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Merging MCMC Subposteriors through
Gaussian-Process Approximations

Christopher Nemeth∗ and Chris Sherlock†

Abstract. Markov chain Monte Carlo (MCMC) algorithms have become pow-
erful tools for Bayesian inference. However, they do not scale well to large-data
problems. Divide-and-conquer strategies, which split the data into batches and,
for each batch, run independent MCMC algorithms targeting the corresponding
subposterior, can spread the computational burden across a number of separate
computer cores. The challenge with such strategies is in recombining the subpos-
teriors to approximate the full posterior. By creating a Gaussian-process approx-
imation for each log-subposterior density we create a tractable approximation for
the full posterior. This approximation is exploited through three methodologies:
firstly a Hamiltonian Monte Carlo algorithm targeting the expectation of the pos-
terior density provides a sample from an approximation to the posterior; secondly,
evaluating the true posterior at the sampled points leads to an importance sampler
that, asymptotically, targets the true posterior expectations; finally, an alternative
importance sampler uses the full Gaussian-process distribution of the approxima-
tion to the log-posterior density to re-weight any initial sample and provide both
an estimate of the posterior expectation and a measure of the uncertainty in it.

Keywords: big data, Markov chain Monte Carlo, Gaussian processes, distributed
importance sampling.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are popular tools for sampling from
Bayesian posterior distributions in order to estimate posterior expectations. They ben-
efit from theoretical guarantees of asymptotic convergence of the estimators as the
number of MCMC samples grows. However, whilst asymptotically exact, they can be
computationally expensive when applied to datasets with a large number of observations
n. Indeed, the cost of generating one sample from the MCMC algorithm is at best O(n)
as the posterior distribution of the model parameters, conditional on the entire data
set, must be evaluated at each MCMC iteration. For very large n, therefore, MCMC
algorithms can become computationally impractical.

Research in the area of MCMC for big data can be broadly split into two streams:
those which utilise one core of the central processing unit (CPU) and those that dis-
tribute the work load across multiple cores, or machines. For the single processor case,
the computational cost of running MCMC on the full data set may be reduced by using
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a random subsample of the data at each iteration (Quiroz et al., 2014; Maclaurin and
Adams, 2014; Bardenet et al., 2014); however, the mixing of the MCMC chain can suffer
as a result. Alternatively, the Metropolis-Hastings acceptance step can be avoided com-
pletely by using a stochastic gradient algorithm (Welling and Teh, 2011; Chen et al.,
2014), where subsamples of the data are used to calculate unbiased estimates of the gra-
dient of the log-posterior. Consistent estimates of posterior expectations are obtained
as the gradient step-sizes decrease to zero (Whye Teh et al., 2016). While popular,
subsampling methods do have the drawback that the data must be independent and
the whole data set must be readily available at all times, and therefore data cannot be
stored across multiple machines.

Modern computer architectures readily utilise multiple cores of the CPU for compu-
tation, but MCMC algorithms are inherently serial in implementation. Parallel MCMC,
where multiple MCMC chains, each targeting the full posterior, are run on separate
cores, or machines, can be easily executed (Wilkinson, 2005), however, this does not ad-
dress the big-data problem as each machine still needs to store and evaluate the whole
data set. In order to generate a significant computational speed-up, the data set must
be partitioned into disjoint batches, where independent MCMC algorithms are executed
on separate batches on independent processors (Huang and Gelman, 2005). Using only
a subset of the entire data means that the MCMC algorithm is targeting a different
posterior distribution conditional on only a subset of the data, herein referred to as
a subposterior. This type of parallelisation is highly efficient as there is no communi-
cation between the parallel MCMC chains. The main challenge is to then reintegrate
the samples from the separate MCMC chains to approximate the full posterior distri-
bution. Scott et al. (2016) create a Gaussian approximation for the full posterior by
taking weighted averages of the means and variances of the MCMC samples from each
batch; this procedure is exact when each subposterior is Gaussian, and can work well
approximately in non-Gaussian scenarios. Neiswanger et al. (2014) avoid the Gaussian
assumption by approximating the subposteriors using kernel density estimation, how-
ever, kernel density approximations scale poorly in high dimensions (Liu et al., 2007).
Also, the upper bounds on the mean squared error given in Neiswanger et al. (2014)
grow exponentially with the number of batches, which is problematic in big data sce-
narios where the computational benefit of parallelisation is proportional to the number
of available processors.

Previous approaches used to merge the product of subposterior densities have solely
relied on the parameter samples outputted from each MCMC algorithm, but have ne-
glected to utilise the subposterior densities which are calculated when evaluating the
Metropolis-Hastings ratio. We place Gaussian-process (GP) priors on the log-density of
each subposterior. The resulting approximation to the log of the full posterior density
is a sum of Gaussian-processes, which is itself a Gaussian-process, assuming that each
individual GP has finite variance. Using this formulation we can obtain point estimates
of any expectation of interest. The uncertainty in these point estimates is captured by
the covariance of the GP approximation to the posterior.

Starting from this Gaussian-process approximation to the full log-posterior density,
we investigate three approaches to approximating the posterior. Firstly, an efficient
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Hamiltonian Monte Carlo (HMC) algorithm (Neal, 2010) which targets the expectation
of the posterior density (the exponential of the combined GP); samples from this provide
our first means of estimating expectations of interest. Secondly, the HMC sample values
may be sent to each of the cores, with each core returning the true log-subposterior at
each of the sample points. Combining these coincident log-subposterior values provides
the true posterior at the sampled points, which in turn provides importance weights
for the HMC sample, leading to asymptotically consistent estimates of posterior ex-
pectations. Alternatively, one may wish to avoid the computational expense of running
HMC on the expectation of the exponential of the GP, and of calculating the true sub-
posteriors at a sample of points. We, therefore, also consider an importance proposal
based upon any approximation to the true posterior and obtain repeated samples of
importance weights by repeatedly sampling realisations of the GP approximation to
the log-posterior. This provides both an estimate of any expectation of interest and a
measure of its uncertainty.

This paper is structured as follows. Section 2 reviews the divide-and-conquer MCMC
approach for sampling from the posterior, the HMC algorithm and importance sam-
pling. Section 3 then outlines the creation of our Gaussian-process approximation for
each of the individual subposteriors, and for combining these. In Section 4 we detail
three methods for approximating posterior expectations, each utilising the combined
Gaussian-process approximation. Section 5 provides a numerical comparison of our pro-
posed method against four alternative algorithms. We consider five different statistical
models leading to a range of posterior distributions. We compare our proposed method
against competing algorithms from the literature, and show how our method is partic-
ularly successful at approximating non-Gaussian posteriors.

