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Abstract. The log-linear Birnbaum–Saunders model has been widely used
in empirical applications. We introduce an extension of this model based on
a recently proposed version of the Birnbaum–Saunders distribution which is
more flexible than the standard Birnbaum–Saunders law since its density may
assume both unimodal and bimodal shapes. We show how to perform point
estimation, interval estimation and hypothesis testing inferences on the pa-
rameters that index the regression model we propose. We also present a num-
ber of diagnostic tools, such as residual analysis, local influence, generalized
leverage, generalized Cook’s distance and model misspecification tests. We
investigate the usefulness of model selection criteria and the accuracy of pre-
diction intervals for the proposed model. Results of Monte Carlo simulations
are presented. Finally, we also present and discuss an empirical application.

1 Introduction

The Birnbaum–Saunders distribution (BS) was proposed by Birnbaum and Saun-
ders (1969) to analyze fatigue lifetime data. It has been widely discussed in the
literature and was used as the baseline for several related probability distributions.
A concise review on the Birnbaum–Saunders distribution and its extensions can be
found in Leiva (2015).

Regression models based on the Birnbaum–Saunders distribution were also dis-
cussed in the literature, the first model being introduced by Rieck and Nedel-
man (1991), who proposed the log-linear Birnbaum–Saunders regression model
(BSRM). Their model was later analyzed by Galea, Leiva-Sánchez and Paula
(2004), who developed some diagnostic tools for the model, and by Xie and Wei
(2007), who provided additional tools for detecting atypical observations.

The BSRM was extended in several different directions. For instance, Barros,
Paula and Leiva (2008) developed a model using the Student-t Birnbaum–
Saunders distribution and Lemonte and Cordeiro (2009) proposed a nonlinear
version of the BSRM. A mixed model for censored data based on the Birnbaum–
Saunders distribution was introduced by Villegas, Paula and Leiva (2011) and
Lemonte (2013) proposed a log-linear model based on an extended Birnbaum–
Saunders distribution. The log-linear Birnbaum–Saunders power regression model
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was proposed by Martínez-Flórez, Bolfarine and Gómez (2017), who also in-
troduced the nonlinear sinh-power-normal regression model. Model misspecifi-
cation tests for the BSRM were proposed by Santos and Cribari-Neto (2017).
Bayesian inference for the BSRM was developed by Tsionas (2001). More re-
cently, Vilca, Azevedo and Balakrishnan (2017) introduced the nonlinear sinh-
normal/independent regression model, which encompasses several other BS re-
gression models and developed Bayesian inference for such a model.

The chief goal of our paper is to propose a log-linear regression model based on
a bimodal version of the Birnbaum–Saunders distribution that has been recently
introduced by Owen and Ng (2015). Such a distribution is more flexible than the
original BS law and we use it as the basis for developing a regression model that
is more general than the BSRM introduced by Rieck and Nedelman (1991). Pa-
rameter estimation and standard inferential strategies are presented. A second goal
of our paper is to provide diagnostic tools for the proposed regression model, thus
allowing practitioners to verify whether the model assumptions are satisfied and
making it possible for them to detect atypical observations, much in the same spirit
as done for the BSRM by Galea, Leiva-Sánchez and Paula (2004) and Xie and Wei
(2007). We also present a RESET-like misspecification test which is similar to the
one introduced by Santos and Cribari-Neto (2017) for the log-linear Birnbaum–
Saunders model. The test can be used to check whether the model’s functional
form is correctly specified. In addition, we consider the issue of performing model
selection based on model selection criteria and the construction of prediction inter-
vals for the regression model we propose similarly to what was done by Bayer and
Cribari-Neto (2015) and Espinheira, Ferrari and Cribari-Neto (2014), respectively,
for beta regressions.

In summary, in this paper we introduce a new regression model that generalizes
the standard log-linear Birnbaum–Saunders regression model. We thus offer ap-
plied statisticians an additional model that they can consider in their data analyses.
We develop point estimation, interval estimation, hypothesis testing inference and
diagnostic analyses for the proposed model. Model selection strategies are also
presented. It is interesting to note that in the empirical application we present in
Section 8 the regression model we propose is shown to be more adequate than the
standard log-linear Birnbaum–Saunders model.

The remainder of the paper is organized as follows. In Section 2, the bimodal
Birnbaum–Saunders distribution is presented as well as some of its key properties.
The log-linear model for responses that follow such a bimodal Birnbaum–Saunders
distribution is proposed in Section 3. A broad variety of diagnostic tools for the
proposed model are presented in Section 4. In Section 5, we address the issue of
constructing prediction intervals for non-observed response values and in Section 6
we consider different model selection strategies. Results from Monte Carlo sim-
ulations are reported in Section 7, and an empirical application is presented and
discussed in Section 8. Finally, Section 9 offers some concluding remarks.
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2 The bimodal Birnbaum–Saunders distribution

The generalized Birnbaum–Saunders distribution considered in this paper was
introduced by Dıaz-Garcıa and Domınguez-Molina (2006). They obtained it by
adding a second shape parameter to the BS distribution function. More recently,
Owen and Ng (2015) analyzed the distribution, which the authors denoted by
GBS2. In particular, they investigated the relationships among the inverse Gaus-
sian, BS and GBS2 distributions.

A random variable T is said to follow the GBS2(α, η, ν) law if its distribution
function is given by

FT (t |α,η, ν) = �
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)ν
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, t > 0, (1)

where �(·) denotes the standard normal distribution function, α > 0, η > 0 and
ν > 0. Here, η is the scale parameter whereas α and ν are shape parameters. The
probability density function of T is
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The GBS2 distribution has a noteworthy advantage over the original BS dis-
tribution: the density of the former can be unimodal and bimodal whereas that of
the latter does not allow for more than one mode. The GBS2 density is bimodal
whenever α > 2 and ν > 2 simultaneously. Figure 1 contains GBS2 density plots
for different values of α, η and ν. It is noteworthy (Figure 1(a)) that the GBS2
density becomes more symmetric as the value of ν increases and the values of
the remaining parameters are held constant. The value of α also impacts the dis-
tribution asymmetry: the distribution becomes less asymmetric as the value of α

Figure 1 GBS2(α, η, ν) densities for some parameter values.
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decreases (Figure 1(b)). In Figure 1(c), we see an example of a bimodal density
when we take α > 2 and ν > 2. Notice that the GBS2 density is quite flexible,
since it may assume a variety of different shapes.

Several useful properties of the GBS2 distribution were obtained by Owen and
Ng (2015), some of them also holding for the BS distribution. For instance, it was
shown that η is the distribution median, which can be easily verified from Equa-
tion (1). Additionally, the GBS2 distribution is closed under reciprocity and pro-
portionality, that is, T −1 ∼ GBS2(α, η−1, ν) and aT ∼ GBS2(α, aη, ν), for a > 0.
Pseudo-random number generation from T ∼ GBS2 can be performed using the

stochastic representation T = η[αZ/2 +
√

(αZ/2)2 + 1]1/ν , where Z follows the
standard normal distribution.

Another stochastic representation for the GBS2 distribution is as follows: if
T ∼ GBS2(α, η, ν), then Y = log(T ) is distributed as hyperbolic sine normal
(SHN ), whose distribution function is FY (y|α,μ,σ) = �{2 sinh[(y − μ)/σ ]/α},
y ∈ R, where μ = log(η), σ = 1/ν and sinh(·) denotes the hyperbolic sine func-
tion. We shall write Y ∼ SHN (α,μ,σ ), α being a shape parameter, σ being a
scale parameter and μ being a location parameter and the mean of the distribution.

The relationship between the BS and SHN distributions was established by
Rieck and Nedelman (1991), who noted that the log-Birnbaum–Saunders distribu-
tion is a particular case of the SHN distribution: the latter reduces to the former
when σ = 2. The authors have also presented several properties of the SHN dis-
tribution and used the relationship between the two distributions to propose the
log-linear Birnbaum–Saunders regression model.

