φd : (0, 1]→ (0,∞) such that∑
ω∈Ω

1
[
ω : 0→ Zd−1 × {m,m+ 1, . . .} is a length n SAB

]
≤ bn exp

[
−φ
(m
n

)
n
]

(1.1)

for all n ≥ m > 0.

The proof of Theorem 1.3 is not quantitative and does not give any estimates on the
function φ. However, our derivation of Theorem 1.2 from Theorem 1.3 is quantitative, so
that any quantitative version of Theorem 1.3 would yield a quantitative improvement
to Hammersley-Welsh. Indeed, suppose that φ : (0, 1] → [0,∞) satisfies (1.1). Define
Φ : (0, 1]→ [0,∞) by

Φ(ε) = inf
ε≤δ≤1

δ−1φ(δ)

and define ψ : (0, 1)→ [1,∞) by

ψ(ε) = sup

{
λ ≥ 1 : ε ≤ 1− exp

[
−Φ(λ−1)

λ− 1

]}
.

If φ is positive and increasing then Φ is positive and increasing also, and it follows that
ψ(ε)→∞ as ε→ 0. Define Ψ : {0, 1, . . .} → [0,∞) by

Ψ(n) = inf
0<ε<1

[
2
[
1− (1− ε)ψ(ε)

]−1

− (n+ 1) log(1− ε)
]
.

The following is a quantitative version of Theorem 1.2.

Theorem 1.4. Let d ≥ 2. Suppose that φ : (0, 1]→ [0,∞) is increasing and satisfies (1.1),
and let Ψ be as above. Then

cn ≤ exp [Ψ(n)− 2]µn+1
c

for every n ≥ 0.

To deduce Theorem 1.2 from Theorem 1.4 it suffices to show that Ψ(n) = o(n1/2) when
φ is positive and increasing, which is straightforward. The classical Hammersley-Welsh
bound (or rather the variant stated in Proposition 2.2 below) can also be deduced from
Theorem 1.4 and the observation that φ ≡ 0 trivially satisfies (1.1).

Finally, we remark that any polynomial estimate on the function φ appearing in
Theorem 1.3 would yield an improved exponent in the Hammerlsey-Welsh bound. We do
not treat values ν ≤ 1 as these cannot possibly occur; see Remark 2.5.

Corollary 1.5. Let d ≥ 2, and suppose that φ(ε) = Cεν satisfies (1.1) for some ν > 1 and
C > 0. Then

cn ≤ exp
[
O
(
n(ν−1)/(2ν−1)

)]
µnc .

Remark 1.6. The central step in the proof of Theorem 1.4 is to show that the generating
function B(z) =

∑∞
n=0 z

nbn satisfies

B((1− ε)zc) ≤
[
1− (1− ε)ψ(ε)

]−1

.

In particular, we obtain that if φ(ε) = Cεν satisfies (1.1) for some C > 0 and ν > 1, then

B((1− ε)zc) = O
(
ε(1−ν)/ν

)
as ε→ 0. (1.2)

This can be thought of as an inequality between the ‘sub-ballisticity exponent’ and the
bridge counting exponent.

1In [3] it is not stated that the function is increasing. However, if φ : (0, 1] → (0,∞) satisfies (1.1), then
φ̃(ε) = sup{φ(δ) : 0 < δ ≤ ε} is positive, increasing and also satisfies (1.1).
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2 Proof

2.1 Proof of Hammersley-Welsh

Fix d ≥ 2. In this section we give our new proof of the classical Hammersley-Welsh
bound. Our starting point will be the following inequality between generating functions
due to Madras and Slade [17, eq. 3.1.13]. We define

χ(z) =
∑
n≥0

zncn and B(z) =
∑
n≥0

znbn

to be the generating functions of self-avoiding walks and self-avoiding bridges respec-
tively. We define zc = µ−1

c , which is the radius of convergence of χ(z) and hence also of
B(z) by the following proposition.

Proposition 2.1 (Madras and Slade). χ(z) ≤ z−1 exp [2B(z)− 2] for every z ≥ 0.

