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We study how the divide and conquer principle works in non-standard
problems where rates of convergence are typically slower than /n and limit
distributions are non-Gaussian, and provide a detailed treatment for a variety
of important and well-studied problems involving nonparametric estimation
of a monotone function. We find that for a fixed model, the pooled estima-
tor, obtained by averaging nonstandard estimates across mutually exclusive
subsamples, outperforms the nonstandard monotonicity-constrained (global)
estimator based on the entire sample in the sense of pointwise estimation of
the function. We also show that, under appropriate conditions, if the number
of subsamples is allowed to increase at appropriate rates, the pooled esti-
mator is asymptotically normally distributed with a variance that is empir-
ically estimable from the subsample-level estimates. Further, in the context
of monotone regression, we show that this gain in efficiency under a fixed
model comes at a price—the pooled estimator’s performance, in a uniform
sense (maximal risk) over a class of models worsens as the number of sub-
samples increases, leading to a version of the super-efficiency phenomenon.
In the process, we develop analytical results for the order of the bias in iso-
tonic regression, which are of independent interest.

1. Introduction. Suppose that Wy, ..., Wy arei.i.d. random elements having
a common distribution P. We assume that P is unknown and 6y = 09(P) is a
finite dimensional parameter of interest. In this paper, we focus on nonstandard
statistical problems where a natural estimator 6 (of Hp) converges in distribution to
a nonnormal limit at a rate slower than N!/2, that is,

(1.1) (0 —60) > G,

where ry = o(+/N) and G is nonnormal, has mean zero and finite variance o 2.

However, o2 can depend on P in a complicated fashion which often makes it diffi-
cult to use (1.1) to construct confidence intervals (Cls) and hypothesis tests for 6.
Such nonstandard limits primarily arise due to the inherent lack of smoothness in
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the underlying estimation procedure. Also, in many such scenarios the computa-
tion of 6 is complicated, requiring computationally intensive algorithms. Thus, in
the face of a humongous sample size N—quite common with present-day data—
these problems present a significant challenge both in computation and inference.

In this paper, we investigate how such nonstandard estimates behave under the
“divide and conquer” strategy—a method that has been much used in the anal-
ysis of massive data sets; see, for example, [20, 30, 31]—with an emphasis on
function estimation under monotonicity constraints which constitutes an impor-
tant genre of nonstandard problems of the above type. Indeed, a rich class of non-
standard problems arises in the nonparametric maximum likeli hood/least-squares
(NPMLE/LSE) based estimation of a monotone function, an important subarea of
the field known as shape-restricted inference, which has seen much activity over
the last few decades. The literature on monotone function estimation and infer-
ence is extensive: for an excellent exposition, we direct the reader to the recent
text [16]. A key feature of the NPMLE/LSE of a monotone function under stan-
dard smoothness assumptions is the pointwise n!/3 rate of convergence to the truth
with a non-Gaussian mean 0 limit distribution. Such estimators have been studied
in a variety of interesting statistical contexts, for example, isotonic regression [8,
9], where a monotone regression function is estimated via least squares under that
shape constraint, the current status model (and extensions thereof) [6, 17], where
the distribution of a failure time is estimated under the monotonicity constraint
from discrete response data, Grenander’s problem of estimating a decreasing den-
sity [15, 23], nonparametric estimation of a monotone failure rate [3, 18], likeli-
hood based inference for monotone response models [2], to name a few.

To provide a glimpse of the asymptotic features in monotone function estima-
tion, we elaborate on the first of the aforementioned examples: the isotonic re-
gression problem. Consider i.i.d. data {W; := (X;,Y;) :i =1,..., N} from the
regression model ¥ = u(X) + ¢ where Y € R is the response variable, X € [0, 1]
(with density f) is the covariate, u is the unknown nonincreasing regression func-
tion, E(g|X) = 0 and the conditional variance vZ(x) := E(¢?|X = x) is finite.
The goal is to estimate w : [0, 1] — R nonparametrically, under the constraint
of monotonicity. We will consider the LSE i defined as a minimizer of v —
Y Y =YX )2 over the set of all nonincreasing functions ¥ : [0, 1] — R.
We know that /& is unique at the data points X;’s and is connected to the slope
of the least concave majorant of the cumulative sum diagram [25], Chapter 1. If
w'(to) # 0, where 1y is an interior point in the support of X, and v is continuous,

(1.2) N'P(R(t0) — pt) > «Z,

with k& 1= [4v(t0)2 1 (10)/f (t0)|'/* and Z := argmin, g {W (s) + s} (where W is
a standard two-sided Brownian motion starting at 0) has the so-called Chernoff’s
distribution; see [29], Theorem 1. It is known that Z is symmetric around O and
has mean zero. Lastly, 02 = Var(kZ), the variance of the limiting distribution, is
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difficult to estimate as it involves the derivative of u, the estimation of which is
well known to be a challenging problem [6].

A closely related problem is the estimation of the inverse isotonic function at a
point. If a is an interior point in the range of © and 7y = w1 (a) € (0, 1) satisfies
' (to) # 0, then

(1.3) NP @) - @) S Rz,

where k¥ := |4v2(t0) Y (10)? f (t0)|1/ 3. this can be derived, for example, from the
arguments in [12]. Similar results hold across a variety of monotone function prob-
lems.

Another class of problems sharing the same convergence rate and exhibiting
nonstandard behavior is found in the world of “cube-root asymptotics” [19], which
include, for example, estimation of the mode [10], Manski’s maximum score esti-
mator [21], change-point estimation under smooth mis-specification [5], least ab-
solute median of squares [26], shorth estimation [14].

Divide and conquer/sample splitting: In the sample-splitting strategy called di-
vide and conquer, the available data is partitioned into subsamples, an estimate of
6o is computed from each subsample, and finally the subsample level estimates are
combined appropriately to form the final estimator. Our combining/pooling strat-
egy will be based on averaging. To be precise, assume that N is large and write
N =n x m, where n is still large and m relatively smaller (e.g., n = 1000, m = 50,
so that N = 50,000). We define our new “averaged” estimator as follows:

1. Divide the set of samples Wy, ..., Wy into m disjoint subsets S, ..., S, of
(approximately) equal size.

2. For each j =1,...,m, compute the estimator 6; based on the data points
in S je

3. Average together these estimators to obtain the final “pooled” estimator:

>4

Jj=1

(1.4) 0= 1
m

Observe that if the computation of 6, the global estimator based on all N obser-
vations, is of super-linear computational complexity in the sample size, computing
6 saves resources compared to 6. Further, the computation of § can be readily par-
allelized, using m CPUs. Such averaged estimators have been considered by many
authors in recent work to estimate nonparametric functions, but typically under
smoothness constraints; see, for example, [30, 31] and also [20] for a discussion
with broader scope. The above papers illustrate that the approach significantly re-
duces the required amount of primary memory and computation time in a variety

of cases, yet statistical optimality—in the sense that the resulting estimator is as
efficient as the global estimate—is retained.
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We next lay down the contributions of our paper to the divide and conquer
literature.

1. In Sections 2 and 3, we present general results on the asymptotic distribution
of the averaged (pooled) estimator §, both when m is fixed and when allowed to in-
crease as N increases, in which case a normal distribution arises in the limit (The-
orem 3.1). Furthermore, in the latter case, allowable choices of m, which affect
the rate of convergence of 6, crucially depend on the order of the bias of 6 ;. Pool-
ing provides us with a novel way to construct a CI for 6y whose length is shorter
than that of using 6 owing to the faster convergence rate involved. The calibration
of the new CI involves normal quantiles, instead of quantiles of the nonstandard
limits that describe 6 asymptotically. Moreover, the variance o> can be estimated
empirically using the subsample-level estimates, whereas in the method involving
6, one is typically forced to impute values of several nuisance parameters that arise
in the expression for o2 using estimates that can be quite unreliable.

2. The possible gain by sample-splitting is driven by the bias of the nonstan-
dard estimator, that one needs to quantify. In Section 4, we provide results on the
bias of monotonicity constrained estimators as well as their inverses in a variety
of important nonparametric problems: isotonic regression, current status (case 1
interval) censoring, Grenander’s decreasing density problem and the problem of
estimating a monotone failure rate. The bias in these problems is hard to compute
because the usual Taylor expansion arguments that work in smooth function esti-
mation problems cannot be employed. For the first time, we provide a nontrivial
bound on the order of the bias of the monotone LSE/NPMLE under mild regularity
assumptions.

Furthermore, establishing the asymptotic normality of the pooled estimator in
monotone function problems requires showing uniform integrability of certain
powers of the normalized LSE/NPMLE as well as its inverse, pointwise. We es-
tablish this property for all powers p > 1 under suitable model-specific assump-
tions in Section 4. As a consequence, we obtain upper bounds on the maximal risk
of the monotone LSE/NPMLE and its inverse over suitable classes of functions.
Although such bounds on the maximal risk are known for most nonparametric
function estimators, this is the first instance of such a result in the general isotonic
regression problem.* The results on bias and uniform integrability are then used to
study the sample-splitting method in the different models considered by verifying
the conditions of Theorem 3.1.

3. In Section 5, we present a rigorous study of a super-efficiency phenomenon
that comes into play when using the pooled estimator for estimating the inverse
of an isotonic regression function. Let 6 denote the average of the . 1].(a)’s,

4Similar risk-bounds are presented in the special case of current status model in Theorem 11.3 in
[16]; however, their derivation uses a special feature of the isotonic estimator in that particular model
which is not true in the general scenarios we consider, as discussed later in Remark 4.1.
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where fi,, ; is the isotonic LSE from the jth subsample and let 6y := 1) = w(a)
[see (1.3)]. We show that for a suitably chosen (large enough) class of models My,
when m = m,, — o0, the maximal risk,

sup E,[N?3(6 —60)%]
neMop

diverges to infinity as N — oo whereas the corresponding maximal risk of the
global estimator 6= ,0,;,1 (a) remains bounded. Thus, while the pooled estimator
6 can outperform the LSE under any fixed model, its performance over a class
of models is compromised relative to the isotonic LSE. The larger the number
of splits (m), the better the performance under a fixed model, but the worse the
performance over the entire class. Our discoveries therefore serve as a cautionary
tale that illustrates the potential pitfalls of using sample-splitting: the benefits from
sample-splitting, both computational and for inference under a fixed model, may
come at subtle costs. The proofs of some of the main results are presented in Sec-
tion 7 and the Supplementary Material [4] provides detailed coverage of additional
technical material.