3 Log-linear GBS2 regression model

We use the relationship between the GBS2 and SHN distributions to propose a
log-linear GBS2 regression model, the response variable being Y = log(T ), where
T follows the GBS2 law. Consider n independent random variables T1, . . . , Tn,
where Ti ∼ GBS2(α, ηi, ν), i = 1, . . . , n. The log-linear GBS2 regression model
(GBS2RM) we propose is given by

yi = x�
i βββ + εi, i = 1, . . . , n,

where yi = log(ti), with t1, . . . , tn representing observations on the random vari-
ables T1, . . . , Tn. Here, xi = (xi1, . . . , xip)� is a vector of explanatory variables
associated with the response variable, βββ = (β1, . . . , βp)� is a p-vector of un-

known parameters and εi
i.i.d.∼ SHN (α,0, ν−1), i.i.d. indicating that the random

variables are independent and identically distributed. Note that ti = exp(x�
i βββ)eεi ,

where eεi ∼ GBS2(α,1, ν). Since the GBS2 distribution is closed under propor-
tionality, it follows that Ti is GBS2(α, exp(x�

i βββ), ν) distributed.
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Estimation of θθθ = (βββ�, α, ν)�, the GBS2RM parameter vector, can be carried
out by maximum likelihood. The log-likelihood function is given by

�(θθθ) =
n∑

i=1

{
log

(
2√
2π

)
+ log(ξi1) − 1

2
ξ2
i2

}
,

where ξi1 = να−1 cosh[ν(yi − μi)] and ξi2 = 2α−1 sinh[ν(yi − μi)], μi = x�
i βββ

being the linear predictor, i = 1, . . . , n. The first derivatives of �(θθθ) with respect to
the model’s parameters are

�βββ = ∂�(θθθ)
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where X = (x1, . . . ,xn)
� is an n × p full column rank matrix and a = (a1, . . . ,

an)
�, with ai = 2ξi1ξi2 − ν2ξi2/(2ξi1), i = 1, . . . , n.
The maximum likelihood estimator (MLE) θ̂θθ = (β̂ββ, α̂, ν̂)� of the parameters

that index the model are obtained by solving �θθθ = 0, where �θθθ = ∂�(θθθ)/∂θθθ . They
cannot be expressed in closed-form. Estimates can be obtained by numerically
maximizing �(θθθ) using a Newton (e.g., Newton–Raphson) or quasi-Newton (e.g.,
BFGS) nonlinear optimization algorithm.

In order to perform maximum likelihood estimation, it is necessary to specify
a starting point for the parameter vector. Our proposal is to use the least squares
estimate βββ0 = (X�X)−1X�y as a starting value for β̂ββ , where y = (y1, . . . , yn)

�,
along with ν0 = 0.5 as a starting point for ν, which is the value of ν that cor-
responds to the BS distribution. Finally, we recommend using as starting value
α0 = (2/

√
n)(

∑n
i=1 sinh2[ν0(yi − x�

i βββ0)])1/2 for α, which corresponds to the so-
lution of �α|(βββ,ν)=(βββ0,ν0) = 0.

It is possible to show, after some algebra, that the model Hessian matrix is given
by

�θθθθθθ = ∂2�(θθθ)

∂θθθ∂θθθ� =
⎡
⎢⎣X�V X X�d X�g

d�X tr
[
D(b)

]
tr

[
D(c)

]
g�X tr

[
D(c)

]
tr

[
D(f)

]
⎤
⎥⎦ ,

where V = diag{v1, . . . , vn}, D(b) = diag{b1, . . . , bn}, D(c) = diag{c1, . . . , cn},
D(f) = diag{f1, . . . , fn}, d = (d1, . . . , dn)

� and g = (g1, . . . , gn)
�, with diag de-

noting a diagonal matrix and tr denoting the trace operator. The components of
these vectors and matrices are vi = ν2 cosh−2[ν(yi − μi)] − 4ν2 cosh[2ν(yi −
μi)]/α2, bi = −3ξ2

i2/α
2 + 1/α2, ci = 4ξi1ξi2(yi − μi)/(αν), di = −4ξi1ξi2/α,

fi = −ν−2 + [(yi − μi)ν/αξi1]2 − 4α−2(yi − μi)
2 cosh[2ν(yi − μi)] and

gi = −ν(yi − μi) cosh−2[ν(yi − μi)] − tanh[ν(yi − μi)] + 4να−2 cosh[2ν(yi −
μi)](yi − μi) − 2α−2 sinh[2ν(yi − μi)].
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Under mild regularity conditions (Severini (2000)), it can be shown that θ̂θθ is
asymptotically distributed as Np+2(θθθ,�θθθ ). The asymptotic covariance of θ̂θθ , �θθθ ,
can be approximated by −�̂−1

θθθθθθ , where �̂θθθθθθ denotes �θθθθθθ evaluated at θ̂θθ . Hence, based

on the asymptotic normality of θ̂θθ , it is possible to obtain an approximated 100 ×
(1−γ )% confidence region for θθθ , 0 < γ < 1, which is given by the set of values of
θθθ such that (θ̂θθ − θθθ)�(−�̂θθθθθθ )(θ̂θθ − θθθ) ≤ χ2

p+2(γ ), where χ2
p+2(γ ) denotes the 1 − γ

quantile of the chi-square distribution with p + 2 degrees of freedom.
We shall now turn to testing inferences. Consider the following partition of

the parameter vector: θθθ = (ψψψ�,λλλ�)�, where ψψψ = (ψ1, . . . ,ψr)
� is the vector

of parameters of interest and λλλ = (λ1, . . . , λs)
� is the vector of nuisance param-

eters, with r + s = p + 2. We shall focus on the test of H0 : ψψψ = ψψψ0 against
H1 : ψψψ �= ψψψ0 in the context the GBS2RM model. The likelihood ratio statistic is
given by W = 2{�(θ̂θθ) − �(θ̃θθ)}, where θ̃θθ denotes the restricted maximum likelihood
estimator of θθθ , which is obtained by maximizing �(θθθ) subject to ψψψ = ψψψ0, that is,
imposing the null hypothesis. Under standard regularity conditions, the asymp-
totic distribution of W under H0 is χ2

r . Therefore, the null hypothesis is rejected
at significance level γ (0 < γ < 1) if W > χ2

r (γ ).
It is possible to define a global goodness-of-fit measure. Following Nagelkerke

(1991), we define the following pseudo-R2:

R2
N = 1 − {L(0)/L(θ̂θθ)}2/n

1 − L(0)2/n
.

Here, L(θ̂θθ) is the full model likelihood function and L(0) is the likelihood function
obtained only using the intercept in the linear predictor. Such a measure assumes
values in [0,1]. The closer R2

N is to one, the better the model fit.
We note that the proposed regression model belongs to the class of Generalized

Additive Models for Location, Scale and Shape (GAMLSS) Models. For details
on GAMLSS modeling, see Stasinopoulos et al. (2017) and http://www.gamlss.
org. The gamlss package developed for the R statistical computing environment
(R Core Team (2016)) can be used to fit the model.

In the next section, we shall develop diagnostic analysis tools for the proposed
regression model.

4 Diagnostic methods

Diagnostic analysis tools allow practitioners to verify whether a fitted regression
model represents well the data at hand. In particular, such tools can be used to
verify whether the model assumptions are satisfied and also whether parameter
estimation is considerably affected by a few atypical observations. In what follows
we shall develop some diagnostic analysis tools for the GBS2RM model.

http://www.gamlss.org
http://www.gamlss.org
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4.1 Residual analysis

We propose two different residuals for the GBS2RM model. They can both be eas-
ily computed. The first residual we introduce is based on the stochastic relationship
between the normal and SHN distributions, namely: if Y ∼ SHN (α,μ, ν−1),
then Z = 2α−1 sinh[ν(Y − μ)] follows the standard normal distribution. Let
μ̂μμ = (μ̂1, . . . , μ̂n)

� be the estimated linear predictor. The first residual is given
by

rSHNi
= 2 sinh

[
ν̂(yi − μ̂i)

]
/α̂ = ξ̂i2, i = 1, . . . , n.

