
Electron. Commun. Probab. 23 (2018), no. 2, 1–16.
https://doi.org/10.1214/17-ECP105
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

New characterizations

of the S topology on the Skorokhod space*

Adam Jakubowski†

Abstract

The S topology on the Skorokhod space was introduced by the author in 1997 and
since then it has proved to be a useful tool in several areas of the theory of stochastic
processes. The paper brings complementary information on the S topology. It is
shown that the convergence of sequences in the S topology admits a closed form
description, exhibiting the locally convex character of the S topology. Morover, it is
proved that the S topology is, up to some technicalities, finer than any linear topology
which is coarser than Skorokhod’s J1 topology. The paper contains also definitions of
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1 Introduction

The S topology on the Skorokhod spaceD = D([0, T ]) of càdlàg functions has emerged
as a result of a chain of observations made in eighties and nineties of the twentieth
century.

In 1984 Meyer and Zheng [29] considered certain conditions on truncated conditional
variations of stochastic processes and proved that these conditions give uniform tightness
of the processes in some topology (nowadays called the Meyer-Zheng topology) on D.

A year later Stricker [36] proved that it is possible to relax the Meyer-Zheng condi-
tions to uniform tightness of random variables {‖Xn‖∞} and {Na,b(Xn)}, for each pair
of levels a < b (where Na,b(x) is the number of up-crossings of levels a < b by function
x).

Stricker still operated with the Meyer-Zheng topology. It was clear for Kurtz [20]
that such conditions give much more. But an ad hoc device constructed by Kurtz did not
have a topological character.

The S topology was constructed by the author in [13]. This step was final in the sense
that Stricker’s conditions are equivalent to the uniform tightness in the S topology.

It should be emphasized, that the S topology, as considered in [13], is sequential and
it is still not known if it is completely regular. So at the moment of its creation there
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Characterizations of the S topology

was no formalism to deal with it within the Probability Theory. Such formalism has been
provided in [14]. And an efficient tool - the almost sure Skorokhod representation in
non-metric spaces, given in [12] - made the S topology an operational and useful device
in many problems.

The very first application of the S topology was given by the author in [11], where
convergence of stochastic integrals was considered. Later the S topology was used in
problems related to homogenization of stochastic differential equations (e.g. [1], [2],
[5], [25], [30], [35], [32]), diffusion approximation of solutions to the Poisson equation
([31]), stability of solutions to semilinear equations with Dirichlet operator ([19]), mar-
tingale transport on the Skorokhod space ([10]), the Skorokhod problem ([23], [24], [28],
[34]), econometrics ([7]), control theory ([3], [22]), linear models with heavy-tails ([4]),
continuity of semilinear Neumann-Dirichlet problems ([27]), generalized Doob-Meyer
decomposition ([15]), modeling stochastic reaction networks ([16]) and even in some
considerations of a more general character ([8], [21]).

In the present paper we provide some complementary information related to the S
topology. Section 2 restates the definition and basic properties of the S topology. The S
topology was defined in [13] by means of so-called L-convergence −→S , which leads
to the topological convergence

∗−→S via the Kantorovich-Vulih-Pinsker-Kisynski recipe
(we refer to Section 6 for a primer on sequential spaces).

In Section 3 we provide a closed form formula for the
∗−→S convergence.

In Section 4 we find a position for S in the hierarchy of topologies on D, by showing
that it is essentially finer than any linear topology which is coarser than the Skorokhod
J1 topology.

In Section 5 we extend the notion of the S topology to the case of infinite time horizon
and to functions with multidimensional values.

2 Definition of the S topology

All results in this section are taken from [13]. We need some standard notation first.

1. D = D([0, T ]) denotes the Skorokhod space, i.e. a family of functions x : [0, T ]→
R1, which are right-continuous at every t ∈ [0, T ) and admit left-limits at every
t ∈ (0, T ].

2. D is naturally equipped with the sup-norm ‖x‖∞ = supt∈[0,T ] |x(t)|.

3. For a < b, Na,b(x) is the number of up-crossings of levels a and b by function
x ∈ D. In other words, Na,b(x) is the largest integer k such that there are numbers
0 ≤ t1 < t2 < t3 < . . . < t2k−1 < t2k ≤ T satisfying x(t2i−1) < a, x(t2i) > b, for each
i = 1, 2, . . . , k.

4. For η > 0, Nη(x) is the number of η-oscillations of x ∈ D on [0, T ]. This means that
Nη(x) is the largest ineger k such that there are numbers 0 ≤ t1 < t2 ≤ t3 < . . . ≤
t2k−1 < t2k ≤ T satisfying

∣∣x(t2i)− x(t2i−1)
∣∣ > η, for each i = 1, 2, . . . , k.

5. ‖v‖(T ) is the total variation of v on [0, T ]:

‖v‖(T ) = sup
{
|v(0)|+

m∑
i=1

|v(ti)− v(ti−1)|
}
,

where the supremum is taken over all 0 = t0 < t1 < . . . < tm = T, m ∈ N.

