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BACKWARD NESTED DESCRIPTORS ASYMPTOTICS WITH
INFERENCE ON STEM CELL DIFFERENTIATION1

BY STEPHAN F. HUCKEMANN AND BENJAMIN ELTZNER

Georg-August-Universität Göttingen

For sequences of random backward nested subspaces as occur, say, in
dimension reduction for manifold or stratified space valued data, asymptotic
results are derived. In fact, we formulate our results more generally for back-
ward nested families of descriptors (BNFD). Under rather general conditions,
asymptotic strong consistency holds. Under additional, still rather general
hypotheses, among them existence of a.s. local twice differentiable charts,
asymptotic joint normality of a BNFD can be shown. If charts factor suitably,
this leads to individual asymptotic normality for the last element, a principal
nested mean or a principal nested geodesic, say. It turns out that these results
pertain to principal nested spheres (PNS) and principal nested great subsphere
(PNGS) analysis by Jung, Dryden and Marron [Biometrika 99 (2012) 551–
568] as well as to the intrinsic mean on a first geodesic principal component
(IMo1GPC) for manifolds and Kendall’s shape spaces. A nested bootstrap
two-sample test is derived and illustrated with simulations. In a study on real
data, PNGS is applied to track early human mesenchymal stem cell differen-
tiation over a coarse time grid and, among others, to locate a change point
with direct consequences for the design of further studies.

1. Introduction. In this paper, the novel statistical problem of deriving
asymptotic results for nested random sequences of statistical descriptors for data in
a non-Euclidean space is considered. It can be viewed as a generalization of clas-
sical PCA’s asymptotics, for example, by Anderson (1963), Ruymgaart and Yang
(1997), Watson (1983), where, as a consequence of Pythagoras’ theorem, nested-
ness of approximating subspaces is trivially given, and thus requires no special
attention.

Classical PCA from a geometric perspective. Given data on Q = Rm, for every
0 ≤ k ≤ m a unique affine subspace pk of dimension k is determined by equiva-
lently minimizing residual sums of squares or, among those containing the classi-
cal mean μ, maximizing the projected variance. These subspaces have representa-
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tions as pk = μ + span{γ1, . . . , γk}, the affine translates of spans from an eigen-
vector decomposition γ1, . . . , γm of the data’s covariance matrix with descending
eigenvalues. In consequence, one may either start from the zero dimensional mean
and subsequently add most descriptive dimensions (forward) or start from the full
dimensional space and remove least descriptive dimensions (backward) to obtain
the same nested sequence of subspaces

(1) {μ} = p0 ⊂ p1 ⊂ · · · ⊂ pm = Q.

Non-Euclidean PCA. For dimension reduction of non-Euclidean data, Pro-
crustes analysis by Gower (1975) and later principal geodesic analysis by Fletcher
et al. (2004) are approaches to mimic PCA on shape spaces and Riemannian man-
ifolds, respectively. Both build on the concept of a Fréchet mean, a minimizer of
expected squared distance, around which classical PCA is conducted for the data
mapped to a suitable tangent space. This can be viewed as an forward nested ap-
proach.

Notably, these tangent space PCA methods are in no way canonical, as the sta-
tistical outcomes depend on specific choices of tangent space coordinates, and
given curvature, no tangent space coordinates can correctly reflect mutual data
distances. More severely, for specific data situations as in the following example,
such tangent PCA methods may be meaningless.

EXAMPLE 1.1. Consider data on a two-sphere that is uniformly distributed
on its equator. Then there are two intrinsic Fréchet means, each at one of the two
poles and tangent space PCA using standard coordinates at either mean yields 2D
isotropy; see Huckemann (2012).

To tackle also scenarios where the mean is far from the data, geodesic principal
component analysis (GPCA) has been introduced by Huckemann, Hotz and Munk
(2010b), Huckemann and Ziezold (2006), where in particular the first geodesic
principal component is a geodesic approximating the data best in intrinsic L2-
distance, along with the intrinsic mean on the first geodesic principal component
(IMo1GPC). For spheres, this backward nested approach has been generalized
by Jung, Foskey and Marron (2011) to principal arc analysis with the backward
nested mean confined to the best approximating small circle. This method and
its generalization backward nested sphere analysis (PNS) by Jung, Dryden and
Marron (2012) give a tool for descriptive shape analysis that often strikingly out-
performs tangent space PCA, for example, Pizer et al. (2013). Here, the data space
is a unit sphere Q = S

m of dimension m ∈ N, say, and in (1) each of the pk is a
k-dimensional (small) subsphere for PNS and for principal nested great spheres
(PNGS) it is a k-dimensional great subsphere. Another generalization of GPCA is
given by iterated frame bundle development by Sommer (2013) and the recently
proposed barycentric subspaces by Pennec (2015, 2016).
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Asymptotics for non-Euclidean PCA. Asymptotics for Fréchet means have
been subsequently provided, among others, by Bhattacharya and Patrangenaru
(2003, 2005), Hendriks and Landsman (1996), Huckemann (2011a), Ziezold
(1977), allowing for inferential methods such as two-sample tests. Asymptotics
for the above mentioned tangent space PCA methods, however, reflecting for-
ward nestedness due to random base points (i.e., corresponding means) of tangent
spaces with random PCs therein, remain open to date. Similarly, asymptotics for
nondata space valued descriptors, geodesics, say, are available [cf. Huckemann
(2011b, 2014)], but only for ones that are directly defined as minimizers, not indi-
rectly as a nested sequence of minimizers.

Challenges for and results of this paper. It is the objective of this paper to close
the backward part of this gap by providing asymptotic results for rather general
random backward nested families of descriptors (BNFDs) on rather general spaces.
The challenge here is that random objects that are constrained by other random
objects are to be investigated, requiring an elaborate setup. Into this setup, we
translate strong consistency arguments of Ziezold (1977) and Bhattacharya and
Patrangenaru (2003), and introducing a constrained M-estimation technique, we
show joint asymptotic normality of an entire BNFD. In the special case of nested
subspaces, BNFDs may terminate at any dimension and pj , j ≥ 0.

As we minimize a functional under the constraining conditions that other
functionals are minimized as well, our approach can be called constrained M-
estimation. In the literature, this term constrained M-estimation has been indepen-
dently introduced by Kent and Tyler (1996) who robustify M-estimators by intro-
ducing constraining conditions and by Geyer (1994), Shapiro (2000), who con-
sider M-estimators that are confined to closed subsets of a Euclidean space with
specifically regular boundaries. It seems that our M-estimation problem, which
is constrained to satisfying other M-estimation problems has not been dealt with
before. We solve it using a random Lagrange multiplier approach.