This inequality relies on similar ideas as the proof of the Hammersley-Welsh bound,
but is easier to prove. It does not rely on the combinatorial analysis of the ‘unfolding’ of
walks. We will prove that the following version of Hammersley-Welsh with a suboptimal
constant can be deduced directly from Proposition 2.1 by elementary methods.

Proposition 2.2. cn ≤ exp
[√

8n+O
(√

1/n
)]
µn+1
c .

Let Ln = Zd−1 × {n} for each n ≥ 0. For each z ≥ 0 and n ≥ 0, define

a(z;n) =
∑
ω∈Ω

z|ω|1
[
ω : 0→ Ln is a SAB

]
.

If ω1 : 0→ Ln and ω2 : 0→ Lm are bridges, then we can form a bridge ω : 0→ Ln+m by
applying a translation to ω2 so that it starts at the endpoint of ω1 and then concatenating
the two paths. This implies that the sequence a(z;n) is supermultiplicative for each
z ≥ 0, meaning that

a(z;n+m) ≥ a(z;n)a(z;m)

for every n,m ≥ 0. It follows by Fekete’s lemma that for each z ≥ 0 there exists ξ(z)
such that

ξ(z) = lim
n→∞

− 1

n
log a(z;n) ∈ [−∞,∞] (2.1)

and that

a(z;n) ≤ e−ξ(z)n (2.2)

for every n ≥ 0.

Lemma 2.3. ξ(zc) ≥ 0.

Proof. For each n ≥ 0, a(z;n) is expressible as a power series in z with non-negative
coefficients, and is therefore left-continuous in z for z > 0. If z < zc then B(z) =∑
n≥0 a(z;n) < ∞, so that ξ(z) ≥ 0 by the identity (2.1), and hence that a(z;n) ≤ 1 for

every n ≥ 0 by the inequality (2.2). Since this bound holds for all z < zc, it also holds for
z = zc by left continuity.

A similar analysis shows that (bn)n≥0 is supermultiplicative and that

bn ≤ µnc (2.3)

for every n ≥ 0 [17, eq. 1.2.17].
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Proof of Proposition 2.2. We have the trivial inequality

a((1− ε)zc;n) ≤ (1− ε)na(zc;n) ≤ (1− ε)n. (2.4)

It follows that B((1− ε)zc) ≤ ε−1, and hence that

χ((1− ε)zc) ≤
1

z
exp

[
2ε−1 − 2

]
.

To conclude, we apply the trivial inequality

znc cn ≤ (1− ε)−nχ((1− ε)zc) (2.5)

with ε = (n/2)−1/2 to deduce that

zn+1
c cn ≤ exp

[√
2n− 2

] (
1−

√
2/n

)−n−1

= exp
[√

8n+O(
√

1/n)
]

as n→∞, where the equality on the right-hand side follows by calculus (the −2 has not
been forgotten).

2.2 Proof of the improvement

The main idea behind Theorems 1.2 and 1.4 is that Theorem 1.3 allows us to improve
upon the trivial inequality (2.4). This improvement is encapsulated in the following
lemma.

Lemma 2.4. ξ((1− ε)zc) ≥ −ψ(ε) log(1− ε) for every ε > 0.

Proof. It suffices to prove that

ξ((1− ε)zc) ≥ min
{
−λ log(1− ε),− log(1− ε) + Φ(λ−1)

}
(2.6)

for every ε > 0 and λ ≥ 1, since the result then follows by optimizing over λ. Splitting
the walks contributing to a((1 − ε)zc;n) according to whether they have length more
than λn or not yields that

a((1− ε)zc;n) ≤
∑
m≥λn

∑
ω∈Ω

zmc (1− ε)m1
[
ω : 0→ Ln a length m SAB

]
+

λn∑
m=n

∑
ω∈Ω

zmc (1− ε)m1
[
ω : 0→ Ln a length m SAB

]
and hence that

a((1− ε)zc;n) ≤ (1− ε)λn
∑
m≥λn

∑
ω∈Ω

zmc 1
[
ω : 0→ Ln a length m SAB

]
+ (1− ε)n

λn∑
m=n

∑
ω∈Ω

zmc 1
[
ω : 0→ Ln a length m SAB

]
.