6. V =
{
x ∈ D ; ‖x‖(T ) < +∞

}
.

The S topology is defined in terms of S-convergence.
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Characterizations of the S topology

Definition 2.1 (S-convergence). We shall write xn −→S x0 if for every ε > 0 one can
find elements vn,ε ∈ V, n = 0, 1, 2, . . . which are ε-uniformly close to xn’s and weakly-∗
convergent:

‖xn − vn,ε‖∞ ≤ ε, n = 0, 1, 2, . . . , (2.1)

vn,ε ⇒ v0,ε, as n→∞. (2.2)

Remark 2.2. Recall, that vn,ε ⇒ v0,ε means that∫
[0,T ]

f(t) dvn,ε(t)→
∫

[0,T ]

f(t) dv0,ε(t), (2.3)

for each continuous function f : [0, T ]→ R1. In particular, setting f(t) ≡ 1 we get

vn,ε(T )→ v0,ε(T ). (2.4)

Moreover, by the Banach-Steinhaus theorem, relation (2.2) implies

sup
n
‖vn,ε‖(T ) < +∞. (2.5)

For the sake of brevity of formulation of the next theorem let us list some conditions
describing properties of a subset K ⊂ D.

sup
x∈K
‖x‖∞ < +∞. (2.6)

sup
x∈K

Na,b(x) < +∞, for all a < b. (2.7)

sup
x∈K

Nη(x) < +∞, for every η > 0. (2.8)

Theorem 2.3. (Criterion of relative S-compactness) Let K ⊂ D. We can find in every
sequence {xn} of elements of K a subsequence {xnk} such that xnk −→S x0, as k →∞,
if, and only if, one of the following equivalent statements is satisfied.

(i) Conditions 2.6 and 2.7 hold.

(ii) Conditions 2.6 and 2.8 hold.

(iii) For every ε > 0 and every x ∈ K there exists vx,ε ∈ V such that

sup
x∈K
‖x− vx,ε‖∞ ≤ ε, (2.9)

and

sup
x∈K
‖vx,ε‖ < +∞. (2.10)

Definition 2.4 (The S topology). The S topology is the sequential topology on D gener-
ated by the L-convergence −→S .

Remark 2.5. “ −→S ” is not an L∗-convergence. In the next section we shall give a
closed form of “

∗−→S ", obtained from −→S by the KVPK recipe (Theorem 6.3).

3 Closed form definition of
∗−→S

Definition 3.1. LetA = A
(
[0, T ]

)
be the family of continuous functions of finite variation

(A ⊂ C([0, T ]) ∩V), satisfying A(0) = 0.
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Let An ∈ A, n = 0, 1, 2, . . .. We will say that An −→τ A0, if

sup
t∈[0,T ]

|An(t)−A0(t)| → 0, (3.1)

and
sup
n
‖An‖(T ) < +∞. (3.2)

Remark 3.2. This is“the mixed topology” on C([0, T ]) ∩V .

Theorem 3.3. xn
∗−→S x0 if, and only if, xn(T )→ x0(T ) and∫ T

0

xn(t) dAn(t)→
∫ T

0

x0(t) dA0(t), (3.3)

for each sequence {An} ⊂ A that satisfies An −→τ A0.

Proof. Suppose that xn
∗−→S x0. Then xn(T ) → x0(T ) is a consequence of (2.4) and

property (2.1) of functions {vn,ε}. In order to prove (3.3) one could observe that this
convergence is a very particular (deterministic) case of Theorem 1 (or Theorem 5) in
[11]. But it is more instructive to give here a direct proof.

So assume that An −→τ A0, choose ε > 0 and let {vn,ε}n=0,1,2,... ⊂ V satisfy (2.1)
and (2.2). For n = 0, 1, 2, . . . we have∣∣ ∫ T

0

xn(t) dAn(t)−
∫

[0,T ]

vn,ε(t) dAn(t)
∣∣ ≤ ε sup

n
‖An‖(T ),

and therefore it is enough to show that∫
[0,T ]

vn,ε(t) dAn(t)→
∫

[0,T ]

v0,ε(t) dA0(t). (3.4)

By the integration by parts formula, the continuity of An and An(0) = 0, we obtain that
for n = 0, 1, 2, . . .∫

[0,T ]

vn,ε(t) dAn(t) = vn,ε(T )An(T )−
∫

[0,T ]

An(t) dvn,ε(t)

= vn,ε(T )An(T )−
∫

[0,T ]

A0(t) dvn,ε(t)

+

∫
[0,T ]

(
A0(t)−An(t)

)
dvn,ε(t)

= I1(n) + I2(n) + I3(n).

