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Abstract

One major obstacle in applications of Stein’s method for compound Poisson approx-
imation is the availability of so-called magic factors (bounds on the solution of the
Stein equation) with favourable dependence on the parameters of the approximating
compound Poisson random variable. In general, the best such bounds have an expo-
nential dependence on these parameters, though in certain situations better bounds
are available. In this paper, we extend the region for which well-behaved magic factors
are available for compound Poisson approximation in the Kolmogorov metric, allowing
useful compound Poisson approximation theorems to be established in some regimes
where they were previously unavailable. To illustrate the advantages offered by these
new bounds, we consider applications to runs, reliability systems, Poisson mixtures
and sums of independent random variables.
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1 Introduction

In recent years, Stein’s method has proved to be a versatile technique for proving
explicit compound Poisson approximation results in a wide variety of settings; see [2] and
references therein for an introduction to these techniques and a discussion of several
applications. One of the difficulties in applying Stein’s method for compound Poisson
approximation is the availability of good bounds on the solution of the so-called Stein
equation in this setting; the availability of such favourable bounds depends upon the
parameters of the compound Poisson distribution in question satisfying one of a number
of conditions, which we discuss further below. Our purpose here is to show how one
such condition can be generalized and relaxed.

We say that U ∼ CP(λ,µ) has a compound Poisson distribution if U is equal in
distribution to

∑N
j=1Xj , where N ∼ Po(λ) has a Poisson distribution with mean λ, and

X,X1, X2, . . . are i.i.d. with P(X = k) = µk. We write µ = (µ1, µ2, . . .), and let λk = λµk.
We also write

θk =

∞∑
j=1

j(j − 1) · · · (j − k)λj ,
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Compound Poisson approximation

for k = 0, 1, . . .. Note that these θk are simply the factorial moments of the compounding
random variable X, rescaled by λ.

Stein’s method for compound Poisson approximation, as developed in [1], begins by
finding, for each function h in some given class H, a function fh solving

h(x)− Eh(U) =

∞∑
j=1

jλjfh(x+ j)− xfh(x) , (1.1)

for each x ∈ Z+ = {0, 1, 2 . . .}, where U ∼ CP(λ,µ). We may then assess the quality of the
approximation of a non-negative, integer-valued random variable W by the compound
Poisson random variable U by bounding the right-hand side of the following equality:

sup
h∈H
|Eh(W )− Eh(U)| = sup

h∈H

∣∣∣∣∣∣E
 ∞∑
j=0

jλjfh(W + j)−Wfh(W )

∣∣∣∣∣∣ . (1.2)

If we choose H to be the set HTV = {I(· ∈ A) : A ⊆ Z+}, the left-hand side of (1.2)
becomes the total variation distance between W and U . In this note, our primary interest
is in the Kolmogorov distance, defined by

dK(L(W ),L(U)) = sup
y∈Z+

|P(W ≤ y)− P(U ≤ y)| ,

which can be obtained from (1.2) by choosing H to be the class HK = {I(· ≤ y) : y ∈ Z+}.
In bounding the right-hand side of (1.2), it is essential to have bounds controlling

the behaviour of fh. This is typically achieved (for the Kolmogorov distance) by finding
upper bounds on

M
(K)
l = M

(K)
l (U) = sup

h∈HK

sup
x∈Z+

|∆lfh(x)| ,

for l = 0, 1, where ∆ denotes the forward difference operator, so that ∆f(x) = f(x+ 1)−
f(x) for any function f . Such bounds are often referred to as Stein factors, or magic
factors.

Similarly, when using (1.2) to bound the total variation distance between W and U ,
upper bounds for M (TV )

0 and M
(TV )
1 are required, where these quantities are defined

analogously to the above, but with HK replaced by HTV . Note that M (K)
l ≤M (TV )

l for
each l (since HK ⊆ HTV ), and so Stein factors for total variation distance may also be
employed when considering approximation in Kolmogorov distance.

