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THE SURVIVAL PROBABILITY OF A CRITICAL MULTI-TYPE
BRANCHING PROCESS IN I.I.D. RANDOM ENVIRONMENT

BY E. LE PAGE∗, M. PEIGNÉ† AND C. PHAM†

Université de Bretagne-Sud ∗ and Université Fr. Rabelais Tours†

We study the asymptotic behaviour of the probability of non-extinction
of a critical multi-type Galton–Watson process in i.i.d. random environments
by using limit theorems for products of positive random matrices. Under suit-
able assumptions, the survival probability is proportional to 1/

√
n.

1. Introduction. Branching processes in random environments (BPREs)
were introduced in the 1960s (see, for instance, [22]) to describe the develop-
ment of populations whose evolution may be affected by environmental factors;
they have been a central topic of research.

In the single-type case, the behaviour of these processes is mainly determined
by the 1-dimensional random walk generated by the logarithms of the expected
population sizes mk, k ≥ 0, of the respective generations. The theory of fluctua-
tions of random walks on R with i.i.d. increments allows one to classify BPREs
in three classes—supercritical, critical or subcritical—of single-type BPREs, ac-
cording to the fact that the associated random walk tends to +∞, oscillates or
tends to −∞ (see, for instance, the fundamental papers [2, 3]). In particular, when
E(| logmk|) < +∞, the BPRE is supercritical (resp., critical or subcritical) when
E(logmk) > 0 [resp., E(logmk) = 0 or E(logmk) < 0]. There exist numerous
statements concerning the asymptotic behaviour of the probability of nonextinc-
tion up to time n, the distribution of the population size conditionally to survival up
to moment n, large deviation type results (see, for instance, [1, 4, 7]). In the critical
case, the branching process becomes extinct with probability one [2]; M. V. Ko-
zlov [19] (for BPREs with linearly fractional generating functions) and J. Geiger
and G. Kersting [10] in the general case strengthened this result and proved that
the probability of nonextinction up to time n is equivalent to c1/

√
n as n → +∞,

for some explicit constant c1 > 0 (see also [15]). Let us recall that this probability
of nonextinction up to time n is equivalent to 1/n when the offspring distribution
is fixed, that is, it does not vary randomly; in other words, branching processes in
a random environment die more slowly. In the supercritical and subcritical cases,
similar studies have been done (see, for instance, [2, 3, 11, 16]); we do not go into
detail about these cases since they are outside the scope of this paper.
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It is of interest to prove analogues of the above statements for the multi-type
BPREs (Zn)n≥0. The main difficulty which appears is that the role of the random
walk associated to the BPRE in this case is played by the logarithm of the norm
of some Rp-valued Markov chain whose increments are governed by i.i.d. random
p × p-matrices Mk,k ≥ 0; the coefficients of these matrices Mk are nonnegative
and correspond to the expected population sizes of the respective generations, ac-
cording to the types of the particles and their direct parents. Products of random
matrices have been the object of many investigations and many limit theorems
do exist in this context: for instance, the law of large numbers, the central limit
theorem and the large deviations principle (see [5, 20] and references therein). Un-
fortunately, the theory of their fluctuations remains a field in which practically no
research has been done and the multi-type BPREs constitute a relevant application
area for this study. Nevertheless, as in the single-type case, the set of multi-type
BPREs may be divided into three classes: they are supercritical (resp., critical or
subcritical) when the upper Lyapunov exponent of the associated random matrices
is positive, null or negative [18].

A problem of particular importance is to specify the asymptotic behaviour of
their probability of nonextinction up to time n. As for single-type BPREs, the case
has been first studied when the generating functions defining the random environ-
ment are linear fractional; it yields to explicit formulas which are easier to tackle.

In [6], E. E. Dyakonova obtained in the critical case an equivalence of the sur-
vival probability at time n, under the restrictive assumption that the mean matrices
Mk have a concordant deterministic Perron–Frobenius eigenvector. It happens, for
instance, when the Mk are upper-triangular matrices with strictly decreasing co-
efficients on the diagonal. In this case, the behaviour of the BPRE is governed by
the 1-dimensional random walk whose increments are the logarithm of the spectral
radius of the Mk ; this allows one to apply the same techniques as in the single-type
case.