By (2.4) and (3.1) I1(n) = vn,ε(T )An(T ) → v0,ε(T )A0(T ) = I1(0). By (2.3) I2(n) =∫
[0,T ]

A0(t) dvn,ε(t)→
∫

[0,T ]
A0(t) dv0,ε(t) = I2(0). Finally

|I3(n)| =
∣∣ ∫

[0,T ]

(
A0(t)−An(t)

)
dvn,ε(t)

∣∣ ≤ sup
t∈[0,T ]

∣∣A0(t)−An(t)
∣∣ sup
n
‖vn,ε‖(T )→ 0

by (3.1) and (2.5). Hence (3.4) holds.
Now let us assume that xn(T )→ x0(T ) and (3.3) holds for every sequence {An} ⊂ A,

An −→τ A0. We claim that it is enough to establish relative S-compactness of {xn}.
Indeed, then in every subsequence {n′} we can find a further subsequence {n′′} such
that xn′′ −→S y0, for some y0 ∈ D. Take a function f ∈ L1([0, T ]) and define Af (t) =∫ t

0
f(u) du. Then Af ∈ A and by the first part of the proof,∫ T

0

xn′′(u) dAf (u)→
∫ T

0

y0(u) dAf (u) =

∫ T

0

x0(u) dAf (u).
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Hence for each integrable f we have∫ T

0

y0(u)f(u) du =

∫ T

0

y0(u) dAf (u) =

∫ T

0

x0(u) dAf (u) =

∫ T

0

x0(u)f(u) du,

and, consequently, y0 = x0 almost everywhere. Since they are càdlàg functions, y0 = x0

on [0, T ). And y0(T ) = x0(T ) holds by our assumption.
So far we have proved that in every subsequence {n′} we can find a further subse-

quence {n′′} along which xn′′ −→S x0. Hence, by the KVPK recipe, xn
∗−→S x0.

In order to prove the relative S-compactness of {xn} it is necessary to adjust in-
tegrands An in a way suitable for the particular functional determining the relative
S-compactness via Theorem 2.3.

First let us consider condition (2.6). Suppose that supn ‖xn‖∞ = +∞. Then there
exists a subsequence nk and numbers tk ∈ [0, T ) such that ak = |xnk(tk)| → ∞. Without
loss of generality we may assume that ak = xnk(tk) and tk < T . By the right-continuity
of xnk we can find numbers hk such that tk + hk < T and

xnk(t) ≥ (1/2)ak, for t ∈ [tk, tk + hk].

Let bk =
√
akhk. Consider function fk(u) = (1/bk)1[tk,tk+hk](u) and the corresponding

function Afk ∈ A. We have∫ T

0

xnk(u) dAfk(u) =

∫ T

0

xnk(u)fk(u) du

=
1

bk

∫ tk+hk

tk

xnk(u) du ≥ akhk
2bk

= (1/2)
√
ak → +∞,

while

‖Afk‖∞ = ‖Afk‖(T ) =

∫ T

0

fk(u) du = hk/bk = 1/
√
ak → 0.

It follows that (3.3) cannot be satisfied.
In order to cope efficiently with condition (2.7) we need the following lemma.

Lemma 3.4. Let x ∈ D be such that N = Na,b(x) ≥ 2 for some a < b. Then there exists
A ∈ A such that: ∫ T

0

x(t) dA(t) ≥ (b− a). (3.5)

‖A‖(T ) = 2. (3.6)

‖A‖∞ = 1/(N − 1). (3.7)

Proof. Let
0 ≤ t1 < t2 < t3 < t4 < . . . < t2N−1 < t2N ≤ T

be such that x(t2i−1) < a, x(t2i) > b, i = 1, 2, . . . , N . By the right continuity of x, for each
= 1, 2 . . . , N − 1 there are numbers δi > 0 such that t2i−1 + δi < t2i < t2i + δi < t2i+1 and

sup
t∈[t2i−1,t2i−1+δi]

x(t) ≤ a, inf
t∈[t2i,t2i+δi]

x(t) ≥ b.

Let hi = 1/
(
δi(N − 1)

)
and define

f(t) =

N−1∑
i=1

(−1)hi1[t2i−1,t2i−1+δi](t) + hi1[t2i,t2i+δi](t).
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Then we have for A = Af∫ T

0

x(t) dAf (t) =

∫ T

0

x(t)f(t) dt

=

N−1∑
i=1

(−1)hi

∫ t2i−1+δi

t2i−1

x(t) dt+ hi

∫ t2i+δi

t2i

x(t) dt

≥
N−1∑
i=1

hiδi
(
b− a

)
=
(
b− a

)
.

Similarly

‖Af‖(T ) =

∫ T

0

|f(t)| dt =

N−1∑
i=1

2hi · δi = 2.

‖Af‖∞ = sup
t∈[0,T ]

|Af (t)| = max
i=1,2...,N−1

hi · δi = 1/(N − 1).

Now suppose that condition (2.7) does not hold for K = {xn}. This means that for
some a < b and along some subsequence {n′}

Na,b(xn′)→∞.

Without loss of generality we may assume that Na,b(xn′) ≥ 2. For each n′, let An′ = Afn′

be given by Lemma 3.4. Then An′ −→τ A0 = 0, while
∫ T

0
xn′(t) dAn′(t) ≥ b − a > 0

cannot converge to
∫ T

0
x0(t) dA0(t) = 0. This contradicts (3.3).