Unfortunately, good Stein factors for compound Poisson approximation are often not
readily available. Barbour et al. [1, Theorem 4] show that

M
(TV )
0 ,M

(TV )
1 ≤ min

{
1,

1

λ1

}
eλ , (1.3)

and that, in general, this dependence on λ cannot be improved. Such bounds are
therefore useful only for small λ. However, there are certain conditions on the λj under
which better Stein factors are available for the corresponding compound Poisson random
variable. For example, if we assume that

jλj ≥ (j + 1)λj+1 , (1.4)

for all j ≥ 1, then [5, Proposition 1.1] shows that

M
(K)
0 ≤ min

{
1,

√
2

eλ1

}
, M

(K)
1 ≤ min

{
1

2
,

1

λ1 + 1

}
, (1.5)
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Compound Poisson approximation

which vastly improves the corresponding compound Poisson approximation bounds. An
upper bound on M (TV )

1 is also established by [1, Theorem 5] under the same condition
(1.4). This bound has dependence on the λj which is not quite as good as that in (1.5),
as it includes an undesirable logarithmic term.

Barbour and Utev [3] use Fourier techniques to relax the condition (1.4) somewhat,
and establish Stein factors for compound Poisson approximation in Kolmogorov distance
of a better order than is generally available. Unfortunately, their bound on M (K)

1 again
includes an undesirable logarithmic term, which can only be removed at the cost of a
significantly increased constant in the bound.

Their bounds are proved by making the choice of test function h(x) = tx − EtU in
(1.1), for t ∈ C with |t| = 1. With this choice of test function, Barbour and Utev [3,
Theorem 2.1] show that the equation (1.1) is solved by

fh(x) =

∫ 1

t

ux−1eλ[µ(t)−µ(u)] du , (1.6)

for x ≥ 1, where µ(t) =
∑∞
j=1 µjt

j and the integral is taken along any contour in the unit
disc in C from t to 1. The solution to the equation (1.1) for any h ∈ HK may then be
written in terms of functions of the form (1.6). This allows bounds on the M (K)

l to be
found using the following result, which is proved as part of Theorem 3.1 of [3]:

Theorem 1.1 ([3]). Let fh be given by (1.6) and assume that θ0 < ∞. If there exists
δ > 0 such that

|fh(x)| ≤ |1− t|
δ(1− Re[t])

and |∆fh(x)| ≤ |1− t|2

δ(1− Re[t])
,

for all t ∈ C with |t| = 1, then the corresponding compound Poisson random variable
U ∼ CP(λ,µ) satisfies

M
(K)
0 ≤ 2

√
2

δ
and M

(K)
1 ≤ 1

2δ

[
1 + log+(πδ)

]
,

log+ denoting the positive part of the natural logarithm.

An alternative condition, different in flavour to (1.4), is also available, under which
Stein factors also exhibit more favourable dependence on the λj than is generally
possible. Barbour and Xia [4, Theorem 2.5] prove that if our compound Poisson random
variable satisfies

θ0 − 2θ1 > 0 , (1.7)

then

M
(TV )
0 ≤

√
θ0

θ0 − 2θ1
, and M

(TV )
1 ≤ 1

θ0 − 2θ1
. (1.8)

Our purpose in this note is to show how the Fourier techniques embodied in Theorem
1.1 can be used to generalize and relax the condition (1.7) when finding reasonable Stein
factors for compound Poisson approximation in Kolmogorov distance. This will extend
the applicability of various compound Poisson approximation results in the literature,
allowing approximation theorems with a reasonable error bound to be established for
previously inaccessible parameter values. We illustrate this in Section 3 with applications
to runs and reliability systems, where good compound Poisson estimates are established
for a larger range of parameter values than was previously available.

Unfortunately, as we are taking advantage of Theorem 1.1, our bounds on M (K)
1 will

include the undesirable logarithmic factor. The dependence on the λj will, of course,
still be superior to the exponential bound available in the general case, and allow us to
approach approximation problems for which the conditions (1.4) or (1.7) do not hold.
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Compound Poisson approximation

Our generalization of (1.7), by modifying the inequality to include θj for j > 1, is
presented in Section 2. Applications to runs and reliability systems are then given in
Section 3. Section 4 will present a further relaxation of inequality (1.7), allowing good
Stein factors to be established in some cases where θ0 < 2θ1. Some examples are given
to illustrate this result.