2 Bayesian inference and MCMC

Consider a data set Y = {y1, y2, . . . , yn} where we assume that the data are conditionally
independent with a likelihood

∏n
i=1 p(yi|ϑ), where ϑ ∈ Θ ⊆ R

d are model parameters.
Assuming a prior p(ϑ) for the parameters, the posterior distribution for ϑ given Y is

π(ϑ) = p(ϑ|Y) ∝ p(ϑ)

n∏
i=1

p(yi|ϑ). (1)

Alternatively, the data set Y can be partitioned into C batches {Y1,Y2, . . . ,YC}
where we define a subposterior operating on a subset of the data Yc as

πc(ϑ) = p(ϑ|Yc) ∝ p(Yc|ϑ)p(ϑ)1/C , (2)

where p(ϑ) is chosen so that p(ϑ)1/C is proper. The full posterior is given as the product

of the subposteriors π(ϑ) ∝
∏C

c=1 πc(ϑ). In this setting we no longer require conditional
independence of the data, but rather independence between the batches {Yc}Cc=1, where
now the data in each batch can exhibit an arbitrary dependence structure.

Creating an approximation to the posterior, π(ϑ), commences with sampling from
each of the subposteriors πc(ϑ) independently in parallel, where, given the independence



510 Merging MCMC Subposteriors

between data subsets, there is no communication exchange between the MCMC algo-
rithms operating on the subposteriors. This type of parallelisation is often referred to as
embarrassingly parallel (Neiswanger et al., 2014). The challenge then lies in combining
the subposteriors, for which we propose using Gaussian-process approximations.

In this paper, we introduce the Hamiltonian Monte Carlo (HMC) algorithm as
one possible MCMC algorithm that can be used to sample from πc(ϑ). Moreover, we
use HMC in Section 4 to sample from an approximation to the full posterior, π(ϑ).
Other MCMC algorithms, including the random walk Metropolis (Roberts et al., 1997),
Metropolis adjusted Langevin algorithm (Roberts and Rosenthal, 1998) and adaptive
versions of these (e.g. Andrieu and Thoms, 2008) can also be used.

2.1 Hamiltonian Monte Carlo

We now provide a brief overview of Hamiltonian Monte Carlo and its application in this
paper; the interested reader is referred to Neal (2010) for a full and detailed review.
The HMC algorithm considers the sampling problem as the exploration of a physical
system with − log π(ϑ) corresponding to the potential energy at the position ϑ. We then
introduce artificial momentum variables ϕ ∈ R

D, with ϕ ∼ N (0,M) being independent
of ϑ. Here M is a mass matrix that can be set to the identity matrix when there is
no information about the target distribution. This scheme now augments our target
distribution so that we are now sampling (ϑ, ϕ) from their joint distribution

π(ϑ, ϕ) ∝ exp

(
log π(ϑ)− 1

2
ϕ�M−1ϕ

)
, (3)

the logarithm of which equates to minus the total energy of the system. Samples from
the marginal distribution of interest, π(ϑ), are obtained by discarding the ϕ samples.

We can sample from the target distribution by simulating ϑ and ϕ through fictitious
time τ using Hamilton’s equations (see Neal (2010) for details)

dϑ = M−1ϕdτ, dϕ = ∇ϑ log π(ϑ)dτ. (4)

The differential equations in (4) are intractable and must be solved numerically.
Several numerical integrators are available which preserve the volume and reversibility
of the Hamiltonian system (Girolami and Calderhead, 2011), the most popular being
the leapfrog, or Stormer-Verlet integrator. The leapfrog integrator takes L steps, each
of size ε, on the Hamiltonian dynamics (4), with one step given as follows:

ϕτ+ ε
2

= ϕτ +
ε

2
∇ϑτ log π(ϑτ ),

ϑτ+ε = ϑτ + εM−1ϕτ+ ε
2
,

ϕτ+ε = ϕτ+ ε
2
+

ε

2
∇ϑτ+ε log π(ϑτ+ε).

Using a discretisation introduces a small loss or gain in the total energy, which is cor-
rected through a Metropolis-Hastings accept/reject step. The full HMC algorithm is
given in the Supplementary Material (Nemeth and Sherlock, 2017).
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The HMC algorithm has a step-size parameter ε and number of leap frog steps L
which need to be tuned. The performance of the algorithm is highly dependent on the
tuning of the parameters. One way to tune the algorithm is to optimise the parameters
such that the acceptance rate is approximately 65% (Beskos et al., 2013). Alternatively,
the parameters could be adaptively tuned (Wang et al., 2013); for this paper, we use
the popular NUTS sampler Hoffman and Gelman (2014), which tunes the trajectory
length L to avoid the sampler doubling back on itself. The HMC algorithm can be effi-
ciently implemented using the popular STAN (Carpenter et al., 2016) software package.
The STAN modelling language automatically tunes the HMC algorithm, and by using
efficient automatic differentiation, the user need only express their posterior model.

2.2 Importance sampling

A popular alternative to MCMC for estimating posterior expectations is the impor-
tance sampler (Robert and Casella, 1999). Given a proposal density, q(θ), and an un-
normalised posterior density, π(θ), importance sampling (e.g. Geweke, 1989) aims to
estimate expectations of some measurable function of interest, h(θ) by sampling from
q. The starting point is

Eπ/Z [h(θ)] =
1

Z

∫
h(θ)

π(θ)

q(θ)
q(θ)dθ =

1

Z
Eq[h(θ)w(θ)], (5)

where w(θ) := π(θ)/q(θ) and Z :=
∫
π(θ)dθ is the normalisation constant.

Consider a sequence, {θi}∞i=1 with marginal density q. Provided that a strong law
of large numbers (SLLN) applies, setting h(θ) = 1 in the above equation implies that

ẐN := 1
N

∑N
i=1 w(θi) → Z, almost surely, and hence, almost surely,

ÊN (h) :=
1

N

N∑
i=1

wN (θi)h(θi) → Eπ/Z [h(θ)], (6)

where wN (θ) := w(θ)/ẐN . In Section 4 we will use importance sampling to estimate
expectations with respect to the combined posterior distribution.