Corollary 3.5. xn
∗−→S x0 if, and only if, xn(T ) → x0(T ) and for each relatively

τ -compact set A ⊂ A

sup
A∈A

∣∣ ∫ T

0

(
xn(u)− x0(u)

)
dA(u)

∣∣→ 0. (3.8)

Proof. Clearly, (3.8) implies (3.3). To prove the converse, assume (3.3) and suppose that
(3.8) does not hold for some relatively τ -compact set A ⊂ A. This means that for some
η > 0 there exists a subsequence {n′} and elements An′ of A such that for all n′

∣∣ ∫ T

0

(
xn′(u)− x0(u)

)
dAn′(u)

∣∣ > η.

Passing to a τ -convergent subsequence An′′ we obtain a contradiction with (3.3).

Remark 3.6. Denote by Σ the locally convex topology on D given by the seminorm
ρ1(x) = |x(1)| and the seminorms

ρA(x) = sup
A∈A

∣∣ ∫ 1

0

x(u) dA(u)
∣∣,

where A runs over relatively τ -compact subsets of A.
Then xn

∗−→S x0 if, and only if, xn −→Σ x0 and so S ⊃ Σ, for S is sequential.

Question 3.7. Is it true that S ≡ Σ? Positive answer would allow stating that (D, S) is a
locally convex linear topological space.

Remark 3.8. Even if S ! Σ, the compact sets are the same in both topologies, as well
as classes of sequentially lower-semicontinuous functions. Exploring S-compactness
and S-lower-semicontinuity Guo et al. [10] obtained interesting results on martingale
optimal transport on the Skorokhod space. It seems that in problems of such type the
local convexity related to Σ can be a useful tool as well.
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4 S in the hierarchy of topologies

Let us begin with listing some facts on topologies on D.

1. D with norm ‖ · ‖∞ is a Banach space, but non-separable.

2. The Skorokhod J1 topology is metric separable and
(
D, J1

)
is topologically complete.

For definition and properties of J1 we refer to Billingsley’s classic book [6] rather
than to its second edition.

3. It is easy to show that xn −→J1 x0 implies xn −→S x0, hence the S topology is
coarser than J1.

4. It was shown in [4] that the S topology is coarser than Skorokhod’s M1 topology
(see [33] for definitions of four Skorokhod’s topologies).

5. S is incomparable with Skorokhod’s M2 topology!

6.
(
D, J1

)
is not a linear topological space, for addition is not sequentially J1-continuous,

as Figure 1 shows.

7. On the contrary, the sequence {fn} defined in Figure 1 is S-convergent to 0 and
exhibits a typical for S phenomenon of self-cancelling oscillations. Addition is
sequentially continuous in S!

8. We do not know whether addition is continuos, as a function on the product D×D
with the product topology S × S (in general sequential continuity does not imply
continuity). Therefore we do not know, whether (D, S) is a linear topological space.

Figure 1: J1 is not linear (xn(t) = 1[sn,T ](t), yn(t) = 1[tn,T ](t), sn ↗ t0, tn ↘ t0)

Theorem 4.1. Suppose σ is a topology on D = D([0, T ]) which satisfies the following
assumptions.

(D, σ) is a linear topological space (4.1)

σ is coarser than the uniform topology generated by the norm ‖ · ‖∞. (4.2)

For each A > 0 the set {a1[u,T ] ; |a| ≤ A, u ∈ [0, T ]} is relatively σ-compact. (4.3)

Then σ is coarser than the S topology.

Proof. We claim that it is enough to prove that xn −→S x0 implies xn′ −→σ x0 along
some subsequence {n′}. Indeed, this implies that any σs-closed set is also S-closed (for
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S is sequential), and so σs is coarser than S. Since we always have σ ⊂ σs, our claim
follows.

So let us assume that xn −→S x0. For ε > 0 and x ∈ D let us define

τε0 (x) = 0

τεk(x) = inf{t > τεk−1(x) : |x(t)− x(τεk−1(x))| > ε}, k = 1, 2, . . . .

(where by convention inf ∅ = +∞) and let

vε(x)(t) = x(τεk(x)) if τεk(x) ≤ t < τ εk+1(x), t ∈ [0, T ], k = 0, 1, 2, . . . .

Then by the very definition ‖x− vε(x)‖∞ ≤ ε. Similarly, if we set

Mε(x) = max{k ; τεk(x) ≤ T},

then Mε(x) ≤ Nε/2(x) and by Theorem 2.3 we have

sup
n
‖vε(xn)‖∞ ≤ ε+ sup

n
‖xn‖∞ =: Aε < +∞, (4.4)

sup
n
Mε(xn) ≤ sup

n
Nε/2(xn) =: Mε < +∞. (4.5)

Since vε(x) varies only through Mε(x) jumps, it can be represented as a sum of Mε(x)+1

terms:

vε(x) =

Mε(x)∑
k=0

zk(x)1[τεk(x),T ], (4.6)

where z0(x) = 0 and

zk(x) = x
(
τεk(x)

)
−
k−1∑
j=0

x
(
τεj (x)

)
k = 1, 2, . . . ,Mε(x).