Before we move on to the rest of the paper, there is one point on which some
clarity needs to be provided: in subsequent sections, the total sample size N will
be written as m x n (i.e., n subsamples of equal size). Now, starting with an m,
not all sample-sizes N can be represented as a product of that form. To get around
this difficulty, one can work with the understanding that we reduce our sample
size from N to N :=m x |N/m] (which is then renamed N) with the last few
samples being discarded. The asymptotic precision of the pooled estimate based
on the reduced sample will not be compromised relative to its pooled counterpart
based on all N observations (split into approximately equal subsamples).

2. Fixed m and growing n. Consider the setup of (1.1), where 6y is the pa-
rameter of interest and let 6 be the pooled estimator as defined in (1.4). We start
with a simple lemma that illustrates the statistical benefits of sample-splitting when
n is large and m is held fixed.

LEMMA 2.1. Suppose (1.1) holds with E(G) = 0 and Var(G) = o2. For m
fixedand N = m x n,

2.1)  Smrm@—00) S Hi=m 2(G1+Gat--+Gp)  asn— oo,
where G1, G, ..., Gy, arei.i.d. G. Note that H has mean zero and variance o2,

Compare the above result with the fact that if all N data points were used
together to obtain & we would have the limiting distribution in (1.1). Now, if
{[rn(@O — «90)]2} N>1 is uniformly integrable (which we will prove later for certain
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problems), we conclude that ]E[r,zv (é — 60)?] converges to Var(G) as N — oo,
while

mry o 2 _
2.2) E 5 ry(@ —06p)" | — Var(H) = Var(G) as N — oo.
r
N
Thus, the asymptotic relative efficiency of  with respect to 6 is mr?/ r12V For
example, if ry = N7,y < 1/2, then using 6 gives us a reduction in asymptotic

variance by a factor of m!' =27 . Hence, for estimating 6, the pooled estimator 0
outperforms 6.

REMARK 2.1. If{[r, (é i — 90)]2},21 is uniformly integrable, then the variance
of r, (é- 6p), which is equal to an = r,% Var(é i), converges to o2 as n — oo, for
every j=1,...,m. As we have m independent replicates from the distribution of
6; s o2 can be approx1mated by

2.3)

REMARK 2.2. For moderate values of m, the m-fold convolution H in (2.1)
can be approximated by an appropriate ¢ (or normal) distribution. This yields a
simple and natural way to construct an approximate (1 — «) CI for 6y that com-

pletely by-passes the direct estimation of the problematic nuisance parameter o 2:

_ o
0 — ——tapm1,0+ ——lq 2,m—1:|’

|: 'n/m / I'na/m /
where f4 ,—1 denotes the (1 — «)th quantile of the ¢-distribution with m — 1 de-
grees of freedom. Furthermore, in certain cases, iE 18 the case that we know the
distribution of the centered non-Gaussian variable Z := G /o (which has unit vari-
ance) and are able to simulate from its distribution.? In this case, the Student’s ¢ (or

normal) approximation can be avoided. As ry (é_,- — 6p) —d> o Z, for j=1,...,m,
the asymptotic distribution of 6 r,m'/? (0 — 6py) coincides with the distribution
of

m -1
= [Z(Z — Zn)*/(m — 1)} m'?Z,,

i=1

where Z Lyoees Zm are i.i.d. copies of Z ,and Z,, denotes their sample mean. Hence
one could replace the ¢-distribution with the appropriate quantiles of H, which can
be computed, thanks to the fact that we are able to simulate from the distribution
of Z.

S5For example, in monotone function estimation, for example, (1.2), 7 is the Chernoff random
variable scaled by its own standard deviation.
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3. Letting m grow with n: Asymptotic considerations. In this section, we
derive the asymptotic distribution of \/mr, (6 — 6p) under certain conditions as
m — oo. To highlight the dependence on n, we write m = m,, 9 =6, ,j and
0 = 9 . Consider the triangular array {£,,1.8,.2, ..., &m, In>1 Where §n,j =
rn(en,, — 6p). Let b, :=E(&,,1) = rn(6, — 6p) where 6, .= E(éml) is assumed
to be well defined. The following theorem is proved in Section 7.1.

THEOREM 3.1. Suppose (1.1) holds where E(G) = 0 and Var(G) = o2. Also,
suppose that b, = 0(0;1), where ¢, — 00 as n — 00, and {53’1} is uniformly
integrable. Then, as n — oo:

(1) for any m, — oo, such that m,, = o(c,%), ) /mnrn(émn —6p) —d> N(0,02);

i) if mn ~ O(c2), and furthermore \fiinby — <, then /it @m, — 60) >
N(z,0?).

REMARK 3.1 (Gains from sample-splitting: “divide to conquer”). The pooled
estimator 9,,,” is more effective than QN, when its convergence rate exceeds that of
the latter, that is,

r r T,
N S0 & N/n

«/m_nr n m,ll/z
thus, if ry = N%, using N =n x m,, this requires & < 1/2. In other words, accel-
eration is only possible if the initial estimator has a slower convergence rate than
the parametric rate.

— 0;

REMARK 3.2 (Choice of m,). As above, let ry = N¥ with @ < 1/2, and let
cn =n®. Choosing m, = n2*=% with 0 < 8 < 2¢, so that m, = o(c,%), we have
STty = n?7%2+% Using m, x n = N, we get n = N'/@#=5+D_The conver-
gence rate of the pooled estimator in terms of the total sample size is therefore
N (@=8/2+)/2(¢=8/2+1/2) "Since o < 1/2, this rate is strictly less than N1/2. Next,
the improvement in the convergence rate is given by

¢—8/2+a _a_2<1_) ¢ —358/2
2(¢p —8/2+1/2) B ¢—8/2+1/2

2

which is monotone decreasing in §. This means that smaller values of &, corre-
sponding to larger values of m,, = N ?¢=9/(2¢=6+1) gjve greater improvements in
the convergence rate. In the situation of conclusion (ii) of the above theorem, when
8 =0and m, = O(c2), we get the maximal convergence rate: N @+#)/2(¢+1/2) o
get the best possible rate, we would like to get hold of the optimal value of c,, that
is, we would want b, = O(c,, 1) but not o(c, 1. The optimal ¢, might, of course,
be difficult to obtain in a particular application; however, suboptimal ¢;,’s will also
improve the rate of convergence, albeit not to the best possible extent.



DIVIDE AND CONQUER IN NONSTANDARD PROBLEMS 727

From Theorem 3.1, we see that the two key challenges to establishing the
asymptotic normality of the pooled estimator are: (a) establishing uniform inte-
grability as desired above, and (b) determining an order for the bias b,,.

4. Sample splitting in a variety of monotone function problems. In this
section, we study the behavior of the pooled estimator obtained via sample-
splitting through a variety of examples involving the estimation of a monotone
function in different contexts: regression, current status data, density estimation
and hazard rate estimation under right censoring. These four scenarios cover the
four core statistical contexts in which monotone function estimation has been stud-
ied extensively in the literature. As we will see, the results obtained in the four
different scenarios (under broadly similar assumptions) show the recurrence of the
same convergence rates.

4.1. The isotonic regression problem. Our formal treatment is developed in
the framework of [12] which considers a general monotone nonincreasing regres-
sion model described below. The results, of course, extend immediately to the
nondecreasing case. Having observed i.i.d. copies {W; = (X;,Y;):i =1,...,n}
of (X,Y) €[0, 1] x R, we aim at estimating the regression function y defined by
u(x) =E(Y|X =x), for x € [0, 1], under the constraint that it is nonincreasing on
[0, 1]. Alternatively, we may be interested in estimating the inverse function ;'
With e = Y — u(X), we define v?(x) := E(¢?|X; = x) for all x € [0, 1] and we
make the following assumptions:

(R1) p is differentiable and decreasing on [0, 1] with inf; |u/(z)| > 0 and
sup, |u'(1)] < oo.

(R2) X has a bounded density f which is bounded away from zero.

(R3) There exists ¢ > 0 such that v2(r) > co(z A (1 — 1)) for all 7 € [0, 1].

(R4) There exists a > 0 such that E(e?¢|X) < exp(a@z) a.e. forall 6 e R.

Assumption (R3) is less restrictive than the usual assumption of a variance function
v bounded away from zero and allows us to handle the current status model in Sec-
tion 4.2. Assumption (R4) is fulfilled, for instance, if the conditional distribution
of £ given X is sub-Gaussian and the variance function v is bounded.®

4.1.1. The isotonic LSE of u and the inverse estimator. We start with an expo-
sition of the characterization of the LSE of & and its inverse under the monotonic-
ity constraint. With X (1) < --- < X(,) denoting the order statistics correspond-
ing to X1,..., X,, and Y(;) the observation corresponding to X(;), let A, be the

6Recall that a random variable V is said to be sub-Gaussian if for some positive constant T > 0
(which depends on V), EEV) < exp(12t2/2) for all 7 € R.
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piecewise-linear process on [0, 1] such that

4.1) A(%) = %ZYm

J<i

forall i € {0, ..., n}, where we set sto Yy =0.Let Xn be the left-hand slope of
the least concave majorant of A, . It is well known that a monotone /i, is an LSE
if and only if it satisfies

(4.2) fn(X(@)) = dn(i/n)

for all i = 1,...,n. In the sequel, we consider the piecewise-constant left-
continuous LSE /i, that is constant on the intervals [0, X(y], (X(n), 1] and
(X(,'_l), X(i)] foralli = 2, N 1.

Now, recall that for every nonincreasing left-continuous function 4 : [0, 1] — R,
the generalized inverse of & is defined as: for every a € R, h~!(a) is the greatest
t € 10, 1] that satisfies #(t) > a, with the convention that the supremum of an
empty set is zero. In the sequel, we consider the generalized inverse i, ! of /i,

as an estimator for p~!.

4.1.2. Uniform integrability and bias. Below, we provide bounds on the max-
imal risk of the isotonic LSE and its inverse, which imply uniform integrability.
Although such bounds on the maximal risk over suitable classes of functions are
known for most nonparametric function estimators, this is the first instance for
such a result in the context of isotonic regression. We also establish the order of
the bias for both estimators. The proofs are given in Section 7.4.

THEOREM 4.1. Assume (R4) and that X has a density function f. Let
A1, ..., As be positive numbers and consider F1, the class of nonincreasing func-
tions  on [0, 1] such that

() — p(x)

; < Aj forallt #x €0, 1],
—X

(4.3) Al < ‘

lu()| < As for all t € [0, 1], and Az < f(t) < A4 for all t. Then, for any p > 1,
there exists K, > 0 that depends only on p, Ay, ..., As and a such that:

L. limsup, , o sup,c 7 nPPE, (1, (@) — =" (@)|P) < K, forall fixeda € R,
2. limsup,,_, oo sup,,c 7, 17 *Ey (| (1) — n(1)|P) < K, for all fixed t € (0, 1).