3 A Gaussian-process approximation to the posterior

3.1 Gaussian-process approximations to the subposteriors

Parallelising the MCMC procedure over C computing nodes results in C subposteriors
{πc(ϑ)}Cc=1. The MCMC algorithm for each subposterior, c, has been iterated J times to
give Dc = {ϑj , �c(ϑj)}Jj=1, where �c(ϑj) = log πc(ϑj) and each pair consists of a sample
from the Markov chain with its associated log-subposterior density, up to some fixed
additive constant. We wish to convert this limited information on a finite set of points
to information about log πc over the whole support of ϑ. We start, a priori, by treating
the whole log-subposterior (up to the same additive constant), Lc(ϑ), as random with
a Gaussian-process prior distribution:

Lc(ϑ) ∼ GP(m(ϑ),K(ϑ, ϑ′)),
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where m : ϑ → R and K : ϑ × ϑ → R are, respectively, the mean and covariance
functions. We model log πc(ϑ) rather than πc(ϑ), so that our approximation to the
overall log-posterior will be a sum of Gaussian-process (Section 3.3); modelling the
log-posterior also avoids the need for non-negativity constraints when fitting the GP1.

The mean function and covariance function are chosen by the user. A mean function
of zero, m(ϑ) = 0, would be inappropriate in this setting as our prior must be the
logarithm of a probability density function up to a finite additive constant. We ensure
that

∫
exp{Lc(ϑ)}dϑ < ∞ almost surely through a quadratic mean function of the form

m(ϑ) = β0 + ϑ�
1 β1 + diag(ϑ�V −1ϑ)β2, β2 < 0.

Here V is the empirical covariance the posterior for ϑ obtained from the MCMC sample
and βi, (i = 0, 1, 2) are unknown constants. See Section 3.2 for a discussion on the
choice of mean function.

The covariance function K(·, ·), determines the smoothness of the log-subposterior,
which we shall assume is continuous with respect to ϑ. A popular choice is the squared-
exponential function (e.g. Rasmussen and Williams, 2006)

K(ϑ, ϑ′) = ω2 exp

(
−1

2
(ϑ− ϑ′)TΛ−1(ϑ− ϑ′)

)
, (7)

where Λ is a diagonal matrix and ω are hyperparameters. In this paper we analytically
marginalise β0 and β1 (O’Hagan, 1978) and estimate β2 and the kernel hyperparameters
through maximum likelihood (details given in Chapter 5 of Rasmussen and Williams
(2006)). Alternative functions can be applied and may be more appropriate depending
on the characteristics of the log-subposterior density.

Given the choice of prior, Dc are observations of this Gaussian-process generated
from an MCMC algorithm targeting the subposterior πc(ϑ), giving up to a constant of
proportionality the posterior distribution,

p(�c(ϑ)|Dc) ∝ p(Dc|�c(ϑ))p(�c(ϑ)). (8)

Define Lc(ϑ1:J) := {Lc(ϑ1), . . . ,Lc(ϑJ )} and, for some parameter, or parameter vec-
tor, θ := θ1:N := (θ1, . . . , θN ), define Lc(θ1:N ) := {Lc(θ1), . . . ,Lc(θN )}. We require
the posterior distribution of Lc(θ1:N )|Dc, that is the conditional distribution Lc(θ1:N )|
{Lc(ϑ1:J) = �c(ϑ1:J)}. Since the joint distribution between Lc(ϑ1:J) and Lc(θ1:N ) is mul-
tivariate Gaussian, the conditional, Lc(θ1:N )|{Lc(ϑ1:J ) = �c(ϑ1:J}) is also multivariate
Gaussian,

Lc(θ1:N )|Dc ∼ N (μc(θ1:N ),Σc(θ1:N )) (9)

with,

μc(θ1:N ) = mc(θ1:N ) +K�
∗ K̃−1(Lc(ϑ1:J)−mc(ϑ1:J))

Σc(θ1:N ) = K∗,∗ −K�
∗ K̃−1K∗, (10)

and where K̃ = K(ϑ1:J , ϑ1:J ), K∗,∗ = K(θ1:N , θ1:N ) and K∗ = K(ϑ1:J , θ1:N ).

The posterior distribution for the GP, Lc(θ1:N )|Dc, up to a constant of proportion-
ality, is a stochastic approximation of the log-subposterior surface.

1GaussianProcesses.jl (Fairbrother et al., 2017), is used for simulations.
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3.2 Illustration

The Gaussian-process subposterior provides an estimate of the uncertainty in the log-
subposterior at points, θ, where the log-subposterior has not been evaluated. This con-
trasts with current approaches (e.g. Scott et al., 2016; Neiswanger et al., 2014; Wang and
Dunson, 2013) to approximate the subposterior which give no measure of uncertainty.
This is illustrated below and used in Sections 4.3 and 5.4 to gauge the uncertainty in
our estimates of posterior expectations.

When approximating a log-density, we assume that the mean function mc(θ) of the
Gaussian process approximation to each log-subposterior, Lc(θ), has a quadratic form.
This assumption ensures that Lc(θ) → −∞ as θ → ±∞. Alternatively, the quadratic
form of the log-subposterior could be modelled via the kernel by using a zero mean
function and taking K(θ, θ′) to be the product of two linear kernels (Duvenaud, 2014).
We test the quality of the proposed GP prior specification on three models shown in
Figure 1. Using our GP prior specification (7) we model the posterior of the Gaussian
process approximation (10) on three models: standard Gaussian, skew Gaussian and
mixture of Gaussians. Figure 1 gives the density of each model (left panel) along with
a samples from the GP prior (centre panel), where the hyperparameters of the GP
prior are estimated based on the observations, and the posterior (right panel) is fit to
observations of the log-density of the respective model. The right panels of Figure 1
show that the GP provides a good approximation to the log-density of the respective
models where the model has been evaluated. Outside of the range of evaluation points
(i.e. as θ → ±∞) where there are no observations of the log-density, the GP reverts
back to a quadratic form. We see that for these three models, the GP provides a good
representation of the mass of the density, but can under-represent the tails of the dis-
tribution. Using our GP to model to approximate log-subposteriors can provide a good
fit if the points at which we fit the GP are an appropriate representation of the true
distribution. This will be the case if we fit the GP to MCMC samples {ϑj}Jj=1 drawn
from the stationary distribution.

3.3 Merging the subposteriors

Our next goal is to approximate the full posterior π(θ) ∝
∏C

c=1 πc(θ) by merging the
subposteriors together. The approximation of each of the C subposteriors as independent
Gaussian-processes, Lc(θ) ∼ GP(·, ·) (c = 1, . . . , C) leads directly to the approximation
of the full log-posterior (up to an additive constant) as the sum of C Gaussian-processes,

L(θ)|D ∝
C∑

c=1

[Lc(θ)|Dc] = GP
(

C∑
c=1

μc(θ),

C∑
c=1

Σc(θ)

)
. (11)

Our assumption that the Gaussian-processes representing the log-subposteriors
{Lc}Cc=1 are independent a priori follows by assuming that the subposteriors are in-
dependent (2). This may not be true in practice where deviations from the quadratic
prior mean, mc(ϑ), may be present across subposteriors. However, a posteriori these
deviations should be accounted for through the posterior mean μc(ϑ). Variability in the
original partitioning of the data into batches, and variability in the sample points, ϑ1:J ,
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Figure 1: Left: Target density. Centre: Five random samples from the GP prior with
varying hyperparameters. Right: Posterior samples from the GP conditional on samples
and log-density estimates of the target.

across batches will both contribute to the more subtle variations of the GPs about their
individual posterior means, so that the posterior correlation should be much smaller
than the prior correlation.