2 A generalization of the Barbour–Xia condition

We use this section to prove our main theorem, the following generalization of the
condition (1.7):

Theorem 2.1. Let k ∈ {1, 2, . . .} and U ∼ CP(λ,µ). Define gk : (−π, π]× [0, 1] 7→ R by

gk(φ, p) =
1

cosφ− 1

k∑
j=1

Re[(eiφ − 1)j ]

j!

(
1− (1− p)j

)
p

θj−1 −
2k

k!
θk .

Let
δk = inf

φ,p
gk(φ, p) .

Assume that θ0 <∞ and δk > 0. Then U satisfies

M
(K)
0 ≤ 2

√
2

δk
and M

(K)
1 ≤ 1

2δk

[
1 + log+(πδk)

]
.

The proof of Theorem 2.1 is given in Section 2.1 below. Applications will follow in
Section 3.

Choosing k = 1 in Theorem 2.1, the condition δ1 > 0 is easily shown to be equivalent
to (1.7). The condition δ2 > 0 is actually stronger than (1.7). However, for k ≥ 3 we
obtain a condition which will, in certain situations, be weaker than (1.7). In Section 3,
our applications will mainly employ the case k = 3. In this case, we have the following
result:

Corollary 2.2. Let U ∼ CP(λ,µ). Assume that θ0 <∞ and θ2 < 2θ1. If

δ = θ0 − 2θ1 + 2θ2 −
4

3
θ3 > 0 ,

then U satisfies

M
(K)
0 ≤ 2

√
2

δ
and M

(K)
1 ≤ 1

2δ

[
1 + log+(πδ)

]
.

Proof. Choosing k = 3 we have

g3(φ, p) = θ0 + (cosφ)(2− p)θ1 +
1

3
(cosφ− 1)(2 cosφ+ 1)(p2 − 3p+ 3)θ2 −

4

3
θ3 ,

which, under the conditions of the present result, is minimized at (π, 0). Theorem 2.1
then gives the stated result.

Note that the condition δ > 0 in Corollary 2.2 is weaker than (1.7) if 2θ3 < 3θ2.

2.1 Proof of Theorem 2.1

To prove Theorem 2.1, we establish the bounds required by Theorem 1.1 using the
representation (1.6), where the integral is taken over the straight line joining t and 1, so
that

fh(x) = (1− t)
∫ 1

0

[t+ p(1− t)]x−1 exp {λ [µ(t)− µ(t+ p(1− t))]} dp , (2.1)
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Compound Poisson approximation

and so

|fh(x)| ≤ |1− t|
∫ 1

0

exp {λRe [µ(t)− µ(t+ p(1− t))]} dp . (2.2)

Now, using the definition of µ(t), we write

µ(t)− µ(t+ p(1− t)) =

∞∑
m=1

(t− 1)mµm

∫ p

0

[t+ y(1− t)]m−1 dy . (2.3)

Using a Taylor expansion for [t+ y(1− t)]m−1, we write, for any k = 1, 2, . . .,

[t+ y(1− t)]m−1 =

k∑
j=1

[(1− y)(t− 1)]j−1

(j − 1)!

j−1∏
l=1

(m− l)

+ (t− 1)k

(
k∏
l=1

(m− l)

)∫ 1

y

∫ 1

x1

· · ·
∫ 1

xk−1

[t+ xk(1− t)]m−k−1 dxk · · · dx1 .