Note that (4.3) holds if u has a first derivative that is bounded from both infinity
and zero.

REMARK 4.1. Theorem 4.1 implies that for fixed ¢, n?/>E,, (|1, (t) — u(t)|P)
is bounded. This is similar to [16], (11.32) and (11.33), in the current status model.
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However, the inequalities in [16] hold for all #, whereas the corresponding inequal-
ity for the general regression model above holds only for ¢ in a restricted interval.
This is due to a very specific feature of the estimator in the current status model:
it has the same range as the estimated function since both of them are distribution
functions. In particular, the estimator is consistent at the boundaries in the current
status model, whereas it is not, in the general regression model. Hence, the strat-
egy of proof in [16] does not extend to our regression model: whereas the proof
in [16] is based solely on an exponential inequality for the tail probabilities of the
inverse estimator, our proof is based on two tail inequalities, one of them being an
extension of Theorem 11.3 in [16] to our setting (Lemma 7.1), and the other one
being a sharper inequality for points outside the range of x (Lemma 7.3).

We next consider the order of the bias. Tackling the bias requires imposing
additional smoothness assumptions on the underlying parameters of the problem.
Precisely, we assume for some of our results that v> has a bounded second deriva-
tive on [0, 1], that u is differentiable with

(4.4) W @)= M| <Clx—y®  forallx,yel0,1]

for some C > 0 and s > 0 (where bounds on s will be specified precisely while
stating the actual results); and, instead of (R2), the more restrictive assumption:

(R5) The density f of X is bounded away from zero with a bounded first

derivative on [0, 1].

THEOREM 4.2. Assume (R1), (RS), (R3) and (R4). Assume, furthermore, that
v? has a bounded second derivative on [0, 1] and W satisfies (4.4) for some C > 0
and s > 1/2. Then

E(/:L;l(a) _ H/_l(a)) — 0(n_1/2)+0(n_(2S+3)/9(10gn)25/2)
uniformly in a € [u(1) + Kn=/%logn, 1(0) — Kn="®logn].
Now, consider the bias of the direct estimator. For technical reasons, we require

a higher degree of smoothness s = 1 on ' than needed for dealing with the inverse
function and we obtain a slower rate than for the inverse.

THEOREM 4.3. Assume (R1), (R5), (R3), (R4), v? has a bounded second
derivative on [0, 1] and (4.4) holds for some C > 0 and s = 1. For an arbitrary
fixed [c1, c2] C (0, 1), we have

E(fin (1) — pu(t)) = O (n~ /137

with an arbitrary { > 0, where the big-O term is uniform in t € [c1, c2].
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4.1.3. On the criticality of the smoothness assumption on . Theorems 4.2
and 4.3 show that under appropriate smoothness assumptions, the bias of the iso-
tonic LSE and its inverse converge to O at a rate strictly faster than n~'/3; for ex-
ample, in the inverse problem, n'/3 (E(,&;] (a)) — y,_l (@) = o(cn_l) for some ¢,
going to infinity, where by Theorem 3.1, we can choose the number of subsamples
my — oo (in terms of ¢,) for constructing the pooled estimator, achieving in the
process an acceleration in the convergence rate compared to the global estimator.
However, the cube-root convergence rate in the isotonic regression problem does
not require smoothness: it is valid even under a Lipschitz assumption on the regres-
sion function. It is, therefore, interesting to consider whether the divide and con-
quer method works under the weaker Lipschitz assumption. This boils down to the
question whether the bias of the isotonic estimator (or its inverse) also disappears
at a rate faster than n~!/3 under Lipschitz continuity. We show in Section 8.13 of
the Supplementary Material (in the inverse problem setting) that without smooth-
ness, Lipschitz continuity in itself is not sufficient to guarantee a bias that van-
ishes sufficiently quickly. Indeed, in our example, nl/3 (E(a, Y(@)) — =" (a)) con-
verges to a nonzero quantity. The pooled estimator therefore accumulates bias and
its MSE goes to infinity as m, increases and divide and conquer fails dramati-
cally.

4.1.4. Sample splitting in the isotonic regression model. We next study
the effect of sample-splitting in the isotonic regression model. We consider
N i.i.d. copies {(X;, Y,')}lN1 of (X,Y) as above. The parameter of interest is

6o = 1 (tp) which is estimated by
_ 1 2
Om, = — Y n.j (10),
(et

fLn,; being the isotonic LSE computed from the jth split-sample. Under (a subset
of) the assumptions on the parameters of the model made in Theorem 4.3, conver-
gence in law to Chernoff’s distribution holds: with /i denoting the global estimator
based on all N observations, we have (1.2) with k := |4v2(t0)u/(t0)/f(t0)|1/3. To
apply Theorem 3.1, we need to show that: (a) n'3@6, — w(to)) = O(n~?) (here
0, = Elfin.1(t0)]) for some ¢ > 0, and (b) the uniform integrability of the sequence
{023 (i, 1 (t0) — 11(10))*}nz1.

Now, (b) is a direct consequence of Theorem 4.1 applied with any p > 2. As far
as (a) is concerned, by Theorem 4.3, we know that the desired condition in (a) is
satisfied for s = 1 in (4.4) for any fixed #p € (0, 1), by taking ¢ = (7/15 —1/3) —
¢ =(2/15—¢) where ¢ > 0 can be taken to be arbitrarily small. From Remark 3.2,
choosing m, = n?¢=% = p*/15-2¢=% for a small enough 0 < § < 2¢, we conclude
that with o2 = k2 Var(Z), we have

(45) N(7/15—{—8/2)/(19/15—2{—5)(ém _ 90) _d) N(O, 0.2)
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4.1.5. Inverse function estimation at a point. Consider the same set-up as in
Section 4.1.4. We now consider estimation of ©~'(a) via the inverse isotonic
LSE under the assumptions of Theorem 4.2. The behavior of the isotonic esti-
mator ! based on the entire data of size N is given by (1.3) where k :=
[4v2(10) /1’ (10)> f (t0)|'/3, with to = 1~ " (a). To apply Theorem 3.1, we need to
show that: (a) n'/3(0, — =" (a)) = O(n™?) (here 6, = E[}1,, | (a)]) for some ¢ >
0, and (b) the uniform integrability of the sequence {n?/3 ([L;ll (a)—p~! (a))2}n21.

In this case, (b) is a direct consequence of Theorem 4.1 af)plied with any p > 2.
As far as (a) is concerned, by Theorem 4.2, we know that the desired condition in
(a) is satisfied for s > 3/4 in (4.4) for any fixed a in the interior of the range of u
by taking ¢ = (1/2 — 1/3) = 1/6. From Remark 3.2, choosing m, = n>¢ =n!/3
[for the inverse function estimation problem we are actually in the situation of
conclusion (ii) of Theorem 3.1 with T = 0], we conclude that

(4.6) NUBTIO/RAHDN G gy = N33, — 0p) > N(0,52),

where &2

of N3/8,

= &2 Var(Z). The pooled estimator, therefore, has a convergence rate

REMARK 4.2. The order of the bias obtained in the forward problem (The-
orem 4.3) is slower than that obtained in the inverse problem (Theorem 4.2) and
comes at the expense of increased smoothness (s = 1) compared to Theorem 4.2.
This seems to be, at least partly, an artifact of our approach where we start from the
characterization of the inverse estimator and derive results for the forward problem
from those in the inverse problem through the switching relationship.

Next, even for the inverse problem, it is not clear at this point whether the order
of the bias obtained in Theorem 4.2 is optimal, that is, the best possible one under
the assumed smoothness. It is conceivable that when s > 3/4 the exact order of the
bias is smaller than the obtained o(n~'/2) rate from Theorem 4.2. A smaller bias
would allow a faster rate of convergence than N3/8 through an appropriate choice
of m,. A complete resolution of the bias problem is outside the scope of this paper.
It is, however, worth reiterating that Theorems 4.2 and 4.3 are the first systematic
attempts in the literature to quantify the bias of isotonic estimators.

4.2. The current status model. The current status model has found extensive
applications in epidemiology and biomedicine. One version of this problem is to
estimate the distribution function F7 of a failure time 7 > 0 on [0, 1], based on
observing n independent copies of the censored pair (X, 17<y). Here, X € [0, 1]
is the observation time independent of 7', and 1r<x stipulates whether or not the
failure has occurred before time X. Then

Fr(x)=P(T <x)=E(lr<x|X =x)

for all x € [0, 1]. This falls in the general framework of Section 4.1 with ¥ =
—1r<x and u = —Fr, which is nonincreasing. It follows from [17], Remark on
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page 30, that the NPMLE of Fr is precisely the right-continuous version of Frp =
— (1, where [1,, is the LSE from Section 4.1.1. We give below a separate treatment
for ﬁrn in the current status model since ¢ := —17<x + Fr(X) does not satisfy
assumption (R4). The following theorem is proved in Section 7.2.

THEOREM 4.4. Assume that we observe n independent copies of (X, 1r<x),
where X € [0, 1] is independent of T > 0. Assume that T has a continuous density
function fr that is bounded away from both zero and infinity on [0, 1], and that
X has a density function f on [0, 1] that is bounded away from zero and has a
continuous ﬁrst derivative on [0,1]. With Fr, as above and the corresponding
inverse FTn (@)=, L(=a), we have:

L. For any p > 1, there exists K, > 0 such that for all n, t € [0, 1] and a €
[0, 1],

E(|Fra(t) — Fr()|") < Kpn™P? and E(|F;) (@) — F7'(@)|") < Kpn=P/3.

2. If moreover, fr is Lipschitz continuous, then with arbitrary positive K, c1, ¢
and ¢y < 1,

E(Fr @) — Frl@) =o(n™"?) and E(Fr.(t) — Fr(t)) = 0(n~"/15+%)

uniformly for all a € [Kn_l/6 logn, 1 — Kn~1/6 logn] and t € [cy, c3].
3. Now, let Fry deno(e the MLE based on N = my X n observations from the
current status model, ﬁ;Jn) the MLE from the jth subsample and an the pooled

isotonic estimator obtained by averaging the ﬁ';ln) s. Under the above assumptions,
forall ¢, 8 > 0, sufficiently small, and any 0 <t < 1, we have

N(7/15—g—5/2)/(19/15—2;—5)(Fm (1) — F(1)) 4 N(O,az),

where o2 ={4Fr(tH)(1 — FT(t))fT(t)/f(t)}z/3 Var(Z). Moreover, for any a €
(0, 1), with 9,,1n the pooled estimator obtained by averaging the (Fry Y )) L(a)s,

N3B(@,, — Frl(@) % N(0,52),

where 52 = {4a(1 — a) /1 (t)* f (1)}*/> Var(Z), with t, = F7 ' (a). On the other
hand,

N3 (Fry () — () S (4Fr (1) (1 — Fr ) fr@)/f (1)) /2.

while

N'B3(Er ) @) = Frl @) S {4a(l — o)/ fr(t)> £ (1)} 2.
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4.3. The monotone density and monotone hazard problems. We further illus-
trate our results on two widely studied monotone function problems, where the
goal is to estimate a function A on [0, 1] under the known constraint that it is non-
increasing.

