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ADAPTIVE INVARIANT DENSITY ESTIMATION FOR ERGODIC
DIFFUSIONS OVER ANISOTROPIC CLASSES

BY CLAUDIA STRAUCH1

Universität Mannheim

Consider some multivariate diffusion process X = (Xt )t≥0 with unique
invariant probability measure and associated invariant density ρ, and assume
that a continuous record of observations XT = (Xt )0≤t≤T of X is avail-
able. Recent results on functional inequalities for symmetric Markov semi-
groups are used in the statistical analysis of kernel estimators ρ̂T = ρ̂T (XT )

of ρ. For the basic problem of estimation with respect to sup-norm risk un-
der anisotropic Hölder smoothness constraints, the proposed approach yields
an adaptive estimator which converges at a substantially faster rate than in
standard multivariate density estimation from i.i.d. observations.

1. Introduction. In many areas of applied mathematics, diffusion phenom-
ena arise from a Markovian stochastic modelling and as a solution of SDEs or
PDEs. Their investigation thus concerns different mathematical branches, starting
from probability theory over functional analysis up to differential geometry for
operators and the study of processes on manifolds. In all of these fields, research
interest has constantly grown over the past years and decades with vivid interest
in questions such as existence and regularity of solutions of SDEs, regularity and
smoothing properties of differential operators, convergence to equilibrium and so
on. The study of the statistical properties of diffusion models has emerged since
such models are heavily used in applications from finance. Practical concerns raise
new questions to date. As a matter of fact, in comparison to “classical” statisti-
cal models, a number of phenomena and peculiarities arises in this comparatively
young branch of mathematical statistics. One such peculiarity concerns the depen-
dence of statistical features on the observation scheme such that it is of interest to
study basic questions—such as the estimation of the characteristics of the diffu-
sion process—in different observation sceneries. By way of example, an original
question (which has no counterpart in “classical” statistics) concerns the nonpara-
metric estimation of the drift and diffusion coefficient of a diffusion process from
low-frequency observations. In the scalar setup, this problem was solved in [9].
Nonparametric estimation of the characteristics of a reflected scalar diffusion on a

Received March 2017; revised October 2017.
1Supported by the Deutsche Forschungsgemeinschaft (DFG) through the Research Training Group

RTG 1953.
MSC2010 subject classifications. 62M05, 62G07, 62G20.
Key words and phrases. Ergodic diffusion, anisotropic density estimation, adaptation.

3451

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1664
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


3452 C. STRAUCH

one-dimensional interval when the process is observed at random times was stud-
ied recently in [6].

From a theoretical point of view, it is however also of substantial interest to
work under the assumption that a continuous record of observations of the dif-
fusion is available. In this framework, there exist different examples where the
smoothing properties of transition operators of Markovian semigroups allow to
derive results which reflect somehow increased regularity in statistical diffusion
models. For instance, it belongs to the folklore of statistics for stochastic pro-
cesses that the invariant density of a scalar ergodic diffusion X, given continuous
observations (Xt)0≤t≤T , can be estimated under standard nonparametric assump-
tions with a parametric rate (see, e.g., Chapter 4.2 in [13]). One further example
which is relevant from a statistical point of view concerns uniform CLTs, that is,
Donsker-type theorems. Van der Vaart and van Zanten [27] have shown indeed that
there is no gap between the pre-Gaussian and the Donsker property in the frame-
work of continuous-time observations of a scalar ergodic diffusion process with
finite speed measure: In contrast to the classical case of empirical processes based
on i.i.d. observations, the existence of a tight Gaussian limit is not only necessary
but already sufficient for a CLT which holds uniformly over an entire (possibly
infinite-dimensional) class of functions. The proofs of both remarkable results rely
on the existence of diffusion local time and its properties. On the one hand, this
suggests that it pays off to take probabilistic properties of diffusion processes into
account as there exist situations where “diffusion specific” results which go be-
yond the well-known results established in the i.i.d. framework can be obtained.
On the other hand, due to the use of diffusion local time, the proofs and results
mentioned above are restricted to the one-dimensional setting.

In the sequel, we want to contribute to the statistical investigation of diffusion
processes in higher dimension, taking explicitly into account probabilistic prop-
erties in the multivariate framework. Precisely, we consider the question of non-
parametric estimation of the invariant density of a diffusion X, given as a (weak or
strong) solution of the SDE

(1.1) dXt = b(Xt)dt + dWt, X0 = ξ,

where b : R
d → R

d is the unknown drift vector, W = (Wt)t≥0 is some d-
dimensional Brownian motion and ξ ∈R

d denotes a random vector independent of
W . Throughout the sequel, we assume that the drift vector is of the form b = −∇V ,
denoting by V ∈ C2(Rd) some potential function. Furthermore, we assume that X
is ergodic with invariant measure μ = μV of the form dμV = ρV dλ and strictly
stationary, that is, ξ ∼ μV .

The aim of this paper is to study the basic problem of estimating the invari-
ant density from a continuous record of observations for a class of ergodic mul-
tidimensional diffusion processes. Let us emphasise that we consider this specific
question as a practical test for a multidimensional diffusion model. Indeed, we will
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see that the technical devices which are applicable in the identified model allow to
expose “diffusion specific” statistical properties (in the given case: faster rates of
convergence) also in higher dimension. An important tool in our investigation are
functional inequalities which allow to incorporate specific probabilistic findings on
diffusion processes. Precisely, the model (1.1) will be studied under Assumptions
(M1)–(M4) to be introduced below.

Adaptive estimation with respect to sup-norm loss under anisotropic Hölder
smoothness constraints. We consider adaptive estimation of the invariant density
ρ = ρV of the diffusion X, quantifying the quality of the estimation procedure ρ̂T

by the sup-norm risk,

R(q)
T (ρ̂T , ρ) :=

(
E(T )

b

[(
sup
x∈Rd

∣∣ρ̂T (x) − ρ(x)
∣∣)q])1/q

= (
E(T )

b

[‖ρ̂T − ρ‖q∞
])1/q

, q ≥ 1, T > 0,

(1.2)

where E(T )
b is the expectation with respect to the law P(T )

b of the sample XT :=
(Xt)0≤t≤T of the diffusion process solution of (1.1). Generally speaking, the liter-
ature on statistical properties of multidimensional diffusion processes is still rel-
atively scarce. An important and substantial point of reference is given by the
results of [7] on asymptotic statistical equivalence for inference on the drift in the
multidimensional diffusion case. As a by-product of the study, [7] prove conver-
gence rates of invariant density estimators for pointwise estimation under isotropic
Hölder smoothness constraints which are considerably faster than those known
from standard multivariate density estimation. This result relies on “small” upper
bounds on the variance of additive diffusion functionals, proven by an application
of the spectral gap inequality in combination with a bound on the transition den-
sities of the diffusion. We construct adaptive estimators in the multidimensional
diffusion case which achieve “fast” rates of convergence with respect to (1.2) over
anisotropic Hölder balls.

The extension of results on pointwise rates of convergence to the sup-norm
loss usually is fairly standard. It is nevertheless unclear from the outset how the
improved variance estimates can be applied in an effective manner in a data-driven
estimation procedure. Furthermore, the notion of anisotropy plays an important
role in our investigation. Throughout, we consider situations where the smoothness
properties of elements of a function space may depend on the chosen direction in
R

d . The Russian school considered anisotropic spaces from the very start of the
theory of function spaces in the late 1950s and the early 1960s (see, e.g., [23]
for an account of the developments). Nonetheless, results on minimax rates of
convergence in classical statistical models were rare for a long time. The question
of optimal bandwidth selection for density estimation (based on i.i.d. observations)
with respect to sup-norm risk was not completely solved until the rather recent
developments in [15]. Lepski’s (convolution-operator based) selection procedure
actually provides the starting point of our study.
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The general diffusion framework. We consider the following diffusion model.

DEFINITION 1.1. Given C,C0,C1,C2 > 0, denote by � = �(C,C0,C1,C2) the
set of all functions b = −∇V : Rd →R

d , V ∈ C2(Rd), such that:

(M1) (1.1) admits a unique weak solution X with associated Markov semi-
group (Pt )t≥0 and infinitesimal generator L;

(M2) X is ergodic with unique invariant probability measure μV which is ab-
solutely continuous with respect to the Lebesgue measure λ and satisfies dμV =
ρV dλ, with uniformly bounded invariant density ‖ρV ‖∞ ≤ C which is given by

(1.3) ρV (x) :=
(∫

Rd
e−2V (u) du

)−1
exp

(−2V (x)
)
, x ∈ R

d;

(M3) the diffusion X satisfies the Poincaré inequality [see (PI) in Defini-
tion 2.1 below] with constant C0; and

(M4) the diffusion X satisfies the Nash inequality [see (NI) in Definition 2.1
below] with constants C1 and C2.

Denote by Hd(β,L) the set of invariant density functions ρ = ρV which are
associated with drift coefficients b ∈ � and which belong to anisotropic Hölder
balls (see Definition 3.1) of regularity β + 1 = (β1 + 1, . . . , βd + 1) and radius
L= (L1, . . . ,Ld) (βr,Lr > 0, r = 1, . . . , d).

