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ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION

BY ARLENE K. H. KIM∗,†,1, ADITYANAND GUNTUBOYINA‡,2 AND

RICHARD J. SAMWORTH∗,3

University of Cambridge∗, Sungshin Women’s University† and
University of California, Berkeley‡

The log-concave maximum likelihood estimator of a density on the real
line based on a sample of size n is known to attain the minimax optimal rate
of convergence of O(n−4/5) with respect to, for example, squared Hellinger
distance. In this paper, we show that it also enjoys attractive adaptation prop-
erties, in the sense that it achieves a faster rate of convergence when the loga-
rithm of the true density is k-affine (i.e., made up of k affine pieces), or close
to k-affine, provided in each case that k is not too large. Our results use two
different techniques: the first relies on a new Marshall’s inequality for log-
concave density estimation, and reveals that when the true density is close to
log-linear on its support, the log-concave maximum likelihood estimator can
achieve the parametric rate of convergence in total variation distance. Our
second approach depends on local bracketing entropy methods, and allows
us to prove a sharp oracle inequality, which implies in particular a risk bound
with respect to various global loss functions, including Kullback–Leibler di-
vergence, of O( k

n log5/4(en/k)) when the true density is log-concave and its
logarithm is close to k-affine.

1. Introduction. It is well known that nonparametric shape constraints such
as monotonicity, convexity or log-concavity have the potential to offer the practi-
tioner the best of both the nonparametric and parametric worlds: on the one hand,
the infinite-dimensional classes allow considerable modelling flexibility, while
on the other one can often obtain estimation procedures that do not require the
choice of tuning parameters. Examples include isotonic regression [Barlow et al.
(1972), Van Eeden (1956)], convex regression [Hildreth (1954), Lim and Glynn
(2012), Seijo and Sen (2011)], generalised additive models [Chen and Samworth
(2016)], the Grenander estimator [Grenander (1956)], convex density estimation
[Groeneboom, Jongbloed and Wellner (2001)], independent component analysis
[Samworth and Yuan (2012)] and many others. See Groeneboom and Jongbloed
(2014) for a recent book-length treatment of the field.
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These attractive properties have led to intensive efforts in recent years, to try
to understand the theoretical properties of shape-constrained estimators. In some
cases, for instance, it is now known that these estimators can achieve minimax
optimal rates of convergence; see, for example, Birgé (1987) for the Grenander
estimator, Baraud and Birgé (2016) for ρ-estimators, Kim and Samworth (2016)
for the log-concave maximum likelihood estimator and Han and Wellner (2016) for
convex regression estimators. However, the fact that these estimators are tuning-
free raises the prospect of an additional allure, namely that they might adapt to
certain types of data generating mechanisms in the sense of attaining a faster rate
of convergence than that predicted by the “worst-case” minimax theory.

The purpose of this paper is to explore this adaptation phenomenon in the con-
text of log-concave density estimation. Recall that a density f on the real line
is said to be log-concave if it is of the form exp(φ) for some concave function
φ : R → [−∞,∞). We write F for the set of all upper semi-continuous log-
concave densities. The class F serves as a particularly attractive nonparametric
surrogate for the class of Gaussian densities, because it is closed under linear trans-
formations, marginalisation, conditioning and convolution, and because it contains
many commonly encountered parametric families of unimodal densities with ex-
ponentially decaying tails. For this reason, the log-concave maximum likelihood
estimator of f , first introduced by Walther (2002), has been studied in great detail
in recent years; see, for example, Cule and Samworth (2010), Cule, Samworth and
Stewart (2010), Dümbgen and Rufibach (2009), Dümbgen, Samworth and Schuh-
macher (2011), Pal, Woodroofe and Meyer (2007), Schuhmacher and Dümbgen
(2010), Seregin and Wellner (2010).

Very recently, Kim and Samworth (2016) proved that if X1, . . . ,Xn are an in-
dependent sample from f0 ∈F , then4

(1) inf
f̃n

sup
f0∈F

Ef0d
2
H(f̃n, f0) � n−4/5,

and moreover that the log-concave maximum likelihood estimator f̂n based on
X1, . . . ,Xn, defined by f̂n := argmaxf ∈F

∑n
i=1 logf (Xi), attains this minimax

optimal rate. Here, the infimum is taken over all estimators f̃n of f0, and
d2

H(f, g) := ∫ ∞
−∞(f 1/2 − g1/2)2 denotes the squared Hellinger distance. In fact,

there are various other choices of global loss function that one can study, including
the total variation distance and Kullback–Leibler divergence, defined respectively
by

dTV(f, g) := 1

2

∫ ∞
−∞

|f − g| and d2
KL(f, g) :=

∫ ∞
−∞

f log
f

g
,

where we set d2
KL(f, g) := ∞ if the support of f is not contained in the support

of g. We recall the standard inequalities d2
TV(f, g) ≤ d2

H(f, g) ≤ d2
KL(f, g) that

4Here, we write an � bn to mean that 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| < ∞.
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relate these loss functions. In fact, in this work, we will also be interested in another
notion of divergence: by an application of Remark 2.3 of Dümbgen, Samworth and
Schuhmacher (2011) to the function x �→ log f0(x)

f̂n(x)
, we have that

d2
KL(f̂n, f0) ≤ 1

n

n∑
i=1

log
f̂n(Xi)

f0(Xi)
=: d2

X(f̂n, f0).

Thus, an upper bound on the risk of the log-concave maximum likelihood estimator
in the d2

X divergence immediately yields bounds in each of the other global loss
functions mentioned above.

Writing X(1) := mini Xi and X(n) := maxi Xi , the log-concave maximum like-
lihood estimator can be expressed as

f̂n(x) =
{

exp
{
min(b1x − β1, . . . , bmx − βm)

}
if x ∈ [X(1),X(n)],

0 otherwise,

for some m ∈ N and b1, . . . , bm,β1, . . . , βm ∈ R. This motivates the thought that
if logf0 is itself composed of a relatively small number of affine pieces (e.g., the
logarithm of a Laplace density comprises two affine pieces), then we might expect
f̂n to converge to f0 at an especially fast rate.

To this end, for k ∈ N, we define Fk to be the class of log-concave densities f

for which logf is k-affine in the sense that there exist intervals I1, . . . , Ik such that
f is supported on I1 ∪ · · · ∪ Ik , and logf is affine on each Ij . We then study adap-
tation in log-concave density estimation via two different approaches. The first,
presented in Section 2, establishes risk bounds in total variation distance for true
densities that are close to F1, showing in some cases (such as when the true density
is uniform on a compact interval), that the log-concave maximum likelihood esti-
mator achieves the parametric rate of convergence. Our key tool for this approach
is an analogue of Marshall’s inequality [Marshall (1970)], which we use to relate
supx∈R |F̂n(x) − F0(x)| to supx∈R |Fn(x) − F0(x)|, where Fn, F0 and F̂n denote
the empirical distribution function and the distribution functions corresponding to
f0 and f̂n respectively. An attraction of this strategy is that the true density need
not be assumed to be log-concave.

Our second approach, developed in Section 3, studies more general adaptation
of the log-concave maximum likelihood estimator to densities in Fk via local
bracketing entropy methods. More precisely, we provide risk bounds in the d2

X

divergence when the true density is log-concave and close to Fk , which reveal
that a rate of k

n
log5/4(en/k) can be attained. Thus, when k is relatively small, we

obtain a significant improvement over the minimax rate.
There has been considerable interest in adaptation in shape-constrained estima-

tion, especially in recent years, on problems including decreasing density estima-
tion [Birgé (1987)], isotonic regression [Chatterjee, Guntuboyina and Sen (2014),
Zhang (2002)], matrix estimation under shape constraints [Chatterjee, Guntuboy-
ina and Sen (2017)] and convex regression [Chen and Wellner (2016), Han and
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Wellner (2016)]. However, all of these works consider the least squares estimator,
which has a more explicit expression as a projection onto a convex set. The class of
log-concave densities is not convex, and the maximum likelihood estimator does
not have such a simple characterisation, so we have to develop new techniques.
We finally mention the work of Baraud and Birgé (2016), who study a procedure
called a ρ-estimator in various shape-constrained density estimation problems. We
discuss their results in the context of log-concave density estimation in Section 3.