To tackle the “general” case when the action of the random matrices Mk is
strongly irreducible (see hypothesis H2 below), limit theorems on the fluctuations
of the norm of products of random matrices were required; they have been recently
achieved in [12] and [13] with asymptotic results on the tails of certain hitting time
distribution.

In this paper, we investigate the asymptotic behaviour of the probability of
nonextinction up to time n of critical multi-type BPREs and obtain an optimal
result in the case of linear fractional generating functions. To formulate our main
results, we first introduce some standard notation and definitions.

We fix an integer p ≥ 2 and denote Rp (resp., Np) the set of p-dimensional
column vectors with real (resp., nonnegative integers) coordinates; for any column
vector x = (xi)1≤i≤p ∈ R

p , we denote x̃ the row vector x̃ := (x1, . . . , xp). Let 1
(resp., 0) be the column vector of Rp whose all coordinates equal 1 (resp., 0). We
fix a basis {ei,1 ≤ i ≤ p} in R

p and denote | · | the corresponding L1 norm. We
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also consider the general linear semi-group S+ of p × p matrices with positive
coefficients. We endow S+ with the L1-norm denoted also by | · |.

The multi-type Galton–Watson process is a temporally homogeneous vector
Markov process (Zn)n≥0 whose states are row vectors in N

p . We always assume
that Z0 is nonrandom. For any 1 ≤ i ≤ p, the ith component Zn(i) of Zn may be
interpreted as the number of objects of type i in the nth generation.

We consider a measurable function ξ 	→ fξ from R to the set of multivariate

probability generating functions fξ = (f
(i)
ξ )1≤i≤p defined by

f
(i)
ξ (s) = ∑

α∈Np

p
(i)
ξ (α)sα,

for any s = (si)1≤i≤p ∈ [0,1]p , where:

(i) α = (αi)i ∈ N
p and sα = s

α1
1 . . . s

αp
p ;

(ii) p
(i)
ξ (α) = p

(i)
ξ (α1, . . . , αp) is the probability that an object of type i in en-

vironment ξ has α1 children of type 1, . . . , αp children of type p.

Let (ξn)n≥0 be a sequence of real valued i.i.d. random variables defined on a
probability space (�,F,P). The Galton–Watson process with p types of particles
in a random environment (ξn)n≥0 describes the evolution of a particle population
Zn = (Zn(i))1≤i≤p for n ≥ 0.

We assume that for any n ≥ 0, i = 1, . . . , p and ξ ∈ R, if ξn = ξ then each of the
Zn(i) particles of type i existing at time n produces offspring in accordance with
the p-dimensional generating function f

(i)
ξ (s) independently of the reproduction

of other particles of all types.
If Z0 = ẽi , then Z1 has the generating function

f
(i)
ξ0

(s) =
+∞∑

α∈Np

p
(i)
ξ0

(α)sα.

In general, if Zn = (αi)1≤i≤p , then Zn+1 is the sum of α1 + · · · + αp independent

random vectors, where αi particles of type i have the generating function f
(i)
ξn

for

i = 1, . . . , p. It is obvious that if Zn = 0̃, then Zn+1 = 0̃.
Denote fn = fξn . By the above descriptions (written in equation (2.1) in [18]),

for any s = (si)1≤i≤p,0 ≤ si ≤ 1,

E
(
sZn |Z0, . . . ,Zn−1, f0, . . . , fn−1

) = fn−1(s)
Zn−1

which yields (Lemma 2.1 in [18])

E
(
sZn |f (i)

0 , f1, . . . , fn−1
) := E

(
sZn |Z0 = ẽi , f0, . . . , fn−1

)
= f

(i)
0

(
f1

(
. . . fn−1(s) . . .

))
.
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In particular, the probability of nonextinction q
(i)
n at generation n given the en-

vironment f
(i)
0 , f1, . . . fn−1 is

q(i)
n := P

(
Zn 
= 0̃|f (i)

0 , f1, . . . , fn−1
)

(1.1)
= 1 − f

(i)
0

(
f1

(
. . . fn−1(0̃) . . .

