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Sampling Latent States for High-Dimensional
Non-Linear State Space Models with
the Embedded HMM Method

Alexander Y. Shestopaloff* and Radford M. Nealf

Abstract. We propose a new scheme for selecting pool states for the embedded
Hidden Markov Model (HMM) Markov Chain Monte Carlo (MCMC) method.
This new scheme allows the embedded HMM method to be used for efficient sam-
pling in state space models where the state can be high-dimensional. Previously,
embedded HMM methods were only applicable to low-dimensional state-space
models. We demonstrate that using our proposed pool state selection scheme, an
embedded HMM sampler can have similar performance to a well-tuned sampler
that uses a combination of Particle Gibbs with Backward Sampling (PGBS) and
Metropolis updates. The scaling to higher dimensions is made possible by selecting
pool states locally near the current value of the state sequence. The proposed pool
state selection scheme also allows each iteration of the embedded HMM sampler
to take time linear in the number of the pool states, as opposed to quadratic as
in the original embedded HMM sampler.
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1 Introduction

Consider a non-linear, non-Gaussian state space model for an observed sequence y =
(y1,---,Yn). This model, with parameters 6, assumes that the Y; are drawn from an
observation density p(y;|x;, ), where X; is an unobserved Markov process with initial
density p(z1|0) and transition density p(z;|z;—1,6). Here, the x; might be either con-
tinuous or discrete. We may be interested in inferring both the realized values of the
Markov process x = (x1,...,%,) and the model parameters 6. In a Bayesian approach
to this problem, this can be done by drawing a sample of values for x and # using
a Markov chain that alternately samples from the conditional posterior distributions
p(x]0,y) and p(f|x,y). In this paper, we will only consider inference for x by sampling
from p(x|6,y), taking the parameters 6 to be known. As a result, we will omit 6 in model
densities for the rest of the paper. Except for linear Gaussian models and models with a
finite state space, this sampling problem has no exact solution and hence approximate
methods such as MCMC must be used.

One method for sampling state sequences in non-linear, non-Gaussian state space
models is the embedded HMM method (Neal, 2003; Neal et al., 2004). An embedded
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HMM update proceeds as follows. First, at each time i, a set of L “pool states” in the
latent space is constructed. In this set, L — 1 of the pool states are drawn from a chosen
pool state density and one is the current value of x;. This step can be thought of as
temporarily reducing the state space model to an HMM with a finite set of L states,
hence the name of the method. Then, using efficient forward-backward computations,
which take time proportional to L?n, a new sequence x’ is selected from the “ensemble”
of L™ sequences passing through the sets of pool states, with the probability of choosing
each sequence proportional to its posterior density divided by the probability of the
sequence under the pool state density. At the next iteration of the sampler, new sets of
pool states are constructed, so that the chain can sample all possible z;, even when the
state space is not finite.

Another method is the Particle Gibbs with Backward Sampling (PGBS) method.
The Particle Gibbs (PG) method is an example of a particle MCMC method and was
first introduced in Andrieu et al. (2010); Whiteley (2010) suggested the backward sam-
pling modification. Lindsten and Schoén (2012) implemented backward sampling and
showed that it improves the efficiency of PG. Particle MCMC methods use Sequential
Monte Carlo (SMC) (Doucet et al., 2001) to produce MCMC moves for parameter and
state updates. Starting with a current sequence x, PGBS first uses conditional SMC to
construct a set of candidate sequences and then uses backward sampling to select a new
sequence from the set of candidate ones. Here, conditional SMC works in the same way
as ordinary SMC when generating a set of particles, except that one of the particles at
time ¢ is always set to the current x;, similar to what is done in the embedded HMM
method, which allows the sampler to remain at x; if x; lies in a high-density region.
While this method works well for problems with low-dimensional state spaces, the re-
liance of the SMC procedure on choosing an appropriate importance density can make
it challenging to make the method work in high dimensions. An important advantage of
Particle Gibbs, however, is that each iteration has time complexity that is only linear
in the number of particles.

Both the PGBS and embedded HMM methods can facilitate sampling of a latent
state sequence, x, when there are strong temporal dependencies amongst the z;. In
this case, using a method that samples x; conditional on fixed values of z;_; and x; 41
can be an inefficient way of producing a sample from p(x|y, #), because the conditional
density of z; given x;_; and z;41 can be highly concentrated relative to the marginal
density of x;. In contrast, with the embedded HMM and PGBS methods it is possible
to make changes to blocks of z;’s at once. This allows larger changes to the state in each
iteration of the sampler, making updates more efficient. However, good performance of
the embedded HMM and PGBS methods relies on appropriately choosing the set of
pool states or particles at each time 1.

In this paper, our focus will be on techniques for choosing pool states for the embed-
ded HMM method. When the latent state space is one-dimensional, embedded HMMs
work well when choosing pool states in a variety of ways. For example, in Shestopaloff
and Neal (2013), we choose pool states at each time ¢ by constructing a “pseudo-
posterior” for each latent variable by taking the product of a “pseudo-prior” and the
observation density, the latter treated as a “pseudo-likelihood” for the latent variable.
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In Shestopaloff and Neal (2014), we choose pool states at each time 4 by sampling from
the marginal prior density of the latent process.

Ways of choosing pool states that work well in one dimension begin to exhibit
problems when applied to models with higher-dimensional state spaces. This is true
even when the dimension of the state space is as small as three. Since these schemes are
designed to produce sets of pool states without reference to the current point, as the
dimension of the latent space grows, a higher proportion of the sequences in the ensemble
ends up having low posterior density. Ensuring that performance does not degrade in
higher dimensions thus requires a significant increase in the number of pool states. As
a result, computation time may grow so large that any advantage that comes from
using embedded HMMs is eliminated. One advantage of the embedded HMM method
over PGBS is that the embedded HMM construction allows placing pool states locally
near the current value of x;, potentially allowing the method to scale better with the
dimensionality of the state space. Switching to such a local scheme fixes the problem
to some extent. However, local pool state schemes come with their own problems. For
example, local schemes make it difficult to handle models with multiple posterior modes
that are well-separated — the pool states might end up being placed near only some of
the modes. Another issue with previously used pool state selection schemes is that they
select pool states independently across time, which becomes increasingly inefficient in
higher dimensions in the presence of strong temporal dependencies in x.