(a) Grenander estimator: Consider i.i.d. data W1, ..., W, with common nonin-
creasing density function A on the interval [0, 1]. The nonparametric MLE of X is
An, the left-hand slope of the least concave majorant of the empirical distribution
function A, corresponding to Wy, ..., W,.

(b) Monotone hazard under right censoring: Consider i.i.d. data {W; :=
(X;,8;):i=1,...,n} from the random censorship model: X; = min(7;, C;) and
8; = 1yr.<c;). The failure times 7; are assumed to be nonnegative with density
f and to be independent of the i.i.d. censoring times C; that have a distribution
function G. The failure rate A = f/(1 — F), where F is the distribution function
corresponding to f, is assumed to be nonincreasing. We will consider the Huang—
Wellner estimator ):,1 on [0, 1], defined as the left-hand slope of the least concave
majorant of the restriction of the Nelson—Aalen estimator A, to [0, 1] [18]. Recall
that if #; < --- < tg¢ denote the ordered distinct uncensored failure times, and rny
the number of i € {1,...,n} with X; > f;, then A, is constant on [fx, fx+1) with
A, () = Zigk nl._l forall k, A, (t) =0forallt <1, and A, (t) = A, (tg) for all
t>1tg.

Given some ty € (0, 1) the parameter of interest is 6y = A(#p).

THEOREM 4.5.  Assume that we observe n independent copies of W in either
the framework (a) or (b), with the corresponding estimator \,, of A. Assume that A
is differentiable and decreasing on [0, 1] with inf; A(t) > 0 and

'A(t) — A(x)

4.7 A<
t—Xx

< Ap forallt #x €10, 1].

In addition, under (b), assume that F(1) < 1, lim;y1 G(t) < 1, and G has a
bounded continuous derivative on (0, 1). We then have, in both settings (a) and

(b):

1. Forany p > 1, there exists K, > 0 such that for all n, t € (n=13,1—n=13
and a € R,

E(|An(t) —A(0)|") < Kpn =P and E(|&,; ' (@) — 27 (@)|") < Kpn™P/3.

2. If moreover, A has a first derivative that satisfies |A'(t) — X' (x)| < A|t — x|
forallt,x € [0, 1] and some A > 0, then with K > 0,c; >0,cy; < 1,and ¢ >0
arbitrary constants,

EG @) =27 @) =o(n™ ) and E((t) — A1) = O(n~7/15+%)

uniformly for all a € [Kn~1/6 logn, 1 — Kn~1/6 logn] and t € [c1, c3].
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3. Now, let A N denote the MLE_based on N =m, X n observations, ):f,j ) the
MLE from the jth subsample and M., the pooled isotonic estimator obtained by

averaging the 5»,(1] )s. Under the above assumption, for all ¢, § > O sufficiently small,
andany 0 <t < 1, we have

NONS=E=3/0/A9/15-20=8) 3 (1) — 3.(1)) > N(0, x> Var(Z)),
where k = [4L(N )|'3 under (a) and x = |41()A (1) /H()|'? under (b),

where H(t) = (1 — F(t))(1 — G(t)). Moreover, for any a € (0, 1), with émn be-
ing the pooled estimator obtained by averaging the ()A»,(lj ))_l (a)s,

N3G, — 27 (@) > N(0, 22 Var(2)),

with & = |4a/[N A" @) 1?|'? under (a) and & = |4a/[N(A"'(a)]* x
H("Ya))|'? under (b). On the other hand,

N'B (G (t0) — A1) > K Z,
while

N3G @) — 2N @) S k2.

To save space, and given that the proof techniques are similar to those of the
models considered earlier, an outline of the proof of the above theorem is relegated
to Section 8.14 of the Supplementary Material.

5. Sample-splitting and the super-efficiency phenomenon. The variance
reduction accomplished by sample-splitting [see (2.2)] for estimating a fixed
monotone function, or its inverse, at a given point comes at a price. We show in
this section, in the context of the inverse isotonic regression problem, that though
a larger number of splits (m) brings about greater reduction in the variance un-
der a fixed model (i.e., a fixed regression function), the performance of the pooled
estimator in a uniform sense, over an appropriately large class of functions, deteri-
orates in comparison to the global estimator as m increases. This can be viewed as
a super-efficiency phenomenon: a trade-off between performance at a fixed model
and performance in a uniform sense.

5.1. Super-efficiency of the pooled estimator. Fix a nonincreasing function pg
on [0, 1] that is continuously differentiable on [0, 1] with 0 < ¢ < | ,ué)(t)| <d< o0
for all # € [0, 1]. Let xg € (0, 1). Define a neighborhood Mg of wg as the class
of all continuous nonincreasing functions p on [0, 1] that are continuously dif-
ferentiable on [0, 1], coincide with o outside of (xg — &g, xo + &9) for some
(small) g9 > 0, satisfy 0 < ¢ < |u/(t)| < d < oo for all ¢ € [0, 1], and such that
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w1 (a) € (xo — €9, xo + €0) where a = o(xo). Now, consider N i.i.d. observa-
tions {(X;, Yi)}lN:1 from (X, Y) as in Section 4.1 where X ~ Uniform(0, 1) is in-
dependent of € ~ N (0, v2). We know that the isotonic estimate éN of Op := ! (a)
(which is actually xg) satisfies

(5.1) N3Gy —60) % G,

as N — oo, where G =4 k7, Z being the Chernoff random variable, and k¥ > 0 is
a constant. If we split N as m xn, where m is a fixed integer, then as N — oo,
Lemma 2.1 tells us that N'/3(8,, —6p) converges in distribution to m~YOH  where

O, 1s the pooled estimator and H has the same variance as G. By Theorem 4.1, we
have uniform integrability under 1o, where

E,.,[N*3(@y — 60)*] = Var(G) and
(5.2) 2/3/4 2 1/3
Epuo[N?3 (0 — 00)*] = m ™13 Var(G),

as N — oo. Hence, the pooled estimator outperforms the inverse isotonic regres-
sion estimator in terms of pointwise MSE.

We now focus on comparing the performance of the two estimators over the
class M. In this regard, we have the following theorem, proved in Section 7.3.

THEOREM 5.1. Let

E :=limsup sup E,[N?3(by —u~'(@)*] and
N—oo peMy
(5.3)

E, :=liminf sup E,[N*?@,, —u""(@)*].
N—o00 ueM
where the subscript m indicates that the maximal risk of the m-fold pooled esti-
mator (m fixed) is being considered. Then E < oo while E,, > m*/3cq, for some
co > 0. When m = my, diverges to infinity,

liminf sup E,[N?? @, —n " (a))?] = cc.
N— o0 nweMo

Therefore, from Theorem 5.1 it follows that the asymptotic maximal risk of the
pooled estimator diverges to oo at rate (at least) m?/3. Thus, the better off we are
with the pooled estimator for a fixed function, the worse off we are in the uniform
sense over the class of functions M.

REMARK 5.1. As an inspection of the proof of this theorem reveals, the super-
efficiency phenomenon with this dichotomy of pointwise and uniform risk is really
an outcome of a bias-related problem. The maximal squared bias of the appropri-
ately normalized pooled estimator over the class of functions Mg considered in
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TABLE 1
E[(Ay' @—pn~"(@)?]
B ]E[(Qm*li_l (l/l))z]
the pooled estimator 0y, with the global estimator ﬁﬁl as n and m change for the model:
Y =u(X)+e, X ~Unif(0, 1), e ~ N(O, 0.22) and a = 0.5, with (i) u(x) = x, and
(i) w(¥) = pn () = x + 0P BO3 (x = x0)) with Bw) =271 (1 = (lul = DMLy <).
For both (i) and (ii), 6y = u (@) =

Ratios of the (estimated) mean squared errors comparing the performance of

(n, m)

5 10 15 30 45 60 90
50 1.67 1.71 1.90 1.66 1.57 1.65 1.17
100 1.31 1.76 221 2.29 2.16 2.46 2.33
200 1.75 2.06 242 2.81 2.58 3.16 3.39
500 1.70 2.13 2.12 2.80 3.16 3.59 4.11
1000 1.46 2.04 2.46 2.88 3.60 3.51 431
3000 1.63 2.12 2.33 3.11 4.15 3.84 3.69
10,000 1.75 2.11 2.70 2.86 3.31 5.08 5.18
50 1.47 1.21 0.94 0.70 0.55 0.54 0.39
100 1.04 0.97 0.90 0.59 0.47 0.40 0.31
200 1.03 0.94 0.76 0.68 0.42 0.38 0.29
500 1.01 0.90 0.69 0.54 0.44 0.34 0.24
1000 1.16 0.88 0.66 0.52 0.36 0.34 0.24
3000 1.09 0.87 0.75 0.43 0.40 0.31 0.21
10,000 0.94 0.79 0.80 0.43 0.33 0.31 0.23

the above theorem diverges to co owing to the fact that the maximal squared bias
(over the class M) of the subsample level isotonic estimates fails to go to 0. Es-
sentially, the class My is so large that the Holder condition (4.4) is not satisfied
uniformly over M.

Table 1 glves the ratios of the (estimated) mean squared error of the global
estimator fiy (a) to that of the pooled estimator O, as n and m change under
two different scenarios. In the first scenario (left table), we fix w(x) = x and let
N — o0 and find that the pooled estimator has superior performance to the global
estimator as m (and n) grows. The ratio of the mean squared errors is generally
close to m'/3, as per (5.2). The second scenario (right table) illustrates the phe-
nomenon described in Theorem 5.1. We lower bound the supremum risk over My
by considering a sequence of alternatives w, in M [obtained from local perturba-
tions to u(x) = x around xg = 0.5] for which the ratio of the mean squared errors
falls dramatically below 1, suggesting that in such a scenario it is better to use the
global estimator ,&;,1 (a).