Hence, from (2.3),

λ [µ(t)− µ(t+ p(1− t))] =
k∑
j=1

(t− 1)j

j!
θj−1

(
1− (1− p)j

)
+

∞∑
m=k+1

(
k∏
l=0

(m− l)

)
λm(t−1)k+1

∫ p

0

∫ 1

y

∫ 1

x1

· · ·
∫ 1

xk−1

[t+xk(1−t)]m−k−1 dxk · · · dx1 dy ,

(2.4)

and so

λRe [µ(t)− µ(t+ p(1− t))] =

k∑
j=1

Re[(t− 1)j ]

j!
θj−1

(
1− (1− p)j

)
+Rk ,

where

Rk =

∞∑
m=k+1

(
k∏
l=0

(m− l)

)
λm

×
∫ p

0

∫ 1

y

∫ 1

x1

· · ·
∫ 1

xk−1

Re
[
(t− 1)k+1[t+ xk(1− t)]m−k−1

]
dxk · · · dx1 dy .

Using the fact that t is in the unit disc in C, and that xk ∈ [0, 1], we have

Re
[
(t− 1)k+1[t+ xk(1− t)]m−k−1

]
≤ |t− 1|k+1 ≤ (2Re[1− t])(k+1)/2 ≤ 2kRe[1− t] , (2.5)

where the second inequality uses the fact that |t− 1|2 ≤ 2Re[1− t] for t in the unit disc,
and the final inequality follows since Re[1− t] ≤ 2.

Hence,

Rk ≤
2kRe[1− t]

(k + 1)!
θk
(
1− (1− p)k+1

)
≤ 2kRe[1− t]

k!
θkp ,

for p ∈ [0, 1], and so when t = eiφ

λRe [µ(t)− µ(t+ p(1− t))] ≤ −p(1− cosφ)gk(φ, p) ≤ −δkp(1− cosφ) . (2.6)

Hence, (2.2) gives

|fh(x)| ≤ |1− eiφ|
δk(1− cosφ)

,
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Compound Poisson approximation

and we apply Theorem 1.1 to obtain our bound on M (K)
0 .

Similarly, (2.1) also gives

|fh(x+ 1)− fh(x)| ≤ |1− t|2
∫ 1

0

(1− p) exp {λRe [µ(t)− µ(t+ p(1− t))]} dp , (2.7)

in which we may apply the bound (2.6) to obtain the required bound on M
(K)
1 from

Theorem 1.1.

3 Applications

3.1 Reliability

Our first application is to compound Poisson approximation of the two-dimensional
consecutive k-out-of-n:F system, as discussed in Section 3.2 of [2]. This system consists
of n2 components, laid out on an n× n square grid. For a given T > 0, each component
has failed at time T with probability q, independently of the other components in the
system. The entire system fails if there is a k × k subgrid such that all k2 components
have failed at time T . Our interest is in compound Poisson approximation for W , which
counts the number of the (n− k + 1)2 (possibly overlapping) k × k subgrids for which all
components have failed at time T . Letting ψ = qk

2

, the bound (3.10) of [2] (stated here
for Kolmogorov, rather than total variation, distance) gives

dK(L(W ),L(U))

≤M (K)
1 (n− k + 1)2ψ

(
(4k2 + 12k − 3)ψ + 4

k−1∑
r=1

k−1∑
s=1

qk
2−rs + 4

k−2∑
s=1

qk
2−ks

)
,

where the approximating compound Poisson random variable U is defined by

λj =
1

j
ψ
[
4π1(j) + 4(n− k − 1)π2(j) + (n− k − 1)2π3(j)

]
,

for j = 1, . . . , 5 (and λj = 0 for j ≥ 6), where the functions πi(j) for i = 1, 2, 3 are defined
in terms of point probabilities of binomial random variables: πi(j) = P(Bin(i+ 1, qk) =

j − 1).
As noted by [2], if q and λ are small, (1.3) will suffice for providing a bound on

M
(K)
1 . In the case of larger λ, [2] considers the use of the bound in (1.8), noting that

θ0 = (n − k + 1)2ψ and θ1 ≤ 4qkθ0, so that (1.7) is satisfied if qk < 1/8. Under this
condition, we use (1.8) to obtain

M
(K)
1 ≤ 1

(n− k + 1)2ψ(1− 8qk)
. (3.1)

We consider the use of Corollary 2.2 to provide such a bound in the case where qk ≥ 1/8,
as an alternative to using a different compound Poisson random variable to obtain an
approximation of greater accuracy in cases where the bounds (1.3) are too crude. To
that end, we note that straightforward calculations using the definitions of the λj above
give us that

θ1 = 4[2 + 3(n− k − 1) + (n− k − 1)2]ψqk ,

θ2 = 4[2 + 6(n− k − 1) + 3(n− k − 1)2]ψq2k ,

θ3 = 24[n− k − 1 + (n− k − 1)2]ψq3k .