In this paper, we propose an embedded HMM sampler suitable for models where the
state space is high dimensional. This sampler uses a sequential approximation to the
density p(z;|y1, ..., y;) or to the density p(x;|yi11,.-.,yn) as the pool state density. We
show that by using this pool state density, together with an efficient MCMC scheme for
sampling from it, we can reduce the cost per iteration of the embedded HMM sampler
to be proportional to nL, as with PGBS. At the same time, we retain the ability to
generate pool states locally, potentially allowing better scaling for high-dimensional
state spaces. Our proposed scheme can thus be thought of as combining the best features
of the PGBS and the embedded HMM methods, while overcoming the deficiencies of
both. We use two sample state space models as examples. Both have Gaussian latent
processes and Poisson observations, with one model having a unimodal posterior and
the second a multimodal one. For the multimodal example, we introduce a “mirroring”
technique that allows efficient movement between the different posterior modes. For
these models, we show how our proposed embedded HMM method compares to a simple
Metropolis sampler, a PGBS sampler, as well as a sampler that combines PGBS and
simple Metropolis updates. Further details on ensemble methods are available in the
PhD thesis of Shestopaloff (2016).

2 Embedded HMM MCMC

We review the embedded HMM method (Neal, 2003; Neal et al., 2004) here. We take
the model parameters, 6, to be fixed, so we do not write them explicitly. Let p(z) be the
density from which the state at time 1 is drawn, let p(z;|z;—1) be the transition density
between states at times 7 and ¢ — 1, and let p(y;|x;) be the density of the observation y;
given x;. For this and later methods, we assume that the initial and transition densities



800 Embedded HMMs for High-Dimensional State Space Models

can be feasibly computed at least up to some normalizing constant. We also assume that
the observation density (given state) can be computed up to a normalizing constant.
For each time, 7, we choose a pool state density, k;, which we must be able to feasibly
compute. This must be a density that assigns a positive probability to all possible state
values, which lets the sampler explore the space of all possible latent sequences.

Suppose our current sequence is x = (z1,...,Z,). The embedded HMM sampler
updates x to x’ as follows.

First, at each time ¢ = 1,...,n, we generate a set of L pool states, denoted by P; =
{xm . ,xEL]}. The pool states are sampled independently across the different times 1.

We choose l; € {1, ..., L} uniformly at random and set x[-l”] to ;. We sample the remain-
ing L —1 pool states xgl], ... ,xgl"'_l] , :EEZH'”, .. [ | using a Markov chain that leaves k;
invariant, as follows. Let R;(2'|x) be the transmons of this Markov chain with Ri(z|z")
the transitions for this Markov chain reversed (i.e. R;(z|x") = R;(2'|z)ri(z)/ki(z")), so
that

ri(@)Ri(a'|x) = i(a')Ri(ala’) (1)
for all z and z’. Then, starting at j = I; — 1, use reverse transitions R;(x []]|a?[j+1]) to
generate x[ 1] - ,xgl] and starting at j = I; + 1 use forward transitions R;(z EJ] |£E£j 1])
to generate x[ H] ...,xLLL]. As examples, both transitions R; and RZ can be those of

a Metropolis sampler (which is reversible), or R; can be a systematic Gibbs sampling
scan, and R; the corresponding Gibbs sampling scan updating components in the re-
verse order. We only need to be able to sample from these transition distributions, not
compute their densities.

At each ¢ = 1,...,n, we then compute the (unnormalized) forward probabilities
ai(z), with x taking values in P;. At time ¢ = 1, we have
p(@)p(y1|z)
o (z) = T ) (2)
and at times ¢ = 2,...,n, we have
L
a;(x) il 3)

=1

Finally, we sample a new state sequence x’ using a stochastic backwards pass. This

is done by first selecting I/, with probabilities proportional to an(mgn]) and setting

xl = z% |, We then go backwards from ¢ = n—1 to i = 1, selecting I, with probabilities

proportional to ai(ﬂcgli])p(x;+1|x£li]) and setting x} = x[ 1. Note that only the relative
values of the a;(x) will be required, so the «; may be computed up to some constant
factor, which may be convenient for avoiding floating point overflow.

Alternatively, given sets of pool states, embedded HMM updates can be done by
first computing the backward probabilities. For the original embedded HMM method of
(Neal, 2003; Neal et al., 2004), the backward probability formulation is probabilistically
equivalent to the forward one. Setting 3, (z) = 1 for all z € P,,, we compute for i < n
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L
1—0—1 p(x El-];-1|95)ﬁz+1( [l_]s_ )- (4)

l:l

A new state sequence x’ is then sampled using a stochastic forward pass. We first

select 1] with probabilities proportional to (; (x[llll])p(x[lm)p(y1|m[1m) and set ) = :c[ll].

We then go forward, selecting I} for ¢ = 2,...,n with probabilities proportional to
Bl( ) (x; 1 ]|% )P (yl\:vyl]) and setting x} = x[l]

Computing the a; or §; at each time 7 > 1 takes time proportional to L?, since for
each of the L pool states it takes time proportional to L to compute the sums in (3) or
(4). Hence each iteration of the embedded HMM sampler takes time proportional to L?n.

Each iteration of the sampler takes memory proportional to nL. This is because to
sample a new sequence, we need to perform a forward pass followed by a backwards
pass, which requires the stored forward probabilities for each of the L pool states for
each time 3.

Algorithm 1 Embedded HMM MCMC Sampler

Require: x, L, and Ri, R, k; for i = 1,...,n
1: fori=1ton do

2. I ~ Unif{l,...,L}

3: xy"] —x

4: for j =1, —1 down to 1 do

5: Use éi(x£j1|x£j+1]) to sample xgj] from k;
6: end for

7 for j=1,+1to L do

8: Use R; (xgj] |$£]_1]) to sample :c ! from
9: end for

10: for j=1to L do

11: Compute a; ()

12: end for

13: end for

14: Sample I/, with probabilities P(I/, = k) o a (zl)) with k € {1,...,L}
15: x — x%l ]

16: forz-n—ltoldo
17: Sample [} with probabilities P(I; = k) o o;(x
(2]

Wyp(at,y |2M) with &k € {1,..., L}
18: l‘ <— T,
19: end for

3 Particle Gibbs with Backward Sampling MCMC

We review the Particle Gibbs with Backward Sampling (PGBS) sampler here. For full
details, see the articles by Andrieu et al. (2010) and Lindsten and Schén (2012).
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Let ¢1(z|y1) be the importance density from which we sample particles at time 1,
and let ¢;(x|y;,x;—1) be the importance density for sampling particles at times ¢ > 1.
These may depend on the current value of the parameters, 6, which we suppressed in
this notation. Suppose we start with a current sequence x. We set the first particle

3:[11] to the current state x1. We then sample L — 1 particles x[f], . ,a:[lL] from ¢; and
compute and normalize the weights of the particles:
1 1
Wit~ 2ep(nla) )
1 - 1] )
a1 (23 [y1)
1] w%”
Wy = (6)
ZmZI wy

forl=1,...,L.
[

For i > 1, we proceed sequentially. We first set o:il] = z;. We then sample a set of L—1

ancestor indices for particles at time i, defined by ay}_l e{l,...,L}, for 1l =2,...,L,

with probabilities proportional to Wlm 1- The ancestor index for the first state, a£1_117 is 1.