Proofs of our main results are given in Sections 4 and 4.2. These rely on sev-
eral auxiliary results that are presented in the Appendix, which appears as the
Supplementary Material [Kim, Guntuboyina and Samworth (2018)]. We conclude
this Introduction with some notation used throughout the paper. Given a function
g : R → R, we write ‖g‖∞ := supx∈R |g(x)|. For f,g ∈ F , we write Df := {x :
f (x) > 0} = {x : logf (x) > −∞} for the domain of logf , and write f � g if
Df ⊆ Dg . Also for f ∈ F , let μf := ∫ ∞

−∞ xf (x) dx, σ 2
f := ∫ ∞

−∞(x −μf )2f (x) dx

and F0,1 := {f ∈ F : μf = 0, σ 2
f = 1}. We use C to denote a generic universal

positive constant, whose value may be different at different instances, and also
write a � b to mean that there exists a universal constant C > 0 such that a ≤ Cb.

2. Rates for densities that are close to log-affine on their support. This
section concerns settings where the true density is close to F1, the class of
densities that are log-affine on their support, but not necessarily log-concave.
It will be convenient to have an explicit parameterisation of such densities. Let
T0 := {(s1, s2) ∈ R

2 : s1 < s2} and

T := (R× T0) ∪ (
(0,∞) × {−∞} ×R

) ∪ (
(−∞,0) ×R× {∞}).

Now, for (α, s1, s2) ∈ T , let

fα,s1,s2(x) :=
⎧⎪⎨
⎪⎩

1

s2 − s1
1{x∈[s1,s2]} if α = 0,

α

eαs2 − eαs1
eαx1{x∈[s1,s2]} if α 
= 0.

Then we can write

F1 = {
fα,s1,s2 : (α, s1, s2) ∈ T

}
.

Thus the class F1 consists of uniform and (possibly truncated) exponential den-
sities. It is also convenient to define a continuous, strictly increasing function
q :R→ [0,1] by

(2) q(x) :=

⎧⎪⎪⎨
⎪⎪⎩

x − 2 + e−x(x + 2)

x{1 − e−x(x + 1)} for x 
= 0,

1

3
for x = 0,
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and to set ρ(x) := 1+q(x)
1−q(x)

. As a preliminary calculation, we note that for x ≥ 2,

q(x) = 1 − 2

x
+ x

ex − (1 + x)
≤ 1 − 1

x
,

so that ρ(x) ≤ max{ρ(2), ρ(x)} ≤ max(3,2x) for all x ∈R.

THEOREM 1. Let f0 be any density on the real line, let X1, . . . ,Xn
i.i.d.∼ f0

for some n ≥ 5, and let f̂n denote the corresponding log-concave maximum
likelihood estimator. Fix an arbitrary fα,s1,s2 ∈ F1, write κ∗ := α(s2 − s1), let

dTV := dTV(fα,s1,s2, f0) and let d
(n)
KS := ‖Fn

α,s1,s2
− Fn

0 ‖∞ + ‖(1 − Fα,s1,s2)
n −

(1 − F0)
n‖∞, where Fα,s1,s2 and F0 are the distribution functions corresponding

to fα,s1,s2 and f0, respectively. Then, for t ≥ 0, the following two bounds hold:

Pf0

[
dTV(f̂n, f0) ≥ t + {

1 + 2ρ
(∣∣κ∗∣∣)}dTV

] ≤ 2e
− nt2

2ρ2(|κ∗|) + d
(n)
KS ,(3)

Pf0

{
dTV(f̂n, f0) ≥ t + (1 + 6 logn)dTV

} ≤ 2e
− nt2

18 log2 n + 1

n1/2 + d
(n)
KS ,(4)

where we interpret (3) as uninformative if |κ∗| = ∞. Moreover,

Ef0dTV(f̂n, f0) ≤ inf
fα,s1,s2∈F1

{
cn

n1/2 + (1 + cn)dTV + 2d
(n)
KS

}
,(5)

where cn = cn(fα,s1,s2) := min{2ρ(|κ∗|),6 logn}.

To aid with the interpretation of the last part of Theorem 1, first consider the
case where f0 = fα,s1,s2 ∈ F1, so that dTV = d

(n)
KS = 0. In that case, provided

|κ∗| = |α|(s2 − s1) is not too large, the first term in the minimum in the defini-
tion of cn guarantees that the log-concave maximum likelihood estimator attains
the parametric rate of convergence. In particular, if f0 ∈ F1 is a uniform density
on a compact interval, then we may take α = 0 = κ∗, and find that

Ef0dTV(f̂n, f0) ≤ 4

n1/2 .

On the other hand, if f0 = fα,s1,s2 ∈ F1 where |κ∗| is large (e.g., if it is infinite)
then the second term in the minimum in the definition of cn may give a better
bound, and guarantees that we attain the parametric rate up to a logarithmic factor.
More generally, there exist universal constants ε > 0 and n0 ∈N such that if n ≥ n0

and f0 is any density with

inf
fα,s1,s2∈F1

(
dTV + d

(n)
KS

) ≤ εn−2/5 log−1 n,
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then the bound provided by (5) is better than that given by the worst-case minimax
theory.5 In fact, there is a special class F∗ ⊆ F such that when f0 ∈ F∗ we can
prove an alternative bound on the total variation distance between f̂n and f0 that
slightly improves and simplifies the bounds provided in Theorem 1. To define this
class, for f ∈ F , let Df := {x : f (x) > 0}, and let

F∗ := {
f ∈ F : f (x) = eγ xh(x) for all x ∈ Df , for some γ ∈ R,

(6)
and h : Df → [0,∞) concave

}
.

As examples, if f ∈ F is concave on its (necessarily bounded) support Df , then
f ∈ F∗ since we can take γ = 0 and h(x) = f (x) for x ∈ Df . Moreover, F1 ⊆ F∗,
and the family of 
(α,β) densities with α ∈ [1,2], β > 0 also belongs to F∗. When
f0 ∈ F∗, the factors of 1 + 2ρ(|κ∗|), 1 + 6 logn and 1 + cn in (3), (4) and (5),
respectively, can be replaced simply with 3. See Proposition 6 in Section 4.1 for
details.

Another setting where we can provide an alternative version of Theorem 1 oc-
curs when f0 is a (not necessarily log-concave) density that is both close to F1

and has tails that are lighter than those of an exponential distribution. We refer the
reader to Proposition 7 in Section 4.1 for further details and discussion.

The proof of Theorem 1 is crucially based on the following analogue of the clas-
sical Marshall’s inequality for decreasing density estimation [Marshall (1970)].

LEMMA 2. Let n ≥ 2, let X1, . . . ,Xn be real numbers that are not all equal,
with empirical distribution function Fn, and let f̂n denote the corresponding log-
concave maximum likelihood estimator. Let X(1) := mini Xi and X(n) := maxi Xi .
Let f0 be a density such that f0(x) = eα0xh0(x) for x ∈ [X(1),X(n)], where α0 ∈R

and h0 : [X(1),X(n)] → R is concave, and let κ := α0(X(n) − X(1)). Writing F0

and F̂n for the distribution functions corresponding to f0 and f̂n respectively, we
have

(7) ‖F̂n − F0‖∞ ≤ ρ
(|κ|)‖Fn − F0‖∞.

REMARK. Dümbgen and Rufibach (2009) found that in all of their simula-
tions,

(8) ‖F̂n − F0‖∞ ≤ ‖Fn − F0‖∞,

provided F0 has a log-concave density. However, since ρ(x) → ∞ as x → ∞,
it is worth noting that Lemma 2 is in line with their observation that “. . . one can
construct counterexamples showing that (8) may be violated, even if the right-hand
side is multiplied with any fixed constant C > 1”.

5The fact that we work with the risk in total variation distance rather than squared total variation
distance is not significant. However, it is worth recalling that Theorem 1 does not control the (larger)
Hellinger risk.
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Although Lemma 2 is stated as a deterministic result, the main case of inter-
est is where X1, . . . ,Xn are independent and identically distributed, and we apply
the result to some density f0 ∈ F∗ (not necessarily the true density). The origi-
nal Marshall’s inequality applies to the integrated Grenander estimator when F0

is concave; in that case, the multiplicative factor ρ(|κ|) can be replaced with 1.
Dümbgen, Rufibach and Wellner (2007) proved a similar result for the integrated
version of the least squares estimator of a convex density on [0,∞); there, a mul-
tiplicative constant 2 is needed. In the special case where f0 is concave on the
convex hull of the data, we can take α0 = 0 = κ , and the multiplicative constant in
Lemma 2 can also be taken to be 2. A limitation of Lemma 2 is the fact that not all
log-concave densities are of the form required for our result to hold. Indeed, our
proof crucially relies on the fact that if a and b are consecutive knots of f̂n and
x ∈ [a, b], then we can write

F̂n(x) − F0(x) = c +
∫ x

a
eα0t g(t) dt,

for some constant c ∈ R, where g is convex; cf. Lemma 1 in the Supplementary
Material [Kim, Guntuboyina and Samworth (2018)]. It is an interesting open ques-
tion as to whether the restriction on f0 in Lemma 2 can be removed.