By (4.4) and (4.5) we obtain

sup
n

max
k
|zk(xn)| ≤ (Mε + 1)Aε.

It follows that the sequence {vε(xn)} lives in the algebraic sum

K̃ε = Kε +Kε + . . .+Kε︸ ︷︷ ︸
Mε+1 times

,

where Kε = {a1[u,T ] ; |a| ≤
(
Mε + 1

)
Aε, u ∈ [0, T ]} is relatively σ-compact. Since (D, σ)

is linear K̃ε is relatively σ-compact as well. This means that in every subsequence {n′}
one can find a further subsequence {n′′} such that vε(xn′′) −→σ vε, for some vε ∈ D.
But we can say more: by the special form (4.6) of elements vε(xn) (bounded number of
jumps with bounded amplitudes) we may extract a further subsequence {n′′′} such that
vε(xn′′′)⇒ vε.

Now choose εm ↘ 0 and apply the diagonal procedure to extract a subsequence n′

such that for each m ∈ N we have along {n′}

vεm(xn′) −→
σ

vm, vεm(xn′)⇒ vm

for some vm = vεm ∈ D. Notice that vεm(xn′) ⇒ vm implies vεm(xn′) −→S vm. By
Corollary 2.10 in [13]

‖vm − x0‖∞ ≤ lim inf
n′
‖vεm(xn′)− xn′‖∞ ≤ εm → 0. (4.7)
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For later purposes we may write vm − x0 ∈ Bεm , where Br = {x ∈ D ; ‖x‖∞ ≤ r} for
r > 0.

Our final task consists in proving xn′ −→σ x0. Let V be a σ-open neighborhood of x0.
By the linearity there exists a σ-open neighborhood W of 0 such that W +W ⊂ V − x0.
Since σ is coarser than the uniform topology, there exists δ > 0 such that B2δ ⊂W . Let
m be such that εm < δ. Then for n′ large enough we have

xn′ = xn′ − vεm(xn′) + vεm(xn′)− vm + vm − x0 + x0

∈ Bεm +W +Bεm + x0 ⊂W +W + x0 ⊂ V.

Remark 4.2. Let us consider the space Lp([0, T ]) = Lp
(
[0, T ],L|[0,T ], `|[0,T ]

)
, p ∈ [0,+∞]

of Lebesgue-measurable functions on [0, T ] (here ` stands for the Lebesgue measure). Of
course, for each p we have D([0, T ]) ⊂ Lp([0, T ]). Moreover, the induced metric converts
D([0, T ]) into a normed space (if p ∈ [1,+∞)) or a metric linear space (if p ∈ [0, 1]).
Clearly, assumptions (4.1) - (4.3) are satisfied and by our Theorem 4.1 all mentioned
metric topologies are coarser than S.

Remark 4.3. If we replace ` with another atomless finite measure µ on [0, T ], then again
the metric topologies induced by spaces Lp([0, T ], µ), p ∈ [0,+∞), are coarser than the S
topology.

This is not so, if we admit atoms for µ, for (4.3) is then violated.

Remark 4.4. In Introduction we suggested that the S topology is almost finer than any
linear topology which is coarser than Skorokhod’s J1 topology. The delicate point is
that condition (4.3) does not hold for J1. The corresponding typical example is given
in Figure 2, with parameters tn → 0. To overcome this difficulty we shall introduce a
variant of the J1 topology, called mJ1 (m - for modified), which slightly weakens the
original topology and for which condition (4.3) is satisfied.

Figure 2: A sequence of single jumps that does not converge in J1, but converges in mJ1

Definition 4.5 (The mJ1 topology). Fix ε > 0 and consider a one-to-one embedding

D([0, T ]) 3 x 7→ x̃ ∈ D([−ε, T + ε])

given by the formula

x̃(t) =


0 if −ε ≤ t < 0,

x(t) if 0 ≤ t < T ,

x(T ) if T ≤ t ≤ T + ε.

(4.8)
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Characterizations of the S topology

Take the complete metric dSk on D([−ε, T + ε]) (see [6])) and define

d(x, y) = dSk
(
x̃, ỹ
)
.

Then (D, d) becomes a metric space and the corresponding topology will be called mJ1.

Theorem 4.6 (Basic facts on mJ1).

(i) (D, d) is a Polish (i.e. complete and separable) metric space.

(ii) A subset K ⊂ D is relatively mJ1-compact iff it is uniformly bounded:

sup
x∈K

sup
t∈[0,T ]

|x(t)| < +∞, (4.9)

and
lim
δ→0

sup
x∈K

sup
0−≤s<t<u≤T

u−s<δ

min{|x(t)− x(s)|, |x(u)− x(t)|} = 0, (4.10)

where we use the conventions x(0−) = 0 and u− (0−) = u.