)) = ẽi

(
1 − f0

(
f1

(
. . . fn−1(0̃) . . .

)))
,

so that

E
[
q(i)
n

] = E
[
P

(
Zn 
= 0̃|f (i)

0 , f1, . . . , fn−1
)] = P(Zn 
= 0̃|Z0 = ei).

As in the classical one-type case, the asymptotic behaviour of the quantity above
is controlled by the mean of the offspring distributions. We assume that the off-
spring distributions have finite first and second moments; the generating functions
f

(i)
ξ , ξ ∈ R,1 ≤ i ≤ p, are thus C2-functions on [0,1]p and we introduce:

(i) the random mean matrices Mξn = (Mξn(i, j))1≤i,j≤p = (
∂f

(i)
ξn

(1)

∂sj
)i,j taken

from the vector-valued random generating function fξn(s) at s = 1, namely

Mξn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f
(1)
ξn

(1)

∂s1
. . .

∂f
(1)
ξn

(1)

∂sp
...

∂f
(p)
ξn

(1)

∂s1
. . .

∂f
(p)
ξn

(1)

∂sp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(ii) the random Hessian matrices B
(i)
ξn

= (B
(i)
ξn

(k, l))1≤k,l≤p = (
∂2f

(i)
ξn

∂sk∂sl
(1))k,l ,

1 ≤ i ≤ p, taken from the real-valued random generating function f
(i)
ξn

(s) at s = 1.

The random variables Mξn and B
(i)
ξn

are i.i.d. The common law of the Mξn is
denoted by μ and for the sake of brevity, we write Mn instead of Mξn .

Let Rn and Ln denote the right and the left product of random matrices Mk ,
k ≥ 0, respectively, Rn = M0M1 . . .Mn−1 and Ln = Mn−1 . . .M1M0.

By [9], if E(max(0, log |M0|)) < +∞, then the sequence ( 1
n

log |Rn|)n≥1 con-
verges P-almost surely to some constant limit πμ := limn→+∞ 1

n
E[log |Rn|]. Fur-

thermore, by [18], if there exists a constant A > 0 such that 1
A

≤ Mξn(i, j) ≤ A

and 0 ≤ B
(i)
ξn

(k, l) ≤ A P-almost surely for any 1 ≤ i, j, k, l ≤ p, then the process
(Zn)n≥0 becomes extinct P-almost surely if and only if πμ ≤ 0.

In the present work, we focus our attention on the so-called critical case, that
is, πμ = 0, and specify the speed of extinction of the Galton–Watson process.

We define the cone C and the space X, respectively, as follows:

C := {
x̃ = (x1, . . . , xp) ∈ R

p | ∀i = 1, . . . , p, xi ≥ 0
}
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and

X := {
x̃ ∈ C | |x̃| = 1

}
.

In the sequel, we consider:

• the right and the left linear actions of S+ on C defined by

(x̃, g) 	→ x̃g and (x̃, g) 	→ gx

for any x̃ ∈ C and g ∈ S+,
• the right and the left projective actions of S+ on X defined by

(x̃, g) 	→ x̃ · g = x̃g

|x̃g| and (x̃, g) 	→ g · x = gx

|gx|
for any x̃ ∈ X and g ∈ S+.

For any g = (g(i, j))1≤i,j≤d ∈ S+, let v(g) := min1≤j≤d(
∑d

i=1 g(i, j)). Then, for
any x ∈ C,

(1.2) 0 < v(g)|x| ≤ |gx| ≤ |g||x|.
We set N(g) := max( 1

v(g)
, |g|). We also introduce some proper subset of S+ which

is of interest in the sequel: for any constant B ≥ 1, let S+(B) denote the set of
p × p matrices g = (g(i, j))1≤i,j≤p with positive coefficients such that for any
1 ≤ i, j, k, l ≤ p,

(1.3)
1

B
≤ g(i, j)

g(k, l)
≤ B.