3. Rates for densities whose logarithms are close to k-affine. In this sec-
tion, we extend significantly the class of densities for which we can prove adap-
tation of the log-concave maximum likelihood estimator. Recall that, for k ∈ N,
the class Fk denotes the set of log-concave densities f ∈ F for which logf is
k-affine. The following is the main theorem of this section.

THEOREM 3. There exists a universal constant C > 0 such that for every n ≥
2 and every f0 ∈ F , we have

(9) Ef0d
2
X(f̂n, f0) ≤ inf

k∈N

{
Ck

n
log5/4

(
en

k

)
+ inf

fk∈Fk
d2

KL(f0, fk)

}
.

One consequence of Theorem 3 is that when logf0 is k-affine for some k, then
the log-concave MLE f̂n converges to f0 at nearly the parametric rate when k is
small. In particular, there exist universal constants ε > 0 and n0 ∈ N such that if
n ≥ n0 and k ≤ εn1/5 log−5/4 n, then the bound provided by Theorem 3 is bet-
ter than the minimax bound over all log-concave densities [Kim and Samworth
(2016)].6

6Although Theorem 5 of Kim and Samworth (2016) is stated for the squared Hellinger risk, it can

easily be extended to a bound for the d2
X risk by appealing to Corollary 7.5 of van de Geer (2000).
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A result similar to (9) was recently proved by Baraud and Birgé (2016) for
their ρ-estimator. More precisely, they proved that there exists a universal constant
C > 0 such that

(10) Ef0d
2
H(f̂ρ, f0) ≤ C inf

k∈N

{
k

n
log3

(
en

k

)
+ inf

fk∈Fk
d2

H(f0, fk)

}
,

where f̂ρ denotes the ρ-estimator based on a sample of size n, defined in Baraud
and Birgé (2016). The differences between Theorem 3 and (10) are as follows:

1. Theorem 3 deals with the log-concave MLE while (10) deals with the ρ-
estimator. While the ρ-estimator is very interesting and general, at the moment,
we are not aware of algorithms for computing it. On the other hand, the log-
concave MLE can be easily computed via active set methods for convex optimisa-
tion [Dümbgen and Rufibach (2011)].

2. Theorem 3 is a sharp oracle inequality in the sense that the approximation
term inffk∈Fk d2

KL(f0, fk) in (9) has leading constant 1.
3. Theorem 3 bounds the risk of the log-concave MLE with respect to the loss

function d2
X, which is larger than its squared Hellinger risk. On the other hand, the

right-hand side of (10) involves inffk∈Fk d2
H(f0, fk), which may be smaller than

the term inffk∈Fk d2
KL(f0, fk) that appears on the right-hand side of (9).

4. Inequality (9) has a log5/4(en/k) term on the right-hand side while inequal-
ity (10) has a (larger) log3(en/k) term.

Our proof of Theorem 3 proceeds by first studying the special case where the infi-
mum in the right-hand side of (9) is replaced by k = 1. That case can be handled
using empirical process theory techniques [e.g., van de Geer (2000)] together with
a local bracketing entropy result for log-concave densities (cf. Theorem 4 below).
Before stating this result, we first recall the following definition of bracketing en-
tropy.

DEFINITION 1. Let S ⊆ R, and let G be a class of nonnegative functions
whose domains include S. For ε > 0, let N[](ε,G, dH, S) denote the smallest
M ∈ N for which there exist pairs of functions {[gL,j , gU,j ] : j = 1, . . . ,M} such
that ∫

S

(
g

1/2
U,j − g

1/2
L,j

)2 ≤ ε2 for every j = 1, . . . ,M

and such that for every g ∈ G, there exists j∗ ∈ {1, . . . ,M} with gL,j∗(x) ≤ g(x) ≤
gU,j∗(x) for every x ∈ S. We also define the ε-bracketing entropy of G over S with
respect to the Hellinger distance by H[](ε,G, dH, S) := logN[](ε,G, dH, S) and
write H[](ε,G, dH) := H[](ε,G, dH,R) when S = R.

For f0 ∈ F and δ > 0, we also define F(f0, δ) := {f ∈ F : f � f0, dH(f, f0) ≤
δ}. We are now in a position to state our main local bracketing entropy bound for
log-concave densities.
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THEOREM 4. There exist universal constants C,κ > 0 such that for every
f0 ∈ F with υ := inf{dH(f0, f1) : f1 ∈ F1, f0 � f1}, and every ε > 0,

(11) H[]
(
21/2ε,F(f0, δ), dH

) ≤ C log5/4
(

1

δ

)(
δ + υ

ε

)1/2

provided δ + υ < κ .

It is instructive to compare Theorem 4 with other recent global bracketing en-
tropy results for log-concave densities on the real line. The class F is not totally
bounded with respect to Hellinger distance, but since this metric is invariant to
affine transformations, one can consider subclasses of F with mean and variance
restrictions. More precisely, for ξ ≥ 0 and η ∈ (0,1), let

F̃ ξ,η := {
f ∈ F : |μf | ≤ ξ,

∣∣σ 2
f − 1

∣∣ ≤ η
}
.

Kim and Samworth [(2016), Theorem 4] proved that

(12) H[]
(
ε, F̃1,1/2, dH

) ≤ Cε−1/2;
see also Doss and Wellner [(2016), Theorem 3.1] for a closely related result with
different but similar restrictions on the class F . Thus, Theorem 4 reveals that when
f0 ∈ F is close to some f1 ∈ F1 with f0 � f1, and when δ > 0 is small, the local
bracketing entropy is much smaller than the global bracketing entropy described
by (12).

The proof of Theorem 4 is lengthy, but the main ideas are as follows. By a
triangle inequality, one can show that it suffices to prove the result for f0 ∈F1. In
fact, by an affine transformation, it is enough to consider f0 belonging to one of
three canonical forms within the class F1. When f0 ∈ F1, we have υ = 0, and we
can exploit natural boundedness properties enjoyed by f ∈ F(f0, δ) when f � f0
and δ > 0 is sufficiently small. For example, when f0 is the uniform density on
[0,1], it is possible to show (see Lemma 5 in the Supplementary Material) that such
f satisfy logf (x) ≤ Cδ for all x ∈ [0,1] and logf (x) ≥ −Cδ max{x−1/2, (1 −
x)−1/2} whenever min(x,1 − x) ≥ 4δ2. These boundedness properties allow us to
apply bracketing entropy bounds for bounded log-concave functions developed in
Propositions 7 and 8 in the Supplementary Material to deduce the result.

Theorem 4 enables us to prove the following risk bound for the log-concave
maximum likelihood estimator when the true density is close to F1, a key step in
proving Theorem 3.

THEOREM 5. There exists a universal constant C > 0 such that for every n ≥
2 and f0 ∈ F , we have

(13) Ef0d
2
X(f̂n, f0) ≤ C

n
log5/4 n + inf

f1∈F1:f0�f1

d2
H(f0, f1).

Since d2
H(f0, f1) ≤ d2

KL(f0, f1) and since d2
KL(f0, f1) = ∞ unless f0 � f1, the

inequality given in (13) is stronger than the inequality obtained by replacing the
infimum on the right-hand side of (9) by k = 1.
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4. Proofs of main results.

4.1. Proofs from Section 2 and alternative total variation bounds. We first
present the proof of Theorem 1, and then give the proof of Lemma 2, on which it
relies.

PROOF OF THEOREM 1. Let F̂n and F0 denote the distribution functions of
f̂n and f0, respectively, and let Fn denote the empirical distribution function of
X1, . . . ,Xn. Fix fα,s1,s2 ∈ F1 with (α, s1, s2) ∈ T , and let Fα,s1,s2 denote its cor-
responding distribution function. Then {x : f̂n(x) ≥ fα,s1,s2(x)} = {x : log f̂n(x) ≥
logfα,s1,s2(x)} is an interval. It follows that

dTV(f̂n, fα,s1,s2) =
∫
x:f̂n(x)≥fα,s1,s2 (x)

{
f̂n(x) − fα,s1,s2(x)

}
dx

= sup
s≤t

∫ t

s

{
f̂n(x) − fα,s1,s2(x)

}
dx

(14)
= sup

s≤t

[
F̂n(t) − Fα,s1,s2(t) − {

F̂n(s) − Fα,s1,s2(s)
}]

≤ 2‖F̂n − Fα,s1,s2‖∞.