It is standard normally distributed if the model’s distributional assumptions are
correct.

The second proposed residual is the generalized Cox–Snell residual, which in
the GBS2RM is given by

rCSGi
= − log

(
1 − FY (yi |θ̂θθ)

) = − log
(
1 − �(ξ̂i2)

)
.

This residual is exponentially distributed with unit mean if the model’s distribu-
tional assumptions hold true.

A common practice is to use the idea outlined by Atkinson (1985) when
performing a residual analysis. He suggested constructing confidence bands for
quantile–quantile (QQ) plots of the residuals. That can be easily done in the con-
text of the GBS2RM model, as we explain in the supplementary material (Cribari-
Neto and Fonseca (2019)). One can then compute confidence bands for the residu-
als rSHN and rCSG and use them to check whether the fitted model represents well
the data.

4.2 Local influence

Practitioners are oftentimes interested in measuring the impact of different ob-
servations on the resulting parameter estimates. That can be accomplished using
the local influence method proposed by Cook (1986), which is based on the like-
lihood displacement LD(ωωω) = 2[�(θ̂θθ) − �(θ̂θθ |ωωω)] as a function of a given pertur-
bation vector ωωω ∈ �. Here, ωωω is a q × 1 vector, � is an open subset of Rq and
θθθ = (θ1, . . . , θp)� is the model parameter vector. The no perturbation vector ωωω0

yields the minimal likelihood displacement and is such that �(θ̂θθ) = �(θ̂θθ |ωωω0). The
interest lies in evaluating the behavior of LD(ωωω) around ωωω0 by analyzing the nor-
mal curvature of the plot of LD(ωωω0 + al) against a, where a ∈ R and l is the unit
norm direction. Such a curvature is given by Cl(θ̂θθ) = 2|l����−1

θθθθθθ �l|, where � is
the perturbation matrix, whose (i, j) element is

�ij = ∂2�(θθθ |ωωω)

∂θi∂ωj

, i = 1, . . . , p and j = 1, . . . , q.

This matrix is evaluated at θθθ = θ̂θθ and ωωω =ωωω0.
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The main interest lies in the maximal curvature, Cmax, which is given by the
largest eigenvalue of B = ���−1

θθθθθθ �. The direction lmax is the eigenvector of B

corresponding to Cmax. The index plot of lmax may reveal which data points lead to
the largest changes in LD(ωωω). It can thus be used to detect influential observations.

Consider the partition of the parameter vector as θθθ = (θθθ�
1 ,θθθ�

2 )� and suppose the
interest lies in evaluating the influence on θθθ1. The normal curvature is Cl(θ̂θθ1) =
2|l���(�−1

θθθθθθ − B1)�l|, where

B1 =
[

0 0
0 �−1

θθθ2θθθ2

]
,

with �θθθ2θθθ2 = ∂2�(θθθ)/∂θθθ2∂θθθ
�
2 . Hence, an analysis of influence can be based on the

index plot of the eigenvector corresponding to the largest eigenvalue of ��(�−1
θθθθθθ −

B1)�. Similarly, when the interest lies in θθθ2, the normal curvature is given by
Cl(θ̂θθ2) = 2|l���(�−1

θθθθθθ − B2)�l|, where

B2 =
[
�−1
θθθ1θθθ1

0
0 0

]
.

Here, �θθθ1θθθ1 = ∂2�(θθθ)/∂θθθ1∂θθθ
�
1 . Again, the analysis is based on the index plot of

the eigenvector corresponding to the largest eigenvalue of ��(�−1
θθθθθθ − B2)�.

We shall consider three different perturbation schemes for local influence anal-
ysis in the GBS2RM, namely: case-weights perturbation, response variable per-
turbation, and explanatory variables perturbation. In the following subsections, we
provide closed-form expressions for the perturbation matrix in such perturbation
schemes.

4.2.1 Case-weights perturbation. In this scheme, the weight ωi represents the
contribution of yi to the log-likelihood function, i = 1, . . . , n. The perturbed log-
likelihood function is thus given by

�(θθθ |ωωω) =
n∑

i=1

ωi�i(θθθ |ωωω),

where �i(θθθ |ωωω) = log(2/
√

2π) + log(ξi1) − ξ2
i2/2. The no perturbation vector

is ωωω0 = (1, . . . ,1)�. After some algebra, we obtained the components of the
perturbation matrix, which are �βββ = X�D(a), �αi = (ξ2

i2 − 1)/α and �νi =
ν−1 + ξi2ν(yi − μi)/(2ξi1) − 2ξi2ξi1(yi − μi)/ν, where a is as before. Let �α =
(�α1 · · ·�αn) and �ν = (�ν1 · · ·�νn) be row vectors. The perturbation matrix
can be conveniently expressed as � = (��

βββ ,��
α ,��

ν )�, a matrix of dimension
(p + 2) × n.
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4.2.2 Response variable perturbation. In this perturbation scheme, a modified
response variable of the form yiω = yi + ωiSy is considered, i = 1, . . . , n, where
ωi is the ith component of the perturbation vector ωωω = (ω1, . . . ,ωn)

� and Sy is
a scaling factor, usually taken to be the standard deviation of y = (y1, . . . , yn)

�.
The no perturbation vector is ωωω0 = (0, . . . ,0)�. After some algebra, we obtained
�βββ = SyX

�D(m), �αi = 4ξi1ξi2Sy/α and

�νi = νSy(yi − μi)

cosh2[ν(yi − μi)]
+ Sy tanh

[
ν(yi − μi)

] − 4νSy

α2 (yi − μi) cosh
[
2ν(yi − μi)

]

− 4Sy

α2 sinh
[
ν(yi − μi)

]
cosh

[
ν(yi − μi)

]
,

where D(m) = diag{m1, . . . ,mn}, with mi = ν2{4α−2 cosh[2ν(yi − μi)] −
cosh−2[ν(yi − μi)]}. The perturbation matrix is given by � = (��

βββ ,��
α ,��

ν )�.

4.2.3 Explanatory variables perturbation. This scheme is considered when we
are interested in analyzing the impact of a perturbation on a specific explanatory
variable, of index j say. The perturbation here is of the form xijω = xij + ωiSx ,
where j ∈ {1, . . . , p}, i = 1, . . . , n and Sx is a scaling factor, usually equal to
the standard deviation of (x1j , . . . , xnj )

�. The no perturbation vector is ωωω0 =
(0, . . . ,0)�. It is possible to show that the perturbation matrix is composed by
�βββ = SxβjX

�D(o1) + Sxq(j)o�
2 , �αi = −4Sxβj ξi1ξi2/α and

�νi = −Sxβj

{
(yi − μi)ν

3

α2ξ2
i1

+ νξi2

2ξi1
− 4ν

α2 (yi − μi) cosh
[
2ν(yi − μi)

] − 2

ν
ξi2ξi1

}
,

where o1 = (o11, . . . , o1n)
� and o2 = (o21, . . . , o2n)

�, with o1i = ν2 cosh−2[ν(yi −
μi)] − 4ν2 cosh[2ν(yi − μi)]/α2, o2i = 2ν sinh[2ν(yi − μi)]/α2 − ν tanh[ν(yi −
μi)] and q(j) is a vector with one in the j th position and zero elsewhere. The
perturbation matrix is once again given by � = (��

βββ ,��
α ,��

ν )�.