Let us already remark that a classical result (cf. [22]) states that the assumed
gradient structure of the drift (i.e., the existence of a smooth potential function
V : Rd → R) is equivalent to self-adjointness and thus reversibility of the genera-
tor L in L2(μV ). Reversibility again permits to use nice analytical results for the
associated Markov semigroup. Conditions (M3) and (M4) have been included
in Definition 1.1 for two reasons: On the one hand, Holley–Stroock classical per-
turbation arguments provide a stable framework which is required for the proof of
lower bounds on the rate of convergence of estimators. With regard to the proof
of upper bounds on the convergence rate, (M3) and (M4) allow to establish tight
upper bounds on the variance

Varb

(∫ T

0
f (Xu)du

)
, f ∈ L2(μV ),

of integral functionals of the diffusion X. Bounds of this type were proven before
in [7] (cf. their Proposition 1) by combining estimates based on the spectral gap in-
equality and on upper bounds on the transition densities of X. As already pointed
out, in view of the statistical minimax setup considered in this paper, it appears
convenient to work in the (stable) framework of functional inequalities. The Nash
inequality (NI) actually allows to derive convenient upper bounds on the transi-
tion operator. Given any bounded function f : Rd → R with support S satisfying
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λ(S) < 1, one might then specify an explicit constant C = C(d,C0,C1,C2) such
that, for any T > 0,

(1.4) Varb

(∫ T

0
f (Xu)du

)
≤ CT ‖f ‖L1(μV )‖f ‖∞λ(S)ψ2

d

(
λ(S)

)
,

where

(1.5) ψd(x) :=

⎧⎪⎪⎨⎪⎪⎩
1, d = 1,

1 ∨ (
log(1/x)

)1/2
, d = 2,

x(1/d)−(1/2), d ≥ 3,

x > 0.

For a more precise statement of the result and its proof, we refer to Section B in
the Appendix (see Lemma B.1).

The collection of invariant density estimators. Given the observation XT of
a diffusion X as described in Definition 1.1, we propose to estimate the invariant
density ρV by means of a kernel estimator. For doing so, consider some symmetric,
Lipschitz-continuous kernel function K : R→R with support supp(K) satisfying

(K)
∫

K dλ = 1, k∞ := ‖K‖∞ < ∞ and supp(K) ⊂ [−1/2,1/2].

Denoting by X
j
t , j ∈ {1, . . . , d}, the j th component of Xt , t ≥ 0, a natural estima-

tor of ρV at x = (x1, . . . , xd)� ∈ R
d in the anisotropic context is given by

(1.6) ρ̂T ,h(x) := 1

T
∏d

l=1 hl

∫ T

0

d∏
m=1

K

(
xm − Xm

u

hm

)
du,

and the main question concerns the choice of the multi-index bandwidth h =
(h1, . . . , hd)�.

Let us first comment on the special case of scalar and two-dimensional diffusion
processes. Using any sufficiently regular kernel function K , it is straightforward to
show that the “universal” bandwidth choice h1 = h2 ∼ T −1/2 yields for any q ≥ 1
the rates

(1.7) sup
ρ∈Hd (β,L)

R(q)
T (ρ̂T , ρ) =

⎧⎨⎩O(
√

logT/T ), d = 1,

O(logT/
√

T ), d = 2

(cf. Section 3 for details). Both the bandwidth and the upper bound on the rate
of convergence appearing on the right hand side of (1.7) do not depend on the un-
known smoothness of the invariant density ρV . Thus, there is no need for proposing
a data-driven bandwidth selection procedure in the framework of continuous ob-
servations of a lower-dimensional diffusion process. In what follows, we therefore
restrict to the question of adaptive invariant density estimation in dimension d ≥ 3.
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The basic approach is briefly summarised as follows: Specify the set HT of
candidate bandwidths as

(1.8) HT :=
{

h = (h1, . . . , hd)� ∈ (0,1]d : T a2◦ ≥
d∏

j=1

h
(2/d)−1
j logT

}
,

where a◦ := (2γ ◦
2q(d,k∞;C0,C1,C2))

−2, for q ≥ 1 used in the definition of the
risk criterion [see (1.2)] and some function γ ◦

p taking values in R+ whose precise
description is postponed to Remark 3.5. Introduce the family of estimators

(1.9) F(HT ) :=
{
ρ̂h(x) := 1

T

∫ T

0
Kh(Xu − x)du : x ∈ R

d,h ∈ HT

}
,

where

(1.10) Kh(u) := V −1
h

d∏
m=1

K(um/hm) for Vh :=
d∏

l=1

hl.

The aim now is to select an estimator from the family F(HT ) in a completely
data-driven way, based only on the observation of the continuous trajectory XT .

Statement of main results. We propose a procedure to select an estimator from
F(HT ) which is motivated by the approach of [15]. In particular, it will be proven
that the selected estimator ρ̂ĥ ∈ F(HT ) satisfies, for any T > 0 and any b ∈ �,

(1.11) R(q)
T (ρ̂ĥ, ρV ) ≤ C1 inf

h∈HT

{
BV (h) +

d∏
j=1

h
(1/d)−(1/2)
j

√
logT

T

}
+ C2√

T
.

Here, C1 and C2 are numerical constants depending on F(HT ) and the set � only,
HT ⊂ HT denotes a dyadic grid, and BV (·) can be viewed as the approximation
error of ρV measured in the supremum norm. Inequality (1.11) then serves as the
main tool for analysing the rate of convergence of the adaptive estimators ρ̂ĥ.

Let β = (β1, . . . , βd), βr > 0, and define the mean smoothness β + 1 of β + 1
by letting

1

β + 1
= 1

d

d∑
r=1

1

βr + 1
.

Given any d ≥ 3, introduce further

�(β + 1) = �(β1 + 1, . . . , βd + 1) := β + 1

2β + 1 + d − 2
,

ϕT (β + 1) = ϕT (β1 + 1, . . . , βd + 1) :=
(

logT

T

)�(β+1)

.

(1.12)
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We show that, for any q ≥ 1,

(1.13) lim sup
T →∞

sup
ρ∈Hd (β,L)

(
E(T )

b

[
ϕ

−q
T (β + 1)‖ρ̂ĥ − ρ‖q∞

])1/q
< ∞.

(See Theorems 3.3 and 3.4 in Section 3.1 for the precise statement of the results.)
We further establish a lower bound, proving optimal adaptivity of the suggested
estimators over a scale of anisotropic Hölder classes. The optimal rate of conver-
gence for density estimation with respect to sup-norm risk over anisotropic Hölder
classes, given n R

d -valued i.i.d. observations of smoothness (β1 + 1, . . . , βd + 1),
βr > 0, is given as

(
logn

n

) 1
2+∑d

j=1
1

βj +1 =
(

logn

n

) β+1
2β+1+d

(see Theorems 2 and 3 in [15]). The rate (logT/T )(β+1)/(2β+1+d−2) in (1.13) re-
flects the increased smoothness in the framework of continuous observations and
the specific properties of Markovian diffusion semigroups. Depending on the de-
gree of anisotropy, it may turn out to be substantially faster than the isotropic
special case (logT/T )(β+1)/(2β+d).

Outline of the paper. Preliminaries and central auxiliary results are introduced
in Section 2. In particular, we formulate implications of the functional inequal-
ities (of Poincaré- and Nash-type, resp.) which we take for granted throughout
the sequel. A reader who is mostly interested in the concrete statistical applica-
tion might skip this section and continue directly with reading Section 3. There,
we investigate the question of estimating the invariant density from continuous
observations under anisotropic Hölder smoothness constraints. The main results
are given in Section 3.3: We formulate the sup-norm oracle-type inequality (1.11)
which is at the heart of the adaptive estimation scheme. In addition, we state an
asymptotic lower bound which confirms optimality of the adaptive results. In Sec-
tion 4, we study issues related to invariant density estimation based on discrete
observations. On the one hand, we consider convergence properties of estimators
in the high-frequency framework, and we specify at which rate the sampling fre-
quency has to tend to zero in order to retain the “fast” convergence rate which
has been found in the setup of continuous observations. On the other hand, we
sketch a concrete algorithm which yields data-driven invariant density estimators
based on discrete observations. In addition, we state the low-frequency counter-
part of (1.13). Complements on functional inequalities and the derivation of up-
per functions for positive random functionals in the diffusion setup are given in
the Appendix. All remaining proofs are deferred to the Supplementary Material
[26].
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2. Preliminaries. Let X = (Xt)t≥0 be a diffusion on a probability space
(
,A,P), taking values in R

d . Define the associated transition semigroup (Pt )t≥0
on suitable measurable functions f : Rd →R by setting

Ptf (x) = E
[
f (Xt) | X0 = x

]
, t ≥ 0, x ∈ R

d .

We always assume that X is ergodic with invariant probability measure μ such
that (Pt )t≥0 defines a semigroup of contractions on L2(μ). Throughout, Lp(μ) =
Lp(Rd,μ), 1 ≤ p ≤ ∞, denote the Lebesgue spaces on the measure space
(Rd,B(Rd),μ) with associated norm ‖ · ‖Lp(μ) = ‖ · ‖p .

It follows from the Hille–Yosida theory that there is a dense linear subspace of
the Hilbert space L2(μ), called the domain D of the semigroup (Pt )t≥0, on which
the derivative at t = 0 of Pt exists in L2(μ). The operator that maps f ∈ D to this
derivative Lf ∈ L2(μ) of Ptf at t = 0 is a linear operator, the so-called infinites-
imal generator of the semigroup (Pt )t≥0. The generator L and its domain D(L)

completely characterise the semigroup (Pt )t≥0 acting on L2(μ). Throughout the
sequel, we restrict to symmetric Markov diffusion semigroups and the associated
reversible diffusion processes. Recall that the Markov semigroup (Pt )t≥0 is said
to be symmetric with respect to the invariant measure μ [or: μ is reversible for
(Pt )t≥0] if, for all f,g ∈ L2(μ) and all t ≥ 0,

∫
f Ptg dμ = ∫

gPtf dμ.
In order to clarify the statistical investigation, we further restrict to diffusion

processes with unit diffusion matrix. In this case, it is a classical result (cf. [22])
that the assumed reversibility of the diffusion X in L2(μ) is equivalent to a gradient
structure of the drift, that is, there exists a smooth potential function V : Rd → R

such that

Lf (x) = −〈∇V (x),∇f (x)
〉+ 1

2
�f (x), x ∈ R

d, f ∈ D(L).