(iii) For each A > 0 the set {a1[u,T ] ; |a| ≤ A, u ∈ [0, T ]} is relatively mJ1-compact.

Proof. It is easy to see that if x̃n converges in
(
D([−ε, T + ε]), dSk

)
to some z, then the

limit is of the form x̃0, for some x0 ∈ D. Hence (D, d) is homeomorphic to a closed subset
of the Polish space

(
D([−ε, T + ε]), dSk

)
, and so it is Polish itself.

Part (ii) is a specification of Theorem 14.4 in [6].
And part (iii) is a direct consequence of our definition (see Figure 2).

Taking into account Theorems 4.1 and 4.6 we obtain the following interesting result,
positioning the S topology in the hierarchy of topologies on D.

Theorem 4.7 (Maximal character of the S topology). Every linear topology on D, which
is coarser than mJ1, is coarser than the S topology as well.

Remark 4.8. Were
(
D, S

)
a linear topological space, S would be the finest linear topol-

ogy on D “below” mJ1.

5 Extensions

5.1 Infinite time horizon

The problem consists in defining an analog of the S topology on the Skorokhod
space D

(
[0,+∞)

)
of functions x : R+ → R1, which are right-continuous at every t ≥ 0

and admit left limits at every t > 0. This cannot be achieved by invoking consistency,
because the natural projections of

(
D
(
[0, T2]

)
, S
)

onto
(
D
(
[0, T1]

)
, S
)
, 0 < T1 < T2, are

not continuous, due to the special role of the end point T1 ∈ (0, T2).
A similar phenomenon was encountered long time ago for Skorokhod’s J1 topology

(see [26] and [37] for the ways to overcome this difficulty). The case of the S topology
can be handled in a somewhat simpler manner, mainly due to the characterization of
∗−→S on D given in Theorem 3.3 and the fact that we are interested in convergence of

sequences only and not in a particular form of a metric.

Definition 5.1. Let xn ∈ D
(
[0,+∞)

)
, n = 0, 1, 2, . . .. We will say that xn

∗−→S x0 in
D
(
[0,+∞)

)
, if for every T > 0∫ T

0

xn(t) dAn(t)→
∫ T

0

x0(t) dA0(t), (5.1)
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Characterizations of the S topology

for all sequences {An} ⊂ A
(
[0, T ]

)
such that An −→τ A0.

The S topology on D
(
[0,+∞)

)
is the sequential topology generated by the L∗-

convergence xn
∗−→S x0.

If x ∈ D
(
[0,+∞)

)
and T > 0, it will be convenient to denote by xT ∈ D

(
[0, T ]

)
the

restriction of x to [0, T ]:
xT (t) = x(t), t ∈ [0, T ].

We have the following analog of Theorem 2.3.

Theorem 5.2. Let K ⊂ D
(
[0,+∞)

)
.

We can find in every sequence {xn} of elements of K a subsequence {xnk} such that
xnk

∗−→S x0, as k → ∞, if, and only if, one of the following equivalent statements (i)
and (ii) is satisfied.

(i)

sup
x∈K
‖xT ‖∞ < +∞, for every T > 0.

sup
x∈K

Na,b(xT ) < +∞, for all T > 0 and a < b.

(ii)

sup
x∈K
‖xT ‖∞ < +∞, for every T > 0.

sup
x∈K

Nη(xT ) < +∞, for all T > 0 and η > 0.

Proof. The equivalence of (i) and (ii) is stated in Theorem 2.3, so it is enough to deal
with (i) only.
Necessity. Suppose that for some T > 0 and along a sequence {xn} ⊂ K we have
either limn→∞ supt∈[0,T ] |xn(t)| = +∞ or limn→∞Na,b

(
xTn
)

= +∞ for some a < b. Choose

T ′ > T . The sequence {xn} contains a subsequence xnk
∗−→S x0 and so∫ T ′

0

xnk(t) dAnk(t)→
∫ T ′

0

x0(t) dA0(t), k → +∞,

for all sequences {Ank} ⊂ A
(
[0, T ′]) such that Ank −→τ A0 in A

(
[0, T ′]). By inspection

of the proof of Theorem 3.3 we see that this implies both

lim sup
k→∞

sup
t∈[0,T ]

|xnk(t)| < +∞,

and
lim sup
k→∞

Na,b(x
T
nk

) < +∞.

We have arrived to a contradiction.
Sufficiency. Take any sequence Tr ↗ +∞ and assume (i). By Theorem 2.3 we can
find a sequence {x1,n} such that xT1

1,n −→S x1,0 in D
(
[0, T1]

)
. In {x1,n} we can find a

subsequence {x2,n} such that xT2
2,n −→S x2,0 in D

(
[0, T2]

)
. Repeating this process and

then applying the diagonal procedure we can find a subsequence {xn′} ⊂ K such that
for every r ∈ N

xTrn′ −→
S

xr,0, in D
(
[0, Tr]

)
.

We claim that there exists exactly one x0 ∈ D
(
[0,+∞)

)
such that for each r ∈ R

xTr0 (t) = xr,0(t), t ∈ [0, Tr).