Furthermore, in order to obtain asymptotic normality of each single sequence
element, in particular for the last, we require the rather technical concept of fac-
toring charts. Our very general setup will be illustrated, still with some effort,
by example of PNS, PNGS and the intrinsic mean on a first geodesic principal
component (IMo1GPC).

In order to exploit nested asymptotic normality for a nested two-sample test, we
utilize bootstrapping techniques. While for Fréchet means, as they are descriptors
assuming values in the data space, one can explicitly model the dependence of
the random base points of the tangent spaces as in Huckemann, Hotz and Munk
(2010a), so that suitable statistics can be accordingly directly approximated, this
modeling and approximation can be avoided using the bootstrap as in Bhattacharya
and Patrangenaru (2005). For our application at hand, as data space and descriptor
space are different, we cannot approximate the distribution of random descriptors
and we fall back on the bootstrap.
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Suggestions for live imaging of stem cell differentiation. After illustrations of
our nested two-sample test by simulations for PNS and PNGS, we apply it to a cut-
ting edge application in adult human stem cell differentiation research. “Rooted in
a line of experimentation originating in the 1960s” [from Bianco et al. (2013)],
the promise that stem cells taken from a patient’s bone marrow may be used to
rebuild specific, previously lost, patient’s tissue is currently undergoing an abun-
dance of clinical trials. Although the underlying mechanisms are, to date, not fully
understood, it is common knowledge that early stem cell differentiation is trig-
gered by biomechanical cues, for example, Zemel et al. (2010), which result in
specific ordering of the cellular actin-myosin filament skeleton. In collaboration
with the Third Institute of Physics at the University of Göttingen we map fluo-
rescence images of cell structures to two-spheres, where each point stands for a
specific ordering. With our 2D PNGS two-sample test, we can track the direc-
tion of increased ordering over the first 24 hours. We find, however, a consistent
reversal of ordering between hours 16 to 20 which hint toward the effect of cell
division. This effect suggests that the commonly used time point of 24 hours for
fixated hMSCs imaging, for example, as in Zemel et al. (2010), may not be ideal
for cell differentiation detection. In fact, our method can be used to direct more
elaborate and refined imaging techniques, such as time resolved in-vivo cell imag-
ing, using Eltzner et al. (2015), say, to investigate specifically discriminatory time
intervals in detail.

2. Backward nested families of descriptors. In this section, we first intro-
duce the general framework including the fundamental assumption of factoring
charts which is essential to prove asymptotic normality of single nested descrip-
tors in Section 4. Then we give the first example: the intrinsic mean on a first
geodesic principal component (IMo1GPC) for Riemannian manifolds. The next
two examples of principal nested spheres (PNS) as well as principal nested great
spheres (PNGS), and finally the example for the IMo1GPCs also on nonmani-
fold Kendall’s shape spaces are deferred to the Supplement, Appendices A and B
[Huckemann and Eltzner (2018)]. The first example is rather straightforward, the
last is slightly more involved and the second and third are much more involved.
The differential geometry used here can be found in any standard textbook, for
example, Lee (2013).

First, let us quickly sketch the ideas in case of IMo1GPCs on a Riemannian
manifold Q. There, we have the space P1 of point sets of geodesics on Q which is
the first nontrivial descriptor space “below” the space P2 = {Q}. In order to show
strong asymptotic consistency in Theorem 4.1, on P1 × P1 we require the concept
of a loss function d1 that has some properties of a distance between two (point
sets of) geodesics. In order to model nestedness, given a geodesic p ∈ P1 we re-
quire the set Sp of lower dimensional descriptors in P0 = Q which lie on p. These
are the candidate nested means on p, and in this case, Sp = p. Further, we need
the data projection πQ,p : Q → p and we measure the distance ρ(πQ,p(q), s) of
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(a) BNFD (b) Coordinates (c) Projective bundle

FIG. 1. The chart ψ factors, if the projection of η to the θ coordinates of the chart [Display (b)]
equals the projection of f j−1 to pj−1 in the descriptor space [Display (a)] followed by a chart for
pj−1. For the IMo1GPC example, where the descriptor space carries the structure of the projective
bundle PQ, a suitable subset W ⊆ PU over a neighborhood U ⊂ Q factors, because the tangent
bundle T U does so.

the projected data to a candidate nested mean s ∈ Sp . Then every (Q,p, s) with
p ∈ P1, s ∈ Sp will be a backward nested family of descriptors (BNFD) and the set
(p, s) with p ∈ P1, s ∈ Sp carries a natural manifold structure. It is the objective
of factoring charts to represent this manifold locally as a direct product of arbi-
trary variable offsets s ∈ P0 = Q times a suitable space parametrizing directions
of geodesics, parametrized independently from the offset s ∈ Q; cf. Figure 1. We
will see that is precisely the geometry of the projective bundle. Once we establish
asymptotic normality of the backward nested descriptor (p, s), asymptotic normal-
ity follows at once also for s, because under factoring charts, s is given by some
coordinates of a Gaussian vector as reasoned in the proof of Theorem 4.5.

2.1. General framework. With a silently underlying probability space (�,A,

P), random elements on a topological space Q are mappings X : � → Q that are
measurable with respect to the Borel σ -algebra of Q. In the following, smooth
refers to existing continuous second-order derivatives.

For a topological space Q, we say that a continuous function d : Q × Q →
[0,∞) is a loss function if d(q, q ′) = 0 if and only if q = q ′. We say that a set
A ⊂ Q is d-bounded if supa,a′∈A d(a, a′) < ∞. Moreover, we say that B ⊂ Q is
d-Heine Borel if all closed d-bounded subsets of B are compact.

DEFINITION 2.1. A separable topological space Q, called the data space,
admits backward nested families of descriptors (BNFDs) if:

(i) there is a collection Pj (j = 0, . . . ,m) of topological separable spaces with
loss functions dj : Pj × Pj → [0,∞);

(ii) Pm = {Q};
(iii) every p ∈ Pj (j = 1, . . . ,m) is itself a topological space and gives rise to

a topological space ∅ 
= Sp ⊂ Pj−1 which comes with a continuous map

ρp : p × Sp → [0,∞);
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(iv) for every pair p ∈ Pj (j = 1, . . . ,m) and s ∈ Sp there is a measurable map
called projection

πp,s : p → s.