Assume that we are given a vector subspace A of the domain D(L) such that, for
every pair (f, g) ∈ A×A, the product fg is in the domain D(L). The bilinear map

�(f,g) := 1

2

[
L(fg) − f Lg − g Lf

]
, (f, g) ∈A×A,

is called the carré du champ operator of L. In the given setup, it takes the form
�(f,g) = 〈∇f,∇g〉 for smooth functions f,g on R

d . In general, the carré du
champ operator � and the measure μ completely determine the symmetric Markov
generator L.

2.1. Functional inequalities. There exists a very large family of functional
inequalities for symmetric Markov semigroups which is subject of many recent
works. For a comprehensive account on related issues in the specific context of
Markov diffusion operators, we refer to [3]. Many functional inequalities—such as
the Poincaré (or spectral gap) inequality as the most prominent example—compare
Lp norms of functions to the L2 norms of their gradients. (As noted in [3], the ter-
minology between Poincaré and spectral gap inequality oscillates.) An important
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feature of Poincaré inequalities is their equivalence to exponential convergence of
the associated Markov semigroup in L2(μ). We shall further use Nash inequali-
ties which belong to the broad class of Sobolev inequalities. Their main interest is
that they easily provide good control on heat kernels. For ease of presentation, we
include the following formal definition.

DEFINITION 2.1. The generator L (or its carré du champ �) is said to satisfy
a Poincaré inequality on A with respect to the probability measure μ with constant
C0 > 0 if, for any f ∈ A,

(PI) Varμ(f ) :=
∫

f 2 dμ −
(∫

f dμ

)2
≤ C0

∫
�(f,f )dμ.

The generator L (or its carré du champ �) is said to satisfy a Nash inequality on A
with respect to the probability measure μ with constants C1 ≥ 0, C2 > 0 if, for any
f ∈A,

(NI) ‖f ‖d+2
L2(μ)

≤
(
C1‖f ‖2

L2(μ)
+ C2

∫
�(f,f )dμ

)d/2
‖f ‖2

L1(μ)
.

In the symmetric framework, (PI) is known to be equivalent to exponential con-
vergence of the semigroup (Pt )t≥0 to equilibrium in L2(μ): (PI) holds if and only
if for every function f : Rd →R in L2(μ),

(2.1) Varμ(Ptf ) ≤ e−2t/C0 Varμ(f )

(see Theorem 4.2.5, page 183, in [3]).

REMARK 2.2. For later reference, let us also recall some classical findings
concerning the family of Nash-type inequalities. Whenever μ is a probability mea-
sure, it holds C1 ≥ 1 in (NI). By way of contrast, one may have C1 = 0 in R

d with
the Lebesgue measure λ. In particular, this is the case for the classical Nash in-
equality (cf. [21]) which may be stated as

(NI0) ‖f ‖1+(d/2)

L2(λ)
≤ Cd‖f ‖L1(λ)‖∇f ‖d/2

L2(λ)
,

for any sufficiently smooth f : Rd → R. Whenever μ is a probability measure
and C1 = 1, (NI) implies a Poincaré inequality (PI). (See Proposition 6.2.2 and
page 282 in [3].) A Nash inequality (NI) holds if and only if the operator Pt is
bounded from L1(μ) into L∞ with norm bounded above by a + bt−d/2. For the
classical Euclidean Nash inequality (NI0), the equivalence is valid with a bound of
the form at−d/2 (cf. Theorem 2.2 in [1]).
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2.2. The statistical diffusion model. Recall that our principal object of statis-
tical investigation are diffusion processes X, described by the SDE

(2.2) dXt = b(Xt)dt + dWt, 0 ≤ t ≤ T ,

with (unknown) drift vector b = −∇V : Rd → R
d and some d-dimensional

Wiener process W = (Wt)t≥0. Assuming that X is ergodic with unique invari-
ant probability measure μV which is absolutely continuous with respect to the
Lebesgue measure ( dμV = ρV dλ), we will consider the question of estimating
the invariant density ρV under (nonparametric) smoothness constraints. In appli-
cations, one of course usually is confronted with the question of finding easily
verifiable criteria which ensure the existence of a solution of the SDE (2.2), ergod-
icity or the validity of certain functional inequalities. A brief account on this last
issue is given in Appendix A.

For the moment, we content ourselves with the following example.

EXAMPLE 2.3 (cf. Section 7.7 in [3]). Consider the family of probability mea-
sures

dμα(x) = cα exp
(−(

1 + ‖x‖2)α/2)dx, x ∈ R
d, α > 0,

cα > 0 the normalising constant. For any α > 0, the associated Markov semigroup
(Pt )t≥0 has density kernels pt(x, y), t > 0, (x, y) ∈ R

d ×R
d , with respect to μα ,

satisfying

Ptf (x) =
∫

pt(x, y)f (y)dy,

pt (x, y) ≤ C(t)w(x)w(y) with w(·) := exp
(−(

1 + ‖ · ‖2)α/2
/2

)
and C(t) > 0. For any α ≥ 1, a Poincaré inequality (PI) with constant C0 > 0 holds.
For α > 2, the semigroup (Pt )t≥0 is ultracontractive, that is, Pt is bounded from
L1(μ) to L∞ for any t > 0, and the density kernels pt are uniformly bounded for
every t > 0. In particular, a Nash inequality (NI) holds (see Theorem 6.3.1 and
Proposition 6.2.3 in [3] for the proof of the corresponding implications).

REMARK 2.4. The diffusion model introduced in Definition 1.1 is very close
to the diffusion experiment considered in [7]. In this article, asymptotic local
equivalence for inference on the drift of multidimensional ergodic diffusions is
established for a class of diffusion processes solving (2.2) with drift coefficient
b = −∇V : Rd → R

d under the following assumption: There exist constants
M1,M2 > 0 such that, for any x, y ∈ R

d :

(I) ‖b(x)‖ ≤ M1(1 + ‖x‖), and
(II) 〈b(x) − b(y), x − y〉 ≤ −M2‖x − y‖2.
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Condition (II) in particular implies that (2.2) has a unique strong solution X. In
addition, X is ergodic with unique invariant probability measure, and (PI) holds.
The assumption (I) of at most linear growth further entails that there exists a con-
stant C0 > 0 such that the transition density pt(x, y) for all t > 0 and for all
(x, y) ∈ R

d ×R
d with ‖x − y‖2 < t is bounded as follows:

pt(x, y) ≤ C0
(
t−d/2 + t3d/2).

Replacing ψd(·) defined in (1.5) with

ψ◦
d (x) :=

⎧⎪⎪⎨⎪⎪⎩
ψ1(x), d = 1,

1 ∨ (
log(1/x)

)2
, d = 2,

ψd(x), d ≥ 3,

x > 0,

a similar variance estimate as in (1.4) holds for any bounded f : Rd → R with
support S such that λ(S) < 1.

3. Adaptive estimation of the invariant density in higher dimensions.
Suppose we are given a continuous record of observations XT ≡ (Xt)0≤t≤T ,
T > 0, of a multidimensional diffusion X as described in Definition 1.1. The ques-
tion of density estimation belongs to the canonical framework of nonparametric
statistics. However, even in the classical i.i.d. setup, the (more involved) definition
of adaptive density estimators is substantially less studied than the Gaussian white
noise or the nonparametric regression model. As mentioned in the Introduction
and detailed below, data-driven bandwidth selection procedures are not required
for estimating the invariant density of one- or two-dimensional diffusions from
continuous observations. We thus focus on the question of adaptive invariant den-
sity estimation in dimension d ≥ 3 for which, to the best of our knowledge, no
results are available.

In most cases, the regularity of some function g : Rd → R depends on the
chosen direction in R

d , and isotropic spaces actually are anisotropic spaces. De-
pending on the specification, the consideration of anisotropy might result in a
substantial dimension reduction. We thus work under the following anisotropic
smoothness constraints.

DEFINITION 3.1. Let β = (β1, . . . , βd), βi > 0, L = (L1, . . . ,Ld), Li > 0.
A function g : Rd →R is said to belong to the anisotropic Hölder class Hd(β,L)

of functions if, for all i = 1, . . . , d ,∥∥Dk
i g

∥∥∞ ≤ Li ∀k = 0,1, . . . , �βi�,∥∥D�βi�
i g(· + tei ) − D

�βi�
i g(·)∥∥∞ ≤ Li |t |βi−�βi� ∀t ∈ R,

for Dk
i g denoting the kth order partial derivative of g with respect to the ith com-

ponent, �β� denoting the largest integer strictly smaller than β and e1, . . . , ed de-
noting the canonical basis in R

d . Given C,C0,C1,C2 > 0, denote by Hd(β,L) =
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Hd(β,L;C,C0,C1,C2) the set of functions ρV ∈ Hd(β + 1,L) with b = −∇V ∈
�(C,C0,C1,C2).

Pointwise estimation revisited. We start our investigation of convergence rates
for invariant density estimation by revisiting the remarkable result of [7] on up-
per bounds for pointwise rates and extending it to the anisotropic situation. Given
positive constants M1, M2, denote by �(M1,M2) the class of drift coefficients
b = −∇V : Rd → R

d satisfying conditions (I) and (II) in Remark 2.4. For
β,L ∈ (0,∞)d , denote by H̃d(β,L;M1,M2) = H̃d(β,L) the set of functions
ρV ∈ Hd(β + 1,L) with b = −∇V ∈ �(M1,M2).