From this, it is easy to see that θ2 < 2θ1 for all n and k if qk < 2/3, in which case we
are in a position to apply Corollary 2.2. Similarly, 2θ3 < 3θ2 in this case, so we expect
Corollary 2.2 to yield a condition on U weaker than that imposed by (1.7).
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Now, straightforward calculations show that, in the notation of Corollary 2.2,

ψ−1δ = 4a(qk) + 4(n− k − 1)b(qk) + (n− k − 1)2c(qk) , (3.2)

where the functions a, b and c are defined by a(y) = (1 − 2y)2, b(y) = (1 − 2y)3 and
c(y) = (1 − 4y)(1 − 4y + 8y2). Hence, δ > 0 for all q such that a(qk) > 0, b(qk) > 0 and
c(qk) > 0. That is, δ > 0 if qk < 1/4, a weaker condition than that under which (1.8) may
be applied. Hence, by Corollary 2.2, we have the following:

Proposition 3.1. For the compound Poisson random variable U defined above, if qk <
1/4 then M (K)

1 ≤ (2δ)−1[1 + log+(πδ)], where δ is given by (3.2).

This gives a bound whose behaviour, up to logarithmic terms, for large n and small q
is similar to that of (3.1), but which is valid under a weaker condition.

3.2 Runs

Let ξ1, . . . , ξn be independent Bernoulli random variables, each with mean p. Let
W =

∑n
i=1 ξiξi+1 count the number of 2-runs in this sequence, where all indices are

treated modulo n. Compound Poisson approximation for W is a well-studied problem
(see, for example, [2, 4, 7, 8] and references therein), so gives us an excellent application
within which to examine the benefit of our Theorem 2.1.

Following, for example, [2], we approximate W by a compound Poisson random
variable U with λ1 = np2(1 − p)2, λ2 = np3(1 − p), λ3 = (1/3)np4 and λj = 0 for j ≥ 4.
Straightforward calculations then give θ0 = np2, θ1 = 2np3, θ2 = 2np4 and θj = 0 for
j ≥ 3. We note that we thus always have θ2 < 2θ1, so that Corollary 2.2 may be applied
with

δ = np2(1− 2p)2 , (3.3)

which is positive provided that p 6= 1/2.

Proposition 3.2. For the compound Poisson random variable U defined above, if p 6= 1/2,

then M (K)
1 ≤ (2δ)−1[1 + log+(πδ)], where δ is given by (3.3).

For comparison, (1.7) is valid only under the stronger condition that p < 1/4, in which

case (1.8) gives M (K)
1 ≤ [np2(1− 4p)]−1. Up to logarithmic terms, these two bounds are

very similar, though ours is valid for a much wider range of values of p.
These bounds may be applied, for example, with the compound Poisson approximation

result

dK(L(W ),L(U)) ≤ 3M
(K)
1 np4 ,

given in Section 2.2 of [7] (again, stated here in terms of Kolmogorov, rather than total
variation, distance).

Note also that it is easy to show that (1.4), and the weaker version of this condition
derived in [3], hold provided that p ≤ 1/3, which is again a stronger condition than we
need to apply Corollary 2.2.