For j ∈ {1, . . . ,m} and k ∈ {1, . . . , j} call a family

f = (
pj−k, . . . , pj )

with pl−1 ∈ Spl , l = j − k + 1, . . . , j

a backward nested family of descriptors (BNFD) from Pj to Pj−k . The space of all
BNFDs from Pj to Pj−k is given by

Tj,k = {
f = (

pj−l)k
l=0 : pl−1 ∈ Spl , l = j − k + 1, . . . , j

} ⊆
k∏

l=0

Pj−l .

For k ∈ {1, . . . ,m}, given a BNFD f = (pm−l)kl=0 set

πf = πpm−k+1,pm−k ◦ · · · ◦ πpm,pm−1 : pm → pm−k

which projects along each descriptor. For another BNFD f ′ = (p′j−l)kl=0 ∈ Tj,k

set

dj (
f,f ′) =

√√√√ k∑
l=0

dj

(
pj−l , p′j−l

)2
.

In case of PNS, the nested projection πf is illustrated in Figure 2(a).

(a) Nested projection (b) Projection of descriptors

FIG. 2. PNS illustration. Left: Projection of X (red) in Q = S
2 onto small circle p (blue) and

further onto s (green). Right: Projection sp′
(blue) onto Sp′ (which is p′ in this case) of s (red) on

Sp (which is p in this case).
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DEFINITION 2.2. Random elements X1, . . . ,Xn
i.i.d.∼ X on a data space Q ad-

mitting BNFDs give rise to backward nested population and sample means (abbre-
viated as BN means)

(
Ef j : j = m, . . . ,0

)
,

(
Ef

j
n

n : j = m, . . . ,0
)

recursively defined via Em = {Q} = Em
n , that is, pm = Q = pm

n and

Ef j−1 = argmin
s∈S

pj

E
[
ρpj (πf j ◦ X, s)2]

, f j = (
pk)m

k=j ,

Ef
j−1
n

n = argmin
s∈S

p
j
n

n∑
i=1

ρ
p

j
n
(π

f
j
n

◦ Xi, s)
2, f j

n = (
pk

n

)m
k=j ,

where pj ∈ Ef j
and p

j
n ∈ Ef

j
n is a measurable choice for j = 1, . . . ,m.

We say that a BNFD f = (pk)mk=0 gives unique BN population means if Ef j =
{pj } with f j = (pk)mk=j for all j = 0, . . . ,m.

Each of the Ef j−1
and E

f
j−1
n

n is also called a generalized Fréchet mean.

Note that by definition there is only one pm = Q ∈ Pm. For this reason, for
notational simplicity, we ignore it from now on and begin all BNFDs with pm−1

and consider thus the corresponding Tm−1,k .

DEFINITION 2.3 (Factoring charts). Let j ∈ {0, . . . ,m − 1}, k ∈ {1, . . . , j}. If
Tj,k and P j−k carry smooth manifold structures near f ′ = (p′j−k, . . . , p′j ) ∈ Tj,k

and p′j−k ∈ P j−k , respectively, with open W ⊂ Tj,k , U ⊂ P j−k such that f ′ ∈ W ,
p′j−k ∈ U , and with local charts

ψ : W → R
dim(W), f = (

pj−k, . . . , pj ) 
→ η = (θ, ξ),

φ : U → R
dim(U), pj−k 
→ θ

we say that the chart ψ factors [cf. Figure 1(a) and (b)], if with the projections

πP j−k : Tj,k → P j−k, f 
→ pj−k,

πR
dim(U) : Rdim(W) →R

dim(U), (θ, ξ) 
→ θ

we have

φ ◦ πP j−k |W = πR
dim(U) |ψ(W) ◦ ψ.
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2.2. Intrinsic mean on a first principal component geodesic for manifolds.
Suppose that X1, . . . ,Xn ∼ X are random variables assuming values on a Rie-
mannian manifold Q with Riemannian norm ‖ · ‖ for the tangent spaces TqQ

(q ∈ Q), induced metric d : Q × Q → [0,∞), projective tangent bundle PQ =
{(q, {v,−v}) : q ∈ Q,v ∈ TqQ,‖v‖ = 1} and space of classes of geodesics given
by their point sets

P1 = {[γq,v] : (
q, {v,−v}) ∈ PQ

}
,

[γq,v] = {
γr,w : γq,v(t) = r, γ̇q,v(t) = w for some t

}
,

where t 
→ γq,v(t) denotes the unique maximal geodesic through q = γq,v(0) with
unit speed velocity v = γ̇q,v(0), ‖v‖ = 1. Then consider

P2 = {Q}, SQ = P1, P0 = Q.

There is a well-defined distance between a point s ∈ Q and a class of geodesics
determined by

ρQ : Q × P1 → [0,∞),
(
s, [γq,v]) 
→ inf

t
d
(
s, γq,v(t)

)
.

Then every class of geodesics determined by

argmin
(q,v)∈T Q

E
[
ρ

(
X, [γq,v])2]

or argmin
(q,v)∈T Q

n∑
k=1

ρ
(
Xk, [γq,v])2

is called a first population principal component geodesic or a first sample principal
component geodesic, respectively; cf. Huckemann and Ziezold (2006).

Moreover, given a first population principal component geodesic p = [γq,v] and
a first sample principal component geodesic pn = [γqn,vn], with the orthogonal
projection

πQ,p : Q → p = [γq,v], q ′ 
→ argmin
γq,v(t)

d
(
q ′, γq,v(t)

)
which is well defined outside a set of zero Riemannian volume [e.g., Huckemann,
Hotz and Munk (2010b), Theorem 2.6], we have the intrinsic population means on
p and intrinsic sample means on pn determined by

argmin
[γq,v]

E
[
ρp

(
πQ,p ◦ X,γq,v(t)

)2]
or argmin

[γq,v]

n∑
k=1

ρpn

(
πQ,pn ◦ Xk,γq,v(t)

)2
,

respectively, where ρp(q, q ′) = d(q, q ′) for q, q ′ in p. In particular, we have the
space of backward nested descriptors

T1,1 = {
(s,p) : p = [γq,v] ∈ P1, s ∈ p

}
which carries the natural manifold structure of the projective tangent bundle PQ

conveyed by the identity

(2) T1,1 → PQ,
(
s, [γq,v]) 
→ (

s, {w,−w}),
where w = γ̇q,v(t), ‖w‖ = 1, if s = γq,v(t).
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Recall that the tangent bundle T Q = {(q, v) : q ∈ Q,v ∈ TqQ} admits local
trivializations, that is, every q ∈ Q has a local neighborhood U ⊂ Q with a smooth
one-to-one mapping