In order to estimate some invariant density ρV ∈ H̃d(β,L) at the point x =
(x1, . . . , xd)� ∈ R

d , recall the definition of the kernel estimator ρ̂T ,h(·) accord-
ing to (1.6), h = (h1, . . . , hd)� denoting the multi-bandwidth. Suppose that the
involved kernel K : R → R is sufficiently smooth. Assuming isotropic Hölder-
smoothness of ρV of order β + 1, it is shown in Corollary 1 in [7] that the band-
width choice hi ∼ T −1/(2β+d), i = 1, . . . , d , implies that

(3.1) E(T )
b

[(
ρ̂T ,h(x) − ρV (x)

)2] �

⎧⎨⎩T −1(logT )4, d = 2,

T
− 2(β+1)

2β+d , d ≥ 3.

Extending (3.1) to the case of anisotropic Hölder smoothness, we obtain for ρV ∈
H̃d(β,L) the risk estimates

E(T )
b

[(
ρ̂T ,h(x) − ρV (x)

)2] �
d∑

�=1

h
2(β�+1)
� + T −1(ψ◦

d

)2

(
d∏

�=1

h�

)
.

For a suitably chosen multi-bandwidth h and kernel K , this yields the following
upper bound on the mean-squared error:

(3.2) E(T )
b

[(
ρ̂T ,h(x) − ρV (x)

)2] �

⎧⎨⎩T −1(logT )4, d = 2,

T
− 2β+1

2β+1+d−2 , d ≥ 3.

Under the assumptions imposed in Definition 1.1, the upper bound in (3.2) for
d = 2 can be improved to T −1 logT .

Invariant density estimation in the one- and two-dimensional case. Let
K : R → R be a symmetric, Lipschitz-continuous kernel satisfying (K), and, for
some integer b ≥ 2,

(3.3)
∫
R

umK(u)du = 0 ∀m = 1, . . . ,b+ 1.

If X is strictly stationary, it can be shown by standard arguments that the kernel
estimator ρ̂T ,h(·) defined in (1.6) satisfies, for any β ∈ (0,b]d , L ∈ (0,∞)d , d ∈
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{1,2} and ψd(·) introduced in (1.5),

sup
ρ∈Hd (β,L)

E(T )
b

[‖ρ̂T ,h − ρ‖∞
] = O

(
d∑

j=1

h
βj+1
j + ψd

(
d∏

j=1

hj

)√
logT

T

)
.

Inserting h1 = h2 ∼ T −1/2 into the right hand side of the last display, one obtains
the rate announced in (1.7) in the Introduction. There is obviously no gain in im-
plementing a data-driven bandwidth selection procedure for density estimation in
the framework of continuous observations of a one- or two-dimensional diffusion
process. Throughout the sequel, we therefore restrict to the case d ≥ 3. With re-
gard to the practically most relevant case of adaptive invariant density estimation
from low-frequency observations in the scalar diffusion case, we refer to the re-
cent work of [25] who, in addition, construct adaptive confidence bands for the
drift coefficient by using a data-driven estimator.

3.1. Selection rule. Consider some symmetric, Lipschitz-continuous kernel
function K : R → R satisfying (K). Throughout the sequel, we denote k1 :=
‖K‖L1(λ). Recall the definition of the set of candidate bandwidths HT and the
associated set F(HT ) of kernel estimators in (1.8) and (1.9), respectively. We
now turn to describing a selection procedure from F(HT ). Later on, we show
that this rule yields minimax adaptive invariant density estimators over a scale of
anisotropic Hölder classes.

Auxiliary quantities. Following [15], the selection rule is based on auxiliary
estimators relying on the convolution operator. To the best of our knowledge, the
use of convolution-based auxiliary estimators was pioneered in [19]. It was intro-
duced as a device to circumvent the lack of ordering among a set of estimators in
anisotropic situations where the increase of the variance of an estimator does not
necessarily imply a decrease of its bias.

For any bandwidths h = (h1, . . . , hd)�,η = (η1, . . . , ηd)� ∈ HT and any point
z = (z1, . . . , zd)� ∈ R

d , denote

(3.4) (Kh �Kη)(z) :=
d∏

j=1

(Khj
∗ Kηj

)(zj ) =
d∏

j=1

∫
R

Khj
(u − zj )Kηj

(u)du,

and define the kernel estimators

ρ̂h,η(x) := 1

T

∫ T

0
(Kh �Kη)(Xu − x)du, x ∈ R

d .

The basic idea now is to exploit the fact that, for a pair of dilated kernels Kh, Kη,
the smallest majorant with respect to some specific partial order relation is given
by Kh + Kη − Kh � Kη. Taking up this idea, the proposed selection procedure
relies on comparing the differences ρ̂h,η − ρ̂η. In particular, the method uses the
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fact that, for any pair (h,η) of multi-bandwidths, the sup-norm of the associated
approximation error fulfills∥∥∥∥∫

Rd
[Kh �Kη](t − ·)ρV (t)dt −

∫
Rd

Kh(t − ·)ρV (t)dt

∥∥∥∥∞

≤ BV (η)

∫
Rd

∣∣Kh(y)
∣∣dy = ‖K‖L1(λ)BV (η),

(3.5)

where

BV (η) := sup
x∈Rd

∣∣∣∣∫
Rd

Kη(t − x)
(
ρV (t) − ρV (x)

)
dt

∣∣∣∣,
that is, the upper bound does not depend on h.

The selection rule. Denote

�T := 2
(

1 ∨ sup
h∈HT

∥∥∥∥T −1
∫ T

0

∣∣Kh(Xu − ·)∣∣du

∥∥∥∥∞

)
,

and introduce

ÂT (h) :=
d∏

j=1

h
(1/d)−(1/2)
j

√
�T logT

T
.

Denote by HT ⊂HT the dyadic grid in HT , and set

(3.6) �̂T (h) := sup
η∈HT

{[‖ρ̂h,η − ρ̂η‖∞ − λÂT (η)
]
+
}
,

for λ := (1 ∨ kd
1)� and � := γ ◦

2q(d,k∞;C0,C1,C2). Define ĥ by setting

(3.7) �̂T (̂h) + λÂT (̂h) = inf
h∈HT

{
�̂T (h) + λÂT (h)

}
.

The adaptive invariant density estimator is then given as

(3.8) ρ̂ĥ(x) = 1

T

∫ T

0
Kĥ(Xu − x)du, x ∈R

d .

REMARK 3.2. Although the basic ideas underlying the selection proce-
dure are the same as in the (anisotropic) i.i.d. framework, it appears instructive
to include some further explanation of the involved quantities. More recently,
convolution-based methods in adaptive estimation were suggested in [10–12] or
[15]. While the proposed (invariant) density estimation procedure is much more
involved, it still resembles the adaptive scheme developed by [11] in the Gaussian
white noise framework. In this context, the analogue of �̂T (h) defined in (3.6)
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serves as a lower estimator for the norm of the bias of the estimator ρ̂h. In our
present setup, letting

sT := 1 ∨ sup
h∈HT

∥∥∥∥∫
Rd

∣∣Kh(t − ·)∣∣ρV (t)dt

∥∥∥∥∞
and denoting

(3.9) AT (h) :=
d∏

j=1

h
(1/d)−(1/2)
j

√
sT logT

T
,

it holds in fact

�̂T (h) ≤ (
1 ∨ kd

1
)(

�AT (h) +BV (h)
)+ “smaller order term”

[see (C.4) in the proof of Theorem 3.3].

3.2. Analysis of the selection rule. With regard to the probabilistic analysis
of the proposed selection procedure, the crucial point is the evaluation of upper
functions for the family of centered estimators. In the current case, it is mostly
reduced to verifying

(3.10) E(T )
b

[
sup

η∈HT

{[‖ξη‖∞ − �AT (η)
]
+
}]

� T −1/2.

Here,

ξη(·) := ρ̂η(·) −
∫
Rd

Kh(t − ·)ρV (t)dt

denotes the stochastic term of the estimator ρ̂η. To prove (3.10), we will use and
modify some general results from [16, 17] and [18].

For applying them, we rely on another implication of (PI), namely the following
Bernstein-type inequality due to [20]: For any bounded and measurable g : Rd →
R with

∫
g dμ = 0 and ∀t, r > 0, it holds

Pμ

(
1

t

∫ t

0
g(Xu)du > r

)
≤ exp

(
− 2tr2

σ 2(g)(

√
1 + 2C0‖g‖∞r

σ 2(g)
+ 1)2

)

≤ exp
(
− tr2

2(σ 2(g) + C0‖g‖∞r)

)
,(BI)

where σ 2(·) is the asymptotic variance in the CLT, given by

σ 2(g) := lim
t→∞ t−1 Varμ

(∫ t

0
g(Xu)du

)
(3.11)

= lim
t→∞ Eμ

[(
1√
t

∫ t

0
g(Xu)du

)2]
,
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and C0 is the constant appearing in Poincaré’s inequality (PI). The exponential in-
equality (BI) will be crucial for our investigation of the proposed adaptive estima-
tors of the invariant density. There exists indeed a vast number of generalisations
of the classical Bernstein inequality for independent observations to the frame-
work of Markovian or weakly dependent processes. As a concrete example from
the functional inequalities setup, [5] show that (PI) implies a deviation inequality
similar to (BI), replacing σ 2(g) with ‖g‖2

L2(μ)
. For the proof of “fast” rates of con-

vergence in the adaptive estimation procedure, we actually require both the tight
form of Lezaud’s [20] result and the variance bounds announced in (1.4).