4.3 Generalized leverage

The generalized leverage method was proposed by Wei, Hu and Fung (1998)
and aims at measuring the influence of observed values on predicted values. Let
ỹ = (ỹ1, . . . , ỹn)

� be the vector of predicted values. The generalized leverage is
given by ∂ỹi/∂yj , that is, it measures the change in the ith predicted value induced
by the j th response value. The leverage matrix proposed by the authors is given
by GL(θ) = Dθθθ (−�θθθθθθ )

−1(�θθθy), where �θθθy = ∂2�(θθθ)/∂θθθ∂y� and Dθθθ = ∂μμμ/∂θθθ�,
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μμμ denoting the expected value of y. Such a matrix is evaluated at the maximum
likelihood estimate θ̂θθ and the leverage points are those observations with large
values of GLii , the ith diagonal element of GL(θ), i = 1, . . . , n.

In the GBS2RM, we have that μμμ = Xβββ , and thus Dθθθ = [X 0 0], an n × (p + 2)

matrix, where 0 denotes an n-vector of zeros. Additionally,

�θθθy = (−1)

⎡
⎢⎣X�V

d�
g�

⎤
⎥⎦ ,

where the expressions of V , d and g are given in Section 3.
When we only focus on the vector βββ , we obtain Dβββ = X, �βββy = −X�V and

�ββββββ = X�V X. Consequently, the leverage matrix for the regression parameters is
given by GL(βββ) = X(X�V X)−1X�V .

4.4 Generalized Cook’s distance

According to Xie and Wei (2007) and Cook and Weisberg (1982), the generalized
Cook’s distance is given by GDi = (θ̂θθ(i) − θθθ)�M(θ̂θθ(i) − θθθ), where θ̂θθ (i) denotes
the estimate of θθθ obtained after excluding the ith observation from the sample and
M is a nonnegative definite matrix, usually taken to be M = −�θθθθθθ , the observed
information matrix.

The computation of θ̂θθ(i) may be cumbersome when the sample size is large. An
alternative is to use the one-step approximation to θ̂θθ(i) as proposed by Xie and Wei
(2007) for the log-linear Birnbaum–Saunders model. The one-step approximation

is given by θ̂θθ
1
(i) = θ̂θθ +{−�θθθθθθ }−1�θθθ(i), where �θθθ(i) = ∂�(i)(θθθ)/∂θθθ , with �(i) denoting

the log-likelihood function of model without the ith observation. The terms on the
right hand side of the equality are evaluated at the maximum likelihood estimates.

The index 1 in θ̂θθ
1
(i) indicates that a one-step approximation is used.

Using the fact that �θθθ |θθθ=θ̂θθ
= 0, we obtained, after some algebra, the following

components of �θθθ(i):

∂�(i)(θθθ)

∂βl

∣∣∣∣
θθθ=θ̂θθ

= xil

{
ν2

2

ξi2

ξi1
− 2ξi2ξi1

}∣∣∣∣
θθθ=θ̂θθ

, l = 1, . . . , p,

∂�(i)(θθθ)

∂α

∣∣∣∣
θθθ=θ̂θθ

=
{

1 − ξ2
i2

α

}∣∣∣∣
θθθ=θ̂θθ

,

∂�(i)(θθθ)

∂ν

∣∣∣∣
θθθ=θ̂θθ

=
{
ξi2ξi1

2(yi − μi)

ν
− 1

ν
− ξi2

ξi1

ν

2
(yi − μi)

}∣∣∣∣
θθθ=θ̂θθ

.

Since θ̂θθ
1
(i) − θ̂θθ = {−�θθθθθθ }−1�θθθ(i), when M = {−�θθθθθθ } it follows that the general-

ized Cook’s distance can be approximated by

GD1
i = ��

θθθ(i){−�θθθθθθ }−1�θθθ(i)|θθθ=θ̂θθ
.
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In order to evaluate the impact of the ith observation on βββ , α or ν, we approxi-
mate GDi in each of these cases in the following manner, respectively:

GD1
i (βββ) = ��

βββ(i)

{[−�θθθθθθ ]−1}ββββββ
�βββ(i)|θθθ=θ̂θθ

,

GD1
i (α) = ��

α(i)

{[−�θθθθθθ ]−1}αα
�α(i)|θθθ=θ̂θθ

,

GD1
i (ν) = ��

ν(i)

{[−�θθθθθθ ]−1}νν
�ν(i)|θθθ=θ̂θθ

,

where {·}θθθjθθθj represents the diagonal block corresponding to θθθj in the matrix.

4.5 A misspecification test

A key assumption of the GBS2RM is that the variable y is linearly related to the
vector of regression parameters βββ , which may not hold true in some applications.
Other misspecifications may take place, such as the omission of an important
covariate or of interactions between covariates. Therefore, it is important to test
whether the functional form of a fitted GBS2RM is adequate. In short, we wish to
test whether the GBS2RM is misspecified.

The effect of model misspecification on the residuals of classic linear regression
models was investigated by Ramsey (1969), who proposed the RESET test (Re-
gression Specification Error Test) that can be used to determine whether a given
classic linear model is correctly specified; see also Ramsey and Gilbert (1972).
A RESET-type test for the log-linear Birnbaum–Saunders model was considered
by Santos and Cribari-Neto (2017), who investigated the test size distortions in
small samples and its power under different types of misspecification. We now
outline the RESET misspecification test for the GBS2RM:

1. Estimate the parameters of the GBS2RM

yi = xi1β1 + xi2β2 + · · · + xipβp + εi, i = 1, . . . , n,

and obtain the predicted values μ̂μμ = (μ̂1, . . . , μ̂n)
�.

2. Estimate the parameters of the augmented GBS2RM given by

yi = xi1β1 + xi2β2 + · · · + xipβp + γ1μ̂
2
i + · · · + γk−1μ̂

k
i + εi, i = 1, . . . , n,

where k ≥ 2.
3. Test H0 : γ1 = · · · = γk−1 = 0 (correct model specification) against H1 that

γj �= 0 for at least one j ∈ {1, . . . , k − 1} (model misspecification).
4. If the null hypothesis is rejected, reject the model under evaluation, that is,

conclude that there is evidence of model misspecification.

5 Prediction intervals

In this section, we address the issue of obtaining prediction intervals for a non-
observed response value. We shall use an approach similar to that of Stine (1985)



340 F. Cribari-Neto and R. V. Fonseca

for linear models. Stine’s proposal involves the use of bootstrap resampling to es-
timate the prediction error distribution, which is then used to obtain the prediction
intervals. In similar fashion, Davison and Hinkley (1997) provide an algorithm
to compute bootstrap prediction intervals for generalized linear models, which
was recently extended for beta regressions by Espinheira, Ferrari and Cribari-Neto
(2014). In fact, building upon the work of Mojirsheibani and Tibshirani (1996)
on confidence intervals for parameters based on future samples, Espinheira, Fer-
rari and Cribari-Neto (2014) proposed a method that can be used to compute BCa

(bias-corrected and accelerated) prediction intervals, which we shall now apply to
the GBS2RM.

Consider a sample y1, . . . , yn of the response variable and let X be the cor-
responding matrix of covariates. We wish to obtain a prediction interval for a
non-observed response value y+ based on a new observation of the covariates,
denoted by x+. We consider a prediction error function R(y;μ), which is a mono-
tonic function of y, has constant variance and whose �th quantile is denoted
by δ�. Here, μ denotes the mean of y. The lower and upper prediction lim-
its of a 1 − � prediction interval for y+ are, respectively, y+,�/2 and y+,1−�/2,
such that R(y+,�/2;μ) = δ�/2 and R(y+,1−�/2;μ) = δ1−�/2. Since the distri-
bution of R(y+;μ) is usually unknown, we make use of resampling methods
to estimate it. We follow Espinheira, Ferrari and Cribari-Neto (2014) and use
�̃ = �(ẑ0 + [ẑ0 + z�]/[1 − â(ẑ0 + z�)]), where ẑ0 is a bias correction constant,
â is a factor known as acceleration constant and z� is the �th standard normal
quantile. The following estimates of z0 and a are used for constructing BCa pre-
diction intervals for new response observations:

ẑ0 = �−1
(

#{R∗+ < Rm}
B

)
and a =

√
nE(�̇3+)

6 Var(�̇+)3/2
,

where Rm is the median of the prediction errors R1, . . . ,Rn of the fitted
model, R∗+ denotes the bootstrap estimate of the prediction error for the non-
observed response value, B is the number of bootstrap replications used and
�̇ = ∂ logfY (y+|θθθ)/∂μ.