Several other compound Poisson approximation results for W are also available in
the literature; see Section 3.1 of [2] for a discussion. For example, Theorem 5.2 of
[4] gives an upper bound of order O(p/

√
n) on the total variation distance between W

and a different compound Poisson random variable to that considered here. This is
asymptotically better than the bounds we have discussed here, but note that this comes
at the price of somewhat larger constants in the bound, and again holds only in the case
that p < 1/4. Since their approximating compound Poisson random variable has λj = 0

for all j ≥ 3, it is not possible to use our Theorem 2.1 to extend the range of values of p
for which their result applies. Similar bounds, as well as further asymptotic expansions,
are also given by [8].
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4 Relaxing the Barbour–Xia condition

If our compound Poisson random variable U is such that λj = 0 for all j ≥ 3, then
Theorem 2.1 can offer no benefit over the condition (1.7). However, analysis along the
same lines as in the proof of Theorem 2.1 allows us, in Theorem 4.2 below, to establish
Stein factors which may be applied when (1.7) is violated. These Stein factors will,
in general, have the exponential dependence on the parameters of U exhibited by the
bound (1.3), though in certain cases, as we will illustrate below, they can offer a much
better bound than (1.3).

Throughout this section, we will be interested only in compound Poisson random
variables such that 2θ1 > θ0. In the case where the reverse inequality is true, Barbour
and Xia [4] have already established Stein factors with good dependence on the λj; the
case θ0 = 2θ1 is pathological in both their analysis and ours.

We begin with the following lemma.

Lemma 4.1. Let c > 1, and let U be a compound Poisson random variable with

θ1
θ0
∈
(

1

2
,

1

2
+

log c

3θ0

]
.

Let δ = 2θ1−θ0
2c
√
π

. Then

M
(K)
0 ≤ 2

√
2

δ
and M

(K)
1 ≤ 1

2δ

[
1 + log+(πδ)

]
.

Proof. We use the same notation as in the proof of Theorem 2.1. From (2.4) with the
choice k = 1, we have

λ [µ(t)− µ(t+ p(1− t))] = −(1−t)pθ0+(1−t)2
∞∑
i=1

i(i−1)λi

∫ p

0

∫ 1

y

[t+ u(1− t)]i−2 du dy .

Now, using (2.5), we have that Re
[
(1− t)2[t+ u(1− t)]i−2

]
≤ 2Re [1− t] for t in the unit

disc in C and u ∈ [0, 1], and so

λRe [µ(t)− µ(t+ p(1− t))] ≤ −Re[1− t]pθ0 + 2Re[1− t]θ1
∫ p

0

∫ 1

y

du dy

= −αtp[1− 2θ(1− p/2)] ,

where θ = θ1
θ0

and αt = θ0Re[1− t]. Using this bound in (2.2), we get

|fh(x)| ≤ |1− t|
∫ 1

0

exp
{
−αtp

[
1− 2θ

(
1− p

2

)]}
dp

≤ |1− t| exp

{
(2θ − 1)2αt

4θ

}∫ ∞
−∞

exp

{
−αtθ

(
p− 2θ − 1

2θ

)2
}
dp

= |1− t|
√

π

αtθ
exp

{
(2θ − 1)2αt

4θ

}
.

We note that, for any c, y ∈ R, if y ≤ (2/3) log c, then ey ≤ c/
√
y. Applying this with

the constant c as in the statement of the lemma, and y = (4θ)−1(2θ − 1)2αt, we get

|fh(x)| ≤ 2c
√
π|1− t|

αt(2θ − 1)
,

if y ≤ d, where d = (2/3) log c. This allows us to bound M
(K)
0 using Theorem 1.1, once

we have checked that
(2θ − 1)2αt

4θ
≤ d , (4.1)
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for the compound Poisson random variable U defined in the statement of the lemma,
and for all t in the unit disc in C. To that end, note that αt ≤ 2θ0, and so (4.1) holds if
θ0(2θ − 1)2 ≤ 2dθ, which holds if and only if θ ∈ [θL, θU ], where

θL =
1

2
−

(√
d(d+ 4θ0)− d

4θ0

)
<

1

2
,

and

θU =
1

2
+

(√
d(d+ 4θ0) + d

4θ0

)
>

1

2
+

d

2θ0
=

1

2
+

log c

3θ0
.