Coming back again to the concrete selection rule and the definition of the band-
width ĥ according to (3.7), it is important to note that ÂT (·) presents a data-driven
correspondent of AT (·). It is given explicitly and does not depend on the unknown
invariant density. Instead, it is completely determined by the kernel K(·).

3.3. Main results. The following inequality provides the key for analysing the
statistical properties of estimators of the invariant density for diffusions as de-
scribed in Definition 1.1, constructed according to the above scheme.

THEOREM 3.3. Let K : R → R be a symmetric, Lipschitz-continuous kernel
satisfying (K). Assume that X is strictly stationary. Then, for any q ≥ 1, d ≥ 3 and
b = −∇V ∈ �(C,C0,C1,C2), there exist C1,C2 ∈ (0,∞) such that, for any T > 0,

(3.12) R(q)
T (ρ̂ĥ, ρV ) = (

E(T )
b

[‖ρ̂ĥ − ρV ‖q∞
])1/q ≤ C1RT (ρV ) + C2T

−1/2,

where

RT (ρV ) := inf
h∈HT

{
BV (h) +

d∏
j=1

h
(1/d)−(1/2)
j

√
logT

T

}
.

Given β ∈ (0,∞)d , recall the definition of ϕT (β + 1) according to (1.12). In-
equality (3.12) does not represent a “classical” oracle inequality of the form

R(q)
T (ρ̂ĥ, ρV ) ≤ C1 inf

h∈HT

R(q)
T (ρ̂h, ρV ) + C2T

−1/2.

Nonetheless, it allows to derive the following result.

THEOREM 3.4. Let K : R → R be a symmetric, Lipschitz-continuous ker-
nel satisfying (K), and, for some integer b ≥ 2, (3.3). If X is strictly station-
ary, the adaptive estimator ρ̂ĥ defined according to (3.8) satisfies, for any d ≥ 3,
β ∈ (0,b]d and any L ∈ (0,∞)d ,

(3.13) lim sup
T →∞

sup
ρ∈Hd (β,L)

(
E(T )

b

[
ϕ

−q
T (β + 1)‖ρ̂ĥ − ρ‖q∞

])1/q
< ∞.
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REMARK 3.5. The function γ ◦
p appearing in the definition of a◦ and � is a

constant multiple of the function γp : R×R+ → R+ introduced in Section 2.3 of
[15]. All of our auxiliary results are explicit such that all ingredients for the calcu-
lation of γ ◦

p are available (see in particular Lemma B.1 in Appendix B). Specifica-
tion of the constants in the definition of γ ◦

p thus is only a matter of cumbersome,
but straightforward computation.

We proceed by establishing an asymptotic lower bound on the sup-norm loss
for invariant density estimation under anisotropic Hölder smoothness constraints.
In particular, this leads us to considering probability measures of the form μ0 =
exp(−2V0)/Z0, Z0 denoting the normalising constant. To construct suitable fami-
lies of hypotheses in the proof of the lower bound, we use a classical transforma-
tion (adding/removing a gradient field). The classical Holley–Stroock perturbation
lemma states that, if μ0 satisfies a logarithmic Sobolev inequality, v is a bounded
function and μ1 := e−vμ0/Z1 is another probability measure obtained from μ0
by multiplication by e−v , then also μ1 satisfies a logarithmic Sobolev inequality.
Even more, it is now classical that all Poincaré–Sobolev-type inequalities are sta-
ble under bounded perturbations. This convenient stability property is utilised in
the proof of the next result which confirms optimality of the adaptive results stated
in Theorem 3.4.

THEOREM 3.6. For any β,L ∈ (0,∞)d , d ≥ 3 and q ≥ 1,

lim inf
T →∞ inf

ρ̂T

sup
ρ∈Hd (β,L)

(
E(T )

b

[
ϕ

−q
T (β + 1)‖ρ̂T − ρ‖q∞

])1/q
> 0,

where the infimum is taken over all possible estimators ρ̂T of ρ.

Estimation beyond the class of gradient drift diffusions. Let us finally briefly
motivate our study of the special case of diffusion processes with unit diffusion
part whose drift function is expressed via some potential function. There is good
reason to start by investigating estimators based on continuous observations since
powerful theoretical results can be proven in this regime. On the one hand, these
findings provide benchmarks, showing what ideally could be achieved by discrete-
data based methods (see Section 4.1 below). On the other hand, as will be shown in
Section 4.2, the proposed procedure can be extended in a straightforward manner
to discrete observation schemes.

Having chosen the framework of continuous observations where the diffusion
matrix is identifiable, it means only little loss of generality to restrict to the unit
diffusion case. Furthermore, it is generally very convenient to restrict to reversible
diffusion processes first since this natural assumption enlightens calculations. It
also allows to use a number of nice analytical results for the associated Markov
semigroup [e.g., the equivalence between the Poincaré inequality (PI) and the spec-
tral gap inequality (2.1)]. However, according to Kolmogorov’s characterisation of
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reversible diffusions, any diffusion process solving (2.2) is reversible with station-
ary distribution μ on R

d if and only if there exists a scalar potential V : Rd → R

such that b = −∇V .
While all of the previous results are stated in this specific framework, inspection

of the proof of Theorems 3.3 and 3.4 shows that it is possible to formulate exten-
sions which hold for a substantially larger class of processes. Assuming that X is
reversible and ergodic with invariant density ρ, the bandwidth selection procedure
in Section 3.1 allows to define kernel density estimators ρ̂ĥ as in (3.8), attaining
the rate of convergence ϕT (β + 1), whenever:

(i) the spectral gap inequality (2.1) is satisfied and
(ii) a Gaussian bound on the transition densities pt(·, ·) holds locally.

Weighted Nash inequalities can be used to prove such nonuniform bounds and may
provide an interesting possibility to broaden the scope of a statistical framework
incorporating functional inequalities.

4. Estimation from discrete observations. Up to now, the analysis has been
conducted for estimators based on continuous observation of the diffusion pro-
cess during some time period [0, T ] under the asymptotics T → ∞. While this
assumption on the observation scheme is highly idealised, the previous results and
techniques also prove very useful in the statistical analysis of estimators based on
discrete observations

(4.1)
X0 = XT0, XT1, . . . ,XTn,

�n := max
i=1,...,n

(Ti − Ti−1) > 0, n ∈N,

of a strictly stationary diffusion process X = (Xt)t≥0 satisfying the conditions
from Definition 1.1.

4.1. Estimation based on high-frequency observations. We first consider the
context where the data (4.1) are sampled at a high frequency, that is, �n → 0 as
n → ∞. In addition, we assume that the total length of the time interval [0, Tn]
where observations are made tends to infinity. This is a classical framework for er-
godic diffusion models since it allows to estimate the characteristics of the process.
Let K : R →R be as in Theorem 3.4. Inspection of the proof of this theorem shows
that, given a continuous record (Xt)0≤t≤Tn of observations and for any β ∈ (0,b]d ,
L ∈ (0,∞)d , the rate-optimal bandwidth choice

(4.2) hj ∼
(

logTn

Tn

) β+1/(βj +1)

2β+1+d−2
, j = 1, . . . , d,

ensures that ρV ∈ Hd(β,L) can be estimated with rate ϕT (β + 1) [cf. (1.12) and
(1.13)].
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Let us now pass to the case of discrete observations. Define Kh according to
(1.10), and introduce the estimator

(4.3)
�
ρn,h(x) := 1

Tn

n∑
i=1

Kh(XTi
− x)(Ti − Ti−1), x ∈R

d,h > 0.

Our interest is in specifying a sampling frequency of the form �n = O(T
−q
n ), for

some q > 0, such that the convergence rate ϕT = ϕTn as defined in (1.12) still can
be attained.

THEOREM 4.1. Let K : R → R be a symmetric, Lipschitz-continuous ker-
nel satisfying (K), and, for some integer b ≥ 2, (3.3). Suppose that X is strictly
stationary, that there exists some constant M > 0 such that, for any x ∈ R

d ,
‖b(x)‖ ≤ M(1 + ‖x‖), and that Eb[‖X0‖2] < ∞. If the sampling frequency is
such that

(4.4) �n = O

(
(logTn/Tn)

2β+1· β∗+2
β∗+1 +2d

2β+1+d−2

)
, β∗ := min

j=1,...,d
βj ,

and the bandwidth h = (h1, . . . , hd)� is chosen as in (4.2), the estimator (4.3)
satisfies, for any d ≥ 3, β ∈ (0,b]d , L ∈ (0,∞)d ,

lim sup
n→∞

sup
ρ∈Hd (β,L)

(
E(Tn)

b

[
ϕ

−q
Tn

(β + 1)‖ �
ρn,h − ρ‖q∞

])1/q
< ∞.

REMARK 4.2. Let us briefly comment on the above result. Most of the find-
ings on (minimal) conditions on the sampling step size �n in high-frequency dif-
fusion models refer to the one-dimensional setup. For the concrete question of
nonparametric drift estimation, it is then standard to assume that the number n of
sampling points and the sampling frequency �n are such that n�2

n → 0 as n → ∞.
In the isotropic case, the condition (4.4) on the sampling frequency �n for estimat-
ing the invariant density of Hölder smoothness β +1 from equidistant observations
X0,X�n, . . . ,Xn�n with the “fast” rate is fulfilled for

�n ∼
(

logn

n

) 2β+2d+4
4β+3d+4

.