— [a[Z

]
We then sample each of the L — 1 particles, x&l], from qi(:r|yi,xi_i1’1}), forl=2,...,L,
and compute and normalize the weights of the particles:

all,]

[t (1]
l p(; |2 27 )p(yilz;”)
wl - 0 1 [a[-”z] ’ ™
qi(z; |y, 21 ")
wh = w ®)
Z an:l wz[m}

A new sequence taking values in the set of particles at each time is then selected using
a backwards sampling pass. This is done by first selecting 2/, from the set of particles at

time n with probabilities WT[LZ] and then selecting the rest of the sequence going backward
U

in time to time 1, setting z; to x;" with probability

[l )

i

L m m
dom=1 wz[ ]p(x;+1|x£ ])

1
wllp(a), |z

. (9)

A common choice for ¢; is the model’s initial density. For ¢; where ¢ > 1, a common
choice is the model’s transition density. We use these choices in this paper.

Note that each iteration of the PGBS sampler takes time proportional to nL, since
it takes time proportional to L to create the set of particles at each time 4, and to do one
step of backward sampling. Since we need to store the entire set of particles to sample
a new sequence, each iteration of PGBS takes memory proportional to nL.
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Algorithm 2 Particle Gibbs with Backwards Sampling MCMC

Require: x, L, and ¢; fori=1,...,n
1: x[ll] — I
2: Sample 33[12], e ,x[lL] from ¢

0 [t
3: wgl] — p—(:()ﬁ]y‘;lf)l ) for | = 1,...,L

wil w)] _
1 <;Liw[m] fori=1,...,L
for i = 2 1o n do

IEI] T

all; 1

for/ =2to L do

Sample all, with probabilities P(a!”, = k) oc W), with k € {1,...,L}
all

oo Sample al! ~ gy(ely, "))
(all

), 1% -1] 0]
. [l] p(.’ri ‘-’E,i71 )p(y7|r7 )
11: w,;

© 2N ST~

7
G‘E]—l]

[
qi(m,[il]\yj,m,Fl )
12: end for 0

o o wle %  _fori=1,...,L

% L _ wli™
14: end for
15: Sample [ with probabilities P(I = k) oc Wi*) with k € {1,...,L}

!
16: x), « 2.

17: fori=n—1to 1 do

wllp(z], |zl .
18:  Sample [ with probabilities P(I = k) ol ) with ke {1,...,L}

m m m
Sk w™pal, |l
U

7

19: T
20: end for

4 An embedded HMM sampler for high dimensions

We propose two new ways, denoted f and b, of generating pool states for the embedded
HMM sampler. Unlike previously-used pool state selection schemes, where pool states
are selected independently at each time, our new schemes select pool states sequentially,
with pool states at time ¢ selected conditional on pool states at time ¢—1, or alternatively
at time i + 1. As a result, the forward and backward formulations of an embedded
HMM sampler using these pool state selection schemes are not equivalent, and can have
different performance.

4.1 Pool state distributions

The first way to generate pool states is to use a forward pool state selection scheme, with
a sequential approximation to p(x;|y1, ..., y;) as the pool state density. In particular, at
time 1, we set the pool state distribution of our proposed embedded HMM sampler to
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k] () o p()p(ys |2)- (10)

As a result of (2), oy () is constant (independent of z). At time ¢ > 1, we set the pool
state distribution to

L
wl (2|Pis1) o plyile) Y plalel,), (11)

a=1

which makes «; () constant for ¢ > 1 as well (see (3)).

We then draw a sequence composed of these pool states with the forward probability
implementation of the embedded HMM method, with the a;(z)’s all set to 1.

The second way is to instead use a backward pool state selection scheme, with a
sequential approximation of p(x;|yit+1,...,yn) as the pool state density. We begin by
creating the pool P,,, consisting of the current state x,, and the remaining L — 1 pool
states sampled from p, (z), the marginal density at time n, which is the same as p(z) if
the latent process is stationary. The backward probabilities 3, (x), for  in P, are then
set to 1. At time i < n we set the pool state densities to

L
K@ Pist) < Y p(yiralal ol |2) (12)

a=1

so that 3;(z) is constant for all i = 1,...,n (see (4)).

We then draw a sequence composed of these pool states as in the backward proba-
bility implementation of the embedded HMM method, with the 8;(z)’s all set to 1.

If the latent process is Gaussian, and the latent state at time 1 is sampled from the
stationary distribution of the latent process, it is possible to update the latent variables
by applying the forward scheme to the reversed sequence (yy,...,y1) by making use of
time reversibility, since X, is also sampled from the stationary distribution, and the
latent process evolves backward in time according to the same transition density as it
would going forward. We then use the forward pool state selection scheme along with a
stochastic backward pass to sample a sequence (., ..., x1), starting with z; and going
to x,,.

It can sometimes be advantageous to alternate between using forward and backward
(or, alternatively, forward applied to the reversed sequence) embedded HMM updates,
since this can improve sampling of certain ;. The sequential pool state selection schemes
use only part of the observed sequence in generating the pool states. By alternating
update directions, the pool states can depend on different parts of the observed data,
potentially allowing us to better cover the region where x; has high posterior density.
For example, at time 1, the pool state density may disperse the pool states too widely,
leading to poor sampling for z;, but sampling x; using a backwards scheme can be
much better, since we are now using all of the data in the sequence when sampling pool
states at time 1.
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4.2 Sampling pool states

To sample from /i{ or /sg, we can use any Markov transitions R; that leave this distribu-

tion invariant. The validity of the method does not depend on the Markov transitions

for sampling from nzf or k! reaching equilibrium or even on them being ergodic.

Directly using these pool state densities in an MCMC routine leads to a computa-
tional cost per iteration that is proportional to nL?, like in the original embedded HMM
method, since at times ¢ > 1 we need at least L updates to produce L pool states, and
the cost of computing an acceptance probability is proportional to L.