On the product space X × S+, we define the function ρ by setting ρ(x̃, g) :=
log |x̃g| for (x̃, g) ∈ X× S+. This function satisfies the co-cycle property, namely
for any g,h ∈ S+ and x̃ ∈ X,

(1.4) ρ(x̃, gh) = ρ(x̃ · g,h) + ρ(x̃, g).

Under hypothesis H3 introduced below, there exists a unique μ-invariant mea-
sure ν on X such that for any continuous function ϕ on X,

(μ ∗ ν)(ϕ) =
∫
S+

∫
X

ϕ(x̃ · g)ν(dx̃)μ(dg) =
∫
X

ϕ(x̃)ν(dx̃) = ν(ϕ).

Moreover, the upper Lyapunov exponent πμ defined above coincides with the
quantity

∫
X×S+ ρ(x̃, g)μ(dg)ν(dx̃) and is finite [5].

In the sequel, we first focus our attention on “linear-fractional multidimensional
generating functions” f = fγ,M of the form

(1.5) f (s) = fγ,M(s) = 1 − 1

1 + γ̃ (1 − s)
M(1 − s),
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for any s ∈ [0,1]p , where γ̃ = (γ, . . . , γ ) ∈ R
p with γ > 0 and M ∈ S+. For such

a function f = fγ,M , we set γ = γ (f ) and M = M(f ) and notice that M(f )

equals the mean matrix (
∂f (i)

∂sj
(1))1≤i,j≤p .

Here, we specify hypotheses concerning the distribution μ of the mean matrices
Mξn = M(fξn), n ≥ 1.

H1. There exists ε0 > 0 such that
∫
S+ N(g)ε0μ(dg) < ∞.

H2. (Strong irreducibility). There exists no affine subspaces A of R
d such that

A∩ C is nonempty, bounded and invariant under the action of all elements of
the support of μ.

H3. There exists B ≥ 1 such that μ(S+(B)) = 1.
H4. The upper Lyapunov exponent πμ of μ is equal to 0.
H5. There exists δ > 0 such that μ(Eδ) > 0, where

Eδ := {
g ∈ S+ | ∀x̃ ∈ X, log |x̃g| ≥ δ

}
.

If the variables fξn are linear fractional generating functions, then we intro-
duce an additional hypothesis.

H6. There exists B ′ ≥ 1 such that 1
B ′ ≤ γ (fξn) ≤ B ′

P-a.s.

Here comes the main result of this paper.

THEOREM 1.1. Assume that the random variables fξn are linear frac-
tional generating functions and that hypotheses H1–H6 hold. Then, for any
i ∈ {1, . . . , p}, there exists a real number βi ∈ (0,+∞) such that

(1.6) lim
n→+∞

√
nP(Zn 
= 0̃|Z0 = ẽi ) = βi.

For general generating functions, we obtain the following weaker result.

THEOREM 1.2. Assume that the random variables fξn are C2-functions on
[0,1]p such that:

1. There exists A > 0 such that for any i, k, l ∈ {1, . . . , p},
∂2f

(i)
ξn

∂sk∂sl
(1) ≤ A

∂f
(i)
ξn

∂sk
(1) P-a.s.

2. The distribution μ of the matrices Mξn = (
∂f

(i)
ξn

∂sj
(1))1≤i,j≤p satisfies hypothe-

ses H1–H5.

Then there exist real constants 0 < c1 < c2 < +∞ such that for any i ∈ {1, . . . , p},
and n ≥ 1,

(1.7)
c1√
n

≤ P(Zn 
= 0̃|Z0 = ẽi ) ≤ c2√
n
.
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In particular, under weaker assumptions than in [18], this theorem states that
the process (Zn)n≥0 becomes extinct P-a.s. in the critical case. Notice that by a
recent work [8], equivalence (1.6) holds true even when the fξn are not assumed
to be linear fractional generating functions. The authors in [8] apply the proof in
the present paper with two new ingredients: first, an extension to the multi-type
case of Geiger and Kersting’s decomposition of the extinction probability ([10],
formula (2.2)) and second, a variation of Lemma 3.1 below, taking into account
the residual term which appears in this expression of the extinction probability.