ECP 23 (2018), paper 2.
Page 11/16

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP105
http://www.imstat.org/ecp/


Characterizations of the S topology

Let q < r. It is enough to verify the consistency of xq,0 and xr,0 on [0, Tq). By Corollary 2.9
in [13] we can find a further subsequence {n′′} as well as countable subsets Dq ⊂ [0, Tq)

and Dr ⊂ [0, Tr) such that

xn′′(t)→ xq,0(t), t 6∈ Dq, xn′′(t)→ xr,0(t), t 6∈ Dr.

It follows that if t belongs to the set [0, Tq) \
(
Dq ∪Dr) that is dense in [0, Tq), then

xn′′(t)→ xq,0(t) = xr,0(t).

Because both xq,0 and x
Tq
r,0 are càdlàg, they are equal on [0, Tq).

It remains to show that (5.1) holds for xn′ and x0. Let T > 0. Take Tr ≥ T . By
Theorem 3.3 ∫ Tr

0

xn′(t) dAn′(t)→
∫ Tr

0

xr,0(t) dA0(t),

for all sequences {An′} ⊂ A
(
[0, Tr]

)
such that An′ −→τ A0. Notice that in view of

the continuity of A0, the value of xr,0 at t = Tr does not contribute to the value of the

integral and therefore the limit integral can be written as
∫ Tr

0
x0(t) dA0(t). We have thus

established (5.1) for T = Tr. So let T < Tr and consider a sequence {An′} ⊂ A
(
[0, T ]

)
such that An′ −→τ A0. Taking a natural extension

Ãn′(t) =

{
An′(t), if t ∈ [0, T );

An′(T ), if t ∈ [T, Tr];

we see that ∫ T

0

xn′(t) dAn′(t) =

∫ Tr

0

xn′(t) dÃn′(t),

hence the general case is implied by the one already proved.

Remark 5.3. The idea to keep the star over the arrow in the above definition of the
convergence generating the S topology on D

(
[0,+∞)

)
is justified by the fact that also in

the infinite time horizon there is a notion corresponding to the L-convergence −→S .

Theorem 5.4. xn
∗−→S x0 in D

(
[0,+∞)

)
if, and only if, in each subsequence {xnk}

one can find a further subsequence {xnkl } and a sequence Tr ↗ +∞ such that in each
D([0, Tr])

xTrnkl
−→
S

xTr0 , as l→∞. (5.2)

Proof. Suppose we have the property described by (5.2).
∗−→S is an L∗-convergence,

so it is sufficient to prove that (5.2) implies relation (5.1). But this is done in the final
part of the proof of Theorem 5.2.

It remains to show that if xn
∗−→S x0, then we can strengthen the construction

given in the sufficiency part of the proof of Theorem 5.2 in such a way that

xr,0(Tr) = x0(Tr), r ∈ R.

Let us repeat that construction for some T ′r ↗ +∞ and find a subsequence n′ such that

x
T ′r
n′ −→

S
xr,0, in D

(
[0, T ′r]

)
. r ∈ N.

Because (5.1) identifies the limit almost everywhere (as was shown in the proof of
Theorem 3.3), we see that xr,0(t) = x0(t), t ∈ [0, T ′r), r ∈ N. Similarly as before, passing
to a further subsequence {n′′} we have for some countable set D ⊂ R+

xn′′(t)→ x0(t), t 6∈ D.
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Take any Tr ∈ (T ′r−1, T
′
r] \ D. Then {xTrn′′} is relatively S-compact in D

(
[0, Tr]

)
and

xn′′(t)→ x0(t) on a dense set containing Tr. This implies xn′′ −→S x0 in D
(
[0, Tr]

)
(for

if not, we would be able to show that {xTrn′′} is not relatively S-compact in D
(
[0, Tr]

)
, just

as in the proof of Proposition 2.14 in [13]).

Definition 5.5. Let xn ∈ D
(
[0,+∞)

)
, n = 0, 1, 2, . . .. We will say that xn −→S x0 in

D
(
[0,+∞)

)
, if one can find a sequence Tr ↗ +∞ such that for every r ∈ N

xTrn −→
S

xTr0 in D
(
[0, Tr]

)
, as n→∞.

5.2 Functions with values in Rd

Let D
(
[0,+∞) : Rd

)
be a family of functions x : R+ → Rd, which are right-continuous

at every t ≥ 0 and admit left limits at every t > 0. Taking coordinates, we may iden-

tify D
(
[0,+∞) : Rd

)
with the product space

(
D
(
[0,+∞)

))d
. If we equip each space

D
(
[0,+∞)

)
with the sequential S topology, then the natural sequential topology on the

product is given by the convergence in the components. In other words, we have

Definition 5.6. Let xn ∈ D
(
[0,+∞) : Rd

)
, n = 0, 1, 2, . . ., where

xn(t) =
(
x1
n(t),x2

n(t), . . . ,xdn(t)
)
.