Hence, writing dTV := dTV(fα,s1,s2, f0),

dTV(f̂n, f0) ≤ dTV(f̂n, fα,s1,s2) + dTV

≤ 2‖F̂n − Fα,s1,s2‖∞ + dTV
(15)

≤ 2ρ
(|κ|)‖Fn − Fα,s1,s2‖∞ + dTV

≤ 2ρ
(|κ|)‖Fn − F0‖∞ + {

1 + 2ρ
(|κ|)}dTV,

where κ := α(X(n) − X(1)). Here, the penultimate inequality follows from
Lemma 2, and the final one follows by the triangle inequality and the fact
that ‖F − G‖∞ ≤ dTV(f, g) for any densities f and g with corresponding dis-
tribution functions F and G, respectively. It is now convenient to introduce

Y1, . . . , Yn
i.i.d.∼ fα,s1,s2 , with Y(1) := mini Yi and Y(n) := maxi Yi . Then, writing

κ∗ := α(s2 − s1) and d
(n)
KS := ‖Fn

α,s1,s2
− Fn

0 ‖∞ + ‖(1 − Fα,s1,s2)
n − (1 − F0)

n‖∞,

Pf0

(|κ| > ∣∣κ∗∣∣) ≤ Pf0(X(n) > s2) + Pf0(X(1) < s1)

≤ Pfα,s1,s2
(Y(n) > s2) + Pfα,s1,s2

(Y(1) < s1) + d
(n)
KS = d

(n)
KS .

Since ρ is strictly increasing, we can therefore apply the Dvoretzky–Kiefer–
Wolfowitz inequality [Dvoretzky, Kiefer and Wolfowitz (1956)] with the sharp
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constant of Massart (1990) to conclude that for any t ≥ 0,

Pf0

[
dTV(f̂n, f0) ≥ t + {

1 + 2ρ
(∣∣κ∗∣∣)}dTV

]
≤ Pf0

{
2ρ

(∣∣κ∗∣∣)‖Fn − F0‖∞ ≥ t
} + Pf0

(|κ| > ∣∣κ∗∣∣)
≤ 2 exp

(
− nt2

2ρ2(|κ∗|)
)

+ d
(n)
KS .

This proves (3). For the other bound (4), note first that if B ≥ 2 and α < 0, then
s1 > −∞, so

Pf0

(
|κ| > B

2
logn

)

≤ Pf0

(
X(n) > s1 − B logn

2α

)
+ Pf0(X(1) < s1)

≤ Pfα,s1,s2

(
Y(n) > s1 − B logn

2α

)
+ Pfα,s1,s2

(Y(1) < s1) + d
(n)
KS

= 1 −
(

1 − n−B/2

1 − eα(s2−s1)

)n

+ d
(n)
KS

≤ 1 − (
1 − n−B/2)n + d

(n)
KS ≤ n−(B/2−1) + d

(n)
KS ,

where the final inequality follows because 1 − x ≤ (1 − x/n)n for x ∈ [0,1) (this
can be proved by taking logarithms and examining the Taylor series). A very
similar calculation yields the same bound when α > 0. Recalling that ρ(x) ≤
max(3,2x), it follows that if t ≥ 0 and (α, s1, s2) ∈ T with α 
= 0, then provided
B ≥ 2 and B logn ≥ 3,

Pf0

{
dTV(f̂n, f0) ≥ t + (1 + 2B logn)dTV

}
≤ Pf0

{
ρ

(|κ|) > B logn
} + Pf0

{
2B logn‖Fn − F0‖∞ ≥ t

}
≤ n−(B/2−1) + d

(n)
KS + 2 exp

(
− nt2

2B2 log2 n

)
,

where the final inequality follows by another application of the Dvoretzky–Kiefer–
Wolfowitz inequality. Taking B = 3 and n ≥ 3 therefore yields (4).

Now, writing s∗ := (2 log 2)1/2ρ(|κ∗|)/n1/2 and using the fact that the total vari-
ation distance is bounded above by 1, we have

Ef0dTV(f̂n, f0)

= Ef0

{
dTV(f̂n, f0)1{|κ|≤|κ∗|}

} +Ef0

{
dTV(f̂n, f0)1{|κ|>|κ∗|}

}
≤ Ef0

([
dTV(f̂n, f0) − {

1 + 2ρ
(∣∣κ∗∣∣)}dTV

]
1{|κ|≤|κ∗|}

)
+ {

1 + 2ρ
(∣∣κ∗∣∣)}dTV + d

(n)
KS
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≤ s∗ + 2
∫ ∞
s∗

exp
(
− ns2

2ρ2(|κ∗|)
)

ds + {
1 + 2ρ

(∣∣κ∗∣∣)}dTV + 2d
(n)
KS

≤ 2ρ(|κ∗|)
n1/2 + {

1 + 2ρ
(∣∣κ∗∣∣)}dTV + 2d

(n)
KS .

On the other hand, writing s′ := 3(2 log 2)1/2n−1/2 logn, we also have

Ef0dTV(f̂n, f0) ≤ 1

n1/2 + s′ + 2
∫ ∞
s′

e
− ns2

18 log2 n ds + (1 + 6 logn)dTV + 2d
(n)
KS

≤ 6 logn

n1/2 + (1 + 6 logn)dTV + 2d
(n)
KS ,

for n ≥ 5. Since these inequalities hold for any fα,s1,s2 ∈ F1, the conclusion fol-
lows. �

PROOF OF LEMMA 2. This proof has some similarities with the proof of
Dümbgen, Rufibach and Wellner (2007), Lemma 1. We define the set of knots
of f̂n by

S := {
t ∈ (X(1),X(n)) : f̂ ′

n(t−) 
= f̂ ′
n(t+)

} ∪ {X(1),X(n)},
where X(1) and X(n) denote the smallest and largest order statistics of the data
X1, . . . ,Xn. By, for example, Dümbgen and Rufibach [(2009), Theorem 2.1], S ⊆
{X1, . . . ,Xn}, and we therefore write S = {t0, . . . , tk} for some k ∈ {1, . . . , n − 1}
where X(1) = t0 < · · · < tk = X(n). We first write the left-hand side of (7) as

max
{

sup
x<t0

∣∣F̂n(x) − F0(x)
∣∣, max

i∈{0,1,...,k−1} sup
x∈[ti ,ti+1)

∣∣F̂n(x) − F0(x)
∣∣,

sup
x≥tk

∣∣F̂n(x) − F0(x)
∣∣}.

Observe now that F̂n(x) = 0 = Fn(x) for x < t0 and F̂n(x) = 1 = Fn(x) for x ≥ tk .
It therefore follows that in order to establish (7), we need only establish the two
statements

sup
x∈[ti ,ti+1)

{
F̂n(x) − F0(x)

} ≤ ρ(κ+)‖Fn − F0‖∞

(16)
for i = 0,1, . . . , k − 1,

inf
x∈[ti ,ti+1)

{
F̂n(x) − F0(x)

} ≥ −ρ(κ−)‖Fn − F0‖∞
(17)

for i = 0,1, . . . , k − 1,

where κ+ := max(κ,0) and κ− := max(−κ,0). It is convenient to prove the sec-
ond statement first. We may assume that the infimum of F̂n(x) − F0(x) over
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x ∈ [X(1),X(n)) is attained at r ∈ [ti , ti+1), say, for some i ∈ {0,1, . . . , k − 1} and
let a := ti and b := ti+1. By hypothesis, there exist α0 ∈ R and a concave function
h0 : [a, b] → [0,∞) such that f0(x) = eα0xh0(x) for x ∈ [a, b]. Moreover, there
exist α,β ∈ R such that f̂n(x) = exp(αx + β) for x ∈ [a, b]. It follows that if we
define

g(x) := e(α−α0)x+β − h0(x) = e−α0x
{
f̂n(x) − f0(x)

}
,

then g is convex on [a, b] and g(r) = 0. Moreover, defining G(x) := F̂n(x) −
F0(x), we have

G(x) = c +
∫ x

a
eα0t g(t) dt for x ∈ [a, b],

where c := ∫ a
−∞ f̂n(t) − f0(t) dt . We may therefore apply either inequality (4) or

inequality (2) in Lemma 1 in the Supplementary Material (depending on whether
or not α0 = 0) to obtain that for every x ∈ [r, b],

G(x) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(r) + (x − r)2

(b − r)2

{
G(b) − G(r)

}
if α0 = 0,

G(r) + 1 + eα0(x−r){α0(x − r) − 1}
1 + eα0(b−r){α0(b − r) − 1}

{
G(b) − G(r)

}
if α0 
= 0.