This implies that

a((1− ε)zc;n) ≤ (1− ε)λna(z;n) + (1− ε)n
λn∑
m=n

zmc bm exp
[
−φ
( n
m

)
m
]

≤ (1− ε)λn + λn(1− ε)n exp
[
−Φ(λ−1)n

]
for every n ≥ 0, where (2.2), Lemma 2.3, (2.3) and the definition of Φ were used in the
second inequality. The claimed inequality (2.6) follows.
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Proof of Theorem 1.4. Applying (2.6) and (2.2) yields the estimate

B((1− ε)zc) =
∑
n≥0

a((1− ε)zc;n) ≤
∑
n≥0

eψ(ε) log(1−ε)n =
[
1− (1− ε)ψ(ε)

]−1

We deduce from Proposition 2.1 that

χ((1− ε)zc) ≤
1

(1− ε)zc
exp

[
2
[
1− (1− ε)ψ(ε)

]−1

− 2

]
.

The claim now follows by applying the trivial inequality (2.5) as in the proof of Proposi-
tion 2.2.

Proof of Theorem 1.2. Let φ be as in Theorem 1.3. It suffices to prove that Ψ(n) =

o(n1/2). Since φ(ε) is increasing and φ(ε) > 0 for all 0 < ε ≤ 1, we have that Φ(ε) > 0 for
all 0 < ε ≤ 1, and hence that ψ(ε)→∞ as ε→ 0. Fix M ≥ 1 and δ > 0. Then there exists
0 < ε0 ≤ 1 such that ψ(ε) ≥M for every 0 < ε ≤ ε0. Setting ε = δn−1/2 yields that

Ψ(n) ≤ 2
[
1− (1− δn−1/2)M

]−1

− (n+ 1) log(1− δn−1/2)

for every sufficiently large n. It follows by calculus that

Ψ(n) ≤
(
δ +

2

δM

)
n1/2 + o(n1/2)

as n → ∞. The result follows since M ≥ 1 and δ > 0 were arbitrary (e.g. by taking
M = δ−2 and sending δ → 0).

Proof of Corollary 1.5. Suppose that φ(ε) ≥ Cεν for some C > 0 and ν > 1, and that φ
satisfies (1.1). Then Φ(ε) ≥ Cεν−1 and hence

ψ(ε) ≥ sup

{
λ ≥ 1 : ε ≤ 1− exp

[
−C λ1−ν

λ− 1

]}
.

A straightforward analysis then yields that

ψ(ε) ≥ C ′ε−1/ν

for some C ′ > 0 and every ε > 0 sufficiently small. Let α > 0. Then

Ψ(n) ≤ 2
[
1− (1− n−α)C

′nα/ν
]−1

− (n+ 1) log(1− n−α)

for every n sufficiently large. It follows by calculus that

Ψ(n) = O
(
nα(ν−1)/ν + n1−α

)
as n → ∞. Optimizing by taking α = ν/(2ν − 1) and applying Theorem 1.4 yields the
claim.

Remark 2.5. We now explain why values of ν ≤ 1 are not possible in Corollary 1.5.
Suppose that φ satisfies (1.1). An inequality of Madras and Slade [17, eq. 3.1.14] (which
is a trivial consequence of Proposition 2.1) states that

B((1− ε)zc) ≥ 1 +
1

2
log[(1− ε)zc] +

1

2
log ε−1,
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and it follows that[
1− (1− ε)ψ(ε)

]−1

≥ 1 +
1

2
log[(1− ε)zc] +

1

2
log ε−1.

This rearranges to give

ψ(ε) ≤ 2 + o(1)

−ε log ε
and hence φ

(
−ε log ε

2 + o(1)

)
≤ (1 + o(1))ε

as ε→ 0. Probabilistically, this yields a lower bound on the asymptotic probability that
an n-step SAB has height at least εn.
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