4 Approximating the full posterior

We now detail three methods for approximating posterior expectations, all of which
utilise our Gaussian-process approximation to the full posterior density.

4.1 The expected posterior density

Here we approximate the full posterior density (up to an unknown normalising constant)
by its expectation under the Gaussian-process approximation:

π̂E(θ) ∝ E[exp (L(θ)|D)] = exp

{
C∑

c=1

μc(θ) +
1

2
Σc(θ)

}
, (12)
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using the properties of the log-Normal distribution. If the individual GPs provide a
good approximation to the individual log-subposteriors, then E [L(θ)] will be a good
approximation to the full log-posterior.

The HMC algorithm then provides an efficient mechanism for obtaining an approx-
imate sample, {θi}Ni=1 from π̂E . Evaluating the GP approximation at each iteration
of this MCMC algorithm is significantly faster than evaluating the true full posterior,
π(θ), directly. As is apparent from the leapfrog dynamics, HMC requires the gradient
of log πE , and here the tractability of our approximation is invaluable, since

∇ log π̂E =

C∑
c=1

∂

∂θ
μc(θ) +

1

2

∂

∂θ
Σc(θ)

=

C∑
c=1

∂

∂θ
m(θ) +

∂K�
∗

∂θ
K̃−1(�c(ϑ1:J)−m(ϑ1:J )) +

1

2

∂

∂θ
K∗,∗ −

∂

∂θ
K�

∗ K̃−1.

Given a sufficiently large sample from π̂E , approximations of posterior expectations
can be highly accurate if the individual GPs provide a good approximation to the log-
subposteriors. Moreover, the approximation π̂E(θ) to the full posterior can be further
improved by using importance sampling on the true posterior.

4.2 Distributed importance sampling

Unlike the proposal, q, in Section 2.2, samples generated from the HMC algorithm
represent an approximate, correlated sample from an approximation to the true pos-
terior, instead of exact, independent samples from an approximation. Nonetheless, we
may still correct for inaccuracies in π̂E using importance sampling while spreading the
computational burden across all C cores.

The full sample from the HMC algorithm targeting π̂E , {θi}Ni=1, is sent to each of
the C cores. Each of the C cores then evaluates the true subposterior at each θi. A
single core then combines the subposterior densities for each θi to provide the full true
posterior density: π(θi) =

∏C
c=1 πc(θi). To be clear, each sub-posterior is evaluated at

the same set of θ values, allowing them to be combined exactly. In contrast, the original
HMC runs, performed on each individual subposterior, created a different set of θ values
for each subposterior so that a straightforward combination was not possible.

Each value from the sample, θi, is then associated with an unnormalised weight,
w(θi) = π(θi)/π̂E(θi). Defining ẐN and wN (θ) as in Section 2.2 provides an approxima-
tion ÊN (h) to Eπ [h(θ)] as defined in (6).

Since the unknown normalising constants for both π and π̂E appear in both the
numerator and the denominator of this expression, they are not needed. Almost sure
convergence of ÊN (h) to Eπ [h(θ)] as the HMC sample size, N → ∞ relies on the strong
law of large numbers (SLLN) for Markov chains (e.g. Tierney, 1996, Theorem 4.3). In
addition, if desired, an unweighted approximate sample from π may be obtained by
resampling θi with a probability proportional wi.
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Algorithm 1 Distributed Importance Sampler

Input: Proposal distribution q(θ1:N ), which has marginal q1(θi) identical for all
θi, i = 1, . . . , n.
- Sample θ1:N ∼ q(·).
- For c = 1, . . . , C evaluate each subposterior πc(θ1:N ).

- Set π(θi) =
∏C

c=1 πc(θi).

- Weight the samples, wi =
π(θi)
q1(θi)

.

Output: Weighted sample {wi, θi}Ni=1 approximating π(θ).

We expect our HMC importance proposal to be especially efficient since it mimics
the true posterior. However, other proposal distributions based on competing algorithms
for merging subposteriors (e.g. Scott et al., 2016; Neiswanger et al., 2014; Wang and
Dunson, 2013) can be used instead; these are compared in Section 5. Algorithm 1
describes this general distributed importance sampler.

4.3 Gaussian-process importance sampler (GP-IS)

Finally, we present an importance sampler that uses the posterior distribution of L, the
GP approximation to the unnormalised log-posterior conditional on {ϑc,j ,

πc(ϑc,j)}C,J
c=1,j=1. Compared with the importance sampler in Section 4.2, the set of

points {θi}Ni=1 is generated from a simple proposal distribution, rather than the HMC
algorithm applied to π̂E . Moreover, given the set of points {θi}Ni=1 the computationally-
expensive evaluation of each subposterior at this set of values is replaced with repeated,
but relatively cheap sampling of realisations of L at these points. For a fixed number of
GP training points, J , estimates of posterior expectations are no-longer asymptotically
exact in N , however estimates of the uncertainty in these estimates are also supplied.

As in Sections 4.2 and 2.2 we are interested in Ih := Eπ [h(θ)] =
1
Z

∫
π(θ)h(θ)dθ.

Here we consider approximating this with

Ih(�) :=
1

Z(�)

∫
exp {�(θ)}h(θ)dθ,

where � is a realisation of L from the distribution in (11) and Z(�) :=
∫
exp{�(θ)}dθ is

the associated normalisation constant.

First, consider the hypothetical scenario where it is possible to store � completely
and evaluate Ih(�). A set of M realisations of L, {�m}Mm=1 would lead to M associated
estimates of Ih, {Ih(�m)}Mm=1, which would approximate the posterior distribution of Ih
under (11). The mean of these would then target, the posterior expectation,

IEh := E

[
1

Z(L)

∫
h(θ) exp (L(θ)) dθ

]
.

As an alternative, robust, point estimate, the median of {Ih(�m)}Mm=1 would target the
posterior median. Other posterior summaries for Ih, such as a 95% credible interval,
could also be estimated from the sample.
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Algorithm 2 GP Importance Sampler

Input: GP approximation L(θ) and proposal distribution q(θ).
- Sample θ1:N ∼ q(·) iid.
- Sample m = 1, . . . ,M realisations of the GP approximation to the log-posterior
Lm(θ1:N ) in (11).
- Weight the samples according to (13).
Output: Weighted sample {wi, θi}Ni=1, approximately from the marginal of
{L, π(θ|L)}.