τ = (τ1, τ2) : T U → U ×R
dim(Q),

where the first coordinate satisfies τ1(q
′, v′) = q ′ for all v′ ∈ Tq ′Q, q ′ ∈ U and the

second coordinate τ2 is an isometric vector space isomorphism. In consequence,
for a given (q, {v,−v}) ∈ PQ, ‖v‖ = 1, with local charts φ : U → R

dim(Q) of
Q around q , and χ : H → R

dim(Q)−1 of the real projective space PR
dim(Q)−1 of

dimension dim(Q) − 1 around {τ2(q, v),−τ2(q, v)} ∈ H ⊂ R
dim(Q)−1, H open,

and the open set

W = {(
q ′,

{
v′,−v′}) : (

q ′, v′) ∈ T U,
∥∥v′∥∥ = 1,

{
τ2

(
q ′, v′),−τ2

(
q ′, v′)} ∈ H

}
⊂ PU,

the mapping

ψ : W → R
dim(Q) ×R

dim(Q)−1,(
q ′,

{
v′,−v′}) 
→ (

φ
(
q ′), χ{

τ2
(
q ′, v′),−τ2

(
q ′, v′)})

yields a local chart that factors as in Definition 2.3. This scenario is sketched in
Figure 1(c).

3. Assumptions for the main results. In this section, we are back in the gen-
eral scenario described in Section 2.1. We develop a set of assumptions, among
others establishing additional compatibility for the families dj and φp , neces-
sary for the general results on asymptotic consistency and asymptotic normality
in Section 4.1. We then show that they are fulfilled in case of PNS/PNGS and the
IMo1GPC of Kendall’s shape spaces.

3.1. Assumptions for strong consistency. For the following assumptions, sup-
pose that j ∈ {1, . . . ,m − 1}.

ASSUMPTION 3.1. For a random element X in Q, assume that E[ρpj (πf ◦
X, s)2] < ∞ for all BNFDs f ending at pj , s ∈ Spj .

In order to measure a difference between s ∈ Sp and s′ ∈ Sp′ for p,p′ ∈ Pj

define the orthogonal projection of s ∈ Sp onto Sp′ as

Ss
p′ = argmin

s′∈Sp′
dj−1

(
s, s′).

In case of PNS, this is illustrated in Figure 2(a).
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ASSUMPTION 3.2. For every s ∈ Sp there is δ > 0 such that

Ss
p′ has exactly one element

whenever p,p′ ∈ Pj with dj (p,p′) < δ.

For s ∈ Sp and p,p′ ∈ Pj sufficiently close, let sp′ ∈ Ss
p′ be the unique element.

Note that we have in general for (sp′
)p , which denotes the projection back to Sp

of s ∈ Sp , after it was first projected to Sp′ ,(
sp′)p 
= s.

In the following assumption, however, we will require that they will uniformly not
differ too much if p is close to p′. Also, we require that sp′

and s be close.

ASSUMPTION 3.3. For ε > 0, there is δ > 0 such that

dj−1
(
sp′

, s
)
< ε and dj−1

((
sp′)p

, s
)
< ε ∀s ∈ Sp

whenever p,p′ ∈ Pj with dj (p,p′) < δ.

We will also require the following assumption, which in conjunction with As-
sumption 3.3, is a consequence of the triangle inequality, if dj−1 is a metric.

ASSUMPTION 3.4. Suppose that dj (pn,p) → 0 and dj−1(sn, s) → 0 with
p,pn ∈ Pj and s ∈ Sp, sn ∈ Spn . Then also

dj−1
(
sn, s

pn
) → 0.

Moreover, we require uniformity [which, among others guarantees the Ziezold
strong law (4)] and coercivity (which, among others prohibits that sample
means “diverge to infinity”, thus additionally guaranteeing the Bhattacharya–
Patrangenaru strong law, which in our setup is Theorem 4.1) in the following
senses.

ASSUMPTION 3.5. For all ε > 0, there are δ1, δ2 > 0 such that∣∣ρp

(
πf (q), s

) − ρp′
(
πf ′(q), s′)∣∣ < ε ∀q ∈ Q

for all BNFDs f,f ′ ∈ Tm−1,m−j−1 ending in p,p′ ∈ Pj , respectively, with
d(f,f ′) < δ1 and s ∈ Sp, s′ ∈ Sp′ with dj−1(s, s

′) < δ2.

ASSUMPTION 3.6. If pn,p ∈ Pj and sn ∈ Spn, s ∈ Sp with dj−1(sn, s) → ∞,
then for every C > 0 we have that

ρpn(πfnq, sn) → ∞
for every q ∈ Q with ρp(πf q, s) < C and BNFDs f,fn ∈ Tm−1,m−j−1 ending at
p,pn, respectively.
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REMARK 3.7. Due to continuity, Assumptions 3.1 and 3.5 hold if Q is com-
pact and Assumption 3.6 if each Pj is compact.

The proof of the following theorem can be found in the Supplementary Material
[Huckemann and Eltzner (2018)].

THEOREM 3.8. Assumptions 3.1–3.6 hold for PNS and PNGS for all j =
1, . . . ,m − 1. Moreover, each Pj is dj -Heine Borel for j = 0, . . . ,m.

THEOREM 3.9. For IMo1GPCs on Kendall’s shape spaces Q = �k
m,

0 < m < k, Assumptions 3.1–3.6 hold for j = 1. Moreover, Pj is dj -Heine Borel
for j = 0,1.

PROOF. Assumption 3.2 follows at once from the compactness of Q, hence
the geodesics p ⊂ Q are also compact and the proof of Huckemann, Hotz and
Munk (2010b), Theorem A.5, as there, in Claim II, a neighborhood of a geodesic
p is constructed, restricted to which the orthogonal projection πp is well defined
and continuous in p. Compactness and continuity also imply Assumptions 3.3
and 3.4. Assumptions 3.1, 3.5 and 3.6 follow from Remark 3.7. �

3.2. An additional assumption for asymptotic normality. Again, let j ∈
{1, . . . ,m − 1}.

ASSUMPTION 3.10. Assume that Tm−1,m−j carries a smooth manifold struc-
ture near the unique BN population mean f ′j−1 = (p′j−1, . . . , p′m−1) such that
there is an open set W ⊂ Tm−1,m−j , f ′j−1 ∈ W and a local chart

ψ : W →R
dim(U), f j−1 = (

pj−1, . . . , pm−1) 
→ η,

and we set η′ = ψ(f ′j−1). Further, assume that for every l = j, . . . ,m the mapping

η 
→ f l−1 
→ ρpl

(
πf l ◦ X,pl−1)2 := τ l(η,X),

here the first map η 
→ f l−1 is ψ−1 followed by a projection to (pl−1, . . . , pm−1),
has first and second derivatives, such that for all l = j, . . . ,m,

Cov
[
gradη τ l(η′,X

)]
, and E

[
Hessη τ l(η′,X

)]
exist and are in expectation continuous near η′, that is, for δ → 0 we have

E

[
sup

‖η−η′‖<δ

∥∥gradη τ l(η,X) − gradη τ l(η′,X
)∥∥]

→ 0,

E

[
sup

‖η−η′‖<δ

∥∥Hessη τ l(η,X) − Hessη τ l(η′,X
)∥∥]

→ 0.