Integrating from x = r to x = b, writing A := α0(b−r) and recalling the definition
of the function q in (2), we deduce that

(18) G(r) ≥ 1

b − r

1

1 − q(−A)

∫ b

r
G(x)dx − q(−A)

1 − q(−A)
G(b).

Now Dümbgen and Rufibach [(2009), Theorem 2.4] yields that

(19)
∫ t

−∞
F̂n(x) dx ≤

∫ t

−∞
Fn(x) dx and

∫ s

−∞
F̂n(x) dx =

∫ s

−∞
Fn(x) dx

for every t ∈ R and s ∈ S . Moreover, Dümbgen, Samworth and Schuhmacher
[(2011), Remark 2.8] gives that

(20) Fn(x) − 1

n
≤ F̂n(x) ≤ Fn(x) for every x ∈ S .

It follows from (18), (19) and (20) that

G(r) ≥ 1

b − r

1

1 − q(−A)

{∫ b

−∞
F̂n(x) dx −

∫ r

−∞
F̂n(x) dx −

∫ b

r
F0(x) dx

}

− q(−A)G(b)

1 − q(−A)

≥ 1

b − r

1

1 − q(−A)

∫ b

r

{
Fn(x) − F0(x)

}
dx − q(−A){Fn(b) − F0(b)}

1 − q(−A)

≥ −ρ(−A)‖Fn − F0‖∞ ≥ −ρ(κ−)‖Fn − F0‖∞.
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This establishes (17). For (16), let Yi := −Xi , let ĥn denote the log-concave
maximum likelihood estimator based on Y1, . . . , Yn, and let Ĥn denote its cor-
responding distribution function, so that by affine equivariance of the log-concave
maximum likelihood estimator [Dümbgen, Samworth and Schuhmacher (2011),
Remark 2.4], we have ĥn(y) = f̂n(−y) and Ĥn(y) = 1 − F̂n(−y). Similarly,
let h0(y) := f0(−y) (so h0 is concave on the convex hull of Y1, . . . , Yn), and
let H0 denote the distribution function corresponding to the density h0, so that
H0(y) = 1 − F0(−y). Finally, let Hn denote the empirical distribution function
corresponding to Y1, . . . , Yn, so Hn(y) = n−1 ∑n

i=1 1{Yi≤y} = 1 − limz↘y Fn(−z).
Then for any two consecutive knots a and b of f̂n,

sup
x∈(a,b]

{
F̂n(x) − F0(x)

} = sup
x∈(a,b]

−{
Ĥn(−x) − H0(−x)

}

= − inf
y∈[−b,−a)

{
Ĥn(y) − H0(y)

}
≤ ρ(κ+)‖Hn − H0‖∞
= ρ(κ+)‖Fn − F0‖∞,

as required, where the inequality follows from an application of (17) to the trans-
formed data Y1, . . . , Yn, noting that −α0(Y(n) − Y(1)) = −α0(X(n) − X(1)) = −κ .

�

Recall the definition of F∗ in (6). We now provide a result which improves the
bounds given in Theorem 1 in the special case where the true density belongs to
the class F∗.

PROPOSITION 6. Let n ≥ 5, let X1, . . . ,Xn
i.i.d.∼ f0 ∈ F∗, and let f̂n denote

the corresponding log-concave maximum likelihood estimator. Fix an arbitrary
fα,s1,s2 ∈ F1, write κ∗ := α(s2 − s1), let dTV := dTV(fα,s1,s2, f0) and let d

(n)
KS :=

‖Fn
α,s1,s2

− Fn
0 ‖∞ + ‖(1 − Fα,s1,s2)

n − (1 − F0)
n‖∞, where Fα,s1,s2 and F0 are

the distribution functions corresponding to fα,s1,s2 and f0 respectively. Then, for
t ≥ 0,

Pf0

{
dTV(f̂n, f0) ≥ t + 3dTV

}
≤ min

{
2e

− nt2

2ρ2(|κ∗|) ,
1

n1/2 + 2e
− nt2

18 log2 n

}
+ d

(n)
KS .

Moreover,

Ef0dTV(f̂n, f0) ≤ inf
fα,s1,s2∈F1

{
min{2ρ(|κ∗|),6 logn}

n1/2 + 3dTV + 2d
(n)
KS

}
.
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PROOF. For any fα,s1,s2 ∈ F1 with (α, s1, s2) ∈ T and corresponding distribu-
tion function Fα,s1,s2 , we have by (14) that

dTV(f̂n, f0) ≤ dTV(f̂n, fα,s1,s2) + dTV

≤ 2‖F̂n − Fα,s1,s2‖∞ + dTV

≤ 2‖F̂n − F0‖∞ + 2‖F0 − Fα,s1,s2‖∞ + dTV

≤ 2ρ
(|κ|)‖Fn − F0‖∞ + 3dTV,

where κ := α(X(n) − X(1)), and where the last line follows again from Lemma 2.
The proof now follows that of Theorem 1, mutatis mutandis, so we omit the details
for brevity. �

As mentioned in Section 2, we can also give an alternative version of Theorem 1
that is particularly applicable in settings where f0 is both close to F1 and has light
tails.

PROPOSITION 7. Let f0 be any density on the real line, let X1, . . . ,Xn
i.i.d.∼ f0

for some n ≥ 2, and let f̂n denote the log-concave maximum likelihood estimator.
Fix an arbitrary fα,s1,s2 ∈F1, let dTV := dTV(fα,s1,s2, f0) and let κ̃ := α{F−1

0 (1−
n−3/2)−F−1

0 (n−3/2)}, where F−1
0 denotes the quantile function corresponding to

f0. Then, for t ≥ 0,

Pf0

[
dTV(f̂n, f0) ≥ t + {

1 + 2ρ
(|κ̃|)}dTV

] ≤ 2e
− nt2

2ρ2(|κ̃|) + 2

n1/2 .

Moreover,

Ef0dTV(f̂n, f0) ≤ inf
fα,s1,s2∈F1

{
c̃n

n1/2 + (1 + c̃n)dTV

}
+ 4

n1/2 ,

where c̃n = c̃n(fα,s1,s2) := 2ρ(|κ̃|).

PROOF. We follow the proof of Theorem 1 up to (15). Now, writing x0 :=
F−1

0 (n−3/2) and x1 := F−1
0 (1 − n−3/2), we have

Pf0

(|κ| > |κ̃|) ≤ Pf0(X(n) > x1) + Pf0(X(1) < x0)

= 1 − Fn
0 (x1) + 1 − {

1 − F0(x0)
}n ≤ 2

n1/2 .

The proof now again follows that of Theorem 1, mutatis mutandis, so we omit the
details for brevity. �

A nice aspect of Proposition 7 is that the d
(n)
KS term in Theorem 1 (and Propo-

sition 6) no longer appears. To illustrate Proposition 7, for β ≥ 1, let x1 :=
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(3/2)1/β log1/β n, let x∗ = − log(1 + e−x1 − n−3/2) and consider the density

f0(x) = f
(n)
0 (x) = e−x1{x∈[x∗,x1]} + βxβ−1e−xβ

1{x>x1}.

Then F−1
0 (n−3/2) = − log(e−x∗ − n−3/2) = − log(1 + e−x1 − 2n−3/2) and

F−1
0 (1 − n−3/2) = x1. Defining fα,s1,s2 ∈ F1 by

fα,s1,s2(x) = e−x

e−x∗ − e−x1
1{x∈[x∗,x1]},

we deduce that |κ̃| = x1 + log(1+e−x1 −2n−3/2) ≤ 2x1 and dTV = n−3/2, so from
Proposition 7,

Ef0dTV(f̂n, f0) ≤ 8x1

n1/2 + 1 + 8x1

n3/2 + 4

n1/2 ≤ 17
(

3

2

)1/β log1/β n

n1/2 .

In other words, a continuum of logarithmic powers in the rates is achievable.