Unfortunately, it is not possible to store the infinite-dimensional object, �; and even

if it were, for moderate dimensions, numerical evaluation of Ih(�) would be computation-

ally infeasible. Instead, we use importance sampling. Consider a proposal distribution

q(θ) that approximately mimics the true posterior distribution, π(θ) and sample N

independent points from it: θ1:N := (θ1, . . . , θN ). For each m ∈ {1, . . . ,M} we then

sample the finite-dimensional object (�m(θ1), . . . , �m(θN )) from the joint distribution

of the GP in (11). For each such realisation we then construct an approximation to the

normalisation constant and to Ih(�):

Ẑ(�m) :=
1

N

N∑
i=1

w(θi; �m) and Îh(�m) :=
1

NẐ(�m)

N∑
i=1

w(θi; �m)h(θi),

where w(θ; �) := exp{�(θ)}/q(θ). The set {̂Ih(�m)}Mm=1 is then used in place of

{Ih(�m)}Mm=1 for posterior inference on Ih.

For the specific case of IEh a simplified expression for the approximation may be

derived:

ÎEh =
1

N

N∑
i=1

wih(θi), where wi :=
1

Mq(θi)

M∑
m=1

exp{�m(θi)}
Ẑ(�m)

. (13)

Algorithm 2 creates point estimates based upon this.

The proposal density q(θi) should be a good approximation to the posterior density.

To create a computationally cheap proposal, and with a similar motivation to the con-

sensus Monte Carlo approximation (Scott et al., 2016), we make q(θi) a multivariate

Student-t distribution on 5 degrees of freedom with mean and variance matching those

of the Gaussian posterior that would arise given the mean and variance of each sub-

posterior and if each sub-posterior were Gaussian. Alternatively, it would be possible to

use the output from the HMC algorithm of Section 4.1 in an analogous manner to the

way it is used in Section 4.2.

Many aspects of our importance sampler can, if necessary, be parallelised: in par-

ticular, calculating μc(θ1:N ) and Σc(θ1:N ), and then sampling �1, . . . , �m and obtaining

the sample {̂Ih(�m)}mm=1.
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4.4 Computational cost

We briefly review some of the notation in the paper as a point of reference for this
section.

• n := Number of data points, y.

• C := Number of processing cores (i.e. number of batches).

• J := Number of MCMC samples drawn from πc(θ), c = 1, . . . , C; for simplicity,
we assume J samples are drawn from each subposterior.

• N := Number of samples drawn from the approximation to the merged posterior
π̂E(θ), or, for GP-IS, from the Student-t proposal.

The overall computational cost of applying the methods in Sections 4.1 and 4.2 to create
an approximate (weighted) sample from the full posterior can be summarised in three
(four) steps:

– Run MCMC on each subposterior (see Section 2). This step is common to all
divide-and-conquer MCMC algorithms (e.g. Scott et al., 2016; Neiswanger et al., 2014;
Wang et al., 2015) and has a cost of O(Jn/C).

– Fit GP to each subposterior (see Section 3). Fitting a Gaussian-process to
each subposterior has a cost of O(J3) due to the inversion of the J × J matrix K̃. One
of the drawbacks of Gaussian-processes is the computational cost. Faster, approximate
Gaussian-processes, referred to as sparse GPs (e.g Csató and Opper, 2002; Seeger et al.,
2003; Quiñonero-Candela et al., 2005; Snelson and Ghahramani, 2006) can be used to
reduce the computational cost (see Section 5.4).2 In this paper we apply the simpler
speed-up technique of first thinning the subposterior Markov chain; for example, using
only every twentieth sample. The thinned Markov chain has the same stationary dis-
tribution as the full chain, but the autocorrelation is reduced and, more importantly
for us, the sample contains fewer points. Secondly, we remove duplicate samples from
the subposterior; because we have the log-density of the subposterior, these duplicate
samples provide no additional information when fitting the GP, and can cause the kernel
matrix K̃ to become singular. Fitting C independent GPs to each of the subposteriors
is embarrassingly parallel as the MCMC output from each subposterior is stored on a
separate core.

– Perform HMC on π̂E (see Section 4.1). Each iteration of the HMC algorithm
requires an evaluation of μc and Σc from (10) with N = 1, and multiple evaluations
of the gradient terms given in Section 4.1. Since K̃−1 has already been calculated, the
total cost over all N iterations of the HMC algorithm is O(NJ2). The cost of this step
is equivalent to competing algorithms including (Neiswanger et al., 2014; Wang and
Dunson, 2013), which also use an MCMC-type step to sample from the approximation
to the posterior.

2Generally speaking, sparse GPs introduce p inducing points as training point locations ϑPi
, i =

1, . . . , p, to fit the GP. The computational complexity of such an approach is reduced if P << J to give
an overall cost of O(P 2J).
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– Re-weight GP samples for DIS (see Section 4.2). Our distributed importance
sampler weights the approximate samples from π̂E according to the true posterior and
requires the subposteriors to be re-evaluated at each point in the GP-HMC sample.
More generally, a sample from any sensible proposal distribution could be used. This
has a cost of O(Nn/C).

– GP-IS (see Section 4.3). Taking the proposal, q, to be the Student-t distribution
described at the end of Section 4.3, creating a sample of size N has a cost of O(N). For
the sample, θ1:N , creation of each Σc(θ1:N ) (c = 1, . . . , C) in parallel is O(N2J +NJ2).
Cholesky decomposition of their sum, Σ, is O(N3); however a spectral decomposition
truncated to the largest T eigenvalues is O(N2T ). The M multiplications Σ1/2z (where
z is a vector of independent standard Gaussians) that generate realisations of L can
be spread between processors, leading to a cost of O(MN2/C) (or O(MNT/C) for a
truncated spectral decomposition).

GP-IS may, therefore, be preferable to DIS when MN << n (or MT << n).

5 Experiments

In this section we compare our Gaussian-process algorithms for merging the subposte-
riors against several competing algorithms:

• Consensus Monte Carlo (Scott et al., 2016), where samples are weighted and
aggregated.

• Nonparametric density product Neiswanger et al. (2014), where each subpos-
terior is approximated using kernel density estimation.

• Semiparametric density product3 Neiswanger et al. (2014), similar to the
nonparametric method, but where subposteriors are approximated semiparamet-
rically as in Hjort and Glad (1995).