Notation. Let c > 0 and φ,ψ be two functions of some variable x; we shall

write φ
c� ψ (or simply φ � ψ) when φ(x) ≤ cψ(x) for any value of x. The nota-

tion φ
c� ψ (or simply φ � ψ) means φ

c� ψ
c� φ.

2. Preliminary results.

2.1. Product of matrices with nonnegative coefficients. We describe in this
section some properties of the set S+. We first endow X with a distance d which
is a variant of the Hilbert metric; it is bounded on X and any element g ∈ S+
acts on (X, d) as a contraction. We summarize here its construction and its major
properties.

For any x̃ = (xi)1≤i≤p, ỹ = (yi)1≤i≤p ∈ X, we write

m(x̃, ỹ) = min
{
xi

yi

∣∣∣∣ i = 1, . . . , p such that yi > 0
}

and we set

d(x̃, ỹ) := ϕ
(
m(x̃, ỹ)m(ỹ, x̃)

)
,

where ϕ is the one-to-one function on [0,1] defined by ϕ(s) := 1−s
1+s

. For g ∈ S+,
we set

c(g) := sup
{
d(x̃ · g, ỹ · g) | x̃, ỹ ∈ X

}
.

We present some crucial properties of d .

PROPOSITION 2.1 ([17]). The function d is a distance on X which satisfies
the following properties:

1. sup{d(x̃, ỹ) | x̃, ỹ ∈ X} = 1.
2. For any g = (g(i, j))i,j ∈ S+

c(g) = max
i,j,k,l∈{1,...,p}

|g(i, j)g(k, l) − g(i, l)g(k, j)|
g(i, j)g(k, l) + g(i, l)g(k, j)

.

In particular, there exists κB ∈ [0,1) such that c(g) ≤ κB < 1 for any g ∈ S+(B).
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3. d(x̃ · g, ỹ · g) ≤ c(g)d(x̃, ỹ) ≤ c(g) for any x̃, ỹ ∈ X and g ∈ S+(B).
4. c(gg′) ≤ c(g)c(g′) for any g,g′ ∈ S+(B).

The following lemma follows from [9], Lemma 2. It is the key argument in the
sequel to control the asymptotic behaviour of the norm of products of matrices of
S+(B). Let TS+(B) be the closed semi-group generated by the set S+(B).

LEMMA 2.1. For any g ∈ TS+(B) and 1 ≤ i, j, k, l ≤ p,

(2.1) g(i, j)
B2� g(k, l).

In particular, there exist c > 1 such that for any g,h ∈ TS+(B) and x̃, ỹ ∈X:

1. |gx| c� |g| and |ỹg| c� |g|,
2. |ỹgx| c� |g|,
3. |gh| c� |g||h|.

2.2. Conditioned product of random matrices. Recall that (Mn)n≥0 is a se-
quence of i.i.d. matrices whose law μ satisfies hypotheses H1–H5 and Rn =
M0 . . .Mn−1 and Ln = Mn−1 . . .M0 for n ≥ 1. Consider the homogenous Markov
chain (Xn)n≥0 on X, with initial value X0 = x̃ ∈ X, defined by

Xn = x̃ · Rn, n ≥ 1.

Its transition probability P is given by: for any x̃ ∈ X and any bounded Borel
function ϕ : X→R,

Pϕ(x̃) :=
∫
S+

ϕ(x̃ · g)μ(dg).

The chain (Xn)n≥0 has been the object of many studies, in particular there exists
on X a unique P -invariant probability measure ν.

Indeed, by Proposition 2.1, for any x̃, ỹ ∈ X and any sequence (gn)n≥1 of ele-
ments in S+(B), it follows that

(2.2) d(x̃ · gn . . . g1, ỹ · gn . . . g1) ≤ κn
B.

This yields supk≥0 d(x̃ · gn+k . . . gn . . . g1, x̃ · gn . . . g1) → 0 as n → +∞; the se-
quence (x̃ · g1 . . . gn)n≥0 thus converges in X.