4.2. Proofs from Section 3.

PROOF OF THEOREM 3. Fix a density f0 ∈ F . Also fix k ∈ N and an arbitrary
density f ∈ Fk such that d2

KL(f0, f ) < ∞. Note that this implies that f0 � f .
Suppose that I1, . . . , Ik is a partition of the support of f into maximal intervals
such that logf is affine on each Ij . Since f0 is absolutely continuous with respect
to f , it follows that

∑k
j=1 pj = 1, where pj := ∫

Ij
f0. For j = 1, . . . , k, we also let

Nj := ∑n
i=1 1{Xi∈Ij }, J1 := {j : Nj ≥ 2} and J2 := {j : Nj ≤ 1}. Observe that the

sets J1 and J2 as well as the integers N1, . . . ,Nk are random. We initially assume
that k ≤ min(n1/5, n/e5/4). We write

d2
X(f̂n, f0) = 1

n

n∑
i=1

log
f̂n(Xi)

f0(Xi)

= 1

n

∑
j∈J1

∑
i:Xi∈Ij

log
f̂n(Xi)

f0(Xi)
+ 1

n

∑
j∈J2

∑
i:Xi∈Ij

log
f̂n(Xi)

f0(Xi)
(21)

≤ 1

n

∑
j∈J1

∑
i:Xi∈Ij

log
f̂n(Xi)

f0(Xi)
+ k

n
max

1≤i≤n
log

f̂n(Xi)

f0(Xi)
,

where the final inequality follows because |J2| ≤ k and |Nj | ≤ 1 whenever j ∈ J2.
To handle the first term, let f̃n denote the maximum likelihood estimator based on
the data {Xi : Xi ∈ ⋃

j∈J1
Ij } over the class of all densities f for which logf is

concave on each of the intervals {Ij : j ∈ J1}. Since log f̂n is concave on each Ij

and since
∫ ∞
−∞ f̂n(x)1{x∈⋃

j∈J1
Ij } dx ≤ 1, it follows that

(22)
∑
j∈J1

∑
i:Xi∈Ij

log f̂n(Xi) ≤ ∑
j∈J1

∑
i:Xi∈Ij

log f̃n(Xi).
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Writing M1 := ∑
j∈J1

Nj , we claim that

(23) f̃n(x) = Nj

M1
f̂ (j)(x) for x ∈ Ij with j ∈ J1,

where f̂ (j) denotes the log-concave maximum likelihood estimator based on {Xi :
Xi ∈ Ij }. To see this, let �̄ denote the class of functions φ : R → [−∞,∞) that
are concave on each Ij for j ∈ J1 and that satisfy φ(x) → −∞ as |x| → ∞. Now,
log f̃n maximises

L(φ) := 1

M1

∑
j∈J1

∑
i:Xi∈Ij

φ(Xi) − ∑
j∈J1

∫
Ij

eφ

= ∑
j∈J1

Nj

M1

{
1

Nj

∑
i:Xi∈Ij

φ(Xi) −
∫
Ij

eφ+log(M1/Nj )

}

over φ ∈ �̄. For j ∈ J1, let �̄j denote the set of functions φ : Ij → [−∞,∞) that
are restrictions of functions in �̄ to Ij . Then, on each interval Ij with j ∈ J1, we
have

log f̃n = argmax
φ∈�̄j

{
1

Nj

∑
i:Xi∈Ij

φ(Xi) −
∫
Ij

eφ+log(M1/Nj )

}

= argmax
φ̃∈�̄j

{
1

Nj

∑
i:Xi∈Ij

φ̃(Xi) −
∫
Ij

eφ̃

}
− log

M1

Nj

= log f̂ (j) − log
M1

Nj

,

which establishes the claim (23). Let f
(j)
0 (x) := 1

pj
f0(x)1{x∈Ij }. We deduce

from (22) and (23) that

1

n
Ef0

{ ∑
j∈J1

∑
i:Xi∈Ij

log
f̂n(Xi)

f0(Xi)

}

≤ 1

n
Ef0

{ ∑
j∈J1

∑
i:Xi∈Ij

log
Nj f̂

(j)(Xi)/M1

pjf
(j)
0 (Xi)

}

(24)

= 1

n
Ef0

{ ∑
j∈J1

∑
i:Xi∈Ij

log
f̂ (j)(Xi)

f
(j)
0 (Xi)

}
+Ef0

( ∑
j∈J1

Nj

n
log

Nj

npj

)

+Ef0

(
M1

n
log

n

M1

)
.
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Now let f (j)(x) := 1
qj

f (x)1{x∈Ij }, where qj := ∫
Ij

f , and note both that f (j) ∈
F1 and f

(j)
0 � f (j). To evaluate the first expectation on the right-hand side of (24),

we condition on the set of random variables {Nj : j = 1, . . . , k}. After this condi-
tioning, and since Nj ≥ 2 for every j ∈ J1, we can apply the risk bound in Theo-

rem 5 for each f
(j)
0 to deduce that

1

n
Ef0

{ ∑
j∈J1

∑
i:Xi∈Ij

log
f̂ (j)(Xi)

f
(j)
0 (Xi)

}

≤ 1

n
Ef0

∑
j∈J1

Nj

{
C

Nj

log5/4 Nj + inf
f1∈F1:f (j)

0 �f1

d2
H
(
f

(j)
0 , f1

)}
.

Now the function x �→ log5/4(x) is concave on [e1/4,∞), so by Jensen’s inequal-
ity, together with the fact that the function x �→ x log5/4(n/x) is increasing for
x ∈ (0, n/e5/4],

1

n
Ef0

{ ∑
j∈J1

∑
i:Xi∈Ij

log
f̂ (j)(Xi)

f
(j)
0 (Xi)

}

≤ C

n
E

{
|J1| log5/4

(
n

|J1|
)}

+
k∑

j=1

pjd
2
H
(
f

(j)
0 , f (j))(25)

≤ Ck

n
log5/4(n/k) + d2

KL(f0, f ),

where the second inequality follows because

k∑
j=1

pjd
2
H
(
f

(j)
0 , f (j)) ≤

k∑
j=1

pjd
2
KL

(
f

(j)
0 , f (j))

≤
k∑

j=1

pjd
2
KL

(
f

(j)
0 , f (j)) +

k∑
j=1

pj log
pj

qj

= d2
KL(f0, f ).

To handle the second term on the right-hand side of (24), we use the facts that
logx ≤ x − 1 for x > 0, Nj ∼ Bin(n,pj ) and Nj logNj = 0 for j ∈ J2, to obtain

Ef0

( ∑
j∈J1

Nj

n
log

Nj

npj

)
≤

k∑
j=1

Ef0

{
Nj

n

(
Nj

npj

− 1
)}

−Ef0

( ∑
j∈J2

Nj

n
log

Nj

npj

)

= 1

n

k∑
j=1

(1 − pj ) + 1

n

k∑
j=1

pj log(npj )(26)

≤ 2k

n
+ log(n/k)

n
.
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Finally, for the third term on the right-hand side of (24), we note that M1 = n −∑
j∈J2

Nj ≥ n − k > n/2, so in particular E(M1/n) ≥ 1 − k/n. Using the fact that
x �→ −x logx is decreasing on [1/2,1] and the fact that − log(1 − x) ≤ x + x2 for
x ∈ (0,1/2], we deduce that

Ef0

(
M1

n
log

n

M1

)
≤ −

(
1 − k

n

)
log

(
1 − k

n

)
≤ − log

(
1 − k

n

)
(27)

≤ k

n
+ k2

n2 ≤ 2k

n
.

To handle the second term on the right-hand side of (21), we apply Lemma 2 in
the Supplementary Material and use the fact that k ≤ n1/5 to find that

(28) Ef0

{
max

1≤i≤n
log

f̂n(Xi)

f0(Xi)

}
� logn � log5/4

(
en

k

)
.

Thus, in the case k ≤ min(n1/5, n/e5/4), the desired conclusion follows from (21),
(24), (25), (26), (27) and (28). When k > min(n1/5, n/e5/4), we can argue as in the
final paragraph of the proof of Theorem 5 below that Ef0d

2
X(f̂n, f0) � n−4/5 �

(k/n) log5/4(en/k). The result follows. �

PROOF OF THEOREM 4. We consider first the case where υ = 0, so that f0 ∈
F1. In that case, recalling the parameterisation F1 = {fα,s1,s2 : (α, s1, s2) ∈ T }
used in Section 2, the affine invariance of the Hellinger distance, together with
Lemma 4 in the Supplementary Material, shows that we may assume without loss
of generality that f0 is of one of the following three forms:

1. f0 = f0,0,1;
2. f0 = f−α,0,1 for some α ∈ (0,18);
3. f0 = f−1,0,a for some a ∈ [18,∞].