• Weierstrass rejection sampler4 (Wang and Dunson, 2013), where the non-
parametric density estimates are passed through a Weierstrass transform to give
the merged posterior.

We consider five examples (one in the Supplementary Material) which capture com-
mon distributional features and popular statistical models: a warped Gaussian target,
a mixture of bivariate Gaussians, a Bernoulli model with rare events which leads to a
skewed posterior and two logistic regression models for large data sets. Additionally,
in the Supplementary Material, we consider a mixture of Laplace distributions which
only becomes identifiable with a large amount of data. These examples highlight some
of the challenges faced by merging non-Gaussian subposteriors and the computational
efficiency of large-scale Bayesian inference.

3Implemented using the parallelMCMCcombine R package.
4Implemented using the authors R package https://github.com/wwrechard/weierstrass.

https://github.com/wwrechard/weierstrass
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Our Gaussian-process approximation method is implemented using J = 100 samples
from the thinned chain for each subposterior to fit the GPs for the Bernoulli and mul-
timodal examples; for the logistic regression examples J = 500. Both for our methods
and for competitor methods, N = 5000 samples from each merged posterior are created.
To ensure a fair comparison, the sample from each π̂E that is used both directly and in
our DIS algorithm is the unthinned output from the HMC run. The Student-t proposals
for the Gaussian-process importance sampler are iid.

Weighted samples from DIS and GP-IS are converted to unweighted samples by
resampling with replacement, where the probability of choosing a given θ is proportional
to its weight.

For each of the models studied in this section we denote the true parameter values
by θ∗ (when known). We obtain an accurate estimate of the true posterior from a
long MCMC run, thinned to a size of N , with samples denoted by θf and the true
posterior mean and variance mf and Vf , respectively. Samples from the approximation
are denoted by θa, and their mean and variance are ma and Va. We use the following
metrics to compare the competing methods:

• Mahalanobis distance, DMah. =
√
(ma −mf)�V

−1
f (ma −mf).

• Kullback–Leibler divergence for the Bernoulli and mixture example is calculated
using a nearest neighbour search5 and for the logistic regression example, approx-
imate multivariate Gaussian Kullback–Leibler divergence (see Wang and Dunson
(2013) for details) between the true posterior π and merged posterior π̂ is calcu-
lated as

DKL(π̂(θ)||π(θ)) =
1

2
(tr(Vf

−1Va)+(mf−ma)
�Vf

−1(mf−ma)−d−log(|Va|/|Vf |))).

• Posterior concentration ratio, ρ =
√∑N

i=1 ||θai − θ∗||22/
∑N

i=1 ||θfi − θ∗||22 (Wang

et al., 2015), which gives a measure for the posterior spread around the true value
θ∗ (ρ=1 being ideal).

• Mean absolute skew deviation, η = 1
d

∑d
i=1 |γa

i − γf
i |, where i is the component,

γi = E[{(θi−mi)/V
1/2
ii }3] is the third standardised moment, and the superscripts f

and a denote empirical approximations obtained from the samples obtained using
the true posterior and the approximation, respectively.

5.1 Warped Gaussian model

We start by considering the warped Gaussian distribution, where the posterior, and
subposteriors, exhibit a complex banana shape as a result of the lack of identifiability of

5Implemented using the FNN R package.
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Figure 2: Posterior contour plots for the full posterior of the warped Gaussian target,
overlayed with each of the competing algorithms.

the sign of one parameter. We simulate n = 50,000 observations from a warped Gaussian
distribution with density,

p(yi|ϑ) = N (yi|ϑ1 + ϑ2
2, σ

2),

where ϑ = (0.5, 0.0). We assume the variance σ2 is known and the prior for ϑ isN (0, 0.5).
The data is split across C = 20 processors with independent Hamiltonian MCMC algo-
rithms (Carpenter et al., 2016) applied to each subset of the data targeting independent
subposteriors. The subposteriors are re-merged using one of the competing methods and
the posterior contour plots for each competing method are given in Figure 2. Out of the
various re-merging algorithms, only the GP-HMC is able to accurately approximate the
full posterior. The kernel density based methods are to reasonable capture the posterior
mode and approximate posterior shape, but significantly underestimate the variance of
ϑ2. The GP-IS sampler also struggles to adequately approximate the posterior. This is
due to the importance proposal q(ϑ), which is a multivariate t-distribution approxima-
tion of the consensus Monte Carlo posterior. This example illustrates that the accuracy
of the GP-IS sampler is highly dependent on the choice of importance proposal, and
while the GP approximation can correct for some of the discrepancy in the proposal,
generating a good approximation to the full posterior from the GP-IS sampler requires
an importance proposal that sufficiently captures the posterior covariance structure.
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Figure 3: Posterior contour plots for the full posterior of the mixture of Gaussians target,
overlayed with each of the competing algorithms.

5.2 Mixture of Gaussians

Mixture models are popular in the divide-and-conquer MCMC literature (Wang and
Dunson, 2013; Neiswanger et al., 2014). We sample n = 50,000 observations from a
mixture of two bivariate Gaussian distributions with density,

p(yi|ϑ) =
1

2
N (y|ϑ1, I2) +

1

2
N (y|ϑ2, I2),

where ϑ1 = (0.1, 0.1) and ϑ2 = (−0.1,−0.1). We assume independent priors on ϑ ∼
N (0, 100) and split the data across C = 20 processors and run independent Hamil-
tonian MCMC (Carpenter et al., 2016) on each subposterior. This model has been
constructed so that the posterior density exhibits bimodality. This is a result of placing
the modes of the mixture components close together causing the MCMC algorithm to
jump between the modes. Applying each of the merging algorithms to the subposteri-
ors, we can see from the approximation to the full posterior, shown in Figure 3, that
only the GP-HMC algorithm is able to sufficiently capture both the posterior mode and
covariance structure. The kernel density methods are able to reasonably capture the
mass of the posterior, but underestimate the covariance of the recombined full poste-
rior. Unsurprisingly, the consensus Monte Carlo approximation is unable to capture the
bimodality of the posterior, however, using the consensus approximation as a proposal
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Figure 4: Left: Standard implementation of competing methods to approximate of the
full posterior on a Bernoulli model (left). Right: Samples from each merging algorithm
are used as a proposal in the distributed importance sampler.

within the GP-IS sampler, we are able to partially recover the shape of the posterior,
but not sufficiently well to extract the posterior modes.