The super-efficiency phenomenon noted in connection with the pooled estima-
tor in the monotone regression model is also seen with sample-splitting in smooth-
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ing based procedures, for example, kernel based estimation, if the bandwidth used
in the divide and conquer method is not appropriately adjusted. We describe the
phenomenon in a density estimation setting, since this is the easiest to deal with,
in Section 8.15 of the Supplementary Material. Indeed, several authors have criti-
cized such super-efficiency phenomena in nonparametric function estimation; see,
for example, [7], [28], Section 1.2.4. It is shown in the second reference that (un-
der the usual twice differentiability assumptions) there exist infinitely many band-
widths which, under any fixed density, produce kernel estimates with asymptoti-
cally strictly smaller MSE than the Epanechnikov oracle and argued therein that
the criterion of assessment of an estimator should therefore be quantified in terms
of its maximal risk over an entire class of densities.

While this is certainly a reasonable perspective, we believe that there is also
some merit in studying the behavior of estimators such as in (5.1) [as opposed
to a uniform measure such as (5.3)]. For construction of ClIs, statisticians usu-
ally rely on asymptotic results derived under a fixed function model, as it is of-
ten quite difficult to obtain useful practical procedures that have justification in a
uniform sense. Moreover, in the regime of massive datasets, sample-splitting can
provide practical gains over the global estimator which might be impossible to
compute.

6. Conclusion. We have established rigorous results on the behavior of the
pooled (by averaging) estimator using sample-splitting in a variety of nonpara-
metric monotone function estimation problems and demonstrated both its pros and
cons. We note that the class of nonstandard problems comprises a variety of genres,
and dealing with the divide and conquer strategy at a technical level—specifically
quantifying the bias calculations and uniform integrability properties requires non-
trivial mathematical tools that can vary substantially from genre to genre. In this
paper, we have therefore developed our computations for several examples be-
longing to a single but important genre—namely monotone function estimation—
which submit to a reasonably unified treatment, and hope that the interesting find-
ings of this paper will spur further studies of divide and conquer in other classes
of nonstandard problems. The dichotomy between the risk under a specific model
(i.e., for a fixed monotone function) and maximal risk (over a class of functions)
demonstrated in this paper is expected to arise more broadly in many of the other
cube-root M -estimation problems mentioned in the Introduction and developed
in [19]. For some recent investigations of divide and conquer in other cube-root
problems see, for example, [27]. One highly interesting question, worth subse-
quent investigation, is whether alternative divide and conquer strategies can lead
to new estimators of monotone functions in a distributed computing environment
whose risks under a fixed model are of the same order as that of the global isotonic
estimator, and whose maximal risks are also asymptotically bounded, thereby pre-
cluding the super-efficiency phenomenon.
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7. Proofs of the main results.

7.1. Proof of Theorem 3.1. Since {53,1 }n>1 is uniformly integrable and &, | 4
G, Onz :=Var(§,,1) > o2 asn — o0o. Set

Zn = Z(Sn,j - bn)
j=1

and let B2 := Var(Z,) = m,0.. Now, with &, =m ! Z';’il &y, j we have

Zn . ZTL](&H,] - bn) _ «/mnrn(émn - 00) \/mnb” =] II
= - = in — Hp.

B, Ny Op On

To show that Z,, /B, 4N (0, 1), we just need to verify the Lindeberg condition:
for every € > 0,

1
;E[(Sn,l - bn)zl{lsn,l — byl > ey mngn}] — 0.

n
Since 0,12 converges to o> > 0 and m, — oo, the above condition is implied by
the uniform integrability of {(§,,1 — bn)z} n>1 which is guaranteed by the uniform
integrability of {5,%’ 1} (since the sequence b, goes to 0 and is therefore bounded).

Hence, Z, /By > N(0, 1).

Now assume that m,, is as in (i). Then, II,, — 0, which implies that I, converges
to a standard Gaussian law, whence (i) follows. Next, if m,, is as in (ii), II, — t /0,
and (ii) follows. [

7.2. Proof of Theorem 4.4. Let w=—Fr and foralli=1,...,n,let ¥; =
—17,<x; and &; =Y; — n(X;) € [-1, 1]. Moreover, define v2(x) = E(eilei =x)
for all x € [0, 1]. We then have

v (x) = Var(l7<y) = Fr(x)(1 — Fr(x)).

Note that F ! (a) = = (—a). Under the assumptions of Theorem 4.4, (R1) and
(RS) hold true. The assumption (R3) holds since 7 has a density function that
is bounded away from zero. However, (R4) does not hold so Theorems 4.1, 4.2
and 4.3 cannot be directly applied to obtain the results in the current status model.
Nevertheless, we will follow the same line of proof in the current status model as in
the general regression model. Note that in the current setting, the variance function
v? may not have a bounded second derivative but instead, it has a Lipschitz first
derivative with is in fact enough for our purposes. Hence, the first step is to obtain
analogues of the preliminary lemmas of Section 7.4.1 for the current status model.
As a consequence of Theorem 11.3 in [16], the inequality (7.8) still holds for all

a €[0,1] and x > 0. Because ,&;l(a) = /L_l(a) for all a ¢ [0, 1] in the current



DIVIDE AND CONQUER IN NONSTANDARD PROBLEMS 739

status case, the inequality also holds for all a € R. Because thanks to (7.4), U, =
Fu(it, Ht+om™h, combining this with Corollary 1 in [22] implies that (7.9) also
holds for all @ € R and x > 0. Now, ﬁ;l (a) is equal to O for all @ > A(0) and to 1
forall @ < A(1), so (7.10) holds for all ¢ > A(0) and x > n~! (since the probability
on the left-hand side is zero), whereas (7.11) holds for all ¢ > A(1) and x > n~!.
This means that one can still apply Lemmas 7.1, 7.2 and 7.3 in the current status
model.

The second assertion of Theorem 4.4 follows from Theorem 11.3 in [16]. The
first one follows from (11.32) and (11.33) of that book. The conclusions in 2 (on
the orders of the bias of ﬁrn and I:"T_nl) follow by the same arguments as for the
proof of Theorems 4.2 and 4.3 using that the preparatory lemmas of Section 7.4.1
still apply and |e;| < 1, and the conclusions in 3 follow exactly in the same fashion
as for the general regression model considered in Section 4.1. [

7.3. Proof of Theorem 5.1. Here, we assume that g is nondecreasing—this
is convenient as we borrow several results from other papers stated in the context
when g is nondecreasing. The neighborhood My in the statement of the theorem
needs to be similarly modified. (Of course, appropriate changes will lead to the
proof of the case when g is nonincreasing.)

By Theorem 4.1 (adapted to nondecreasing functions), with p = 2 and noting
that M is a subset of an appropriate ] we conclude that E < oo. Letting

Vi :=limsup sup Var,[N'3@y —n='(@))]
N—o00 pneMy

and

V, :=limsup sup N2/3 [EMéN — M_l(a)]Z,
N—oo ueMy
we have Vi vV Vo < E <Vj + V2 < 0o. Recall that as. 0, is the average of the
m ii.d. random variables @;;(a), j=1....m Eu@n) =Eu(a, (). Now,
consider
Vo :=liminf sup N*3[E,0, —u (@]
N peMy
o 2/3qs 2/3 ~—1 - 2. 2/3%
=m lkrgloréfuseliaon [Epit, (@ —pu= (@)]" =m" V.
Note that E,, > V2, = m?2/3 \72. We will shov&i below that ‘72 > 0; thus c¢q in the
statement of the theorem can be chosen to be V,. To this end, consider the mono-
tone regression model under a sequence of local alternatives |1, which eventually

lie in My. Let Y = pu,,(X) + ¢ where everything is as before but o changes to w,
which is defined as

[ (X) = po(x) +n B ('3 (x — 6p))
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and B is a nonzero function continuously differentiable on R, vanishing outside
(—1, 1), such that u, is monotone for each n and lies eventually in the class M,
Note that 1, and o can differ on (89 —n ="/ 3 60+n"13) only, and that u),(x) =
po(x) + B'(n'3(x — 6p)) for x € [6p — n=1/3,00 + n~1/3] and p),(x) = py(x)
otherwise. It is clear that this can be arranged for infinitely many B'’s.

The above sequence of local alternatives was considered in [1] in a more gen-
eral setting, namely that of monotone response models, where (in a somewhat
unfortunate collision of notation) X denotes response and Z the covariate. We in-
voke the results of that paper using the (Y, X) notation of this paper and ask the
reader to bear this in mind. Using our current notation for the problem in [1], X
follows density px(x) =1,1)(x) and Y | X =x ~ p(y, ¥(x)), ¥ being a mono-
tone function and p(y, 8) a regular parametric model. The monotone regression
model with homoscedastic normal errors under current consideration is a special
case of this setting with p(y, #) being the N (6, v?) density, the v,,’s in that paper
defining the local alternatives are the monotone functions wu,, Yo = o, ¢ = 1 and
A, (x) = B(n1/3(x — x0)) for all n. Invoking Theorems 1 and 2 of [1] with the
appropriate changes, we conclude that under u,,,

R _ d
Xy (h) := " ({1 (60 + hn ') = 110(60)) = ge.a,p(h),
where ¢ = v, d = j1;,(x0)/2, D is a shift function given by:®
tAl 0
PO = ([ B du)iom® - ([ B )i,
tvV—
and g. 4. p is the right-derivative process of the greatest convex minorant (GCM)

of Xc qp(t) :=cW()+ dt* +D(t) with W being a two-sided Brownian motion.
Now, by essentially the same calculation as on page 422 of [6],

PPl @ +an73) — ug N @)] < x)
= P(n"(fn (60 + xn~"7%) = 10 (60) = ) = P(ge.a,p(x) = 2).
Setting A =0, we get
P [ (@) — uy @] < x)
= P(n"(f1n (80 + xn713) — 110(60)) = 0) = P(gc.a.p(x) = 0).
Next, by the switching relationship,”

P(8c.a.0(x) 2 0) = P(argmin Xc0,p(h) < x).

"There is nothing special about (—1, 1) as far as constructing the B is concerned. Any (—c, ¢), for
¢ > 0 can be made to work.

8There is a typo in the drift term as stated on page 514 of [1]: there should be a negative sign before
the integral that defines D(h) for & < 0 on page 514.

9For the details, see Section 8.16 of the Supplementary Material.
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and it follows that
—1 d .
n'P (i1 @) = g (@) = argmin Xe g p(h).