Then we will say that xn
∗−→S x0 if

xin
∗−→
S

xin in D
(
[0,+∞)

)
for each i = 1, 2, . . . , d.

In a similar way we define convergence −→S in D
(
[0,+∞) : Rd

)
and convergences

∗−→S and −→S in D
(
[0, T ] : Rd

)
.

The S topology on D
(
[0,+∞) : Rd

)
and on D

(
[0, T ] : Rd

)
is the sequential topology

generated by
∗−→S considered in the corresponding space.

Given this natural definition of the S topology, the criteria of relative S-compactness
in the multidimensional setting are obvious.

Theorem 5.7. Let K ⊂ D
(
[0,+∞) : Rd

)
and let Ki = {xi;x ∈ K} ⊂ D

(
[0,+∞)

)
.

Then K is relatively S-compact in D
(
[0,+∞) : Rd

)
if, and only if, each set Ki,

i = 1, 2, . . . , d, is relatively compact in D
(
[0,+∞)

)
.

The same equivalence holds, if we replace D
(
[0,+∞) : Rd

)
with D

(
[0, T ] : Rd

)
and

D
(
[0,+∞)

)
with D

(
[0, T ]

)
.

6 Appendix: Sequential topologies generated by L-convergences

Following Fréchet, we say that X is a space of type L, if among all sequences of
elements of X a class C(→) of “convergent" sequences is distinguished in such a way
that:

(i) To each convergent sequence (xn) exactly one point x0, called “the limit", is attached
(symbolically: xn −→ x0)

(ii) For every x ∈ X , the constant sequence (x, x, . . .) is convergent to x.

(iii) If xn −→ x0 and 1 ≤ n1 < n2 < . . ., then the subsequence (xnk) converges, and to
the same limit: xnk −→ x0, as k →∞.

Using the L-convergence −→ one creates the family of closed sets.
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Characterizations of the S topology

Definition 6.1. Say that F ⊂ X is τ(→)-closed if limits of −→-convergent sequences
of elements of F remain in F , i.e. if xn ∈ F, n ∈ N and xn −→ x0, then x0 ∈ F . The
topology given by τ(→)-closed sets is called the sequential topology generated by the
L-convergence −→ and will be denoted by τ(→).

Remark 6.2. It must be stressed that for a sequential topology to be defined only the
extremely simple properties (ii) and (iii) of convergence −→ are required. On the other
hand, the topology obtained this way has in general extremely poor separation properties.
It is only T1 space due to the fact that in view of (ii) above each one-point set {x} is
τ(→)-closed.

But it is enough for the topology τ(→) to define a new (in general) convergence,
“−→τ(→)” say, which, after Urysohn, is called the convergence “a posteriori", in order to
distinguish from the original convergence (= convergence “a priori", i.e. “−→”). So (xn)

converges a posteriori to x0, if for every τ(→)-open set U containing x0 eventually all
elements of the sequence (xn) belong to U .

Kantorovich et al [17, Theorem 2.42, p.51] and Kisyński [18] gave a familiar charac-
terization of the convergence a posteriori in terms of the convergence a priori.

Theorem 6.3 (KVPK recipe). {xn} converges to x0 a posteriori if, and only if, each
subsequence {xnk} contains a further subsequence {xnkl } convergent to x0 a priori.

Remark 6.4. The convergence a posteriori is generated by a topology. Suppose an
L-convergence −→ satisfies additionally

(iv) If every subsequence (xnk) of (xn) contains a further subsequence (xnkl ) −→-
convergent to x0, then the whole sequence (xn) is −→-convergent to x0.

Then the convergence−→ is called an L∗-convergence. It is an immediate consequence of
Theorem 6.3 that if we start with an L∗-convergence then the convergences a posteriori
and a priori coincide.

Remark 6.5. It follows that given an L-convergence “−→" we can weaken it to an
L∗-convergence “

∗−→" which is already the usual convergence of sequences in the
topological space (X , τ(−→)) ≡ (X , τ(

∗→)). At least two examples of such a procedure
are commonly known.

Example 6.6. If “−→" denotes the convergence “almost surely" of real random variables
defined on a probability space (Ω,F ,P), then “

∗−→" is the convergence “in probability".

Example 6.7. Let X = R1 and take a sequence εn ↘ 0. Say that xn −→ x0, if for each
n ∈ N, |xn − x0| < εn, i.e. xn converges to x0 at the given rate {εn}. Then “

∗−→" means
the usual convergence of real numbers.

Remark 6.8. It is worth noting that a set J ⊂ X is relatively −→-compact (i.e. in each
sequence {xn} ⊂ J one can find a subsequence {n′} such that xn′ −→ x0, for some
x0 ∈ X ) iff it is relatively

∗−→-compact.

Remark 6.9. Let us notice that if (X , τ) is a Hausdorff topological space, then

τ ⊂ τs ≡ τ( −→
τ

)

and in general this inclusion may be strict (like in the case of the weak topology on an
infinite dimensional Hilbert space).
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