Finally, assume that the vectors E[gradη τ j+1(η′,X)], . . . ,E[gradη τm(η′,X)] are
linearly independent.
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REMARK 3.11. For PNS and PNGS, a global, manifold structure has been
derived in Appendix A with projections (8) from the supplement (see also Propo-
sition A.2) and distances (12) from the supplement smooth away from singularity
sets. For IMo1GPCs on Kendall’s shape spaces, this has been provided in Ap-
pendix B; cf. also Huckemann (2011b).

In general, however, it is unclear under which circumstances (if the second
derivatives are continuous in both arguments where X is supported in a compact
set, then convergence to zero holds not only in expectation but also a.s.) the three
assumptions above, uniqueness, existence of first and second moments of second
and first derivatives and their continuity in expectation are valid. Even for the much
simpler case of intrinsic means on manifolds this is only very partially known; cf.
the discussion in Huckemann and Hotz (2014). It seems that only for the most
simple non-Euclidean case of intrinsic means on circles the full picture is avail-
able [Hotz and Huckemann (2015)]. Recently, rather generic conditions for den-
sities have been derived by Bhattacharya and Lin (2016), ensuring

√
n-Gaussian

asymptotic normality.
The condition on linear independence is rather natural for realistic scenarios

where each constraining condition adds a new constraint, not covered by the pre-
vious, as introduced after Corollary 4.3. For example, if charts factor, then with
decreasing l, every constraining condition results in conditions on new coordi-
nates.

4. The main results.

4.1. Asymptotic theorems.

THEOREM 4.1. Let k ∈ {0, . . . ,m − 1} and consider random data X1, . . . ,

Xn
i.i.d.∼ X on a data space Q admitting BN descriptor families from Pm to Pk ,

unique BN population means (pk, . . . , pm) and BN sample means (E
f k

n
n , . . . ,E

f m
n

n )

due to a measurable selection p
j
n ∈ E

f
j
n

n giving rise to BNFDs f
j
n = (pl

n)
m
l=j , j =

k, . . . ,m. If Assumptions 3.1–3.6 are valid for all j = k, . . . ,m − 1, and every⋃∞
n=1 E

f
j
n

n is a.s. dj -Heine Borel (j = k, . . . ,m), then (E
f k

n
n , . . . ,E

f m
n

n ) converges
a.s. to (pk, . . . , pm) in the sense that ∃�′ ⊂ � measurable with P(�′) = 1 such
that for all j = k, . . . ,m, ε > 0 and ω ∈ �′, ∃N = N(ε,ω) with

(3)
∞⋃

r=n

Ef
j
r

r ⊂ {
p ∈ Pj : dj

(
pj ,p

) ≤ ε
} ∀n ≥ N,ω ∈ �′.

PROOF. We proceed by backward induction on j . The case j = m is trivial and
the case j = m − 1 has been covered by Theorems A.3 and A.4 from Huckemann
(2011b).
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Now suppose that (3) has been established for j + 1 ∈ {k + 1, . . . ,m}. Set P =
Pj+1,p = pj+1, f = (pj+1, . . . , pm),pn = p

j+1
n , fn = (p

j+1
n , . . . , pm

n ) and for
an arbitrary BNFD f ′ ending at p′ ∈ Pj+1,

Ff (s) = E
[
ρp(πf ◦ X, s)2]

, s ∈ Sp,

Fn,f ′(s) = 1

n

n∑
i=1

ρp′(πf ′ ◦ Xi, s)
2, s ∈ Sp′,

�f = inf
s∈Sp

Ff (s), �n,f ′ = inf
s∈Sp′

Fn,f ′(s).

Then Ff (s) < ∞ for all s ∈ Sp , by hypothesis, and with s∗ = pj ,{
s∗} = argmin

s∈Sp

Ff (s), Efn
n = argmin

s∈Spn

Fn,fn(s).

To complete the proof, we first show in the supplement

(4)
∞⋂

n=1

∞⋃
r=n

E
fr
r ⊂ {

s∗}
a.s.

This is Ziezold’s version of strong consistency [cf. Ziezold (1977)]. Further, we
show that this implies the Bhattacharya–Patrangenaru version [cf. Bhattacharya
and Patrangenaru (2003)] of strong consistency which takes here the form (3). �

REMARK 4.2. Careful inspection of the proof yields that we have only used
that the “distances” dj vanish on the diagonal dj (p,p) = 0 for all p ∈ Pj ; they
need not be definite, that is, it is not necessary that dj (p,p′) = 0 ⇒ p = p′.

Moreover, note that the dj -Heine Borel property holds trivially in case of unique
sample descriptors.

The following corollary rests on a standard argument involving Chebyshev’s
inequality; the proof is detailed in the Supplementary Material [Huckemann and
Eltzner (2018)].

COROLLARY 4.3. Suppose that (3) holds together with Assumption 3.10.
Then we have for l = j, . . . ,m the following convergence in probability:

1

n

n∑
k=1

gradη τ l(ηn,Xk)
P→ E

[
gradη τ l(η′,X

)]
,

1

n

n∑
k=1

Hessη τ l(ηn,Xk)
P→ E

[
Hessη τ l(η′,X

)]
.

Here, ηn denotes the image of f
j−1
n in the chart from Assumption 3.10.
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We now introduce notation we use for the central limit theorem. Let j ∈
{1, . . . ,m}. By construction, every measurable selection f

j−1
n of BN sample

means minimizes

1

n

n∑
k=1

ρ
p

j
n

(
π

f
j
n

◦ Xk,p
j−1
n

)2

under the constraints that it minimizes each of

1

n

n∑
k=1

ρQ

(
Xk,p

m−1
n

)2
, . . . ,

1

n

n∑
k=1

ρ
p

j+1
n

(
π

f
j+1
n

◦ Xk,p
j
n

)2
.