There is a clear dimensional effect: For fixed smoothness β and very large dimen-
sion d , the above condition is satisfied for �n ∼ (logn/n)2/3. By way of con-
trast, for fixed dimension d and increasing smoothness β , the condition on the
frequency is close to requiring �n ∼ (logn/n)1/2. For small β , the approximation
error ‖ρ̂Tn,h − �

ρn,h‖∞ between the estimators based on continuous and discrete ob-
servations, respectively, can be kept sufficiently small only for a correspondingly
small sampling frequency, resulting in a very restrictive condition on �n.
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4.2. An adaptive estimation scheme for low-frequency observations. Suppose
now that X is observed at equidistant points

Ti = i�, i = 0,1, . . . , n − 1,� > 0 fixed.

In contrast to the framework of continuous or high-frequency observations, nice
path properties of diffusion processes cannot be used in the low-frequency setup.
Instead, one has to exploit the Markovian structure.

Given discrete observations (Xi�)i=0,1,...,n−1 and some kernel K : R → R, a
natural invariant density estimator in the “fixed �”-regime is given by

(4.5) ρ̃h(x) = ρ̃n,h(x) := 1

n

n−1∑
j=0

Kh(Xj� − x), x ∈R
d,h > 0.

Generally speaking, different frequency assumptions require very different inves-
tigational approaches and methods. The estimation procedure described in Sec-
tion 3.1 however is rather “universal” in the sense that its core is not related to a
specific observation scheme. In particular, it is straightforward to adapt the argu-
ments from the framework of continuous observations and to propose the following
bandwidth selection procedure which allows to define estimators of the form (4.5)
in a purely data-driven way.

input data:

∗ observations X0,X�, . . . ,X(n−1)� of a diffusion process from Definition 1.1,
� > 0 some fixed observation distance

∗ symmetric Lipschitz-continuous kernel K : R→R with Lipschitz constant L >

0 satisfying (K) and, for some integer b ≥ 2, condition (3.3)
∗ for γ •

p(·, ·; ·) defined in Appendix C (cf. the Supplementary Material [26]), set

a• := (
2γ •

2q(d,k∞;C0)
)−2 and λ• := (

1 ∨ kd
1
)
γ •

2q(d,k∞;C0)

procedure:

∗ introduce the set Hn of candidate bandwidths by letting

Hn :=
{

h = (h1, . . . , hd)� ∈ (0,1]d : a2•
d∏

j=1

hj ≥ logn

n

}
,

and denote by Hn a suitable dyadic grid in Hn

∗ define

�n := 2

(
1 ∨ sup

h∈Hn

∥∥∥∥∥n−1
n−1∑
j=0

∣∣Kh(Xj� − ·)∣∣∥∥∥∥∥∞

)
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∗ given any h,η ∈ Hn, construct estimators ρ̃h [cf. (4.5)] and

ρ̃h,η(·) := 1

n

n−1∑
j=0

(Kh �Kη)(Xj� − ·)

∗ define

Ãn(h) :=
√√√√√�n logn/

(
n

d∏
j=1

hj

)
,

�̃n(h) := sup
η∈Hn

{[‖ρ̃h,η − ρ̃η‖∞ − λ•Ãn(η)
]
+
}

∗ denote by ρ̃h̃ the estimator associated with the bandwidth h̃ fulfilling

(4.6) �̃n(̃h) + λ•Ãn(̃h) = min
h∈Hn

{
�̃n(h) + λ•Ãn(h)

}
The proof of the following result is very close to the proofs of Theorems 3.3

and 3.4. The central modification consists in the treatment of the kernel estimation
process which is now based on discrete diffusion observations. For analysing this
process, we rely in particular on a Bernstein-type inequality for reversible Markov
chains due to [24].

THEOREM 4.3. Let K : R → R be a symmetric, Lipschitz-continuous kernel
satisfying (K), and, for some integer b ≥ 2, (3.3). If X is strictly stationary, the
adaptive estimator

ρ̃h̃(x) = 1

n

n−1∑
j=0

Kh̃(Xj� − x), x ∈ R
d,

with bandwidth h̃ defined according to (4.6) satisfies, for any d ≥ 1, β ∈ (0,b]d
and any L ∈ (0,∞)d ,

(4.7) lim sup
n→∞

sup
ρ∈Hd (β,L)

(
E(n)

b

[(
logn

n

)− qβ+1
2β+1+d ‖ρ̃h̃ − ρ‖q∞

])1/q

< ∞.

APPENDIX A: COMPLEMENTS ON FUNCTIONAL INEQUALITIES

In recent years, a lot of interest was devoted to the study of (the validity of)
functional inequalities and their implications. Examples where Poincaré—and also
logarithmic Sobolev—inequalities hold can be obtained under the Bakry–Émery
curvature condition which involves log-concavity assumptions on the underlying
measure. Alternatively, one may use Lyapunov-type criteria which are known to
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entail certain results on the long-time behaviour of the laws of Markov processes.
The connection between Lyapunov conditions and Poincaré inequalities was stud-
ied in detail in [2]. We cite the following concrete conditions for the verification
of (PI).

LEMMA A.1 (Corollary 4.8.2 in [3]). Let dμ = e−V dλ be a probability mea-
sure on the Borel sets of Rd , where V : Rd →R is a smooth potential such that,

∀x, ∇∇V (x) ≥ τ Id,

for some τ > 0. Then μ satisfies (PI) with C0 = τ−1.

LEMMA A.2 (Section 4.3 in [2]). Consider a d-dimensional diffusion process
X solving the SDE dXt = −∇V (Xt)dt + dWt . If there exist M and r > 0 such
that,

∀x with ‖x‖ ≥ M,
〈∇V (x), x

〉 ≥ r‖x‖,
then X has a unique invariant probability measure dμ = e−2V dλ, and (PI) holds.

The following two auxiliary results play an important role in the proof of the
upper and the lower bound results for invariant density estimation. They actually
motivate the functional inequalities approach advocated in this paper.

For proving the upper bound, we exploit the well-known relation between
the Nash inequality and ultracontractivity (see Section 6.3 in [3] and references
therein). Given some diffusion X with associated Markov semigroup (Pt )t≥0 and
(p, q) ∈ [1,∞)2, denote

‖Pt‖p,q := sup
{
‖Ptf ‖Lq(μ) : f ∈ C(Rd),‖f ‖Lp(μ) = 1,

∫
f dμ = 0

}
(standard extension to the case q = ∞). Classical results are due to [8], showing
the equivalence of certain Sobolev-type inequalities and ultracontractivity. Another
classical reference is [4]: In the framework of symmetric Markov processes, their
Theorem 2.1 asserts that (NI) implies that there exists a constant B ∈ (0,∞), de-
pending only on d and C2, such that

‖Pt‖1,∞ ≤ BeC1t/C2 t−d/2, t > 0.

We shall use the following (related) result.

LEMMA A.3. Let X be a diffusion with associated infinitesimal generator L
and Markov semigroup (Pt )t≥0. If L satisfies (NI) with respect to the measure μ

with constants C1,C2 > 0, then

‖Pt‖1,∞ ≤ (
2C1 ∨ 4dC2t

−1)d/2
, t > 0.
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PROOF. Under the given assumptions, it follows from Theorem 2.1 in [1] that

‖Ptf ‖L2(μ) ≤ C(t)‖f ‖L1(μ) for C(t) := (
2C1 ∨ 2dC2t

−1)d/4
.

Taking adjoints, we obtain ‖Pt‖2,∞ = ‖Pt‖1,2. The semigroup property implies
that Pt = Pt/2 ◦ Pt/2 such that

‖Pt‖1,∞ ≤ ‖Pt/2‖1,2‖Pt/2‖2,∞ = ‖Pt/2‖2
1,2 ≤ C2(t/2). �

LEMMA A.4. Let X be a diffusion with associated infinitesimal generator L,
Markov semigroup (Pt )t≥0 and invariant measure μ defined by

dμ =
(∫

e−V dλ

)−1
e−V dλ,

V ∈ C2(Rd) some smooth potential function with
∫

e−V dλ < ∞. Assume that, for
V ′ ∈ C2(Rd), ‖V − V ′‖∞ ≤ C, and consider the probability measure μ′ defined
by

dμ′ =
(∫

e−V ′
dλ

)−1
e−V ′

dλ.

(i) If L satisfies (PI) w.r.t. μ with C0 > 0, then the perturbed process satisfies
(PI) w.r.t. μ′ with constant C′

0 ≤ e−4CC0.
(ii) If L satisfies (NI) w.r.t. μ with C1,C2 > 0, then the perturbed process satis-

fies (NI) w.r.t. μ′ with constants C′
1 ≤ C1, C′

2 ≤ C2.

PROOF. The first assertion is Lemma 1.2 in [14]. For the proof of the second
statement, consider the positive and self-adjoint operators

A := −L = −1

2
� + ∇V · ∇ and A′ := −1

2
� + ∇V ′ · ∇.

Trotter’s product formula implies that, for t > 0,

P ′
t f := e−A′t f = lim

n→∞
(
e−At/ne−∇(V ′−V )t/n)nf

such that ‖P ′
t f ‖∞ ≤ ‖Ptf ‖∞. The assertion follows from the equivalence of ul-

tracontractive estimates and Nash inequalities as in Corollary 2.4.7 in [8]. �

APPENDIX B: UPPER FUNCTIONS FOR POSITIVE RANDOM
FUNCTIONALS IN THE DIFFUSION FRAMEWORK

B.1. Preliminaries. The proposed selection rule for adaptive estimation of
the invariant density is based on the computation of upper functions. The proof of
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the central auxiliary result which we require substantially consists of suitable mod-
ifications of the arguments of the proof of Proposition 1 in [15] which itself relies
on a rather involved treatment of upper functions. Indeed, the precise implications
are as follows:

Proposition 2 in [16] =⇒ Theorem 1 in [17]

=⇒ Theorem 1 in [18]

=⇒ Corollary 1 in [18]

=⇒ Theorem 5 in [18]

=⇒ Proposition 1 in [15].