Choosing B such that B(0) = 0, we note that La) = Mo 1(a) = 0y and, there-
fore, under the sequence of local alternatives j,,,

(7.1) n'B a) — @) S argmin X o (1),

Since the w,’s eventually fall within the class My, by Theorem 4.1 (adapted to
nondecreasing functions), we conclude that

limsupn?*°E,, (|, (@) — M;l(a)|2) < K>.

n—oo

Thus, the sequence (n'/3 (i, La) - ", 1 (a))}n>1 is uniformly integrable under the
sequence (of probability distributions corresponding to) {,},>1 and in conjunc-
tion with (7.1) it follows that

lim n'[Ey, (A, (@) = ' @)] = E(argmin X.q,p(1)).

n—oo

CLAIM C (Proved in Section 8.16 of the Supplementary Material). For any
nonnegative function B that satisfies the conditions imposed above, and is addi-
tionally symmetric about 0,

E(arg min Xc,d’p(h)) 0.
It follows that for any such B,
2 ~
[E(argrr}lin Xc,d,p(h))] < W,
and hence Vs > 0. This delivers the assertions of the theorem for fixed m.

When m = m,, — o0, note that

liminf sup E,[N?/3(0,, — 1 1(0)) ]

N—o0 neMg
> liminf sup N?/3[E,0,, —,u_l(a)]
N—o00 weMy
>11m1nfm2/3 sup n2/3[IE O, — _l(a)]z
- HEMo

= lilrggéfmﬁ sup n’/? [Eﬂﬁrzll(a) — ,u_l(a)]z.
neMo
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By our derivations above,

sup n2/3[IEM,&;11(a) (a)] [ (argmlnXCd p(h))] >0
neMoy

for all sufficiently large n. Hence, the liminf of the maximal normalized risk of
is infinite. [

7.4. Some selected proofs for Section 4.1.2. From (4.2), we have
(7.2) An(X @) =dn(i/n) =hno Fa(Xgy),  i=1,....n,

where F,, is the empirical distribution function of X1, ..., X,,. We will first study
in and then go back to i, thanks to (7.2). Note that )A\ (i/n)=fnoF, l(z/n) for
alli e {l1,...,n}, where F, 1(a) is the smallest t € [0, 1] that satlsﬁes F,(t) > a,
for all a € R Both functions A and fi1, o F,' are piecewise constant, so kn =
[n © Fn on [0, 1] and )Ln estimates

(7.3) Ai=poFL,

Let 1! and g be the respective generalized inverses of x and A, which extend

the usual inverses to the whole real llne in such a way that they remain constant on
(—o0,0]and on [1, 00). Letting (i, land U be the respective generalized inverses

of i, and A, it follows from (7.2) that

A

(7.4) g t=F 100,

and it can be shown that

(7.5) U,(a) = argmax{A, (u) —au} forall a € R,
uel0,1]

where argmax denotes the greatest location of maximum (which is achieved on
the set {i/n,i =0, ...,n} since A, is piecewise-linear). Part of the proofs below
consist in first estabhsh a result for U, using the above characterization, and then
go from U, to a, ! using (7. 4) To this end, we will use a precise bound for the
uniform distance between F~! and Fn_l, as well as a strong approximation of the
empirical quantile function; see Section 8.1 in the Supplementary Material.

We will repeatedly use the fact that because g’ = 1/1" o g on (A(1), 1(0)) where
AM=uo F_l/f o F~! is bounded away from zero under (R1) and (R2), for all
u,v € R we have

1
(7.6) gu)—gW)| < —————lu—vl
| | infreqo, 17 |/ (1)
Furthermore, we recall that Fubini’s theorem implies that for all random variables
Zandr>1,

o0 o0
(7.7) E|Z|" =/ P(1Z|" > x)dx =f P(1Z| > t)re" " dt.
0 0

We denote by PX and EX the conditional probability and expectation given
X1,..., Xn).
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7.4.1. Preliminaries. In this section, we provide exponential bounds which
are proved in the Supplementary Material, for the tail probabilities of i, Vand U,.
We begin with a generalization to our setting of Theorem 11.3 in [16]. Also, the
lemma is a stronger version of inequality (11) in [12] where an assumption (AS)
was postulated instead of the stronger assumption (R4).

LEMMA 7.1. Assume (R4), X has a density function f, | is nonincreasing
and there exist positive numbers Ay, ..., Aq such that (4.3) holds and Az < f(t) <
Ag forallt € [0, 1]. Then there exist positive numbers K| and K, that depend only
on Ay, ..., Aq, o, where o is taken from (R4), such that for alln,a € R and x > 0,
we have

(7.8) ]P’(m;l(a) — ,u_l(a)| >x) <K exp(—Kgnx3).

To prove Lemma 7.1, we first prove a similar bound for Uy,. The exponential
bound for U, is given in the following lemma. It will be used also in the proof of
Theorem 4.1.

LEMMA 7.2. Under the assumptions of Lemma 7.1, there exist positive num-
bers K1 and K; that depend only on Ay, ..., As and o« such that for all n, a e R
and x > 0, we have

(7.9) P(|0,(a) — g(a)| > x) < K1 exp(—Kanx?).

To prove Theorem 4.1, we also need a sharper inequality for the cases when

a & [A(1), 2(0)].

LEMMA 7.3. Assume (R4), X has a density function f,and | is nonincreas-

ing. Then there exist positive numbers K| and K, that depend only «, which is
taken from (R4), such that

(7.10) PX(U,(a) > x) < Ky exp(—K2(a — 1(0))*nx)
foralln,a > A0) and x > n~! and
(7.11) PX(1 — U,(a) > x) < Ky exp(—Ka(a — (1)) *nx)

foralln,a < (1) and x > n L.

7.4.2. Proof of Theorem 4.1. Integrating the inequality in Lemma 7.1 accord-
ing to (7.7) proves the first assertion. To prove the second one, we first prove a
similar result for A;,.

LEMMA 7.4. Under the assumptions of Lemma 7.1, for all p > 0 and A > 0,
there exist positive K, K, that depend only on Ay, ..., A4, a, p and A such that
foralln andt € (n~13A,1—n"134],

(7.12) E(n'3)hn@) = 1(0)|)’ <Kp.a.
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PROOF. We denote y = max(y,0) and y_ = —min(y, 0) for all y € R. To
go from U, to A,, we will make use of the following switch relation that holds for
allr € (0,1] and a € R:

(7.13) ) >a < t<U,a).

With a, = A(t) + x, it then follows from (7.7) and the switch relation (7.13) that

o0

E((n(r) — 2(1)),,)" :/0 P(in () — A() = x) pxP " dx

(7.14) = /OO[P([]”(ax) > 1) pxP~ldx
0

=1+ D,

where [; denotes the integral over (0, A(0) — A(¢)] while I, denotes the integral
over (A(0) — A(r), 00). Consider ;. Since A = o F~!, it follows from the Tay-
lor expansion that with ¢ = A3/A», we have ¢t — 2~ (ay) > ex for all x € (0,
A(0) — A(2)). Therefore, (7.9) implies that

]P)(ﬁn(ax) >1) < P(ﬁn(ax) — 2" Yay) > ex) < Ky exp(—KacPnx?)

for all x € (0, A(0) — A(?)). Hence,

A0)—A(t)
I < K1/ exp(—ch3nx3)pxp_1dx
0

o0
§K1n"’/3/0 exp(—K2c’y?) py?~ dy,

using the change of variable y = n!/3x. The integral on the right-hand side depends
only on ¢ and p, and is finite for all p > 0. Hence, with C,/ K greater than this
integral we obtain

(7.15) I <Cpn=P3,

Now consider /. We have a, > A(0) for all x > A(0) — A(¢) so it follows from
(7.10) together with (7.9) [where g(a,) = 0] that

2(A(0)—A (1) 3 1
L < K1/ exp(—Kant”) pxP~ " dx
AO)—A (1)
o 2
+ K exp(—Kz(ax — 2(0))"nt) pxP~dx
2(A0)—A())

< Ky exp(—Kont)2P (1(0) — A())?

+ K4 exp(—Kax?nt /4) pxP~ dx,
2 (0)—A())
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since a, — A(0) > x/2 for all x > 2(A(0) — A(¢)). Since A = o F~!, we have
[L(t) — A(0)| < Art/Asz for all t € (0, 1] and, therefore,

o0
L < K12P(A2/A3)P exp(—Kant®)t? + Kl(nt)*”/zfo exp(—K2y?/4) pyP~dy

using the change of variable y = x+/nt. The function 7 > exp(—Kont3)t?
achieves its maximum on [0, oo) at the point (3K»n/ p)_l/ 3. This means that for
all ¢ > 0 we have

exp(—Kont®)t? < exp(—p/3)(3Kan/p) =P/,

On the other hand, we have (m‘)*”/2 < A P/2p=P/3 for all r > n~1/3 A, where
A > 0 is fixed. Combining this with the two preceding displays, we arrive at

3K2n)_p/3

I < K127 (A2) As)? exp(—p/s)(

o0
+ K]A_p/zn_p/3/0 exp(—K2y2/4)pyf”_l dy

for all + > n~!/3 A, where the integral on the right-hand side is finite. This means
that there exists K, 4 > 0 such that I < Kp,An_”/Z’/Z forall r > n—13A. Com-
bining this with (7.14) and (7.15) and possibly enlarging K, 4 > 0, we obtain

E((Aa (1) —2()) )P < Kpan™ P>

for all # > n~1/3 A It can be proved with similar arguments that the above inequal-
ity remains valid with (-); replaced by (-)_, and Lemma 7.4 follows. [

It is known that Grenander-type estimators are inconsistent at the boundaries.
However, the following lemma shows that such estimators remain bounded in the
L ,-sense. The lemma, which is proved in the Supplementary Material, will be
useful to go from Lemma 7.4 to Theorem 4.1.

LEMMA 7.5. Assume (R4) and p is nonincreasing with | (t)| < As for some
As >0 and all t € [0, 1]. Then, for all p > 0, there exists K1 > 0 that depends
only on p, As and o, where « is taken from (R4), such that Elin (0| < Ky and
Elb,(D|P < K1, Vn.