5.3 Rare Bernoulli events

In the examples considered above, the subposteriors had approximately the same shape
as the full posterior. This is not always the case and is largely dependent on how the
data is split. It is possible that the data could be split in such a way some subposteriors
are significantly more informative than others. We sample n = 10,000 Bernoulli random
variables, yi ∼ Bern(ϑ), and assume a Beta(2, 2) prior distribution for ϑ. The data is
split across C = 10 processors. We set ϑ = C/n so that the probability of observing an
event is rare. In fact, each subset only contains one success on average. Furthermore,
we repeat this simulation study 100 times, each time randomly re-splitting the original
data. By doing this we capture the uncertainty in our discrepancy metrics that result
from the data splitting process.

Figure 4 shows the posterior approximation resulting from each of the merging algo-
rithms. Both GP-HMC and GP-IS samplers produce good approximations to the poste-
rior. All of the competing algorithms can reasonably identify the mode of the posterior,
but do not adequately fit the tail of the density. This example illustrates the advantage
of the GP approximation, which utilises estimates of the log-subposterior density, over
simply shifting and re-weighting subposterior samples using only the covariance of the
subposteriors, as in the case of the consensus algorithm.

We can generate samples from the full posterior using the distributed importance
sampler (Algorithm 1), where samples from each of the merging algorithms can be used
as a proposal. Figure 4 (right panel) shows that using the DIS improves the accuracy of
all of the competing methods. This improvement is most noticeable for the consensus and
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Algorithm DMah. DKL(π||π̂) DKL(π̂||π) ρ η Time
Consensus 1.69 (0.59) 0.33 (0.33) 0.33 (0.40) 1.51 (0.55) 0.55 (0.18) 0.07
Nonparametric 1.42 (0.16) 0.40 (0.15) 0.46 (0.25) 1.20 (0.27) 1.00 (0.90) 2.03
Semiparametric 1.12 (0.25) 0.27 (0.42) 0.28 (0.68) 1.03 (0.28) 0.24 (0.43) 2.80
Weierstrass 1.27 (0.25) 0.20 (0.12) 0.14 (0.14) 1.26 (0.25) 0.14 (0.11) 1.8
GP-HMC sampler 1.03 (0.06) 0.09 (0.02) 0.09 (0.02) 1.04 (0.07) 0.10 (0.08) 13.08
GP-IS sampler 1.03 (0.05) 0.09 (0.02) 0.08 (0.02) 1.04 (0.06) 0.10 (0.07) 14.22

Table 1: Mean discrepancy of various merge algorithms over 100 simulated rare event
Bernoulli models. Kullback–Leibler results are reported as (×101) and DMah. as (×105).
Average execution time is given in seconds. Results in brackets represent standard
deviation of metrics over 100 datasets.

nonparametric approximations. Ultimately, the overall accuracy of the approximation
to the full posterior will dependent on the quality of the proposal distribution.

Table 1 provides metrics to assess the accuracy of each of the merge algorithms. We
report the mean and standard deviation (in brackets) of each metric taken over 100
simulations, where, for each simulation, we re-split the data. On average the GP-HMC
and GP-IS samplers display the best performance across all metrics, most notably with
regards to Kullback–Leibler divergence. The GP-HMC and GP-IS samplers also have the
lowest standard deviation compared to the alternative subposterior merge algorithms.
This improvement, however, comes at a higher computational cost than the competing
methods. In the Supplementary Material we further investigate the variability of the
discrepancy metrics.

5.4 Logistic regression

Synthetic data set We use a synthetic data set based on internet click rate behaviour,
where one of the covariates is highly predictive, but rarely observed. The dataset has
n = 10,000, with 5 covariates and is generated according to Section 4.3 of Scott et al.
(2016). The data are partitioned across 10 machines. We repeat this experiment 100
times, randomly re-partitioning the original dataset for each experiment.

Additionally to the algorithms discussed at the start of Section 5, we introduce sparse
Gaussian process versions of the GP-HMC and GP-IS samplers. We apply the sparse
GP presented by Titsias (2009), which uses a variational approach to infer the inducing
inputs (see Quiñonero-Candela et al. (2005) for a review of sparse GP approximations).

The posterior distribution for this model is approximately Gaussian and all algo-
rithms perform equally well in this setting (see Table 2). The standard deviation of the
discrepancy metrics is generally lower than that of the Bernoulli model (Table 1). For
the logistic regression example, there is less variation in the distribution of the data
batches over repeated simulations, compared to the Bernoulli example, where there
is greater variability from splitting the data. The distributed importance sampler is
applied to the posterior approximations with the results given in the Supplementary
Material. We also provide additional simulations where the posterior is approximated
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Algorithm DMah. DKL(π||π̂) DKL(π̂||π) ρ η Time
Consensus 2.36 (0.07) 0.03 (0.01) 0.03 (0.01) 0.16 (0.00) 0.09 (0.03) 0.01
Nonparametric 3.67 (0.25) 0.75 (0.14) 2.08 (0.54) 0.16 (0.00) 0.16 (0.06) 0.72
Semiparametric 2.28 (0.16) 0.23 (0.09) 0.17 (0.06) 0.16 (0.00) 0.17 (0.08) 4.23
Weierstrass 2.37 (0.13) 0.11 (0.06) 0.10 (0.04) 0.16 (0.00) 0.17 (0.06) 0.17
GP-HMC 2.10 (0.71) 0.62 (0.23) 0.67 (0.12) 0.75 (0.02) 0.16 (0.18) 261
GP-HMC-Sparse 2.69 (0.79) 0.69 (0.26) 0.70 (0.13) 0.71 (0.02) 0.18 (0.17) 94
GP-IS 3.42 (0.08) 1.86 (0.14) 2.85 (0.23) 0.74 (0.00) 0.05 (0.01) 16.43
GP-IS-Sparse 3.42 (0.08) 1.85 (0.14) 2.86 (0.24) 0.72 (0.00) 0.05 (0.01) 14.6

Table 2: Mean discrepancy of various merge algorithms over 100 data splits of the logis-
tic regression model with simulated data. Average execution time is given in seconds.
Results in brackets represent standard deviation of metrics over 100 data splits.

Algorithm DMah. DKL(π||π̂) DKL(π̂||π) η Time
Consensus 5.21 (0.05) 11.55 (0.05) 11.46 (0.03) 0.10 (0.01) 0.03
Nonparametric 9.83 (0.23) 16.57 (0.32) 30.04 (2.00) 0.11 (0.02) 4.15
Semiparametric 5.22 (0.11) 13.67 (0.31) 12.66 (0.14) 0.11 (0.02) 13.36
Weierstrass 5.39 (0.27) 15.83 (0.41) 13.48 (0.15) 0.13 (0.01) 0.74
GP-HMC 5.35 (0.59) 21.78 (0.63) 11.08 (2.24) 0.10 (0.01) 283.56
GP-HMC-Sparse 5.06 (0.36) 21.79 (0.71) 10.34 (1.30) 0.10 (0.01) 137.94
GP-IS 5.96 (0.06) 16.76 (0.28) 15.61 (0.18) 0.09 (0.01) 15.95
GP-IS-Sparse 5.97 (0.08) 16.78 (0.29) 15.69 (0.29) 0.09 (0.01) 14.25

Table 3: Mean discrepancy of various merge algorithms over 100 data splits of the logistic
regression model with the Hepmass dataset. Average execution time is given in seconds.
Results in brackets represent standard deviation of metrics over 100 data splits.

with varying sample sizes. We show that it is possible to apply our GP algorithms with
fewer samples, giving a reduced computational cost, while maintaining a high level of
accuracy.