The derivation of exact constants is beyond the scope of this paper. We thus con-
tent ourselves with sketching the crucial modification in the application of Propo-
sition 2 in [16] (whose conditions can also be verified in the diffusion case) in
order to derive a “diffusion specific” version of Theorem 1 in [17].

Let X = (Xt)t≥0 be a diffusion process as introduced in Definition 1.1, and
assume that X is strictly stationary. Given some set H and a mapping G : H×R

d →
R, put

ξh(t) := 1

t

∫ t

0

[
G(h,Xu) − EbG(h,X0)

]
du, h ∈ H, t > 0.

Throughout the sequel, we will assume that

(B.1) G∞(h) := sup
x∈Rd

∣∣G(h, x)
∣∣ < ∞ ∀h ∈ H.

This implies in particular that the random variables G(h,X0), h ∈ H, and
G(h1,Xu) − G(h2,Xv), h1,h2 ∈ H, u, v ≥ 0, are bounded, and we obtain in view
of the Bernstein-type inequality (BI) for any z > 0 the exponential bound

P(t)
b

(∣∣ξh(t)∣∣ > z
) ≤ 2 exp

(
− z2

A2
b(h) + zB∞(h)

)
,

where

A2
b(h) := 2t−1 lim

T →∞T −1 Varb

(∫ T

0
G(h,Xu)du

)
,

B∞(h) := 2t−1C0 sup
x∈Rd

∣∣G(h, x)
∣∣.

The crucial point for finding a “diffusion-tailored” result is to derive an upper
bound on A2

b(·) by combining the variance decay estimate (implied by the spectral
gap inequality) with a uniform decay estimate (which follows from Nash inequal-
ities). This is done in the proof of the next auxiliary result.
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LEMMA B.1. Assume that the function G : H × R
d → R satisfies (B.1) and,

for any h ∈ H, λ(Gh) < 1, where Gh := supp(G(h, ·)). Then, for any drift function
b = −∇V ∈ �(C,C0,C1,C2) with associated invariant measure μV = μ and any
h ∈ H, it holds

(B.2) A2
b(h) ≤ t−1G∞(h)

∥∥G(h, ·)∥∥L1(μ)λ(Gh)ψ
2
d

(
λ(Gh),C0,C1,C2

)
,

where, for x ∈ (0,1),

ψ2
2 (x,C0,C1,C2) := −4 log

(|x|)(1 − C0C1) + 2C0

+ 32C2
(
log

(− log
(|x|)C0/2

)− log
(−|x| log

(|x|)))
and, for d ≥ 3,

ψ2
d (x,C0,C1,C2) := |x|(2/d)−1

{
32dC2

(
2

d − 2

)2/d

+ 2C0|x|1−(2/d)(1 − (2C1)
d/2 log

(|x|))}.

PROOF. Let X be as in Definition 1.1 with invariant measure μV = μ. Fix
h ∈ H, denote g(x) := G(h, x), x ∈ R

d , g◦ := g − ∫
g dμ, and recall the definition

of σ 2(·) according to (3.11).
Symmetry and invariance of μ imply that

(B.3) σ 2(G(h, ·)) = σ 2(g) ≤ 2
∫ ∞

0
〈g◦,Psg◦〉μ ds.

Analogously to the proof of Proposition 1 in [7], the proof of the upper bound in
(B.2) relies on a decomposition of the integral on the right hand side of (B.3). Let
0 < θ < � < ∞ to be specified later. For 1 ≤ p,q ≤ ∞ with 1/p + 1/q = 1 and
s ≥ 0, Hölder’s inequality implies that

(B.4) 〈g◦,Psg◦〉μ ≤ ‖g‖Lp(μ)‖Psg‖Lq(μ).

First, let T1 := [0, θ ] ∪ [�,∞) and p = q = 2, and note that (PI) (precisely, the
equivalent spectral gap inequality) entails that∫

T1

〈g◦,Psg◦〉μ ds ≤
∫
T1

‖g‖L2(μ)‖Psg‖L2(μ) ds

≤
∫
T1

e−2s/C0‖g‖2
L2(μ)

ds

≤
(
θ + 1

2
C0e−2�/C0

)
G∞(h)‖g‖L1(μ).(B.5)



3476 C. STRAUCH

For s ∈ T2 := [θ,�], we invoke (NI) and Lemma A.3. Applying (B.4) with p = 1,
q = ∞ first, we obtain∫

T2

〈g◦,Psg◦〉μ ds

≤ ‖g‖L1(λ)‖g‖L1(μ)

∫ �

θ

{
(2C1)

d/2 + (
4dC2s

−1)d/2}ds

≤ λ(Gh)G∞(h)‖g‖L1(μ)

{
(2C1)

d/2� + (4dC2)
d/2

∫ �

θ
s−d/2 ds

}
.

(B.6)

For d = 2, (B.6) implies for any 0 < θ ≤ � that∫
T2

〈g◦,Psg◦〉μ ds ≤ λ(Gh)G∞(h)‖g‖L1(μ)

{
2C1� + 8C2(log� − log θ)

}
.

Letting θ := − log(λ(Gh))λ(Gh), � := −C0 log(λ(Gh))/2, we obtain∫ ∞
0

〈g◦,Psg◦〉μ ds

≤ G∞(h)‖g‖L1(μ)λ(Gh)

{
− log

(
λ(Gh)

)
(1 − C0C1) + C0

2

+ 8C2 log
(
− log

(
λ(Gh)

)C0

2

)
− 8C2 log

(− log
(
λ(Gh)

)
λ(Gh)

)}
.

The assertion for d = 2 follows by substituting this upper bound into

A2
b(h) ≤ 4t−1

∫ ∞
0

〈g◦,Psg◦〉μ ds.

For d ≥ 3, it holds in view of (B.5) and (B.6),∫ ∞
0

〈g◦,Psg◦〉μ ds ≤
{
θ + 1

2
C0e−2�/C0 + λ(Gh)(2C1)

d/2�

+ 2(4dC2)
d/2

d − 2
θ1−(d/2)λ(Gh)

}
G∞(h)‖g‖L1(μ).

Set θ := 4dC2(2/(d − 2))2/dλ(Gh)
2/d , � := −C0 log(λ(Gh))/2. Then∫ ∞

0
〈g◦,Psg◦〉μ ds ≤ λ(Gh)G∞(h)‖g‖L1(μ)

{
8dC2

(
2

d − 2

)2/d

λ(Gh)
(2/d)−1

+ C0

2

(
1 − (2C1)

d/2 log
(
λ(Gh)

))}
,

and the claim follows as above. �
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B.2. Upper functions on the kernel estimation process. Consider some
function M : R→R satisfying the following assumptions:∫

M dλ = 1, m∞ := ‖M‖∞ < ∞, supp(M) ⊂ [−1/2,1/2],
M is symmetric and ∃L > 0 such that |M(t)−M(s)| ≤ L|t − s| ∀t, s ∈R. For any
r ∈ (0,1]d , x = (x1, . . . , xd)� ∈R

d and Vr defined according to (1.10), set

Mr(x) := V −1
r

d∏
l=1

M(xl/rl) =
d∏

l=1

r−1
l M(xl/rl).

Introduce families of random fields by setting

χr(x) := 1

T

∫ T

0

[
Mr(Xu − x) − E(T )

b

[
Mr(X0 − x)

]]
du, x ∈ R

d,

with r ∈ R̃T (d) := {
r ∈ (0,1]d : T ≥ ψ2

d (Vr) logT
}
,

and

Zr(x) := 1

T

∫ T

0

∣∣Mr(Xu − x)
∣∣du, x ∈ R

d,

with r ∈ R̃(a)
T (d) := {

r ∈ (0,1]d : T a2 ≥ ψ2
d (Vr) logT

}
,

a := (2γ ◦
p(d,m∞))−2 for the constant γ ◦

p(d,m∞) ≡ γ ◦
p(d,m∞;C0,C1,C2) de-

scribed in Remark 3.5. For any r ∈ (0,1]d , y ∈R
d , define

G(r, y) :=
∫
Rd

∣∣Mr(x − y)
∣∣ρV (x)dx = ∥∥Mr(· − y)

∥∥
L1(μ),

G(r) := supy∈Rd G(r, y) and G(r) := 1 ∨ G(r).

PROPOSITION B.2 (cf. Propositions 1 and 2 in [15]). Let X be as in Defini-
tion 1.1. Then, for any T > 0 and any p ≥ 1, there exist constants c1, c2, c′

1, c′
2,

depending only on p, d , ‖M‖L1(λ), m∞, such that

E(T )
b

[
sup

r∈R̃T (d)

{
‖χr‖∞ − γ ◦

p(d,m∞)ψd(Vr)

√
G(r) logT

T

}]p

+

≤ c1T
−p/2 + c2T

−p,

(B.7)

E(T )
b

[
sup

r∈R̃(a)
T (d)

{
G(r) − 2

(
1 ∨ ‖Zr‖∞

)}]p
+ ≤ c′

1T
−p/2 + c′

2T
−p,(B.8)

E(T )
b

[
sup

r∈R̃(a)
T (d)

{
1 ∨ ‖Zr‖∞ − 3

2
G(r)

}]p

+
≤ c1T

−p/2 + c2T
−p.(B.9)
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PROOF. Under the above conditions, Assumptions 3, 5, 8 in Theorem 5 in
[18] continue to hold in the diffusion framework. Obviously, λ(supp(Mr)) ∼ Vr.
In view of

sup
x∈Rd

∣∣Mr(x)
∣∣ ≤ V −1

r md∞,

Lemma B.1 thus implies that

A2
b(r) := 2T −1σ 2(Mr) ≤ Cd(C0,C1,C2)m

d∞T −1ψ2
d (Vr)G(r).