We are now in a position to prove the second assertion in Theorem 4.1. Since
fi, is constant on all intervals (X, X+n] for i € {I,...,n — 1} and also on
[0, X(1)], and F}, is constant on all intervals [X ), X(4+1)) fori € {1,...,n — 1}
and also on [0, X (1)), it follows from (7.2) that for all ¢ {X (1), ..., X(»)} we have
(1) = )AL”(FH (1) +n~1). But X has a continuous distribution so for a fixed 7, we
indeed have ¢ ¢ {X (1), ..., X(»)} a.s. Hence, for all p > 1 we have

E((fin (1) — n(®)) )" =E((n(Fa(®) +n7 ") = A(F(1))) )"
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Using monotonicity of ):,1, this means that
E((fin () — n(®)) )" <E((Aa(F(t) —n~ 2 logn) — A(F1))), )"
+E((An(0) = A(D)E g () nm1<p () —n-1r2 logn)
It follows from the Holder inequality that
E((An(0) = AL Lr, )01 <F () -n1210g0)

<E'2((3,(0) = :(D)*P)P2(Fy (1) +n~" < F(t) —n~*logn)

(7.16)

< El/Z((in(O) _ k(l))Zp)Pl/Z( SE‘(l)pl] |Fn(t) — F(t)} >n1/2 logn).
t€(0,

Combining this with Lemma 7.5 together with Corollary 1 in [22] yields

E((n(0) = A(D)2 L, (1 pn1 < F(t)—n- 12 10gn) < O(D(2exp(—2(logn)?))'/?

uniformly for all ’s satisfying the assumptions of the lemma. Hence, there exists
C) such that

717 E((Aa©) = AW 1p, (it <r () -n-1/210gn) < Cpn P2

for all # € [0, 1]. Now, consider the first term on the right-hand side of (7.16). It fol-
lows from the convexity of the function x +— xP that (x 4+ y)P <
2P=1(xP + yP) for all positive numbers x and y. Therefore, with > n~!/3 and
x,=F(@)— n=1/2 logn we have

E((hn (xn) = 2(F(0)) )"
< 2P TE(|Rn () — M) |P) + 277 A () — A(F ()]
< 2P VR (|3 (o) — M) |P) + 2P 71 (A2/ A3)Pn=P 2 (log n)?
since thanks to (4.3),
|A(t) — A(x)| < Aalt —x]/A3  forallt#x € [0, 1].

Let A < A3/2. For large n, we have x, € [n71/3A,1 —n~!/3A] for all 1 €
[n=1/3,1 — n~1/3]. Hence, the previous display combined with Lemma 7.4 en-
sures that there exists C, such that

E(()A‘n(xn) - )»(F(t)))+)p < Cpn—P/3

for all r € [n=1/3,1 — n~1/3] and n sufficiently large. Together with (7.17) and
(7.16), this yields

E((fin(t) — u(0)) )" <2C,n~ P73
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for all r € [n71/3,1 — n=1/3] and n sufficiently large. Possibly enlarging C > the
previous inequality remains true for all n. To see this, suppose that the above dis-
play holds for all n > npyj,. Now,

E((fn(0) — 1(0)),)" <27 E(|fin @) v [ (D) + 277 ()7 v (D).

by monotonicity of both u and fi,, and using convexity of x — x”. Hence, for
n < Nmin,

n?PE((fin (1) — () )" < (2P Ky + 27 As)nl

min’
where K| and As are taken from Lemma 7.5. The negative part E(({, () —

w(@))—)? can be handled similarly, which completes the proof of
Theorem 4.1. O

7.4.3. Proof of Theorem 4.2. Theorem 4.2 follows from Lemma 7.6 combined
to Theorem 7.7 below since p(1) = A(1) and @« (0) = A(0). Theorem 7.7 provides
a precise bound for the bias of U, whereas Lemma 7.6 makes the connection
between the biases of /i, ! and Uy,. The lemma is proved in the Supplementary

Material, using that u ! = F' o g and 27! = F~ ' 0 U,,.

LEMMA 7.6. Assume (R1), (RS), (R4). Let u~ !, g be the generalized inverses
of i, A. Then

1 N
Bl @) = 17 @) = iy B0 @ = g(@) + o™,

where the small-o term is uniform in a € R.

THEOREM 7.7. Assume (R1), (R5), (R3), (R4), v2 has a bounded second
derivative on [0, 1] and (4.4) holds for some C > 0 and s > 1/2. For an arbitrary
constant K > 0, we then have

E(ﬁn (a)) —gla)= 0(n_1/2)-|-0(n_(25+3)/9(10gn)25/2)
uniformly in a € Jy, := [.(1) + Kn~"/*logn, 1(0) — Kn~"/Slogn].

PROOF. We first localize. For a given a, we define

(7.18) Un(a) = argmax [An(u) — au)
lu—g(b)| <Tun=173,uel0,1]

with 7, = n® and b a random variable such thatb =a + O, (n~1/2). Here, ¢ > 0 is
arbitrarily small. The variable b will be chosen in a convenient way later. Note that

Un (a) is defined in a similar way as U,, (a) [see (7.5)], but with the location of the
maximum taken on a shrinking neighborhood of g(b) instead of being taken over
the whole interval [0, 1]. Although it may seem more natural to consider b = a, we
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will see that this choice is not the better one to derive precise bounds on the bias
of U, (a). For notational convenience, we do not make it explicit in the notation

that Un (a) depends on b. The following lemma makes the connection between the
bias of U, (a) and that of the localized version; it is proved in the Supplementary
Material.

LEMMA 7.8. Assume (R1), (R2) and (R4). Let a € R and b a random variable
such that

(7.19) P(la — b| > x) < K exp(—Kanx?)

for all x > 0 where K1, Ky depend only on f, u,o. Then E|Un(a) — Un(a)l =
o(n~'?) uniformly.

In the sequel, we use the notation

(7.20) L(t):](;t Vo F Yu)du  forrel0,1]

and the same notation 7, as in Theorem 7.7. We use L to normalize U, (a) in the
following lemma, which is proved in the Supplementary Material. Thanks to the

normalization with L, U, (a) can be approached by the location of the maximum
of a drifted Brownian motion; see (7.27).

LEMMA 7.9. Assume (R1), (R5), (R3), (R4). Let a € J,, and b as in (7.19)
forall x > 0, where K1, K, depend only on f, i and v. Assume, furthermore, that
E(b) =a+o(n~"?) and that v* and W have a continuous first derivative on [0, 1].
Uniformly, in a € [J,,, we then have

B(0,@ - g(@) = B( ZL SO o1,

L'(g(a))
With B, and L taken from (8.5) and (7.20), respectively, let
(721) =29 g
' L)

Moreover, let A, be the event that all inequalities in (7.22) and (7.23) below hold
true:

sup | By (u)| <logn,

uel0,1]
(7.22) »
sup |B,(u) — By (v)| < VT,n"®logn,
lu—v|<T,n=1/3/logn
(7.23) sup |F ') — F~ ') — S S )| <nd!
. n —_ £
ueo,l " Vi f (F~1(u))
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where 6 € (0, 1/3) can be chosen as small as we wish. We will prove below that
P(A,) — 1 as n — oo; see (7.33). The following lemma is proved in the Supple-

mentary Material. Here and in the sequel,
t

(7.24) A() = / Au)du.
0

LEMMA 7.10. Letg >0, a € J, and
_ Bu(g(@)

(7.25) b=a n 2 (g(a)).
Under the assumptions of Theorem 7.7, on A,, conditionally on (X1, ..., X,), the
variable
(7.26) n'3(L(Uy(a)) — L(g()))
has the same distribution as
(7.27) argmax{D, (b, u) + Wew) () + Ry(a, b, u)},
uel, (b)
where for all t € [0, 1],
1/6
Wit) = ——
128) T+ (D)
X [Wo(Ln(0) + 07 Pu(1 4 ¢n (1)) = Wo(La(1))],  ueR,
with W,, being a standard Brownian motion under PX,
Li(b) = [n'P(L(g(b) —n ' T,) — L(g(®))),
n1/3(L(g(b) + n_1/3Tn) —L(g®»))],
Dy (b, u) =n*3(A o L™HL(g()) +n~13u) — A(g())

—bL™ N (L(g(®)) +n~ " u) + be (b)),
and with T,, = n® for some sufficiently small ¢ > 0,
(7.29) P¥( sup |Ru(a,b,u)| > x) < Kgx~9n'~4/3

uel, (b)
forall x > 0, where K, > 0 does not depend on n.
It follows from Lemma 7.10 that conditionally on (X1, ..., X,), on A, the vari-

able in (7.26) has the same expectation as the variable defined in (7.27). The fol-
lowing lemma, which is proved in the Supplementary Material, shows that R, is
negligible in (7.27) in the sense that this expectation, up to a negligible remainder

term, is equal to the expectation of the variable

V(b)) = argmax {Dy (b, u) + Wo@py(u)}.
| <(L'(g(b))*3logn
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LEMMA 7.11. Leta € J, and let b be given by (7.25). Under the assumptions
of Theorem 7.7, with T, = n® for some sufficiently small ¢ > 0, there exists K > 0
such that on A,,, we have

IEX (n'3(L(Un(a)) — L(g(1)))) — EX (Vo (0))| < Kn~YOL'(g(b))(logn)~".
The following lemma is proved in the Supplementary Material.

LEMMA 7.12. Assume (R1), (RS), (R3). Assume, furthermore, that v has a
bounded second derivative on [0, 1] and (4.4) holds for some C > 0 and s > 1/2.
Let a € J, and b be given by (7.25). With T, = n® for some small enough & > 0,
there exists K > 0 such that on A,,, we have

IEX (V. (b))| < Kn=/°L (g (b)) (logn)*>/%.

We are now in a position to prove Theorem 7.7. Let a € J, and let Un (a) be
defined by (7.18) where b is taken from (7.25). Since A" is bounded, there exists
K > 0 such that

P(Ia—b|>x)§P( sup |Bn(u)|>Kxﬁ> for all x > 0.
uel0,1]

Then, with the representation B, (u) = W (u) —uW (1) in distribution of processes,
where W is a standard Brownian motion, we conclude from the triangle inequality
that

P(la —b| > x) < IP( sup |W(u)| > Kxﬁ/z) - 21@( sup W(u) > Kxﬁ/z).

uel0,1] uel0,1]

For the last equality, we used symmetry of W. Then, it follows from [24], Proposi-
tion 1.8, that (7.19) holds for all x > 0, where K; =2 and K> depends only on A.
By Lemma 7.8, we then have

E(Un(a) - (@) = E(Un(@) - g(@) +o(n™'7?).

where the small-o term is uniform in a € J,. Since B, is a centered process, we
have E(b) = a, so Lemma 7.9 combined with the preceding display ensures that

S La@) = L(g(b) 1
(7.30) E(Up(a) — g(a)) = E( L'e@) ) +o(n™/?)
uniformly in a € J,. Now, conditionally on (X1, ..., X;), on A,, we have

|EX(n1/3(L(l§,, (@)) — L(g(b)))) — EX(V,(b))| < Kan~V®L'(g(b))(logn)~!
and

IEX (V. (b))| < K3n™ /2L’ (g(b)) (logn)*>/2.
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Here, we use Lemma 7.11 and Lemma 7.12 with A, being the event that all in-
equalities in (7.22) and (7.23) hold true. It then follows from the triangle inequality
that

(B (' (L(Un(@) = L(g®))[1a,) = KE(L (3(6))) B
where 8, = n_25/9(10g n)»/2% 4+ n_l/é(log n)~!L. But L' o g is a Lipschitz function,
so we have
E|L (g(0)) — L' (g(@))| < K4E|b —a| < Ksn™ /2,
using (8.28) together with the Jensen inequality for the last inequality. Using (8.24)
and the two previous displays yields

(7.31) E(|EX (n'/3(L(U,(a)) — L(g(b))))|14,) <2K3L'(g())Bn

for n sufficiently large. On the other hand, denoting by A, the complementary of

Ay, it follows from the Holder inequality together with the Jensen inequality that
E(E* (n' (L (Un(@) = L(s))1 5,)

<E2(aA(L(0(@) — L(g(1)))) P2 Ay).