However, it is possible to reduce the cost per iteration of the embedded HMM method
to be proportional to nL when we use nzf or k7 as the pool state densities. To do this,
we start by thinking of the pool state densities at each time ¢ > 1 as marginal densities
summing over the variable a = 1, ..., L that indexes a pool state at the previous time.
Specifically, m{ can be viewed as a marginal of the density

iz, a) o p(y;|2)p(al2l®)) (13)

while k! is a marginal of the density

i@, a) o p(yssa |l pl) o). (14)

Both of these densities are defined given a pool P;_; at time ¢ — 1 or pool P;;1 at time
1+ 1.

For the embedded HMM sampler using A; (or 7;) as the pool state density, the
sets of pool states at times ¢ > 1 are defined as consisting of values of both x and a,

hence P; = {x[ll]7 . ,x[lL]} and P; = {(xg-l], agl]), ce (xEL]7a£L])}. We then use Markov
transitions, R;, to sample a set of values of x and a, with probabilities proportional to
A; for the forward scheme, or probabilities proportional to ~; for the backward scheme.

This technique is reminiscent of the auxiliary particle filter of Pitt and Shephard (1999).

The chain is started at x set to the current z;, and the initial value of a is cho-
[a]

sen randomly with probabilities proportional to p(z;|z;”;) for the forward scheme or

p(yi+1|x£ﬂ1)p(x£ﬂ1|xi) for the backward scheme. This stochastic initialization of a is
needed to make the algorithm valid when we use \; or 7; to generate the pool states.

Sampling values of z and a from \; or 7; can be done by updating each of x and a
separately, alternately sampling values of z conditional on a, and values of a conditional
on x, or by updating x and a jointly, or by a combination of these.

Updating z given a can be done with any appropriate sampler, such as Metropolis.
To update a given x we can also use Metropolis updates, proposing o’ = a + k, with
a drawn from some proposal distribution on {—K,...,—1,1,..., K'}. Alternatively, we
can simply propose a’ uniformly at random from {1,...,L}.

Another possibility is to simultaneously update x and a at time ¢ > 1 by proposing
to update (z,a) to (2',a’) where o’ is proposed in any valid way while 2’ is chosen in a
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way such that =’ and xE’i’]l are linked in the same way as x and J:E(i]l This “shift” update
makes it easier to generate a set of pool states at time ¢ with different predecessor states
at time ¢ — 1, helping to ensure that the pool states are well-dispersed. This update is
accepted with the usual Metropolis probability.

For a concrete example of a shift update we use in our Experiments section, suppose
that the latent process is an autoregressive Gaussian process of order 1, with the model
being that X;|z;—1 ~ N(®Px;_1,%). In this case, given a’, we propose z, = xl—i—@(xga_]l —

xgajl) This update is accepted with probability

min(l IM) (15)

" p(yiles)

as a result of the transition densities in the acceptance ratio cancelling out, since

R R

i—

= z;— <I>a:£ajl. (16)

To be useful, shift updates normally need to be combined with other updates for
generating pool states. When combining shift updates with other updates, tuning of
acceptance rates for both updates needs to be done carefully in order to ensure that the
shift updates actually improve sampling performance. In particular, if the pool states at
time 7 — 1 are spread out too widely, then the shift updates may have a low acceptance
rate and not be very useful. Therefore, jointly optimizing proposals for z and for (z,a)
may lead to a relatively high acceptance rate on updates of z, in order to ensure that
the acceptance rate for the shift updates is not low.

We can also design specialized updates that are tailored to the model we are using.
As an example of such an update, we propose a “flip” update to handle multimodality
in one of the models in our Experiments section.

Like with the original embedded HMM sampler, each iteration of this new embedded
HMM sampler takes memory proportional to nL. This is because we always need to
store the entire set of pool states — since they are generated sequentially, there is no
short-cut to compute the pool states at time ¢ when performing a backward pass to
sample a new sequence.

It is possible to reduce this memory requirement at the cost of recomputing pool
states. For example, we can store pool states only at every k-th time step, and recompute
intermediate pool states starting from the nearest set of pool states as needed. Such a
choice of memory-time tradeoff would depend on the application. Similar considerations
apply to the original embedded HMM and the PGBS methods.

4.3 Relation to particle MCMC

Finke et al. (2016) build on an earlier preprint (Shestopaloff and Neal, 2016) of the
current article and study the connections between embedded HMM and particle MCMC
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Algorithm 3 Embedded HMM MCMC for High Dimensions
Require: x, L, and R;, R; fori=1,...,n

1: b NUnif{l,...,L}

2: a?[lll] — T

3: for j =1; — 1 down to 1 do

4: Use Rl(x[lj]\x[lj+1]) to sample ac[lj] from Iﬁ:{

5: end for

6: for j=1;+1to L do

7 Use Rl(x[lj]\z[lj_l]) to sample x[lj] from ]

8: end for

9: for i =2 ton do

10: l; ~Unif{1,...,L}

1. 2l e

12: Sample ayi] with probabilities P(ayi] =k) x p(mﬂx?ﬂl) with k€ {1,...,L}
13: for j =1, — 1 down to 1 do

14: Use Ri(xgj],agj]|x£]+1]7a£]+l]) to sample (:cgj],ay]) from A;(z,a)
15: end for

16: for j=1;,+1to L do

17: Use Ri(xy],agj”zy_l], agj_l}) to sample (zgj],agj]) from \;(z,a)
18: end for

19: end for
20: 1], < Unif{l,...,L}
21 @) x%,"]
22: fori=n—1to1ldo ,
23: Sample I} with probabilities P(I; = k) p(mg+1|x£li}) with k€ {1,...,L}
24: x} :Ey;]
25: end for

methods in detail. They show how the embedded HMM sampler introduced in this
section can be viewed as sampling from an extended target distribution that includes
the auxiliary variables a. This provides an alternative way of establishing the validity
of the embedded HMM sampler introduced here, which is analogous to how the validity
of particle MCMC algorithms is established.

5 Proof of correctness

We will prove the correctness of the embedded HMM sampler described in Section 4
— that is, that it leaves p(x|y) invariant. Whether the transition produces an ergodic
chain will depend on the model, the selection of R, and whether any other transitions
are also being used. Many models and transitions used in practice have non-zero density
everywhere in the state space, and then ergodicity will not be a problem, in theory at
least. In particular, as long as at each time ¢ we pick a transition R; that can sample
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any value of x; that has non-zero probability density under \;, we will be able to create
sets of pool states that contain any x that has non-zero probability density given y.

We assume that we use the forward pool state selection scheme as described in
Section 4.1 and the corresponding auxiliary variable construction as described in Section
4.2. A similar proof can be done for the backward pool state selection scheme. This
sampler targets the distribution of state sequences for a non-linear, non-Gaussian state
space model as described in Section 1.