Similarly, the BN population mean f ′j−1 minimizes

E
[
ρpj

(
πf j ◦ X,pj−1)2]

under the constraints that it minimizes each of

E
[
ρQ

(
X,pm−1)2]

, . . . , E
[
ρpj+1

(
πf j+1 ◦ X,pj )2]

.

In consequence, due to differentiability guaranteed by Assumption 3.10, with the
notation of τ j there, suitable random Lagrange multipliers λ

j+1
n , . . . , λm

n ∈ R and
deterministic Lagrange multipliers λj+1, . . . , λm ∈ R exist such that for ηn =
ψ−1(f

j−1
n ) and η′ = ψ−1(f ′j−1) the following hold:

gradη Gn(ηn) = 0
(5)

with Gn(η) := 1

n

n∑
k=1

τ j (η,Xk) +
m∑

l=j+1

λl
n

1

n

n∑
k=1

τ l(η,Xk),

gradη G
(
η′) = 0

(6)

with G(η) := E
[
τ j (η,X)

] +
m∑

l=j+1

λl
E

[
τ l(η,X)

]
.

The following corollary rests on, among others, the linear independence of the
nested constraining conditions from Assumption 3.10. Its proof is detailed in the
supplement.

COROLLARY 4.4. Suppose that (3) holds together with Assumption 3.10.
Then the random Lagrange multipliers λ

j+1
n , . . . , λm

n in (5) and λj+1, . . . , λm in
(6) satisfy

λl
n

P→ λl for l = j + 1, . . . ,m.
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Having dealt in the two preceding corollaries with the complications caused
by nestedness, the following central limit theorem can now be reduced to
a standard Taylor expansion argument as in Bhattacharya and Patrangenaru
(2005), Huckemann (2011a). The proof is detailed in the Supplementary Mate-
rial [Huckemann and Eltzner (2018)].

THEOREM 4.5. Let j ∈ {1, . . . ,m − 1} and consider random data X1, . . . ,

Xn
i.i.d.∼ X on a data space Q admitting BNFDs from Pm−1 to Pj−1, a unique BN

population mean f ′j−1 = (p′j−1, . . . , p′m−1) and BN sample means (E
f

j−1
n

n , . . . ,

E
f m−1

n
n ) due to a measurable selection pl

n ∈ E
f l

n
n , f

j−1
n = (p

j−1
n , . . . , pm−1

n ), l =
j − 1, . . . ,m − 1.

(i) Assuming that Assumption 3.10 holds as well as (3) for all j ∈ {j −
1, . . . ,m − 1}, we have that

√
nHψ

(
ψ

(
f j−1

n

) − ψ
(
f ′j−1)) → N (0,Bψ)

with a chart ψ as specified in Assumption 3.10 as well as

Hψ = E

[
Hessη τ j (

η′,X
) +

m∑
l=j+1

λl Hessη τ l(η′,X
)]

and

Bψ = Cov

[
gradη τ j (

η′,X
) +

m∑
l=j+1

λl gradη τ l(η′,X
)]

,

with the notation from Assumption 3.10 where λj+1, . . . , λm ∈ R are suitable such
that

gradη E
[
τ j (η,X)

] +
m∑

l=j+1

λl gradη E
[
τ l(η,X)

]

vanishes at η = η′.
(ii) If, additionally, Hψ is positive definite, then f

j−1
n satisfies a Gaussian

√
n-

CLT
√

n
(
ψ

(
f j−1

n

) − ψ
(
f ′j−1)) → N (0,�ψ), �ψ = H−1

ψ BψH−1
ψ .

(iii) If additionally the chart ψ factors as in Definition 2.3, then also p
j−1
n

satisfies a Gaussian
√

n-CLT

√
n
(
φ

(
pj−1

n

) − φ
(
p′j−1)) → N (0,�φ), �φ = (�ψik)

dim(Pj−1)

i,k=1

with the notation of Definition 2.3.
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4.2. A nested two-sample bootstrap test. Suppose that we have two indepen-
dent i.i.d. samples X1, . . . ,Xn ∼ X ∈ Q, Y1, . . . , Ym ∼ Y ∈ Q in a data space Q

admitting BNFDs and we want to test

H0 : X ∼ Y versus H1 : X � Y

using descriptors in p ∈ P . Here, p ∈ P stands either for a single pj ∈ Pj for
which we have established factoring charts, or for a suitable sequence f ∈ Tj,k .
We assume that the first sample gives rise to p̂X

n ∈ P , the second to p̂Y
m ∈ P , and

that these are unique. Under the corresponding assumptions of Theorem 4.5, define
a statistic:

T 2(A) = (
φ

(
p̂X

n

) − φ
(
p̂Y

m

))T
A

(
φ

(
p̂X

n

) − φ
(
p̂Y

m

))
.

Under H0 and the assumptions in Theorem 4.5, including invertibility of the Hes-
sians, up to a suitable factor, this is Hotelling T 2 distributed if A−1 exists and is the
corresponding empirical covariance matrix. Therefore, for A−1 we use the empiri-
cal covariance matrix from bootstrap samples. Notably, under additional regularity
assumptions, this estimator is asymptotically consistent; cf. Cheng (2015), Corol-
lary 1.

With this fixed A, we simulate a slightly changed statistic under H0, by
again bootstrapping from X1, . . . ,Xn (for b = 1, . . . ,B) and Y1 . . . , Ym (for b′ =
1, . . . ,B ′),

T ∗2
(A) = ((

φ
(
p̂X∗

nb

) − φ
(
p̂X

n

)) − (
φ

(
p̂Y∗

mb′
) − φ

(
p̂Y

m

)))T
A

× ((
φ

(
p̂X∗

nb

) − φ
(
p̂X

n

)) − (
φ

(
p̂Y∗

mb′
) − φ

(
p̂Y

m

)))
,

to obtain higher power. From these, for a given level α ∈ (0,1) we compute the
empirical quantile c∗

1−α such that

P
{
T ∗2

(A) ≤ c∗
1−α|X1, . . . ,Xn,Y1, . . . , Ym

} = 1 − α.

Then, in consequence of Arcones and Giné (1992), Theorems 3.2 and 3.5, asymp-
totic normality of

√
n((φ(p̂X

n ) − φ(p̂X)), and
√

m((φ(p̂Y
m) − φ(p̂Y )), guaranteed

by Theorem 4.5, extend to the same asymptotic normality for
√

n((φ(p̂X∗
nb ) −

φ(p̂X
n )), and

√
m((φ(p̂Y∗

mb′) − φ(p̂Y
m)), respectively. We have then under H0 that

c∗
1−α gives an asymptotic coverage of 1 − α for T 2(A), that is, P{T ∗2(A) ≤

c∗
1−α} → 1 − α as B = n,B ′ = m → ∞ if n/m → c with a fixed c ∈ (0,∞).