Then we derive from (8.26) and (8.28) that the expectation on the right-hand side
is finite. Now, consider IP(A,) on the right-hand side. It follows from the Markov
inequality together with Lemma 8.2 that for all » > 1 we have

By, (u) 3_1>
P I
(MZEBI,’H N

(7.32)

Fylw) — F~ ') —

< Kg(logn)'n™"°
< Ke(n™V/0L (g(a))(logn)™!)?

for large n, provided that » > 2/(35). The Brownian motion satisfies the assump-
tion (A2) with T = 1 of Lemma 5.1 in [13] (see the proof of Corollary 3.1 in that
paper), so we conclude that

(7.33) P'2(A,) < Kn~ /L’ (g(a))(logn) ™"
for n sufficiently large. Hence, (7.32) yields

E(|EX (n'/3(L(Un(a)) — L(g(®))))|14 ) < Ksn~"/°L’(g(@))(logn)~".
Together with (7.31), this yields

E(|E (' (L(Un(@) = Lg®))]) = KoL'(g(@) -
Hence, with the Jensen inequality we arrive at

1/3 A —
. (n (L(Un/(a)) L<g<b>>)> = 0(By).
L'(g(a))

Combining this with (7.30) completes the proof of Theorem 7.7. [
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7.4.4. Proof of Theorem 4.3. The following lemma is proved in the Supple-
mentary Material.

LEMMA 7.13. Assume (R1), (R2), (R4). With K > 0 arbitrary, there exists
positive K1, K, with
(7.34) P(|ftn () — (2)| > n~13logn) < Ky exp(—K2(logn)?)
forallt e [Kn="%logn, 1 — Kn~'/logn], and
E(fin(t) — () = B[ (fn (1) = D) L3, (1 puto) <1 10gn] + 02 /3),
where the small-o term is uniform in t € [Kn="%logn, 1 — Kn~'/%logn].
We turn to the proof of Theorem 4.3. Distinguishing the positive and nega-

tive parts of [i,(t) — u(t), we derive from (7.7) together with Lemma 7.13 that
E(fn (1) — () = I} — I + o(n~ /%) where

n~13logn
I :/ P(fin(t) — p(t) > x)dx and
0

n_1/3logn R
L =/(; P(u(t) — fn(t) > x) dx.

Consider I;. Since [t = Fn_1 o Un, it follows from the switch relation and (8.1)
that

n~3logn
I =/0 P(f, ' (x + n(t)) = 1) dx

n=1/3 logn N
:/ P(F~" o Uy (x + (1)) = t — O(n"*logn)) dx + o(n~"1?)
0

—1/3 logn

= /O” P(Un(x + p(1)) = F(t) — O(n~"*logn)) dx + o(n~"/?),

where the small o-term is uniform in ¢ € [c1, c2]. Wehave gou = F and g’ o u =
(A’ o F)~! so it follows from the Taylor expansion that

g(x"i_,u(t)):F(l)— _|_0(x1+5)

X
Ao F(1)]

for all ¢t € [c],c2] and x € [0,n~1/3 logn], where s is taken from (4.4) and
1, ¢y are as in the statement of the theorem. Since x'T5 < n=1/2 logn for all
x < n~1/3 logn for large n, we conclude that

n—1/3 n
I :f e P(Un(ax) — g(ay) > _r 0(11_1/2 logn)) dx
0 A o F(1)|

+o(n™'?)
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uniformly, where we set a, = () + x. But it follows from (7.5) together with
(7.18) that

(735)  P(Unlax) # Un(an)) < P(|0n(ax) — g(b)| > Tn~ 73

for all x > 0, where we recall that 7, = n® for some arbitrarily small ¢ > 0, and b,
satisfies (7.19) with a replaced by a,. Together with Lemma 7.2, this yields

n~131ogn A x 1
I :/O IP’(Un(ax) — glay) > Vo F® o(n~" logn)) dx
+ o(n_l/ 2)
uniformly in ¢. Using again (7.35) and Lemma 7.2, we then derive from (8.25) in
the Supplementary Material that

. /n—1/3 logn p(l‘(ﬁ”(ax» — L(g(by)) x
0

> —0on1? logn)) dx
L'(g(ax)) Ao F(1)]

+o(n~1?),

where b, is given by (7.25) with a replaced by a, and B, being taken from
Lemma 8.2. Since L’ 0 g = v o !, we have

P(L'(g(by)) < coy) <P (by) <y) +P(1 — 7' (by) < y)

for all y > 0 and x € (0, n—1/3 logn), where cq is taken from (R3). Consider the
first probability on the right-hand side. Assume that ¢ > 0 is chosen small enough
so that c; > y. By monotonicity of  and the definition of by, there exists a positive
constant K1 such that for x € (0, n—1/3 logn] we have

B, (g(x4)) ,

P (b) <y) <P <M(t) - COE M(W)

<P(|Bx(g(xa))| = Ki/n(cy — Y)) < 4exp(—[(12n(c1 _ y)z/z).

It can be proved likewise that P(1 — wl(by) < y) < 4exp(—K12n(l —C —
¥)?/2) provided y > 0 is chosen sufficiently small so that ¢; + ¥ < 1. Hence,
we can restrict attention to the event {L’(g(by)) > coy}, which means that
L'(g(by)) cannot go to zero. Then, using (8.39) with § = n!/3y, for some y, €
(n_l/2 logn, n~1/3 logn) to be chosen later, we have

/ /nl/3logn EPX<n1/3Vn(bX) X
— >
o L'(g(ay)  WoF(Q)

+o(n="2) + 0(n~"3 (log n)2n G0/ GG+D) (;1/3,, y =34/ QL+ D)y

-0t dx



754 M. BANERJEE, C. DUROT AND B. SEN

where g can be chosen arbitrarily large. For arbitrary ¢ > 0, we can choose ¢ large
enough so that

n=310gn 1/3V (by ) X
I EpX (Z — oW, >
= L))~ Worm 0
( —1/2) + 0( —7/6+¢ —3/2 ¢)
~logn xvz(t)
X —1/3 _
_/ EP < Valbo) > O(yn)>dx

+0(n—1/2) + 0(n_7/6+¢)/_3/2_¢).

Now, using (8.42) in the Supplementary Material with s = 1 and § = n'/3y,, proves
that /; is equal to
Ao F(1)]

n
/
+0(n—1/2) + 0(n_7/6+¢)/,1_3/2_¢).

Recall that gou = F. Let Z(t) = argmaxueR{—al(F(t))u2 + W(u)}, where d =
A /(L )2) and W is a standard Brownian motion. Under P¥, Z(¢) has the same
law as the location of the maximum of u > —d (F(1))u® + Wb, () on R. On
the event {sup, (g 17 Bn(?)| <logn},

—131ogn

2
EPX (n_1/3V(bx) L N O(y,,)) dx

V(by) = argmax [—d(F@®))u? + Wy, ) + Ry (u, x, 1)},
lu| <(L'(g(bx)))*3logn

where

sup |R,(u, x,1)| = O(n™*/3(logn)*™)
| <(L'(g(bx))*3logn

uniformly in ¢ € [c1, 2] and x € 0,n=1/3 logn). It then follows from Propo-
sition 1 in [11] (see also the comments just above this proposition) that there
are versions of Z(¢) and V(b,), and constants K, K>, K3 > 0, such that on
{supef0.171Bn(#)| < logn} and for large n, we have

PX(|V(by) — Z(0)| > n'3y,)

<PX(2 sup R, x,0)] > x(n'3y,)*2)
lu|<(L'(g(bx)))*3logn

+ Kixlogn +2PX(|Z(t)| > K2 logn),

where x = K3(n'3y,)™32n75/3(logn)?>*S. With large K3, the probability on
the right-hand side is equal to zero. Hence, there exists K4 > O such that on
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{sup,ef0.171Bn(#)| < logn} we have
PX(|V (by) — Z(@)| > n'3y,)
< K4(n'Py,) 20 dogn)*+ +2PX(|Z(1)| > Ky logn)
< K4(nl/3y,,)_3/2n_s/3 (logn)>*s + 4exp(—Ks(logn)?)

for some K5 > 0. For the last inequality, we used [11], Theorem 4. The second
term on the right- hand side is negligible as compared to the first one, so there
exists K¢ > 0 such that

PX(|V (by) — Z(0)| > n'Py,) < Ke(n'Pyn) 205/ Qlogn)*.
Since s = 1, we obtain that /; is equal to
n~131logn xvz(t)
P(n=3z(t)> ————0 )d
/0 (n ()>|N0F(t)| (yn) ) dx
+ o(n_l/z) + O(n_7/6+¢yn_3/2_¢’).

Consider the integral on the right-hand side. There exists K > 0 such that the
integral on the right-hand side of (7.36) is bounded from above by

n~13logn _ 2
/ £ P(n_l/SZ(t) - M) dx
0 M o F(t)]

a3 logn . yv2(t)
—-1/3 A A
<[ TR(nrze s 2 )+ o

using the change of variable y = x — Ky,. Similarly, the integral in (7.36) is
bounded below by

/n1/3
0

and, therefore,

o n~1Blogn (=137 xv2(1) A esd. 32—
=/ (v (r)>7M,OF(t)|)dx+0<yn>+0(n 7329,

Choose y, that approximately realize the best trade-of between the two big-O-

terms, that is, such that y;,, = n_7/6y,,—3/2. Then y, =n~"/1

arbitrarily small ¢ > 0,
xv2(1)

n~131ogn
I =f ]P><n—1/32(z) >
0 A0 F(1)]

With similar arguments, we obtain that for arbitrarily small ¢ > 0,

n~13logn 24
I :/ P(n_l/3Z(t) < _L()
0 M o F(t)]

(7.36)

logn ~13 yv2(t) >
]P’(n Z(t)>—|NOF(t)| dy + O(yn)

, we conclude that for

)dx + O (n 14309y,

) dx + O(n_7/15+¢).
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But Z(¢) has the same distribution as —Z(t) for all ¢ so the two preceding displays
yield that I} — I, = omn=" 15J””). This completes the proof of Theorem 4.3. [
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