Since

[θL, θU ] ⊇
(

1

2
,

1

2
+

log c

3θ0

]
,

the bound on M (K)
0 follows.

A similar argument gives a bound for M (K)
1 : in place of (2.2), we use (2.7) in the

above to get

|∆fh(x)| ≤ |1− t|2
√

π

αtθ
exp

{
(2θ − 1)2αt

4θ

}
≤ 2c

√
π|1− t|2

αt(2θ − 1)
,

for θ ∈ [θL, θU ], as above. We again apply Theorem 1.1 to yield a bound on M (K)
1 .

In Lemma 4.1, we stated our bound for the values of θ given, rather than for all
θ ∈ [θL, θU ], since θ < 1/2 is already taken care of by [4], and θ = 1/2 gives δ = 0, and so
non-informative bounds in our Stein factors.

Choosing c = exp
{

3
2 (2θ1 − θ0)

}
> 1 in Lemma 4.1, we obtain our main result of this

section:

Theorem 4.2. Let U be a compound Poisson random variable with 2θ1 > θ0 and let

δ =
2θ1 − θ0

2
√
π exp

{
3
2 (2θ1 − θ0)

} .
Then

M
(K)
0 ≤ 2

√
2

δ
and M

(K)
1 ≤ 1

2δ

[
1 + log+(πδ)

]
.

The bounds of Theorem 4.2 are, of course, exponential in the λj . The advantage of
these bounds over (1.3) can be seen by considering a compound Poisson random variable
with λ2 = 1

2λ1 + γ, for some moderate γ > 0, and λj = 0 for j ≥ 3. In this case, the bound
(1.3) is exponential in both λ1 and γ, while our Theorem 4.2 gives bounds which are
exponential in γ, but do not depend on λ1. This may be advantageous if λ1 is large. Some
illustrations of this are given below, where we consider compound Poisson approximation
for a mixed Poisson distribution, and for a sum of independent random variables.

4.1 Mixed Poisson distributions

We illustrate Theorem 4.2 by considering compound Poisson approximation for a
mixed Poisson random variable W ∼ Po(ξ), where ξ is a positive random variable with
mean ν and variance σ2. Letting U have a compound Poisson distribution with λ1 = ν−σ2,
λ2 = σ2/2 and λj = 0 for j ≥ 3, the proof of Theorem 6 of [6] gives

dK(L(W ),L(U)) ≤ 1.2M
(K)
1 E|ξ − ν|3 ,
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Compound Poisson approximation

assuming that ν > σ2. If we have ν > 2σ2, from (1.8) we have the bound M
(K)
1 ≤

(ν − 2σ2)−1. If σ2 < ν < 2σ2, we cannot employ the results of [4], but we may use our

Theorem 4.2. If we write 2σ2 = ν + γ, we have the bound M (K)
1 ≤ (2δ)−1[1 + log+(πδ)],

where
δ =

γ

2
√
π exp

{
3γ
2

} ,
which gives a reasonable bound as long as γ is neither too small nor too large. By
contrast, the general bound (1.3) is exponential in ν, and so may be very much worse in
the setting with large ν and moderate γ.

4.2 Independent summands

Let W = Z1 + · · · + Zn, where Z1, . . . , Zn are independent integer-valued random
variables. Corollary 4.4 of [4] presents a bound in the approximation of W by a compound
Poisson random variable with λ1 = 2EW −Var(W ), λ2 = (1/2)(Var(W )−EW ) and λj = 0

for j ≥ 3. Several other related bounds are also presented; we focus on this only for
concreteness. Given that (1.7) is satisfied if and only if EW > (2/3)Var(W ), the bound
presented by [4] applies if (2/3)Var(W ) < EW < 2Var(W ). If we have instead that
(1/2)Var(W ) < EW < (2/3)Var(W ), we may not apply the results of [4] directly, but we
may replace their use of the bound (1.8) with the bound given by our Theorem 4.2 to
derive an approximation theorem in the Kolmogorov distance. In considering cases in
which this bound would be not too large, remarks similar to those made above apply.
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