We refer to these three forms as “uniform”, “exponential conditioned on [0,1]”
and “truncated exponential”, respectively, and treat the three cases separately. The
choice of splitting these cases at the constant 18 is convenient rather than essential;
for instance, it guarantees that the infinite sum in (35) below converges.

The case where f0 is uniform: Fix δ ∈ (0,2−5/2]. Observe first that for every
ε > 0, we have

H[]
(
21/2ε,F(f0, δ), dH, [0,1])
≤ H[]

(
ε,F(f0, δ), dH, [0,1/2]) + H[]

(
ε,F(f0, δ), dH, [1/2,1])

= 2H[]
(
ε,F(f0, δ), dH, [0,1/2])(29)

≤ 2H[]
(
ε/21/2,F(f0, δ), dH,

[
0,4δ2])

+ 2H[]
(
ε/21/2,F(f0, δ), dH,

[
4δ2,1/2

])
.
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We bound the two terms on the right-hand side of (29) separately. For the first
term, we use inequality (12) in Lemma 5 in the Supplementary Material, which
gives that supx∈[0,1] logf (x) ≤ 213/2δ ≤ 16 for every f ∈ F(f0, δ). From this,
Proposition 8 in the Supplementary Material and the fact that δ ∈ (0,2−5/2], we
therefore obtain

(30) H[]
(
ε/21/2,F(f0, δ), dH,

[
0,4δ2])

� e4(4δ2)1/4

ε1/2 � δ1/2

ε1/2 ,

which takes care of the first term in (29). For the second term, let ηj := 4δ22j

for j = 0,1, . . . , l where l is the largest integer for which 4δ22l < 1/2. Also let
ηl+1 := 1/2. By Lemma 5 in the Supplementary Material, for every f ∈ F(f0, δ)

and j = 0,1, . . . , l, we have that

− 4δ

η
1/2
j

≤ logf (x) ≤ 213/2δ ≤ 16 for every x ∈ [ηj , ηj+1].

Set εj := ε/(2l + 2)1/2. Then by Proposition 7 in the Supplementary Material,

H[]
(
ε/21/2,F(f0, δ), dH,

[
4δ2,1/2

])≤ l∑
j=0

H[]
(
εj ,F(f0, δ), dH, [ηj , ηj+1])

�
l∑

j=0

(
213/2δ + 4δ

η
1/2
j

)1/2 e4(ηj+1 − ηj )
1/4

ε
1/2
j

� δ1/2
l∑

j=0

1

ε
1/2
j

(
ηj+1 − ηj

ηj

)1/4
,

where we have used the fact that ηj ≤ 1 in the final inequality. Observe now that by
our choice of ηj = 4δ22j for j = 0,1, . . . , l and ηl+1 = 1/2 ≤ 4δ22l+1, it follows
that ηj+1 − ηj ≤ ηj for every j = 0,1, . . . , l. We therefore obtain

H[]
(
ε/21/2,F(f0, δ), dH,

[
4δ2,1/2

])
� δ1/2

l∑
j=0

1

ε
1/2
j

� δ1/2

ε1/2 (l + 1)5/4

� δ1/2

ε1/2 log5/4
(

1

δ

)
,

as required, where the final inequality follows because 4δ22l < 1/2, so

l + 1 <
− log(4δ2)

log 2
� log

(
1

δ

)
.

The exponential conditioned on [0,1] case: Now suppose f0 = f−α,0,1 for some
α ∈ (0,18), let Cα := α(1 − e−α)−1 and again fix δ ∈ (0,2−5/2]. For every f =
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eφ ∈ F(f0, δ), we have

δ2 ≥
∫ 1

0

(
eφ(x)/2 − C1/2

α e−αx/2)2
dx

= Cα

∫ 1

0
e−αx

(
1

C
1/2
α

e{φ(x)+αx}/2 − 1
)2

dx

≥ Cαe−α
∫ 1

0

(
1

C
1/2
α

e{φ(x)+αx}/2 − 1
)2

dx.

Write δ̃ := δeα/2/C
1/2
α , so that

δ ≤ δ̃ ≤
(

e18 − 1

18

)1/2
δ.

Thus, arguing as for the uniform case, given δ ∈ (0, ( 18
e18−1

)1/22−5/2] and ε > 0,

we can find an ε/C
1/2
α -Hellinger bracketing set {[gL,j , gU,j ], j = 1, . . . ,N} for

the class {x �→ C−1
α f (x)eαx : f ∈ F(f0, δ)} with

logN � log5/4
(

1

δ̃

)
δ̃1/2C

1/4
α

ε1/2 � log5/4
(

1

δ

)
δ1/2

ε1/2 .

Now let fL,j (x) := CαgL,j (x)e−αx and fU,j (x) := CαgU,j (x)e−αx for j =
1, . . . ,N . Then∫ 1

0

(
f

1/2
U,j − f

1/2
L,j

)2 = Cα

∫ 1

0
e−αx{

g
1/2
U,j (x) − g

1/2
L,j (x)

}2
dx

≤ Cα

∫ 1

0

(
g

1/2
U,j − g

1/2
L,j

)2 ≤ ε2,

so {[fL,j , fU,j ], j = 1, . . . ,N} form an ε-Hellinger bracketing set for F(f0, δ), as
required.

The case where f0 is truncated exponential:
Now suppose that f0 = f−1,0,a for some a ∈ [18,∞]. Given a function φ : R→

[−∞,∞), we define φ̃a :R → [−∞,∞) by

(31) φ̃a(x) := φ(x) + x + log
(
1 − e−a)

.

Let x0 be defined as in the statement of Lemma 6 in the Supplementary Material
and assume that δ ≤ κ := e−9/8, so that x0 ≥ 17. Also let l = �x0� and J :=
sup{j ∈ N : x0 + j − l − 1 ≤ a}. We define subintervals of [0, a] (or [0, a) when
a = ∞) by

S1 := [0,1],
Sj := [

j − 1,min(j, x0)
]

for j = 2, . . . , l + 1,

Sj := [
x0 + j − l − 2,min(x0 + j − l − 1, a)

]
for j = l + 2, . . . , J + 1.
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Also let

(32) ε2
j :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(1 − e−18)

3
ε2 for j = 1,

2(1 − e−18)

3

ej−1ε2

l
for j = 2, . . . , l + 1,

2(1 − e−18)

3
ex0+j−l−2ε2u2

j for j = l + 2, . . . , J + 1,

where (uj ) is a sequence with
∑J+1

j=l+2 u2
j ≤ 1 to be specified later. Applying

Lemma 9 in the Supplementary Material with G := {exp(φ̃a) : exp(φ) ∈F(f0, δ)},
we obtain

(33) H[]
(
21/2ε,F(f0, δ), dH, [0, a)

) ≤
J+1∑
j=1

H[](εj ,G, dH, Sj ).

We now break the right-hand side of (33) into the three parts:

H1 := H[](ε1,G, dH, S1),

H2 :=
l+1∑
j=2

H[](εj ,G, dH, Sj ),

H3 :=
J+1∑

j=l+2

H[](εj ,G, dH, Sj ),

and bound each of them below separately. For H1, we have for every f = eφ ∈
F(f0, δ) that

δ2 ≥
∫ 1

0

(
f 1/2 − f

1/2
0

)2 =
∫ 1

0

(
eφ̃a(x)/2 − 1

)2 e−x

1 − e−a
dx

≥ e−1

1 − e−a

∫ 1

0

(
eφ̃a(x)/2 − 1

)2
dx.

Thus, arguing as for the uniform case, since δe1/2(1 − e−a)1/2 ≤ κe1/2 ≤ 2−5/2,

H1 � log5/4
(

1

δe1/2(1 − e−a)1/2

)
δ1/2

ε1/2 � log5/4
(

1

δ

)
δ1/2

ε1/2 .

We next bound H2. Note that
⋃l+1

j=2 Sj ⊆ [1, x0]. We can therefore apply Lemma 6

in the Supplementary Material to deduce that whenever eφ ∈ F(f0, δ) and x ∈ Sj ,

∣∣φ̃a(x)
∣∣ ≤ Cex/2(

1 − e−a)1/2
δ ≤ Cej/2δ.
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An application of Proposition 7 in the Supplementary Material therefore gives, for
j = 2, . . . , l + 1, that

H[](εj ,G, dH, Sj ) ≤ Cej/4δ1/2

ε
1/2
j

exp
(
Cej/2δ

) ≤ Cl1/4 δ1/2

ε1/2 exp
(
Cej/2δ

)

� l1/4 δ1/2

ε1/2 ,

where the final inequality follows because

ej/2 ≤ e1/2ex0/2 ≤
{

1

26(1 − e−18)

}1/2
δ−1.