In particular, under hypothesis H3, the sequence (x̃ · Ln)n≥0 converges P-a.s.
towards some X-valued random variable X∞. It follows that the Markov chain
(x̃ · Rn)n≥0 converges in distribution to the law ν of X∞, which is the unique
P -invariant probability measure on X. Property 2.2 allows one to prove that the
restriction of P to some suitable space of continuous functions from X to C is
quasi-compact, which is a crucial ingredient to study the asymptotic behaviour of
(x̃ · Rn)n≥0 [5, 14, 17].
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In the sequel, we are interested in the left linear action x̃ 	→ x̃Rn of the right
products Rn, for any x̃ ∈ X. Since it holds

x̃Rn = elog |x̃Rn|x̃ · Rn,

we consider the random process (Sn)n≥0 defined by: for any x̃ ∈ X, a ∈ R and
n ≥ 1,

S0 = S0(x̃, a) := a and Sn = Sn(x̃, a) := a + log |x̃Rn|.
Iterating the co-cycle property (1.4), the basic decomposition of Sn(x̃, a) arrives:

(2.3) Sn(x̃, a) = a + log |x̃Rn| = a +
n−1∑
k=0

ρ(Xk,Mk).

Let us emphasize that for any a ∈ R the sequence (Xn,Sn)n≥0 is a Markov chain
on X×R whose transition probability P̃ is defined by: for any (x̃, a) ∈ X×R and
any bounded Borel function ψ :X×R →C,

P̃ψ(x̃, a) =
∫
S+

ψ
(
x̃ · g, a + ρ(x̃, g)

)
μ(dg).

We set R+∗ := R
+\{0} and denote P̃+ the restriction of P̃ to X × R

+ defined by:
for a ≥ 0 and any x̃ ∈ X,

P̃+
(
(x̃, a), ·) = 1X×R+(·)P̃ (

(x̃, a), ·).
Fix a ≥ 0 and denote by τ the first time greater than 1 the random process (Sn)n≥0
becomes nonpositive:

(2.4) τ := min{n ≥ 1 | Sn ≤ 0}.
For any x̃ ∈ X and a ≥ 0, let us denote Px̃,a the probability measure on

(�,F,P) conditioned to the event [X0 = x̃, S0 = a] and Ex̃,a the correspond-
ing expectation; we omit the index a when a = 0 and denote Px̃ the correspond-
ing probability. For any n ≥ 0, let mn = mn(x̃, a) be the minimum of the values
S1(x̃, a), . . . , Sn(x̃, a) and set

mn(x̃, a) := Px̃,a[mn > 0] = Px̃,a(τ > n).

We present a general result concerning the behaviour of the tail distribution of
the random variable τ .

The asymptotic behaviour of the probability Px̃,a(τ > n) is established in [13]
when the matrices Mn are invertible and in [21] when the Mn has nonnegative
entries, under several conditions P1–P5; the first step is to establish the existence
of a P̃+-harmonic function h on X×R

+. Our hypotheses H1, H2, H4 and H5 are
exactly P1, P2, P4 and P5 in [21] and H3 is obviously stronger than P3. Proposi-
tion 2.2 concerns the existence of the function h and its properties.
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PROPOSITION 2.2 ([21]). Under hypotheses H1–H5, for any x ∈ X and a ≥ 0,
the sequence (Ex,a[Sn; τ > n])n≥0 converges to a function h(x̃, a) which satisfies
the following properties:

1. For any x ∈ X, the function h(x̃, a) is increasing on R
+.

2. There exists c > 0 and A > 0 such that for any x ∈ X and a ≥ 0,

(2.5)
1

c
∨ (a − A) ≤ h(x̃, a) ≤ c(1 + a).

2. For any x ∈ X, the function h(x̃, a) satisfies lima→+∞ h(x̃,a)
a

= 1.
3. The function h is P̃+-harmonic.

This statement yields to the following theorem about the limit behaviour of
Px̃,a(τ > n) as n → +∞; the relation un ∼ vn defines limn→+∞ un

vn
= 1.

THEOREM 2.1 ([21]). Under hypotheses H1–H5, for any x̃ ∈ X and a ≥ 0,

(2.6) Px̃,a(τ > n) ∼ 2

σ
√

2πn
h(x̃, a) as n → ∞,

where σ 2 > 0 is the variance of the Markov walk (Sn)n≥0, given in [13]. Moreover,
there exists a constant c > 0 such that for any x̃ ∈ X, a ≥ 0 and n ≥ 0,

(2.7)
√

nPx̃,a(τ > n) ≤ ch(x̃, a).