Our proof is based on the original proof of Neal (2003), modifying it to not assume
that the sets of pool states Py, ..., P, are selected independently at each time. Another
change in the proof is to account for generating the pool states by sampling them from
A; instead of H{ for 7 > 2.

We show that the probability of starting at x and moving to x’ with given sets of
pool states P; (consisting of values of x and a at each time i), pool indices I; of z;,
and pool indices I} of 2} is the same as the probability of starting at x’ and moving to
x with the same set of pool states P;, pool indices I} of z}, and pool indices I; of z;.
This in turn implies, by summing/integrating over P; and [;, that the embedded HMM
method with the sequential pool state scheme satisfies the detailed balance condition
with respect to p(x|y), which is that

p(xly)Q(x'|x) = p(x|y)Q(x|x") (17)

with @ the transition of the embedded HMM sampler. As is well-known, this implies
that @ leaves p(x|y) invariant.

The probability of starting at x and moving to x’ decomposes into the product of
the probability of starting at x, which is p(x|y), the probability of choosing a set of pool
state indices [;, which is %, the probability, given the current sequence, of selecting the
sets of pool states P;, P(Py,...,Py|x), and finally the probability of choosing x’.

The probability of choosing given sets of pool states is

n

P(Py,.... Pulx) = P(Pi|z1) [ [ P(PilPiz1, ). (18)
=2
At time 1, we use a Markov chain with invariant density Iﬁ:{ to select pool states in Py
with the chain started at x[lll] = x1. Therefore
L 1
A . -
P(Pifa) =[] Ra@la?™) [ Ralefley™")
j=lhi+1 j=lhi—1
L 1 £l
10 T ; 1. Kki(x
= I RGP ] R (27 1)
£+
j=h+1 i=li1 ky(zy )

T o Ul T g k@)
= H Ry(zizi?) H Ry(ay ™ o) — 5t
j=l j=li—1 ki(zi )
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1
ICHCGOE l+1])_ 1]
= 7 | I Ry(ay ™ oy (19)
1(1'1) =1

At times i > 1, we first stochastically select an initial value of a; and then use a Markov
chain with invariant density \; to sample the pool states, with the chain started at

xyi] = x; and ayi] = a;. Therefore

plrile™) 1

P(Pi|Pi—1,zi) = H Ri( Z," al [J 1] [j—1])
Zm lp(x’L'xz 1 j=l;+1

1
% H Ri(l‘m a,[-J]|J:[»j+1] a[]+1])

2 [

[ai] L
plaifa)) bl
_ - 1 H RZ‘(LU,[L-J]7CL,[L-J]|$EJ 1],a£J 1])
Zm lp(xl|‘r7, 1)J =l;+1

1
x TI Ri(@Z*, a0, o) i, oy

il Ti G )\‘(x[_ﬁrl] a[JHJ)
j=l;— i\L; s g
[ai L1
= p(aila;” H Ry [J+1] [J+1]| al)
z xT;,ay;
Zrl;z 1p(x1|xz 1 i=l;

1 Ll L]
G+ Ly b))y A a)

X H Ri(xij ,ai] |z zj ) Zj )W

Pt Ai(; )

a
p(x;|z; a’]) Ai(z [ o0t ])

(et}
i 0
an:lp(x'L'xl_]l) )\Z(xlaaz)
T [G+1 i+, D]
< [T Rl ol el o). (20)
Jj=1

Finally, we choose a new sequence x’ amongst the collection of sequences consisting

of the pool states with a backward pass. This is done by ﬁrst choosing s uniformly at

random and then setting =/, = xL"]

with probability

We select the remaining x by selecting 1}, ..., 1/, 4

n /[l'/ifl]
H p($z|$i71) . (21)

i=2 22:1 p(xﬂxyf}l)

Thus, the probability of starting at x and going to x’, with given P1, ..., P, l1,..., 1,
and I7,...,1 is

{ D) RSNy

p(x|y) x
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y iﬁJZL plx;|z;

o 1p(xi|x. ] Ai(wi, a;)

[as] 1 1]y L—1
D A e TT Re(ab™, a1 0l9)

K2

j=1
12 plel 5
LS ™)

(22)
This expression can be rewritten as

_ n L—-1
at! H ) x H[A( Wl IT Rl ™, a7, o)

j=1 i=2 =1

n [as] n P L3
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X — - X Il = —— X ——. (23)
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Note that a:yi’ll] =_,. Also k! () = p(z)p(y1|z) )/ [ p(@)p(y1]z)dx and
& - p(y:|o)p(ala?)
[T =] = - (24)
i=2 =2 | X mer Pl z)p(z]z” )d
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Therefore (23) can be rewritten as
1 L—-1 n L-1 _ ' o
oy ) ( [1]) H Ry (x} J+1 [J] ) x H|: H Ri(l‘EJJrl],a£J+1]‘$£j]7a£J])
Jj=1 i=2 j=1

1 1
H (@i|ziz1) % Hp Hai_y) % 7 X H -
P s ok p(ala™) i Sk p(agfad™)

< [ p(x)p(ynx)dxg / mZ:lp@i\x)p(x\xmdx X T (26)

The last factor in the product only depends on the selected sets of pool states and on
the observations. By exchanging x and x’ we see that the probability of starting at x’
and then going to x, with given sets of pool states P;, pool indices [; of x; and pool
indices I; of ] is the same.

Finally, by integrating (26) over P; and summing over I; we conclude that our new
embedded HMM method satisfies detailed balance with respect to p(x|y).
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6 Experiments

6.1 Test models

To demonstrate the performance of our new pool state scheme, we use two different state
space models. The latent process for both models is a vector autoregressive process, with

X1~ N(0, Zinit), (27)
Xi|xi_1 ~ N((I)in_l,z), 1= 2,...777,, (28)

where X; = (X;1,...,X; p)" and

&0 .0
o = |V 7 (29)
. ¢p1 O
0 ... 0 ¢p
1 p ... p
Yy = |7 , (30)
: -1 »p
p ... p 1
1 p p
-0 V1-63/1-¢3 Vi-63y/1-¢%
P 1
SN IRVAETCIVAET I (31)
: . 1 P
1-¢%_, T—¢2_ \/1—-¢2
P P 1

V1-¢3/1-¢3 o V1-¢py/1-0%_, 1-¢%
Note that ¥; is the covariance of the stationary distribution for this process.