We therefore obtain

H2 =
l+1∑
j=2

H[](εj ,G, dH, Sj ) ≤ Cl5/4 δ1/2

ε1/2

≤ Cx
5/4
0

δ1/2

ε1/2 ≤ C log5/4
(

1

26eδ2(1 − e−18)

)
δ1/2

ε1/2 � log5/4
(

1

δ

)
δ1/2

ε1/2 .

We next turn to H3, where we consider two cases. First, suppose that x0 = a −1 so
that J = l + 2 and Sl+2 = [a − 1, a]. This means that H3 = N[](εl+2,G, dH, [a −
1, a]). We take ul+2 = 1 in the definition of εl+2 in (32). From the definition of x0
in (15) in the Supplementary Material, we find that

(34) a = 1 + x0 ≤ 1 + log
1

26eδ2(1 − e−a)
= log

1

26δ2(1 − e−a)
.

For every f = eφ ∈ F(f0, δ), we can write

δ2 ≥
∫ a

a−1

(
f 1/2 − f

1/2
0

)2 =
∫ a

a−1

(
eφ̃a(x)/2 − 1

)2 e−x

1 − e−a
dx

≥ e−a

1 − e−a

∫ a

a−1

(
eφ̃a/2 − 1

)2
.

Now δea/2(1 − e−a)1/2 ≤ 2−5/2 from (34), and it follows again by the same argu-
ment as in the uniform case that

H3 � log5/4
(

1

δea/2(1 − e−a)1/2

)
δ1/2ea/4(1 − e−a)1/4

ε
1/2
l+2

� log5/4
(

1

δ

)
δ1/2

ε1/2 .

Now suppose that x0 < a − 1, so that

x0 = log
1

26eδ2(1 − e−a)
.
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For every j ∈ {l + 2, . . . , J + 1}, every x ∈ Sj and every f = eφ ∈ F(f0, δ), it
follows from Lemma 6 in the Supplementary Material that

φ̃a(x) ≤ 8(x − x0)

x0 − 1
+ 7 ≤ 8(j − l − 1)

x0 − 1
+ 7 ≤ 8(j − x0)

x0 − 1
+ 7.

Let uj := ce−(j−x0)/8 in (32), where the universal constant c > 0 is chosen such
that

∑∞
j=l+2 u2

j ≤ 1. Then by Proposition 8 in the Supplementary Material, for
j = l + 2, . . . , J + 1,

H[](εj ,G, dH, Sj ) ≤ C
e2(j−x0)/(x0−1)

ε
1/2
j

� 1

ε1/2 exp
{

2(j − x0)

x0 − 1
− x0 + j − l − 2

4
+ j − x0

16

}

� 1

ε1/2 exp
{

2(j − x0)

x0 − 1
− j − 2

4
+ j − x0

16

}
.

Hence,

H3 � 1

ε1/2

J+1∑
j=l+2

exp
{

2(j − x0)

x0 − 1
− j − x0 + x0 − 2

4
+ j − x0

16

}

(35)

� e−x0/4

ε1/2

∞∑
r=1

exp
{
−r

(
3

16
− 2

x0 − 1

)}
� e−x0/4

ε1/2 � δ1/2

ε1/2 .

This completes the proof of Theorem 4 in the case where υ = 0. We can now treat
the case of general υ ∈ [0,21/2] as follows. Fix f0 ∈ F , ε > 0, let κ be as above
and let δ ∈ (0, κ −υ). Also let η ∈ (0, κ −υ −δ) and f1 ∈F1 be such that f0 � f1
and

(36) dH(f0, f1) ≤ υ + η < κ − δ.

Then by the triangle inequality, F(f0, δ) ⊆F(f1, dH(f0, f1)+δ), so that the result
in the case υ = 0 and (36) give

H[]
(
21/2ε,F(f0, δ), dH

) ≤ C log5/4
(

1

δ

){δ + dH(f0, f1)}1/2

ε1/2

≤ C log5/4
(

1

δ

)
(δ + υ + η)1/2

ε1/2 .

Since η ∈ (0, κ − υ − δ) was arbitrary, the result follows. �

PROOF OF THEOREM 5. For ξ ≥ 0 and η ∈ (0,1), let

F̃ ξ,η := {
f ∈F : |μf | ≤ ξ,

∣∣σ 2
f − 1

∣∣ ≤ η
}
.
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Since the log-concave maximum likelihood estimator is affine equivariant
[Dümbgen, Samworth and Schuhmacher (2011), Remark 2.4] and since the
Hellinger distance between densities is affine invariant, we may assume without
loss of generality that f0 ∈ F0,1. By Kim and Samworth [(2016), Lemma 6] there
exist universal constants η ∈ (0,1), C ′′ > 0 such that

(37) sup
f0∈F0,1

Pf0

(
f̂n /∈ F̃1,η) ≤ C′′

n
.

For notational convenience, we write

υ := inf
f1∈F1:f0�f1

dH(f0, f1),

and initially consider the case υ ≤ κ/2, where κ is taken from Theorem 4. From
Theorem 4, we find that∫ δ

0
H

1/2
[]

(
ε,F(f0, δ) ∩ F̃1,η, dH

)
dε ≤ Cδ3/4(δ + υ)1/4 log5/8(1/δ),

provided δ ≤ κ − υ . For δ > κ − υ , we have

H[]
(
ε,F(f0, δ) ∩ F̃1,η, dH

) ≤ H[]
(
ε, F̃1,η, dH

) ≤ Cε−1/2 ≤ C

(
δ

κ − υ

)1/2
ε−1/2

≤ 21/2C

κ1/2

(
δ

ε

)1/2
,

where the second inequality follows by Kim and Samworth (2016), Theorem 4.
Thus, in this case,∫ δ

0
H

1/2
[]

(
ε,F(f0, δ) ∩ F̃1,η, dH

)
dε ≤ Cκ−1/4δ.

We can therefore define

�(δ) :=
{
Cδ3/4(δ + υ)1/4 log5/8(1/δ) if δ ≤ κ − υ,

C′κ−1/4δ if δ > κ − υ,

where the universal constants C,C′ > 0 are chosen such that

�(δ) ≥ max
{∫ δ

0
H

1/2
[]

(
21/2ε,F(f0,4δ) ∩ F̃1,η, dH

)
dε, δ

}
,

and such that δ �→ δ−2�(δ) is decreasing on (0,∞). Moreover, we can define
δ∗ := (cn−1 log5/4 n + υ2)1/2 for some universal constant c > 0, so that

inf
δ≥δ∗

n1/2δ2

�(δ)
≥ n1/2δ2∗

�(δ∗)
≥ n1/2δ∗

max(21/4C,C′κ−1/4)max{1, log5/8(1/δ∗)}
.

By choosing the universal constant c > 0 sufficiently large, we can ensure that this
ratio exceeds the universal constant required to apply the empirical process bound
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of van de Geer [(2000), Corollary 7.5] (restated as Theorem 10 in the Supplemen-
tary Material for convenience). We deduce from this and (37) that

Ef0d
2
X(f̂n, f0) ≤

∫ 10 logn

0
P

[{
d2

X(f̂n, f0) ≥ t
} ∩ {

f̂n ∈ F̃1,η}]
dt

+ 10 lognP
(
f̂n /∈ F̃1,η) +

∫ ∞
10 logn

P
{
d2

X(f̂n, f0) ≥ t
}
dt

≤ δ2∗ + C

∫ ∞
δ2∗

exp
(
− nt

C2

)
dt + 10C′′ logn

n
(38)

+
∫ ∞

10 logn
Pf0

{
max

1≤i≤n
log

f̂n(Xi)

f0(Xi)
≥ t

}
dt

≤ C′′′ log5/4 n

n
+ υ2,

for some universal constant C′′′ > 0, where the final inequality follows from (10)
in the proof of Lemma 2 in the Supplementary Material.

Now suppose that υ > κ/2. In that case, a slightly simpler version of the cal-
culation above, which relies only on the global entropy bound H[](ε, F̃1,η, dH) �
ε−1/2, yields that supf0∈F Ef0d

2
X(f̂n, f0) ≤ Cn−4/5 ≤ κ2/4 < υ2 for large n; see

also Kim and Samworth (2016), Theorem 5. By increasing the universal constant
to deal with smaller values of n if necessary, the result follows. �
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