In the GBS2RM, a = 0. To see that notice that �̇ = 2ξ1ξ2 − ν2ξ2/(2ξ1), where
ξ1 = ν cosh[ν(y − μ)]/α and ξ2 = 2 sinhν(y − μ)]/α. Therefore, the numerator
of a is proportional to

E
(
�̇3) = −ν6

8
E

(
ξ3

2

ξ3
1

)
+ 3ν4

2
E

(
ξ3

2

ξ1

)
− 6ν2

E
(
ξ1ξ

3
2
) + 8ν2

E
(
ξ3

1 ξ3
2
)
.

Using the fact that ξ1 = ν
√

1 + (αξ2/2)2/2 and that expected values of odd func-
tions of a standard normal random variable equal zero, it is possible to show
that E(�̇3) = 0 and, as a consequence, a = 0. Hence, in the GBS2RM the BCa

method (Efron (1987)) reduces to the BC (bias-corrected) method proposed by
Efron (1981), where the estimate of � turns out to be �̃ = �(2ẑ0 + z�).
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We consider the rSHN residual as the prediction error function for the GBS2RM,
that is, Ri = rSHNi

, i = 1, . . . , n. Moreover, we notice that such a prediction error
function is monotonic in y and has constant variance, since the reference distribu-
tion of the rSHN residual is standard normal. Hence, an algorithm to compute pre-
diction intervals similar to that proposed by Espinheira, Ferrari and Cribari-Neto
(2014) for beta regressions can be used with the GBS2RM. Such an algorithm is
presented in the paper supplementary material.

6 Model selection criteria

We shall now turn to model selection, which is of paramount importance in re-
gression analysis. Model selection is oftentimes based on model selection criteria,
that is, on criteria that seek to identify the best fitting model. The most commonly
used model selection criteria are the Akaike Information Criterion (AIC), pro-
posed by Akaike (1973), and the Schwarz Information Criterion (SIC), introduced
by Schwarz (1978). For a detailed account of the different model selection criteria
and their use in regression modeling, readers are referred to McQuarrie and Tsai
(1998). Our goal in what follows is to present some model selection criteria that
can be used with the GBS2RM. We follow Bayer and Cribari-Neto (2015), who
considered model selection in the class of varying dispersion beta regressions.

Several model selection criteria were developed as extensions of previously ex-
isting criteria, such as the AIC. Akaike (1973) derived the AIC as an estimator
of �(θ0, k) = E0[−2 logf (y|θθθ)]|

θθθ=θ̂θθ
, a measure of the discrepancy between the

true model f (y|θθθ0) and a fitted candidate model f (y|θ̂θθ), where E0 indicates that
the expectation is computed with respect to the true model and k is the dimen-
sion of θθθ . The AIC is given by −2 logf (y|θ̂θθ) + 2k, the term −2 logf (y|θ̂θθ) being
Akaike’s estimator of �(θ0, k) and 2k being an asymptotic bias correction. The
AIC is the most commonly used model selection criterion. Nonetheless, it may
perform poorly in small samples, as pointed out by Hurvich and Tsai (1989). This
occurs because the AIC becomes progressively more negatively biased as k be-
comes larger relative to n, which leads the AIC to often select over-specified mod-
els. As a consequence, bias-adjusted variants of the AIC have been proposed and
investigated in the literature. They are typically obtained by deriving bias correc-
tions that are superior to 2k, such as in the AICc of Sugiura (1978) and Hurvich
and Tsai (1989).

Some authors suggested using bootstrap resampling to estimate the bias of
−2 logf (y|θ̂θθ); see, for example, Ishiguro and Sakamoto (1991), Cavanaugh and
Shumway (1997) and Shibata (1997). In what follows, we shall use the notation of
Bayer and Cribari-Neto (2015) to denote some of these model selection criteria that
are bootstrap-based. The criteria EIC1 and EIC2 were proposed by Ishiguro and
Sakamoto (1991) and by Cavanaugh and Shumway (1997), respectively. Shibata
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(1997) showed that the EIC1 and EIC2 are asymptotically equivalent and proposed
the EIC3, EIC4 and EIC5 criteria.

The five bootstrap-based information criteria mentioned above differ in the way
they estimate the bias term, the goodness of fit factor −2 logf (y|θ̂θθ) being the
same for all of them. Following Pan (1999), Bayer and Cribari-Neto (2015) pro-
posed a bootstrap model selection criterion that focuses on the goodness of fit term
rather than on the bias, which the authors called BQCV (bootstrap quasi cross-
validation) criterion. The BQCV criterion estimates the discrepancy between the
true model and a candidate model directly, but can overestimate �(θ0, k). Hence,
the authors proposed using the criterion 632QCV = 0.368 × [−2 logf (y|θ̂θθ)] +
0.632 × BQCV, which follows from the results in Pan (1999) and from the fact
that the terms −2 logf (y|θ̂θθ) and BQCV underestimate and overestimate �(θ0, k),
respectively. Thus, 632QCV aims at balancing these two terms.

Several other (not AIC-based) criteria were proposed in the literature, such as
the aforementioned SIC, the SICc derived by McQuarrie (1999), the HQ pro-
posed by Hannan and Quinn (1979) and its corrected version HQc presented by
McQuarrie and Tsai (1998) for the normal linear model. The finite sample perfor-
mances of the criteria listed in this section were investigated in the literature for a
wide variety of models, such as regression, time series and nonparametric models;
for details, see McQuarrie and Tsai (1998). In the next section, we shall numeri-
cally evaluate how well model selection schemes based on model selection criteria
work in the log-linear GBS2 model.

7 Numerical evaluation

In this section, we shall present results from Monte Carlo simulation studies that
were conducted to numerically evaluate the finite performances of the maximum
likelihood estimators of the parameters that index the GBS2RM model and the
quality of the approximation of the rSHN and rCSG residuals distributions by the re-
spective reference distributions. Additionally, we shall numerically evaluate the
finite sample performance of the RESET-type test for misspecification of the
GBS2RM model, prediction intervals for non-observed response values and differ-
ent model selection schemes. The simulations were performed using the OX ma-
trix programming language (Doornik (2009)). Log-likelihood maximizations were
carried out using the BFGS quasi-Newton nonlinear optimization algorithm with
analytical first derivatives. Using such an algorithm for performing log-likelihood
maximizations, convergence was reached in most samples, the convergence failure
rate being around 7.5%.

7.1 Maximum likelihood estimation

The parameter vector is θθθ = (β1, β2, α, ν)� and the regression model is

yi = β1 + β2xi + εi, i = 1, . . . , n, (2)
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where εi
i.i.d.∼ SHN (α,0, ν−1). The parameter values are β1 = 1, β2 = 0.5, α = 1

and ν = 1 and the starting points for the log-likelihood maximization were ob-
tained using the proposal described in Section 3.

The covariates values were randomly generated from three different distribu-
tions: uniform U(0,1), exponential with unit mean, and standard normal. We shall
denote such data generation schemes by E1, E2 and E3, respectively. The values
of all covariates were kept constant during the simulations.