REMARK. The fact that σ 2 > 0 is a direct consequence of hypotheses H2 and
H5 (which implies in particular that the semi-group generated by the support of
μ is unbounded); see [5], Chapter 6, Lemmas 5.2 and 5.3 and Section 8 for more
details.

3. Proof of Theorem 1.1.

3.1. Expression of nonextinction probability. For any 0 ≤ k < n, set Rk,n :=
Mk . . .Mn−1 and Rk,n := I otherwise. Let Yk,n := Rk,n ·1. It is known (see Lemma
1 in [6]) that

(3.1)
(
q(i)
n

)−1 = 1 + γ̃0M1 . . .Mn−11 + γ̃1M2 . . .Mn−11 + · · · + γ̃n−11
ẽiRn1

.

Since ẽiRkRk,n1 = ẽiM0 . . .Mn−11 for any 1 ≤ k ≤ n, we may rewrite (3.1) as

(3.2)
(
q(i)
n

)−1 = 1

ẽiRn1
+

n−1∑
k=0

γ̃kYk+1,n

ẽiRkYk+1,n

= 1

ẽiRn1
+

n−1∑
k=0

γk

ẽiRkYk+1,n

.
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Notice that, for any fixed k ≥ 0, the sequence (Yk,n)n≥0 converges to some limit
Yk,∞ [9, 17]. Indeed, the matrices Ml, l ≥ 1, all belong to S+(B), so do their
transposes and we may write as in (2.2):

sup
m≥1

d(Ỹk,n, Ỹk,n+m) ≤ κn−k
B

n→+∞−→ 0.

The sequence of row vectors (Ỹk,n)n≥0 is thus a Cauchy sequence in X, it con-
verges and so does (Yk,n)n≥0; we denote Yk,∞ the limit of this last sequence. Us-
ing this key fact, we prove in Lemma 3.2 that the sequence (q

(i)
n )n≥1 converges to

some positive limit

(3.3) q(i)∞ =
(+∞∑

k=0

γk

ẽiRkYk+1,∞

)−1

in the L1-norm with respect to a probability measure P̂x̃,a introduced in the fol-
lowing subsection.

3.2. Construction of a new probability measure P̂x̃,a conditioned to the environ-
ment. Since the function h is P̃+-harmonic on X×R

+, it gives rise to a Markov
kernel P̃ h+ on X×R

+ defined by

P̃ h+φ = 1

h
P̃+(hφ)

for any bounded measurable function φ on X × R
+. The kernels P̃+ and P̃ h+ are

related to the stopping times τ by the following identity: for any x̃ ∈ X, a ≥ 0 and
n ≥ 1, (

P̃ h+
)n

φ(x̃, a) = 1

h(x̃, a)
P̃ n+(hφ)(x̃, a)

= 1

h(x̃, a)
Ex̃,a

(
hφ(Xn,Sn); τ > n

)
= 1

h(x̃, a)
Ex̃,a

(
hφ(Xn,Sn);mn > 0

)
.

This new Markov chain with kernel P̃ h+ allows one to change the measure on
the canonical path space ((X × R)⊗N, σ (Xn,Sn : n ≥ 0), θ) of the Markov chain
(Xn,Sn)n≥0

1 from P to the measure P̂x̃,a characterized by the property that

(3.4)

Êx̃,a

[
ϕ(X0, S0, . . . ,Xk, Sk)

]
= 1

h(x̃, a)
Ex̃,a

[
ϕ(X0, . . . , Sk)h(Xk,Sk);mk > 0

]
for any positive Borel function ϕ on (X×R)k+1.