For model 1, the observations are given by

Yi;

x;; ~ Poisson(exp(c; +0,2:5)), i=1,...,n, j=1,...,P. (32)

For model 2, the observations are given by

Yijlzi; ~ Poisson(ojlz;;|), i=1,...,n, j=1,...,P (33)

For model 1, we use a 10-dimensional latent state and a sequence length of n = 250,
setting parameter values to p = 0.7, and ¢; = —0.4, ¢; =0.9,0; =06 for j =1,..., P,
with P = 10.

For model 2, we increase the dimensionality of the latent space to 15 and the sequence
length to 500. We set p = 0.7 and ¢; = 0.9, 0; = 0.8 for j =1,..., P, with P = 15.



812 Embedded HMMs for High-Dimensional State Space Models

40 9
35 i 8 iy
—_ ’;‘7 -
230 g =
S £6 7
= 25 J =
g £5 |
[%2] - i (%2
2 20! < 4 i
5 15 1 ©
3 g3 ]
S 1or 1 =2
] W, Jh) 1y
OI\MM\A M[\mn /\AA/\ MMA/kN\ W WA 0 il “l il
0 50 100 150 200 250 0 100 200 300 400 500
Time (i) Time (i)
(a) Model 1 (b) Model 2

Figure 1: Observations from model 1 and model 2 along dimension j = 1.

We generated one random sequence from each model to test our samplers on. These
observations from model 1 and model 2 are shown in Figure 1. Note that we are testing
only sampling of the latent variables, with the parameters set to their true values. All
samplers were implemented in MATLAB on a Linux system with a 2.60 GHz Intel
i7-3720QM CPU. The code for all experiments in this paper is available at http://
arxiv.org/abs/1602.06030.

6.2 Autoregressive updates

For sampling pool states in our embedded HMM MCMC schemes, as well as for com-
parison MCMC schemes, we will make use of Neal’s (1998) “autoregressive” Metropolis-
Hastings update, which we review here. This update is designed to draw samples from
a distribution of the form p(w)p(y|w) where p(w) is multivariate Gaussian with mean
and covariance ¥ and p(y|w) is typically a density for some observed data. These pro-
posals are known to work better than ordinary random walk proposals for distributions
of this form (Neal, 1998). They have also been further developed into the elliptical slice
sampler by Murray et al. (2010).

This autoregressive update proceeds as follows. Let M be the lower triangular
Cholesky decomposition of ¥, so ¥ = MM7T, and z be a vector of i.i.d. normals with
mean zero and variance one. Let € € [—1, 1] be a tuning parameter that determines the
scale of the proposal. Starting at w, we propose

w=p+V1—e(w—p)+eMz. (34)

Because these autoregressive proposals are reversible with respect to p(w), the proposal
density and p(w) cancel in the Metropolis-Hastings acceptance ratio. This update is
therefore accepted with probability

m (1200 (32)



http://arxiv.org/abs/1602.06030
http://arxiv.org/abs/1602.06030

A. Y. Shestopaloff and R. M. Neal 813

Note that for this update, the same value of € is used for scaling along every dimension.
It would be of independent interest to develop a version of this update where € can be
different for each dimension of w.

6.3 Single-state Metropolis sampler

A simple scheme for sampling the latent state sequence is to use Metropolis-Hastings up-
dates that sample each x; in sequence, conditional on x_; = (1,...,Zi—1,Tit1,.-.,Tn)
and the data, starting at time 1 and going to time n. We sample all dimensions of x;
at once using autoregressive updates (see Section 6.2). In both of our test models, the
posterior standard deviation of the latent variables x; ; varies depending on the value
of the observed y; ;. To address this, we alternately use a larger or a smaller proposal
scaling, €, for the autoregressive updates when performing a scan with the Metropolis
sampler, using the same ¢ for all times. For details on the Metropolis scheme, see the
Appendix provided in the online supplemental materials (Shestopaloff and Neal, 2017).

6.4 PGBS combined with Metropolis

We implement the PGBS method as described in Section 3, using the initial density p(x)
and the transition densities p(x;|x;—1) as importance densities to generate particles. We
combine PGBS updates with single-state Metropolis updates from Section 6.2. This
way, we combine the strengths of the two samplers in targeting different parts of the
posterior distribution. In particular, we expect the Metropolis updates to do better for
the x; with highly informative y;, and the PGBS updates to do better for the x; where
y; is not as informative.

6.5 Flip updates

Generating pool states locally can be helpful when applying embedded HMMs to models
with high-dimensional state spaces but it also makes sampling difficult if the posterior is
multimodal. Consider the case of model 2 when the observation probability depends on
|z;] instead of x;, so that many modes with different signs for some x; exist. We propose
to handle this problem by adding an additional specialized flip update that creates a
“mirror” set of pool states, in which —z; will be in the pool if z; is. By having a mirror
set of pool states, we are able to flip large segments of the sequence in a single update,
allowing efficient exploration of different posterior modes.

To generate a mirror set of pool states, we must correctly use the flip updates when
sampling the pool states. Since we want each pool state to have a negative counterpart,
we choose the number of pool states L to be even. The chain used to sample pool states
then alternates two types of updates, a usual update to generate a pool state and a flip
update to generate its negated version. The usual update can be a combination of any
updates, such as those we consider above. So that each state will have a flipped version,
we start with a flip transition between z!*) and 2!, a usual transition between z!? and
zB and so on up to a flip transition between z!X=1 to z[F!.
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At time 1, we start with the current state x; and randomly assign it to some index
l1 in the chain used to generate pool states. Then, starting at x; we generate pool states
by reversing the Markov chain transitions back to 1 and going forward up to L. Each
flip update is then a Metropolis update proposing to generate a pool state —x; given
that the chain is at some pool state x;. Note that if the observation probability depends
on x; only through |z1| and p(z) is symmetric around zero then this update is always
accepted.

At time ¢ > 1, a flip update proposes to update a pool state (z,a) to (—x,a’) such
that xgci’]l = —wgaj 1- Here, since the pool states at each time are generated by alternating
flip and usual updates, starting with a flip update to :cgl], the proposal to move from a
to a’ can be viewed as follows. Suppose that instead of labelling our pool states from
1 to L we instead label them 0 to L — 1. The pool states at times 0 and 1, then 2 and
3, and so on will then be flipped pairs, and the proposal to change a to a’ can be seen
as proposing to flip the lower order bit in a binary representation of a’. For example, a
proposal to move from a = 3 to a = 2 can be seen as proposing to change a from 11 to
10 (in binary). Such a proposal will always be accepted assuming a transition density
for which p(z;|z;—1) = p(—x;|-z;—1) and an observation probability which depends on
x; only via |z;].