The results we report are based on 10,000 Monte Carlo replications, the sam-
ple sizes being n ∈ {30,60,90}. We computed the mean squared error (MSE) of
the MLE of each parameter and also the corresponding relative biases: [E(θ̂θθj ) −
θθθj ]/θθθj , j = 1, . . . ,4. The results for the different covariates generation schemes
are presented in Table 1. We note that the MSEs tend to decrease as larger sample
sizes are used, as expected. The estimates of the regression parameters β1 and β2
are more accurate than those of α and ν. It is noteworthy that point estimates for
the shape parameters have considerable bias, especially in small samples. Never-
theless, it is possible to obtain less biased point estimates by using a bootstrap bias
correction (Davison and Hinkley (1997), page 103). We carried out a separate sim-
ulation experiment to evaluate the effectiveness of such a correction. The results
can be found in the paper supplementary material. They show that the bootstrap
bias correction can be quite effective. We also note that the results for the three
covariates generation schemes are similar.

Table 1 Relative biases (RB) and mean squared errors (MSE), Model (2)

Generation n Measure β̂1 β̂2 α̂ ν̂

E1

30
RB 0.0003 −0.0052 1.5198 0.9057
MSE 0.1711 0.3156 2.3377 1.2659

60
RB 0.0019 −0.0077 0.6301 0.4362
MSE 0.1093 0.2078 1.0530 0.7104

90
RB 0.0017 −0.0061 0.3922 0.2829
MSE 0.0934 0.1650 0.7314 0.5285

E2

30
RB −0.0016 0.0020 1.4943 0.8875
MSE 0.1354 0.0999 2.3341 1.2546

60
RB −0.0006 0.0015 0.6219 0.4318
MSE 0.0900 0.0567 1.0415 0.7050

90
RB −0.0003 0.0014 0.3859 0.2789
MSE 0.0705 0.0498 0.7232 0.5242

E3

30
RB −0.0004 0.0004 1.5218 0.8988
MSE 0.0875 0.0926 2.3787 1.2661

60
RB 0.0002 −0.0009 0.6344 0.4387
MSE 0.0606 0.0586 1.0576 0.7101

90
RB 0.0002 −0.0002 0.3919 0.2836
MSE 0.0484 0.0458 0.7236 0.5234
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7.2 Empirical distribution of the residuals

The second simulation study was performed to evaluate how well the distributions
of the residuals rSHN and rCSG are approximated by the corresponding reference
distributions. The results are for Model (2) and the sample size is n = 60. The
covariates values are obtained as in the previous simulation. Based on all 10,000
replications, we computed the mean, standard deviation, asymmetry and kurtosis
of each residual. For rSHN , whose distribution is expected to be approximately
standard normal, we expect such statistics to be close to 0, 1, 0 and 3, respectively.
For rCSG, whose reference distribution is exponential with unit mean, such statis-
tics are expected to be close to 1, 1, 2 and 6, respectively. The results are presented
in Table 2. They show that the distribution of rSHN is better approximated by its
reference distribution than that of rCSG. Nonetheless, the results for the residual
rCSG were also satisfactory, the means and standard deviations being quite close to
one. It is then possible to conclude that the distributions of the proposed residuals
are well approximated by the respective reference distributions. Practitioners can
then compare the quantiles of residuals obtained from a fitted GBS2RM with those
of the corresponding reference distributions.

7.3 RESET-type misspecification test

Next, we performed a set of Monte Carlo simulations to evaluate the finite sample
performance of the RESET-type misspecification test. Since the previous results
were similar for the different schemes of covariates values generation, we shall
only report results obtained using standard uniform draws. The number of Monte
Carlo replications is 10,000 and the sample sizes are n ∈ {30,60,90}. The testing
variable is the vector of squared predicted values and the test was performed using
the likelihood ratio test criterion. The significance levels are 10%, 5% and 1%.

The first simulation study was carried out to compute the RESET-type test null
rejection rates. In each Monte Carlo replication, we generated yi = 1 − 0.5x2i +
1.3x3i + εi , where εi

i.i.d.∼ SHN (1,0,1), i = 1, . . . , n, fitted the GBS2RM and

Table 2 Means, standard deviations (SD), asymmetries and kurtosis of the residuals rSHN and
rCSG, Model (2)

Generation Residual Mean SD Asymmetry Kurtosis

E1
rSHN −2.11 × 10−5 0.9989 0.0003 2.9700
rCSG 1.0000 0.9928 1.7866 6.7611

E2
rSHN −8.85 × 10−5 0.9989 0.0007 2.9720
rCSG 0.9999 0.9931 1.7905 6.7936

E3
rSHN 0.0003 0.9988 0.0001 2.9712
rCSG 1.0003 0.9929 1.7871 6.7705
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Table 3 Null rejection rates of the RESET-type test for the GBS2RM

Significance level

n 10% 5% 1%

30 0.2107 0.1367 0.0437
60 0.1388 0.0808 0.0218
90 0.1268 0.0690 0.0170

obtained the predicted values. We then fitted the model yi = β1 + β2x2i + β3x3i +
γ μ̂2

i + εi and tested the null hypothesis H0 : γ = 0 against a two-sided alternative
hypothesis. The test null rejection rates are presented in Table 3. We note that the
test is considerably size-distorted when the sample size is small (n = 30); such
distortions become much smaller when the sample size increases to n = 60 and
n = 90. With 90 observations, the test null rejection rate at the 5% nominal level
is 6.9%.

We also performed simulations aimed at evaluating the power of the RESET-
type test under different sources of model misspecification. We consider four dif-
ferent data generation processes (schemes), denoted by P 1, P 2, P 3 and P 4. In
scheme P 1, yi = 1+ 0.5x2i + 1.8x3i + 1.8x2i ×x3i + εi ; notice the interaction be-
tween the two covariates. In scheme P 2, yi = 1+0.5x2i +1.8x3i +1.8x2

i2 +εi ; no-
tice that the linear predictor includes a squared regressor. In scheme P 3, yi = 1 +
0.5x2i + 1.8x3i + 1.5x4i + εi ; notice the covariate x4. In scheme P 4, the data gen-
erating process is nonlinear: yi = (1+0.5x2i +1.8x3i )

ϕ +εi , ϕ ∈ R. In the simula-

tions, we used ϕ = 1.7. In all four schemes, εi
i.i.d.∼ SHN (1,0,1), i = 1, . . . , n, and

the following (misspecified) model was estimated: yi = β1 + β2x2i + β3x3i + εi .
Since the test is liberal, testing inference was based on exact critical values which
were estimated in the previous simulations (size simulations). We thus compute
the power of a size-corrected test. The test nonnull rejection rates are presented in
Table 4. We note that the RESET-type test for the GBS2RM displays good power,
with nonnull rejection rates increasing when larger sample sizes are considered.
The test was more powerful under scheme P 4, where linearity is incorrectly as-
sumed.

7.4 Prediction intervals

A simulation study was performed to evaluate the performances of the percentile
and BCa prediction intervals for a non-observed occurrence y+ of the response
variable given a new observation of the covariate in a GBS2RM model. The

data generating process is yi = 1 + 0.5x2i + εi , where εi
i.i.d.∼ SHN (α,0,1/ν),

i = 1, . . . , n. The results are presented in Table 5. The sample sizes considered
were as in the previous simulation studies, the number of Monte Carlo replica-
tions used was 5000 and the covariate values were obtained as standard uniform
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Table 4 Nonnull rejection rates of the RESET-type test for the GBS2RM model under different
schemes of model misspecification

Significance level

Scheme n 10% 5% 1%

P 1
30 0.2456 0.1573 0.0496
60 0.4778 0.3405 0.1407
90 0.6471 0.5183 0.2856

P 2
30 0.1845 0.1103 0.0316
60 0.3226 0.2083 0.0718
90 0.4428 0.3234 0.1522

P 3
30 0.2090 0.1243 0.0354
60 0.5286 0.3635 0.1276
90 0.7724 0.6314 0.3428

P 4
30 0.3601 0.2470 0.0959
60 0.6571 0.5212 0.2631
90 0.8352 0.7320 0.5104

Table 5 Empirical coverages and left and right non-coverages of 95% prediction intervals in a
GBS2RM for different values of α and ν

n
Percentile BCa

Left Coverage Right Left Coverage Right

θθθ = (1,0.5,1,1)�
30 0.027 0.942 0.031 0.029 0.939 0.032
60 0.026 0.946 0.028 0.025 0.945 0.030
90 0.026 0.947 0.027 0.027 0.945 0.028