We note that also the argument from Bhattacharya and Patrangenaru (2005),
Corollary 2.3 and Remark 2.6, extends at once to our setup, as we assume that the
corresponding population covariance matrix �ψ or �φ , respectively, from Theo-
rem 4.5 is invertible.
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(a) Data set I (b) Data set II (c) Data set III

FIG. 3. Simulated datasets I (left) and II (middle) on S3 concentrate on a common proper small S2,
their projections to estimated small two-spheres is depicted. The simulated dataset III (right) is on S2.

5. Applications.

5.1. Simulations. To illustrate our CLT for principle nested spheres (PNS) and
principle nested great spheres (PNGS), we simulate three data sets, each from two
paired random variables X and Y , displayed in Figure 3:

(I) Data on an S3 concentrate on the same proper small S2 and there on seg-
ments of orthogonal great circles such that their nested means are antipodal.

(II) Data on an S3 concentrate on the same proper small S2 and there on seg-
ments of orthogonal great circles such that their nested means coincide.

(III) Data on an S2 concentrate on segments of different small circles, have dif-
ferent nested means under PNS, but, under PNGS, coinciding principal geodesics
and nested means.

We apply PNS and PNGS to the simulated data and perform the two-sample test
for identical respective nested submanifolds (means, small and great circles) and
for identical small and great two-spheres. The distributions of resulting p-values
are displayed in Figure 4. These values are in perfect agreement with the intuition
guiding the design of the data.

In Appendix E of the Supplementary Material [Huckemann and Eltzner (2018)],
we report further simulations, in particular that for small and moderate spread
bootstrap sample variances following indeed an asymptotic 1/n law. For larger
spread, it is unclear whether the assumptions of Theorem 4.5 are met. For exam-
ple, for the intrinsic mean on general manifolds, uniqueness can only be guaran-
teed if, among others, the data are supported within a geodesic half ball [cf. Afsari
(2011)], and only for the circle the full picture is known; cf. Hotz and Huckemann
(2015). On Kendall’s planar shape spaces, smoothness of the distance ρ between
a shape and a geodesic has been established if this distance is less than π/4; cf.
Huckemann (2011b), Theorem 2.2. The greater picture, verifying these assump-
tions more generally, in particular for higher order descriptors remains challenging
research.
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FIG. 4. Boxplots displaying the distribution of 100 p-values for PNS and PNGS from the two-sam-
ple test on identical nested mean (0d), on identical nested small and great circle, respectively, (1d)
and on identical small and great two-sphere (2d). Using B = 1000 bootstrap samples each.

5.2. Early human mesenchymal stem cell differentiation. Understanding dif-
ferentiation of adult human stem cells with the perspective of clinical use [see, e.g.,
Pittenger et al. (1999) who emphasize their potential for cartilage and bone recon-
struction] is an ongoing fundamental challenge in current medical research, still
with many open questions [e.g., Bianco et al. (2013)]. To investigate mechanically
guided differentiation, human mesenchymal stem cells (hMSCs, pluripotent adult
stem cells taken from the bone marrow) are placed on gels of varying elasticity,
quantified by the Young’s modulus, to mimic different environments in the human
body, for example, Discher, Janmey and Wang (2005). It is well known that within
the first day the surrounding elasticity measured in Kilopascal (kPa) induces differ-
entiation through biomechanical cues [cf. Engler et al. (2006), Zemel et al. (2010)],
where the changes manifest in orientation and ordering of the actin-myosin fila-
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TABLE 1
Sample sizes of hMSC skeleton images over varying

Young’s moduli and cultivation time

Time 1 kPa 10 kPa and 30 kPa

4 h 159 321
8 h 163 317

12 h 176 344
16 h 135 274
20 h 138 253
24 h 166 304

ment skeleton. In particular, in order to direct future, more focused research, it is
of high interest to more precisely identify time intervals in which such changes of
ordering occur and to separate changes due to differentiation from changes due to
other causes.

Experimental setup. We compare hMSC skeletons that have been cultured at
the Third Institute of Physics of the University of Göttingen on gels with Young’s
moduli of 1 kPa mimicking neural tissue, 10 kPa mimicking muscle tissue and
30 kPa mimicking bone tissue. The cells have been fixed after multiples of 4 hours
on the respective gel and have then been immuno-stained for NMM IIa, the motor
proteins making up small filaments that are responsible for cytoskeletal tension and
imaged [as described in Zemel et al. (2010)]. In particular, every cell is observed
only once guaranteeing independence. Table 1 shows their sample sizes and the
data will be published and made available after completion of current research; cf.
Wollnik and Rehfeldt (2016). Because earlier research [Huckemann et al. (2016)]
suggests that during the first 24 hours, 10 kPa and 30 kPa hMSCs develop rather
similarly and quite differently from 1 kPa hMSCs, for this investigation; we pool
the former.

The actin-myosin filament structure has been automatically retrieved from the
fluorescence images using the Filament Sensor from Eltzner et al. (2015). Since
neighboring filaments share the same orientation, the 3D structure of the cellular
skeleton can be retrieved by separating the filament structure into different orien-
tation fields; cf. Figure 5.

Orientation fields for filament structures are determined via a relaxation label-
ing procedure; see Rosenfeld, Hummel and Zucker (1976). The source code of our
implementation is available as Supplementary Material [Huckemann and Eltzner
(2018)]. A detailed description is deferred to a future publication. The algorithm
results in a set of contiguous areas with slowly varying local orientation, and cor-
responding to each of these areas, a set of filaments which closely follow the local
orientation. Also, these data will be published and made available after completion
of current research; cf. Wollnik and Rehfeldt (2016).
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(a) Original (b) All detected filaments

(c) Main field (d) Smaller fields and other filaments

FIG. 5. (a): Fluorescence image of an immuno-stained human mesenchymal stem cell after culti-
vation for 16 hours at Young’s modulus 10 kPa. (b): Automatically extracted filament structure using
the Filament Sensor from Eltzner et al. (2015). (c): Filaments of the largest orientation field. (d):
Filaments of smaller orientation fields (yellow) and filaments not belonging to any orientation field
(cyan).