6.6 Setup for baseline sampling

For model 1, we implemented the simple single-state Metropolis sampler, the PGBS
sampler, and the combination of PGBS with Metropolis. For model 2, we implemented
the simple single-state Metropolis sampler and the PGBS with Metropolis sampler. For
both models and all samplers, we ran the sampler five times using five different random
number generator seeds.

Model 1

For the single-state Metropolis sampler, we initialized all x;; to 0. Every iteration
alternately used a scaling factor, €, of either 0.2 or 0.8, which resulted in an average
acceptance rate of between 30% and 90% for the different x; over the sampler run. We
ran the sampler for 1,000,000 iterations, and prior to analysis, the resulting sample
was thinned by a factor of 10, to 100,000. The thinning was done due to the difficulty
of working with all samples at once, and after thinning the samples still possessed
autocorrelation times significantly greater than 1. Each of the 100,000 samples took
about 0.17 seconds to draw.

For the PGBS sampler and the sampler combining PGBS and Metropolis updates,
we also initialized all z; ; to 0. We used 250 particles for the PGBS updates. For the
Metropolis updates, we alternated between scaling factors of 0.2 and 0.8, which also
gave acceptance rates between 30% and 90%. For the standalone PGBS sampler, we
performed a total of 70,000 iterations. Each iteration produced two samples for a total
of 140,000 samples and consisted of a PGBS update using the forward sequence and
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a PGBS update using the reversed sequence. Each sample took about 0.12 seconds to
draw.

For the PGBS with Metropolis sampler, we performed a total of 30,000 iterations
of the sampler. Each iteration was used to produce four samples, for a total of 120,000
samples, and consisted of a PGBS update using the forward sequence, ten Metropolis
updates (of which only the value after the tenth update was retained), a PGBS update
using the reversed sequence, and another ten Metropolis updates, again only keeping
the value after the tenth update. The average time to draw each of the 120, 000 samples
was about 0.14 seconds.

Model 2

For model 2, we were unable to make the single-state Metropolis sampler converge to
anything resembling the actual posterior in a reasonable amount of time. In particular,
we found that for z; ; sufficiently far from 0, the Metropolis sampler tended to be stuck
in a single mode, never visiting values with the opposite sign.

For the PGBS with Metropolis sampler, we set the initial values of z; ; to 1. We set
the number of particles for PGBS to 80, 000, which was nearly the maximum possible for
the memory capacity of the computer we used. For the Metropolis sampler, we alternated
between scaling factors of 0.3 and 1, which resulted in acceptance rates ranging between
29% and 72%. We performed a total of 250 iterations of the sampler. As for model 1,
each iteration produced four samples, for a total of 1,000 samples, and consisted of a
PGBS update with the forward sequence, 50 Metropolis updates (of which we only keep
the value after the last one), a PGBS update using the reversed sequence, and another
50 Metropolis updates (again only keeping the last value). It took about 26 seconds to
draw each sample.

6.7 Setup for embedded HMM sampling

For both model 1 and model 2, we implemented the proposed embedded HMM method
using the forward pool state selection scheme, alternating between updates that use the
original and the reversed sequence. Like the baseline samplers, we ran the embedded
HMM samplers five times for both models, using five different random number generator
seeds.

. . . Fi
We generate pool states at time 1 using autoregressive updates to sample from 7.

At times ¢ > 2, we sample each pool state from \;(x, a) by combining an autoregressive
and shift update. The autoregressive update proposes to only change x, keeping the
current a fixed. The shift update samples both x and a, with a new a proposed from
a Uniform{1, ..., L} distribution. For model 2, we also add a flip update to generate a
negated version of each pool state.

Since the shift and flip updates are also Metropolis updates, using them together with
Metropolis or autoregressive updates, for each of x and a separately, allows embedded
HMM updates to be performed in time proportional to nL.
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Note that the chain used to produce the pool states now uses a sequence of updates.
Therefore, if our forward transition first does an autoregressive update and then a shift
update, the reverse transitions must first do a shift update and then an autoregressive
update.

In the process of tuning the embedded HMM sampler, we found that is beneficial to
choose at random the proposal scaling, €, for each single-state Metropolis update within
the Markov chain used to generate pool states at time 7. This allows generation of sets
of pool states which are more concentrated when y; is informative and more dispersed
when y; holds little information. In our example data sets, there is substantial difference
in how informative the different y; are, and as a result this technique helps improve
performance over using a fixed proposal scaling.

Model 1

For model 1, we initialized all z;; to 0. We used 50 pool states for the embedded
HMM updates. For each Metropolis update to sample a pool state, we used a different
scaling €, chosen at random from a Uniform(0.1,0.4) distribution. The acceptance rates
ranged between 55% and 95% for the Metropolis updates and between 20% and 70%
for the shift updates. We performed a total of 9,000 iterations of the sampler, with
each iteration consisting of an embedded HMM update using the forward sequence and
an embedded HMM update using the reversed sequence, for a total of 18,000 samples.
Each sample took about 0.81 seconds to draw.

Model 2

For model 2, we initialized the x;; to 1. We used a total of 80 pool states for the
embedded HMM sampler (i.e. 40 positive-negative pairs due to flip updates). Each
Metropolis update used to sample a pool state used a scaling, €, randomly drawn from
the Uniform(0.05,0.2) distribution. The acceptance rates ranged between 75% and 90%
for the Metropolis updates and between 20% and 40% for the shift updates. We per-
formed a total of 9,000 iterations of the sampler, producing two samples per iteration
with an embedded HMM update using the forward sequence and an embedded HMM
update using the reversed sequence. Each of the 18,000 samples took about 1.4 seconds
to draw.

6.8 Comparisons

As a way of comparing the performance of the two methods, we use an estimate of
autocorrelation time! for each of the latent variables z; ;. Autocorrelation time is a
measure of how many draws need to be made using the sampling chain to produce

I Technically, when we alternate updates with the forward and reversed sequence or mix PGBS and
single-state Metropolis updates, we cannot use autocorrelation times to measure how well the chain
explores the space. While the sampling scheme leaves the correct target distribution invariant, the
flipping of the sequence makes the sampling chain for a given variable non-homogeneous. However,
suppose that instead of deterministically flipping the sequence at every step, we add an auxiliary
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the equivalent of one independent sample. The autocorrelation time is defined as 7 =
14237, pi, where py is the autocorrelation at lag k. It is commonly estimated as

K

i=1
where pj are estimates of lag-k autocorrelations and the cutoff point K is chosen so
that py is negligibly different from 0 for k > K. Here

ﬁk = ﬁa
Y0

where 4j, is an estimate of the lag-k autocovariance

(37)

1 n—k

= Y (a = @) (@ps — 7). (38)

=1

When estimating autocorrelation time, we remove the first 10% of the sample as burn-in.
Then, to estimate 9, we first estimate autocovariances for each of the five runs, taking
T to be the overall mean over the five runs. We then average these five autocovariance
estimates to produce 4. To speed up autocovariance computations, we use the Fast
Fourier Transform. The autocorrelation estimates are then adjusted for computation
time, by multiplying the estimated autocorrelation time by the time it takes to draw a
sample, to ensure that the samplers are compared fairly.