θθθ = (1,0.5,0.5,1.5)�
30 0.028 0.941 0.031 0.029 0.937 0.034
60 0.025 0.950 0.025 0.025 0.948 0.027
90 0.024 0.950 0.026 0.025 0.950 0.025

θθθ = (1,0.5,1.5,0.5)�
30 0.029 0.945 0.026 0.029 0.941 0.030
60 0.026 0.949 0.025 0.026 0.949 0.025
90 0.028 0.949 0.023 0.028 0.949 0.023

random draws. We used B = 1000 bootstrap replications for constructing 95%
confidence prediction intervals. In Table 5, we present the empirical coverages of
the percentile and BCa prediction intervals and the proportions of the replications
for which y+ was smaller (larger) than the lower (upper) prediction intervals. The
figures in Table 5 show that both prediction intervals display empirical coverages



Log-linear bimodal Birnbaum–Saunders regression model 347

close to 95% and that the non-coverages are well distributed in both sides. The
percentile intervals perform slightly better than the BCa intervals. Additionally,
the performances of both intervals improve as the sample size increases, as ex-
pected. It is thus noteworthy that bootstrap prediction intervals perform well when
used with the GBS2RM, especially the percentile method.

7.5 Model selection criteria

We performed a simulation study to evaluate the finite sample performances of
the model selection criteria presented in Section 6. The simulation is similar to
that conducted by Hurvich and Tsai (1989) for linear models. The true model is

yi = −1 + x2i + x3i + x4i + εi , where εi
i.i.d.∼ SHN (1,0,1), i = 1, . . . , n, and

the true parameter vector θθθ0 has dimension k0 = 6. We consider the n × 6 ma-
trix of candidate regressors X̃, whose first column is a vector of ones. The first
four columns of such a matrix contain the regressors that are present in the true
data generating process. The models were fitted in nested fashion using as covari-
ates the first 2,3, . . . ,6 columns of X̃. The number of Monte Carlo and bootstrap
replications are as before, as well as the sample sizes considered. All covariate
values in X̃ were obtained as random standard uniform draws. The bootstrap ex-
tensions of the AIC criteria as well as BQCV and 632QCV were computed using
parametric resampling. Nonparametric bootstrap resampling leads to very similar
results which are not presented for brevity. We computed the proportion of model
under-specification, of model over-specification and of correct specification for
each criterion. The results are presented in Table 6. They show that the AIC tends
to select over-specified models, especially for small sample sizes. The bootstrap
extensions of the AIC performed well when n = 60 and n = 90. For instance, for
n = 60 the largest frequency of correct model selection was achieved by the EIC1.
The performances of the EIC2 and EIC4 were also very good for n = 90, with
proportions of correct specification in excess of 97%. We note that BQCV and
632QCV performed well when the sample contained 60 or 90 observations, but
performed poorly when n = 30, often selecting under-specified models. Overall
and on balance, the SICc was the best performer. It outperformed all competing
criteria when n = 30 and was very competitive with the bootstrap criteria when
n = 60 and n = 90. Additionally, SICc does not entail the computational burden
of performing data resampling. We thus recommend that model selection be based
on such a criterion when performing GBS2RM modeling.

8 Empirical application

We shall now use the GBS2RM to analyze real (not simulated) data. The analysis
was carried out using the OX matrix programming language and the R statistical
computing environment (R Core Team (2016)). The computer codes we used are
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Table 6 Proportions of model under-specification (k < k0), correct specification (k = k0) and over-
specification (k > k0) of a GBS2RM using the selection criteria discussed in Section 6

n = 30 n = 60 n = 90

< k0 = k0 > k0 < k0 = k0 > k0 < k0 = k0 > k0

AIC 0.018 0.454 0.527 0.000 0.676 0.324 0.000 0.723 0.277
AICc 0.052 0.658 0.290 0.000 0.762 0.238 0.000 0.775 0.225
SIC 0.052 0.625 0.323 0.001 0.887 0.112 0.000 0.929 0.071
SICc 0.151 0.741 0.107 0.004 0.936 0.060 0.000 0.960 0.039
HQ 0.031 0.517 0.451 0.001 0.790 0.209 0.000 0.844 0.156
HQc 0.083 0.705 0.212 0.001 0.866 0.133 0.000 0.890 0.110
EIC1 0.909 0.088 0.003 0.021 0.945 0.034 0.000 0.941 0.059
EIC2 0.953 0.045 0.002 0.099 0.887 0.014 0.000 0.978 0.022
EIC3 0.059 0.576 0.365 0.001 0.781 0.219 0.000 0.790 0.210
EIC4 0.954 0.044 0.002 0.099 0.888 0.012 0.000 0.976 0.024
EIC5 0.059 0.607 0.334 0.001 0.778 0.221 0.000 0.766 0.234
BQCV 0.898 0.098 0.004 0.013 0.930 0.057 0.000 0.886 0.114
632QCV 0.830 0.161 0.009 0.002 0.890 0.107 0.000 0.776 0.224

available upon request. The data contain information on patients who suffered from
an acute type of leukemia and are provided by Feigl and Zelen (1965). The variable
of interest is the patient’s lifetime (in weeks) since the disease diagnosis. One of
the covariates is the patient’s white blood cells count upon leukemia diagnosis.
The other covariate marks the presence or absence of a specific factor in the patient
white cells, which can be classified as AG positive or AG negative, respectively.

Let yi = log(ti) be the logarithm of the ith patient lifetime, xi2 = log(Wi) be
the logarithm of the patient’s white blood cells count and xi3 be a dummy variable
that equals one if the ith patient is AG positive and zero otherwise, i = 1, . . . ,33.
Figure 2 contains boxplots of y and x2 for different levels of x3 and a scatterplot of
y vs. x2. We note from Figure 2(a) that lifetime tends to decrease as the white cells
count increases and that AG positive patients (x3 = 1) tend to live longer than AG
negative patients (x3 = 0), which can also be observed in Figure 2(b). Figure 2(c)
shows that there is no clear relationship between x2 and x3.

We estimated the following log-linear model GBS2:

yi = β1 + β2xi2 + β3xi3 + εi, (3)

where εi
i.i.d.∼ SHN (α,0, ν−1). The maximum likelihood estimates of the pa-

rameters (standard errors in parentheses) are β̂1 = 6.159 (0.8280), β̂2 = −0.360
(0.0828), β̂3 = 0.055 (0.2786), α̂ = 6.914 (3.8980) and ν̂ = 1.272 (0.2794). It is
noteworthy that the standard error of β3 is large, which might be indicative that
the variable x3 is not relevant for the analysis at hand. Indeed, for the model in
Equation (3) SICc = 120.97 whereas when the model is fitted without the covari-
ate x3 SICc = 115.92. Simultaneous removal of x2 and of the intercept yielded
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Figure 2 Scatterplot of the response variable vs. x2 (a) and boxplots for different levels of x3 ((b)
and (c)).

a larger value of the model selection criterion. The other model selection crite-
ria led to the same conclusions. We shall address the significance of the factor
AG later in this section. The likelihood ratio test statistic for testing H0 : ν = 0.5
against H1 : ν �= 0.5 equals 4.65, the corresponding p-value being 0.0309. That is,
there is evidence (at the 5% significance level) that the GBS2RM is superior to the
BSRM for analyzing these data.

The value of the pseudo-R2 for the GBS2RM model is R2
N = 0.350. Figure 3

contains residual (rSHN and rCSG) plots. In Figures 3(a) and 3(b) we see plots
of residuals against predicted values μ̂μμ with 95% confidence bands. Notice that
most residuals lie inside the intervals and that there is no noticeable pattern in the
residuals. Visual inspection of Figures 3(c) and 3(d) reveals that all residuals are
inside the confidence regions, thus indicating that the distributional assumptions
hold. We also performed the RESET-type test for model misspecification using the
square of the predicted values (μ̂μμ) as testing variable. The test statistic equals 0.73,
the corresponding p-value being 0.3916. Hence, there is no evidence of model
misspecification at the usual significance levels.