Data analysis. For each single hMSC image, let M be the number of pix-
els of all detected filaments, m1 the number of all filament pixels of filaments
of the largest orientation field and m2 the number of all filament pixels of fil-
aments of all smaller orientation fields. M − m1 − m2 is then the number of
pixels in all “rogue” filaments which are not associated to any field, because
they are too inconsistent with neighboring filaments. Define x = (x1, x2, x3) :=
(
√

m1/M,
√

m2/M,
√

1 − (m1 + m2)/M)T ∈ Q = S
2 where the square roots en-

sure that x does not describe relative areas but rather relative diameters of fields.
This representation is confined to the S

2 part in the first octant and every sam-
ple shows a distinct accumulation of points in the x2 = 0 plane, corresponding to
cells with only one orientation field. Figure 6 shows typical data representations.
As common with biological data, especially from primary cells, their variance is
rather high. In consequence, great circle fits are more robust under bootstrapping
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(a) 176 cells on 1 kPa (b) 344 cells on 10 kPka and 30 kPa pooled

(c) 136 cells on 1 kPa (d) 274 cells on 10 kPka and 30 kPa pooled

FIG. 6. Representing samples of cells by their relative orientation field shares, grown for 12 hours
(top row) and 16 hours (bottom row) on gels of different elasticity, with best approximating great
circle (blue line) and nested mean (read star).

than small circle fits and we use the nested two-sample tests for PNGS with the
following null hypothesis:

H0: hMSC orientation and ordering measured by random loci on S
2 as above

does not change between successive time points.

Results. As visible in Table 2, while for hMSCs on harder gels (10 kPa and
30 kPa), nested means and the joint descriptor of nested mean and great circle
change over each 4-hour interval until 16 hours—for both the null hypothesis is
rejected at the highest level possible—similar changes are less clearly visible for
hMSCs on the soft gel (1 kPa) between the intervals between 8 and 16 hours and
not at all visible for the first time interval. Strikingly, for hMSCs on all gels, no
changes seem to occur between 16 and 20 hours. In contrast, in the final interval
between 20 and 24 hours, nested means and great circles clearly change for hMSCs
on the soft gel—rejecting the null hypothesis at the highest level possible. This
effect is also there for the nested mean of hMSCs on the harder gels, but not as
clearly visible for the joint descriptor including the circle.
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TABLE 2
Displaying p-values of two-sample tests for PNGS of filament orientation field distribution data.

The test uses B = 1000 bootstrap samples, therefore, the penultimate p-value is 10−3

Time Nested great circle mean Jointly great circle and nested mean

Gel 1 kPa 10 kPa and 30 kPa 1 kPa 10 kPa and 30 kPa

4 h vs. 8 h 0.120 <10−3 0.308 <10−3

8 h vs. 12 h <10−3 <10−3 0.024 <10−3

12 h vs. 16 h 0.126 <10−3 0.008 <10−3

16 h vs. 20 h 0.468 0.626 0.494 0.462
20 h vs. 24 h <10−3 <10−3 <10−3 0.014

Visualization in Figure 7 reveals further details. As seen from the loci of the
nested means, hMSCs on the soft gel [Figure 7(a)] tend to lose minor orientation
field filaments with a nearly constant ratio of large orientation field filaments and
rogue filaments until the critical slot, the time interval between 16 and 20 hours.
Their great circles, indicating the direction of largest spread, change at the be-
ginning of the critical slot, suggesting that the major variation there occurs in the
amount of rogue filaments. While, until the critical slot, the temporal motion of
nested means for 1 kPa is mainly vertical, the corresponding motion for the hM-
SCs on harder gels [cf. Figure 7(b)] is horizontal, indicating that the number of
rogue filaments decreases in favor of the main orientation field. Curiously, for the
nested means, there is also a sharp drop in height at the beginning of the criti-
cal slot as well as a backward horizontal motion. After the critical slot, hMSCs
seem to continue the direction of their previous journey, at a lower smaller fields’
level, though. In contrast, for the hMSCs on the soft gel, the critical slot seems to

(a) 1 kPa (b) 10 kPa and 30 kPa

FIG. 7. Spherical representations of bootstrapped BNFDs (nested means on mean great circles)
for the four data set at 6 time points.
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TABLE 3
Displaying p-values of two-sample tests for equality of PNGS of filament orientation field

distributions of 1 kPa cells with those of 10 and 30 kPa cells, for all time points. We use B = 1000
bootstrap samples, thus the penultimate p-value is 10−3

Gels 1 kPa vs. 10 kPa and 30 kPa

Time Nested great circle mean Jointly great circle and nested mean

4 h <10−3 <10−3

8 h <10−3 <10−3

12 h <10−3 <10−3

16 h <10−3 <10−3

20 h <10−3 <10−3

24 h 0.010 0.061

represent a true change point since afterward, the nested mean travels not much
longer towards reducing the smaller fields, but like hMSCs on harder gels, mainly
reduces the number of rogue filaments. Indeed, taking into account the auxiliary
mesh lines, it can be seen that descriptors are rather close at time 24 hours (cf.
Table 3), where in contrast they are rather far away from each other for all other
time points.

On suggestion by the associate editor, for comparison, we include an application
of a multinomial test to the same data, in the supplement. As literature on that topic
seems very sparse, we follow standard folklore.

Discussion. We conclude that hMSCs react clearly distinctly and differently
on both gels already for short time intervals, where at the critical time slot some
kind of reboot happens. A generic candidate for this effect is cell division. As
all cells used in the experiments were thawed at the same time (72 hours before
seeding) and treated identically, cell division is expected to occur at similar (at
least for each environment) time points. Dividing cells completely reorganize their
cell skeleton which would explain the change point found. In particular, it seems
that due to cell division, the time point 24 hours [as used in Zemel et al. (2010)]
may not be ideal if differences in hMSCs differentiation due to different Young’s
moduli are to be detected. Our results clearly warrant further analysis using higher
time resolution, in particular time resolved in-vivo imaging, that among others,
allow to register cell division times.
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SUPPLEMENTARY MATERIAL

Supplement to “Backward nested descriptors asymptotics with inference
on stem cell differentiation” (DOI: 10.1214/17-AOS1609SUPP; .pdf). The sup-
plement contains five appendices. Enumeration of equations, tables and images
continues consecutively into the Appendices. Appendix A shows that the relevant
assumptions hold true for principal nested spheres (PNS) analysis. Appendix B
shows the same for principal components for Kendall’s shape spaces. Appendix C
contains full proofs of the theorems. Appendix D consists of a numerical study
of the convergence rate of PNS estimators and finally, Appendix E discusses a
possible alternative treatment of the data application and its shortcomings.
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