The computation time-adjusted autocorrelation estimates for model 1, for all the
latent variables, plotted over time, are presented in Figure 2. We found that the com-
bination of single-state Metropolis and PGBS works best for the unimodal model. The
other samplers work reasonably well too. We note that the spike in autocorrelation time
for the PGBS and to a lesser extent for the PGBS with Metropolis sampler occurs at the
point where the data is very informative. This in turn makes PGBS sampling inefficient,
due to the use of a diffuse transition distribution. As a result, much of the sampling in
that region is due to the Metropolis updates. Here, we also note that the computation
time adjustment is sensitive to the particularities of the implementation, in this case
done in MATLAB, where performance is strongly influenced by how well vectorization
can be exploited. Implementing the samplers in a different language might change the
relative comparisons.

We now look at how the samplers perform on the more challenging model 2. We
first did a preliminary check of whether the samplers do indeed explore the different
modes of the distribution by looking at variables far apart in the sequence, where we
expect to see four modes (with all possible combinations of signs). This is indeed the
case for both the PGBS with Metropolis and Embedded HMM samplers. Next, we look
at how efficiently the latent variables are sampled. Of particular interest are the latent

indicator variable that determines (given the current state) whether the forward or the reversed sequence
is used, and that the probability of flipping this indicator variable is nearly one. With this auxiliary
variable the sampling chain becomes homogeneous, with its behaviour nearly identical to that of our
proposed scheme. Using autocorrelation time estimates to evaluate the performance of our sampler is
therefore valid, for all practical purposes.
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Figure 2: Estimated autocorrelation times for each latent variable for model 1, adjusted
for computation time. The colour of the lines corresponds to different components of
the latent state and the z-axis corresponds to different times.

variables with well-separated modes, since sampling performance for such variables is
illustrative of how well the samplers explore the different posterior modes. Consider the
variable 1 300, which has true value —1.99. Figure 3 shows how the different samplers
explore the two modes for this variable, with equal computation times used to produced
the samples for the trace plots. We can see that the embedded HMM sampler with flip
updates performs significantly better for sampling a variable with well-separated modes.
Experiments showed that the performance of the embedded HMM sampler on model 2
without flip updates is much worse. We can also look at the product of the two variables
23,208%4,208, With true value —4.45. The trace plot is given in Figure 4. In this case, we
can see that the PGBS with Metropolis sampler performs better. Since the flip updates
change the signs of all dimensions of z; at once, we do not expect them to be as useful for
improving sampling of this function of state. The vastly greater number of particles used
by PGBS, 80,000, versus 80 for the embedded HMM method, works to the advantage
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Figure 3: Comparison of samplers for model 2. Trace plots of x1 300 drawn using the
embedded HMM and Particle Gibbs with Metropolis samplers.
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Figure 4: Comparison of samplers for model 2. Trace plots of x3 2084 208 drawn using
the embedded HMM and Particle Gibbs with Metropolis samplers.

of PGBS, and explains the performance difference. Looking at these results, we might
expect that we can get a good sampler for both 1 300 and 320874208 by alternating
embedded HMM and PGBS with Metropolis updates. This is indeed the case, which
can be seen in Figure 5. For producing these plots, we used an embedded HMM sampler
with the same settings as in the experiment for model 2 and a PGBS with Metropolis
sampler with 10,000 particles and Metropolis updates using the same settings as in the
experiment for Model 2.

This example of model 2 demonstrates another advantage of the embedded HMM
viewpoint, which is that it allows us to design updates for sampling pool states to handle
certain properties of the density. This is arguably easier than designing importance
densities in high dimensions.
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Figure 5: Comparison of samplers for model 2. Combining the embedded HMM and
PGBS with Metropolis samplers.

7 Conclusion

We have demonstrated that it is possible to use embedded HMM’s to efficiently sam-
ple state sequences in models with higher dimensional state spaces. The novel methods
introduced in this work are most useful for high-dimensional models with strong tem-
poral dependencies in the state sequence and where the data can be very informative.
For simpler models with low-dimensional state spaces or where the data is less infor-
mative, methods which select pool states independently may work better. We have also
shown how embedded HMMs can improve sampling efficiency in an example model with
a multimodal posterior, by introducing a new pool state selection scheme. There are
several directions in which this research can be further developed.

The most obvious extension is to treat the model parameters as unknown and add
a step to sample parameters given a value of the latent state sequence as in Andrieu
et al. (2010). In the unknown parameter context, it would also be interesting to see
how the proposed sequential pool state selection schemes can be used together with
ensemble MCMC updates of Shestopaloff and Neal (2013). For example, one approach
is to have the pool state distribution depend on the average of the current and proposed
parameter values in an ensemble Metropolis update, as in Shestopaloff and Neal (2014).

One might also wonder whether it is possible to use the latent state at all times in
constructing the pool state density at a given time. It is not obvious how to do this. For
example, for the forward scheme, using the current value of the state sequence at some
time k > i to construct pool states at time ¢ means that the pool states at time k will
end up depending on the current value of x;, which would lead to an invalid sampler.

A similar point is that at each time i < n, the pool state generation procedure does
not depend on the observed data after time ¢, which may cause some difficulties in
scaling this method further. On one hand, this allows for greater dispersion in the pool
states than if we were to impose a constraint from the other direction as with the single-
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state Metropolis method, potentially allowing us to make larger moves. On the other
hand, not having this constraint as in the current algorithm also means that the pool
states can become too dispersed. In higher dimensions, one way in which this can be
controlled is by using a Markov chain that samples pool states close to the current z; —
that is, a Markov chain that is deliberately slowed down in order not to overdisperse
the pool states, which could lead to a collection of sequences with low posterior density.

Supplementary Material

Supplementary Material for “Sampling latent states for high-dimensional non-linear
state space models with the embedded HMM method” (DOI: 10.1214/17-BA1077SUPP;
.pdf).

Computing code for “Sampling latent states for high-dimensional non-linear state space
models with the embedded HMM method” (DOI: 10.1214/17-BA1077SUPPB; .zip).
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