Diagnostic plots can be found in the paper supplementary material. Local in-
fluence analysis for the GBS2RM model should be able to identify data points
that might be largely influencing the parameters estimates. Figure 1 in the supple-
mentary material contains local influence plots relative to the regression and shape
parameters using the three perturbation schemes discussed earlier. It is noteworthy
that the most influential data points are observations 14, 15 and 17. We computed
the generalized Cook’s distance for each observation. The GD measures for the
model parameters are presented in Figure 2 of the supplementary material. Notice
that such results agree with those obtained using local influence analysis, that is,
observations 14, 15 and 17 are singled out as atypical. Generalized leverage mea-
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Figure 3 Predicted values μ̂μμ against the residuals rSHN (a) and rCSG (b), and simulated envelopes
with bands of 95% of confidence for the residuals rSHN (c) and rCSG (d). The dashed lines in the
panels (a) and (b) indicate approximate confidence regions (95% confidence).

sures are presented in Figure 3 of the supplementary material. Observations 2 and
21 stand out. The former corresponds to the patient with the lowest white cells
count among all AG positive patients, whereas the latter corresponds to the patient
with the lowest white cells count of all AG negative patients.

We sequentially removed each atypical observation from the data and fitted the
model after each data point removal. In each case, we computed the absolute rel-
ative change in the estimates, that is, we computed |(θ̂θθj (i) − θ̂θθj )/θ̂θθj |, where θ̂θθj

represents the j th parameter estimate obtained using the complete data and θ̂θθj (i)

is the corresponding estimate obtained after the ith observation removal. Addition-
ally, we tested the significance of each regressor when the reduced data were used.
We also tested whether ν = 0.5 in order to distinguish between GBS2RM and the
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Table 7 Absolute relative changes in the parameter estimates of Model (3) with tests p-values
in parentheses after removal of the indicated data point(s). The null hypotheses are H0 : βj = 0,
j = 1,2,3, and H0 : ν = 0.5

Deleted β̂1 β̂2 β̂3 α̂ ν̂

None — (< 0.001) — (< 0.001) — (0.8428) — — (0.0309)
2 0.025 (< 0.001) 0.044 (< 0.001) 0.417 (0.7808) 0.053 0.023 (0.0316)
14 0.041 (< 0.001) 0.058 (0.0006) 2.503 (0.4781) 0.119 0.018 (0.0554)
15 0.041 (< 0.001) 0.058 (< 0.001) 2.503 (0.4781) 0.119 0.018 (0.0554)
17 0.100 (< 0.001) 0.178 (< 0.001) 0.842 (0.9695) 0.035 0.056 (0.0245)
21 0.022 (< 0.001) 0.037 (< 0.001) 0.187 (0.8202) 0.117 0.048 (0.0819)
14 and 15 0.315 (< 0.001) 0.504 (0.0175) 10.669 (0.0029) 0.610 0.419 (0.0014)
14, 15, 17 0.304 (< 0.001) 0.487 (0.0288) 10.587 (0.0067) 0.444 0.367 (0.0033)

log-linear Birnbaum–Saunders model. The main goal is to determine whether any
relevant inferential decision was reversed after the atypical observations were re-
moved from the data. The relative changes in the parameter estimates and the tests
p-values are presented in Table 7.

The figures in Table 7 show that the intercept is statistically different from zero
and the regressor that accounts for white cells count are statistically significantly
in all scenarios at the usual significance levels. We also note that the GBS2-based
model remains superior to that based on the BS law at the 10% significance level,
thus strengthening the evidence in favor of the GBS2RM. The most intriguing
result relates to x3. Such a regressor is not statistically significant at the usual sig-
nificance levels when all observations are used in the model fit, as noted earlier.
However, after observation 14 or observation 15 is removed from the data the es-
timate of β3 changes considerably. Such observations were detected as influential
data points and correspond to AG positive patients with short lifetimes but that
present high counts of white blood cells, contrary to what is implied by the fit-
ted model. When the model is fitted without these two observations in the data
the covariate x3 becomes statistically significant. Additionally, the SICc for the
model without x3 equals 104.68 whereas the model fitted with such a regressor
yields SICc = 101.01, that is, the SICc also provides indication that the AG factor
impacts the patients’ lifetime. Most of the other selection criteria also lead to the
same conclusion. Simultaneous removal of cases 14, 15 and 17 leads to the same
testing inference, that is, x3 is found to be statistically significant. Hence, observa-
tions 14 and 15 are the cases responsible for the reversal in the inference decision
regarding the statistical significance of x3.

We decided to consider the model fitted without the atypical cases (observa-
tions 14 and 15) in the data. The parameter estimates (standard errors in paren-
theses) are β̂1 = 4.219 (0.7047), β̂2 = −0.179 (0.0691), β̂3 = 0.643 (0.1701),
α̂ = 11.135 (6.2724) and ν̂ = 1.807 (0.3499). Also, R2

N = 0.4176, which indi-
cates that the new model fit is superior to that obtained using the complete data.
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Figure 4 95% percentile (a) and BCa (b) prediction intervals for y. Solid lines indicate the inter-
vals for AG negative patients (x3 = 0) and dashed lines indicate intervals for AG positive patients
(x3 = 1).

By applying the bootstrap bias correction, we obtain the following corrected es-
timates: β̂bc

1 = 4.199, β̂bc
2 = −0.177, β̂bc

3 = 0.650, α̂bc
1 = 2.257 and ν̂bc

1 = 1.487.
The only estimate that changed substantially when we applied the bias correction
was that of α. We note that uncorrected and corrected regression parameters es-
timates are similar, which is in line with our Monte Carlo simulation evidence.
The correct model specification is not rejected by the RESET-type test at the usual
nominal levels. Figure 4 presents prediction intervals obtained with this model for
values of x2 ranging between 6 and 12, for each level of x3. We note that patients
for whom the presence of the AG factor was detected tend to live longer than AG
negative patients, thus corroborating the evidence in Figure 2. Moreover, we note
that higher white blood cells counts in the patients are significantly associated with
shorter lifetimes, as can be observed in Figure 2. Furthermore, nearly all points in
Figure 4 lie inside the respective prediction intervals, but the observations 14 and
15 are clearly atypical data points.

9 Concluding remarks

Log-linear Birnbaum–Saunders regression models have been frequently used in
the literature. The model is based on the standard Birnbaum–Saunders distribu-
tion. In this paper, we propose a log-linear model based on a bimodal version of
the Birnbaum–Saunders law. The log-linear Birnbaum–Saunders regression model
is a particular case of our model. Parameter estimation is carried out by maximum
likelihood. We provide an expression for the observed information matrix, discuss
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hypothesis testing inference and present a pseudo-R2 measure. Several different
diagnostic tools for the proposed model were discussed and two different resid-
uals were introduced. We showed how to perform local influence analysis under
three different perturbation schemes (case-weights perturbation, response variable
perturbation and explanatory variable perturbation), derived generalized leverage
measures, obtained the generalized Cook’s distance, and presented a model mis-
specification test. We also provided an algorithm that can be used to construct
prediction intervals for out of sample response values. In addition, we investi-
gated the finite sample performances of different model selection criteria for the
proposed model. Simulation results and a empirical application were presented
and discussed. In the empirical application, the regression model we proposed
was shown to be more adequate than the standard log-linear Birnbaum–Saunders
model.

Finally, we note that since the proposed regression model is useful for lifetime
data analyses, in future research we shall focus on extending it to deal with cen-
sored observations, such as, for instance, data subject to type I and type II censor-
ing schemes.
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