Real data set We conduct divide-and-conquer MCMC experiments on the Hep-
mass6 data set. The challenge is to accurately classify the collisions of exotic particles by
separating the particle-producing collisions from the background source. The full data
set contains 10.5 millions instances with 28 attributes representing particle features. In
our experiments, we use the first million instances and partition the data equally across
C = 20 machines.

Table 3 gives the mean and standard deviation of the discrepancy metrics for each
algorithm taken over 100 simulations (additional plots given in the Supplementary Ma-
terial). For this example, the subposteriors and full posterior distributions are approxi-
mately Gaussian and so all methods approximate the full posterior with more or less the
same level of accuracy. As discussed in Neiswanger et al. (2014), nonparametric meth-
ods scale poorly with dimension (i.e. number of covariates) with the Weierstrass and
semiparametric algorithms performing better than the simple nonparametric method.

6https://archive.ics.uci.edu/ml/datasets/HEPMASS.

https://archive.ics.uci.edu/ml/datasets/HEPMASS
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π(ϑ) Mean Median Quantiles (2.5%, 97.5%)
Eπ̂ [ϑ1] 0.45 0.45 0.45 (0.44, 0.46)
Varπ̂ [ϑ1] (×105) 1.26 1.25 1.24 (1.21, 1.28)
Eπ̂ [ϑ17] (×102) 0.22 0.22 0.21 (0.17, 0.28)
Varπ̂ [ϑ17] (×105) 7.79 7.75 7.61 (7.60, 7.89)

Table 4: Expectation and variance of ϑ1 and ϑ17 from the logistic regression model
with the HEPMASS dataset. Mean, median and quantile estimates of the quantities are
calculated from 500 samples from the GP-IS sampler (i.e. M = 500).

As a result, applying the DIS step does not lead to a significant improvement in the
approximation.

The major difference in the results from Table 3 is the computational time. We
see that the GP-IS sampler has comparable computational cost to the nonparametric
algorithms, but the GP-HMC samplers have the highest cost overall. It is important to
note that, while more expensive than some cheaper competitors, the goal is to produce
highly accurate posterior approximations that circumvent applying MCMC to the full
dataset. For this example, running an HMC algorithm on the full data takes 19.4 hours.
Therefore, relative to this computational cost, applying the GP-HMC sampler accounts
for only 0.4% of the total time.

Finally, in Section 4.3, we note that the GP-IS sampler draws multiple realisations
from the posterior distribution of the GP approximation to the posterior. Each of these
realisations provides an estimate of the expectation of interest, their centre (mean or
median) provides a point estimate and their spread (2.5% and 97.5% quantiles) provide
a measure of the uncertainty. In Table 4 we estimate the posterior mean and variance of
two randomly selected parameters (for ease of presentation) and compare these estimates
against those calculated from an MCMC run on the full posterior. Sampling M = 500
realisations from the GP, we report the mean, median and 95% interval for estimates
of the mean and find that these results are consistent with those of the full applying
MCMC on the full data.

6 Discussion

Merging subposteriors generated through parallel, independent MCMC simulations, to
form the full posterior distribution is challenging. Currently, available methods either
produce a Gaussian approximation to the posterior, or utilise nonparametric estimators
which are difficult to tune and do not scale well to high-dimensional settings. In this
paper, we have presented an alternative approach to this problem by directly modelling
the log-density of the subposteriors. Using Gaussian-process priors, we were able to
employ a fully Bayesian strategy towards approximating the full posterior, and unlike
competing methods, we were able to account for the uncertainty in the approximation.

Compared to the nonparametric methods, fitting the Gaussian-processes is straight-
forward using a mixture of marginalisation and maximum likelihood techniques for the
hyperparameters. The main drawback of using Gaussian-process approximations is the
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computational cost. We have reduced the computational cost by, for each subposte-
rior sample, thinning the Markov chain and removing duplicate MCMC samples prior
to fitting the GP. We have shown that using only a small number of samples from
the subposterior, we can accurately approximate the full posterior. Furthermore, the
computationally intensive step of fitting the individual GPs to the subposteriors is au-
tomatically parallelised, as the subposteriors are independent by definition and the GPs
are independent by design. While more computationally costly than some competing
methods, it is important to note that the cost of fitting, and then sampling from the
GP, is significantly cheaper than running an MCMC algorithm on the full data.

The results from Section 5 (and the Supplementary Material) show that in scenarios
where both the subposterior and full posterior are approximately Gaussian, the consen-
sus algorithm works well, and is computationally efficient to apply. In settings where
either the subposteriors (mixture of Laplace distributions (see the Supplementary Mate-
rial)) or full posterior (warped Gaussian (Section 5.1) and mixture model (Section 5.2))
are non-Gaussian, our proposed Gaussian process approach is significantly superior to
competing methods. This improved performance follows from using the log-subposterior
densities to approximate the density of the full posterior, which other algorithms neglect
to utilise.

The algorithms we propose scale well with the number of data points n, but fitting a
GP when the dimension, d, of ϑ is high, can be computationally expensive as the number
of input points required to produce an accurate approximation grows exponentially with
d. We have explored the use of sparse GP approximations to reduce the computational
burden and have shown that such approximations can be applied in this setting to
produce faster algorithms with a similar level of accuracy as the standard GP. This is
an ongoing area of research in the Gaussian process community and many alternative
sparse GP approximations could be applied, potentially yielding improved results.

Finally, while not the focus of this work, we have numerically explored the effect of
randomly partitioning the data. In scenarios where the dataset is heavily imbalanced
(e.g. Bernoulli model from Section 5.3), randomly partitioning the data can lead to
non-overlapping subposteriors. This issue has not yet been addressed in the literature,
and further work investigating ways to efficiently partition the data to ensure a more
even distribution of the data across batches is ongoing.

Supplementary Material

Supplement for “Merging MCMC Subposteriors through Gaussian-Process Approxima-
tions” (DOI: 10.1214/17-BA1063SUPP; .pdf).
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