This observation allows to verify that a correspondent of the upper function
Û (v,z,p) in Theorem 5 in [18] (with matched notation) is given by the function

U (v,z,p)
(T , r, x(d)), specified as

λ◦
1

√
ψ2

d (Vr)G(r)
T

[
M̂q,v(r) + 2(v + 1)

∣∣log
(
max

{
G
(
r, x(d)

)
, T −1

})∣∣+ z
]

+ λ◦
2

T Vr

[
M̂q,v(r) + 2(v + 1)

∣∣log
(
max

{
G
(
r, x(d)), T −1})∣∣+ z

]
,

where λ◦
1 = λ◦

1(C0,C1,C2), λ◦
2 = λ◦

2(C0) are constant multiples of the quantities
λ1, λ2 defined in Section 3.1 of [17] (see page 200), and M̂q,v(·) is defined as in
Section 4.4.2 in [15].

In particular, letting q = p, v = 2p + 2, z = 1 and x(d) = y, we obtain for any
r ∈ R̃T (d) ⊂ RT (d) that

U (v,z,p)(
T , r, x(d)) ≤ γ ◦

p(d,m∞)ψd(Vr)

√
G(r) logT

T
.

A version of Theorem 5 in [18] then immediately gives (B.7). The remaining as-
sertions are deduced from (B.7) precisely as in the proof of Proposition 2 in [15].

�

Acknowledgements. It is a pleasure to thank Patrick Cattiaux and Alexei Ku-
lik for very helpful advice. Further thanks goes to the referees for a very careful
reading of the manuscript. Their comments and suggestions led to a number of
improvements and stimulated further research.

SUPPLEMENTARY MATERIAL

Supplement to “Adaptive invariant density estimation for ergodic diffu-
sions over anisotropic classes” (DOI: 10.1214/17-AOS1664SUPP; .pdf). The
supplementary file contains the proofs of the sup-norm oracle-type inequality
stated in Theorem 3.3, the upper bound in Theorem 3.4, the lower bound from
Theorem 3.6 and of the results for estimators based on discrete observations stated
in Theorem 4.1 and Theorem 4.3, respectively.

https://doi.org/10.1214/17-AOS1664SUPP


ANISOTROPIC INVARIANT DENSITY ESTIMATION 3479

REFERENCES

[1] BAKRY, D., BOLLEY, F. and GENTIL, I. (2011). Around Nash inequalities. In Journées Équa-
tions aux Dérivées Partielles (2010), Biarritz, France.

[2] BAKRY, D., CATTIAUX, P. and GUILLIN, A. (2008). Rate of convergence for ergodic con-
tinuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 727–759.
MR2381160

[3] BAKRY, D., GENTIL, I. and LEDOUX, M. (2014). Analysis and Geometry of Markov Diffusion
Operators. Grundlehren der Mathematischen Wissenschaften 348. Springer, Cham.

[4] CARLEN, E. A., KUSUOKA, S. and STROOCK, D. W. (1987). Upper bounds for symmetric
Markov transition functions. Ann. Inst. Henri Poincaré Probab. Stat. 23 245–287.

[5] CATTIAUX, P. and GUILLIN, A. (2008). Deviation bounds for additive functionals of Markov
processes. ESAIM Probab. Stat. 12 12–29.

[6] CHOROWSKI, J. and TRABS, M. (2016). Spectral estimation for diffusions with random sam-
pling times. Stochastic Process. Appl. 126 2976–3008. MR3542623

[7] DALALYAN, A. and REISS, M. (2007). Asymptotic statistical equivalence for ergodic diffu-
sions: The multidimensional case. Probab. Theory Related Fields 137 25–47.

[8] DAVIES, E. B. (1990). Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics
92. Cambridge Univ. Press, Cambridge.

[9] GOBET, E., HOFFMANN, M. and REISS, M. (2004). Nonparametric estimation of scalar diffu-
sions based on low frequency data. Ann. Statist. 32 2223–2253. MR2102509

[10] GOLDENSHLUGER, A. and LEPSKI, O. (2008). Universal pointwise selection rule in multi-
variate function estimation. Bernoulli 14 1150–1190.

[11] GOLDENSHLUGER, A. and LEPSKI, O. (2009). Structural adaptation via Lp-norm inequali-
ties. Probab. Theory Related Fields 143 41–71.

[12] GOLDENSHLUGER, A. and LEPSKI, O. (2011). Bandwidth selection in kernel density estima-
tion: Oracle inequalities and adaptive minimax optimality. Ann. Statist. 39 1608–1632.
MR2850214

[13] KUTOYANTS, Y. A. (2004). Statistical Inference for Ergodic Diffusion Processes. Springer,
New York.

[14] LEDOUX, M. (2001). Logarithmic Sobolev inequalities for unbounded spin systems revisited.
In Séminaire de Probabilités XXXV. Lecture Notes in Math. 1755 167–194. Springer,
Berlin.

[15] LEPSKI, O. (2013). Multivariate density estimation under sup-norm loss: Oracle approach,
adaptation and independence structure. Ann. Statist. 41 1005–1034. MR3099129

[16] LEPSKI, O. (2013). Upper functions for positive random functionals. I. General setting and
Gaussian random functions. Math. Methods Statist. 22 1–27. MR3040410

[17] LEPSKI, O. (2013). Upper functions for positive random functionals. II. Application to the
empirical processes theory, Part 1. Math. Methods Statist. 22 83–99. MR3071956

[18] LEPSKI, O. (2013). Upper functions for positive random functionals. II. Application to the
empirical processes theory, Part 2. Math. Methods Statist. 22 193–212. MR3107668

[19] LEPSKI, O. V. and LEVIT, B. Y. (1999). Adaptive nonparametric estimation of smooth multi-
variate functions. Math. Methods Statist. 8 344–370.

[20] LEZAUD, P. (2001). Chernoff and Berry–Esséen inequalities for Markov processes. ESAIM
Probab. Stat. 5 183–201.

[21] NASH, J. (1958). Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80
931–954.

[22] NELSON, E. (1958). The adjoint Markoff process. Duke Math. J. 25 671–690.
[23] NIKOLSKII, S. M. (1975). Approximation of Functions of Several Variables and Imbedding

Theorems. Die Grundlehren der Mathematischen Wissenschaften 205. Springer, New
York. Translated from the Russian by J. M. Danskin, Jr. MR0374877

http://www.ams.org/mathscinet-getitem?mr=2381160
http://www.ams.org/mathscinet-getitem?mr=3542623
http://www.ams.org/mathscinet-getitem?mr=2102509
http://www.ams.org/mathscinet-getitem?mr=2850214
http://www.ams.org/mathscinet-getitem?mr=3099129
http://www.ams.org/mathscinet-getitem?mr=3040410
http://www.ams.org/mathscinet-getitem?mr=3071956
http://www.ams.org/mathscinet-getitem?mr=3107668
http://www.ams.org/mathscinet-getitem?mr=0374877


3480 C. STRAUCH

[24] PAULIN, D. (2015). Concentration inequalities for Markov chains by Marton couplings and
spectral methods. Electron. J. Probab. 20 1–32. MR3383563

[25] SÖHL, J. and TRABS, M. (2016). Adaptive confidence bands for Markov chains and diffu-
sions: Estimating the invariant measure and the drift. ESAIM Probab. Stat. 20 432–462.
MR3581829

[26] STRAUCH, C. (2018). Supplement to “Adaptive invariant density estimation for ergodic diffu-
sions over anisotropic classes.” DOI:10.1214/17-AOS1664SUPP.

[27] VAN DER VAART, A. W. and VAN ZANTEN, H. (2005). Donsker theorems for diffusions:
Necessary and sufficient conditions. Ann. Probab. 33 1422–1451. MR2150194

SCHOOL OF BUSINESS INFORMATICS AND MATHEMATICS

UNIVERSITY OF MANNHEIM

68131 MANNHEIM

GERMANY

E-MAIL: strauch@uni-mannheim.de

http://www.ams.org/mathscinet-getitem?mr=3383563
http://www.ams.org/mathscinet-getitem?mr=3581829
https://doi.org/10.1214/17-AOS1664SUPP
http://www.ams.org/mathscinet-getitem?mr=2150194
mailto:strauch@uni-mannheim.de

	Introduction
	Adaptive estimation with respect to sup-norm loss under anisotropic Hölder smoothness constraints
	The general diffusion framework
	The collection of invariant density estimators
	Statement of main results
	Outline of the paper

	Preliminaries
	Functional inequalities
	The statistical diffusion model

	Adaptive estimation of the invariant density in higher dimensions
	Pointwise estimation revisited
	Invariant density estimation in the one- and two-dimensional case
	Selection rule
	Auxiliary quantities
	The selection rule
	Analysis of the selection rule
	Main results
	Estimation beyond the class of gradient drift diffusions

	Estimation from discrete observations
	Estimation based on high-frequency observations
	An adaptive estimation scheme for low-frequency observations

	Appendix A: Complements on functional inequalities
	Appendix B: Upper functions for positive random functionals in the diffusion framework
	Preliminaries
	Upper functions on the kernel estimation process

	Acknowledgements
	Supplementary Material
	References
	Author's Addresses