1θ denotes the shift operator on (X×R)⊗N defined by θ((xk, sk)k≥0) = (xk+1, sk+1)k≥0 for any

(xk, sk)k≥0 in (X×R)⊗N.
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For any 0 ≤ k ≤ n,

Ex̃,a

[
ϕ(X0, S0, . . . ,Xk, Sk);mn > 0

]
= Ex̃,a

[
ϕ(X0, . . . , Sk);S1 > 0, . . . , Sn > 0

]
= Ex̃,a

[
ϕ(X0, . . . , Sk);a + ρ(X0,M0) > 0,

. . . , a +
k−1∑
i=0

ρ(Xi,Mi) +
n−1∑
i=k

ρ(Xi,Mi) > 0

]

= Ex̃,a

[
E

[
ϕ(X0, . . . , Sk);S1 > 0, . . . , Sk > 0,

Sk + S1 ◦ θk > 0, . . . , Sk + Sn−k ◦ θk > 0|M0, . . . ,Mk−1
]]

= Ex̃,a

[
ϕ(X0, . . . , Sk)

×E
[
Sk + S1 ◦ θk > 0, . . . , Sk + Sn−k ◦ θk > 0|M0, . . . ,Mk−1

];mk > 0
]

= Ex̃,a

[
ϕ(X0, . . . , Sk)

× PXk,Sk

(
S1 ◦ θk > 0, . . . , Sn−k ◦ θk > 0

);mk > 0
]

= Ex̃,a

[
ϕ(X0, . . . , Sk)PXk,Sk

(τ > n − k);mk > 0
]
.

Hence,

(3.5)
Ex̃,a

(
ϕ(X0, . . . , Sk);mn > 0

)
= Ex̃,a

[
ϕ(X0, . . . , Sk)mn−k(Xk, Sk);mk > 0

]
.

Moreover, in view of Theorem 2.1, the dominated convergence theorem and (3.5),
we obtain for any bounded function ϕ with compact support,

lim
n→+∞Ex̃,a

[
ϕ(X0, . . . , Sk)|mn > 0

]
= 1

h(x̃, a)
Ex̃,a

[
ϕ(X0, . . . , Sk)h(Xk,Sk);mk > 0

]
(3.6)

= Êx̃,a

[
ϕ(X0, . . . , Sk)

]
,

which clarifies the interpretation of P̂x̃,a .
We formalize in three steps the construction of a new probability measure, de-

noted again P̂x̃,a , for each x̃ ∈ X and a ≥ 0, but defined this time on the bigger
σ -algebra σ(fn,Zn : n ≥ 0). Retaining the notation from the previous parts, the
measure P̂x̃,a is characterized by properties (3.4), (3.7) and (3.8).

Step 1. The marginal distribution of P̂x̃,a on σ(Xn,Sn : n ≥ 0) is P̂x̃,a character-
ized by the property (3.4).
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Step 2. For any n ≥ 0, the conditional distribution of (f0, . . . , fn) under P̂x̃,a

given X0 = x̃0 = x̃, . . . ,Xn = x̃n, S0 = s0 = a, . . . , Sn = sn is given by

P̂x̃,a(fk ∈ Ak,0 ≤ k ≤ n|Xi = x̃i , Si = si,0 ≤ i ≤ n)
(3.7)

= P
(
fk ∈ Ak,0 ≤ k ≤ n|Xi = x̃i , Si(x̃) = si,0 ≤ i ≤ n

)
,

for any measurable sets A0, . . . ,An in HB and almost all (x̃i)0≤i≤n and (si)0≤i≤n

with respect to the law of (X0, . . . ,Xn,S0, . . . , Sn) under P [and also under P̂x̃,a

since, by formula (3.4), the probability measure P̂x̃,a is absolutely continuous with
respect to P on each σ -algebra σ(X0, . . . , Sn)].

Step 3. The conditional distribution of (Zn)n≥0 under P̂x̃,a given f
(i)
0 , f1, . . . is

the same as under P, namely

Êx̃,a

(
sZn |Z0, . . . ,Zn−1, f

(i)
0 , f1, . . . , fn−1

)
(3.8)

= fn−1(s)
Zn−1 = E

(
sZn |Z0, . . . ,Zn−1, f

(i)
0 , f1, . . . , fn−1

)
.

3.3. Proof of Theorem 1.1. We follow J. Geiger and G. Kersting’s approach.
We fix 1 ≤ i ≤ p. For any x̃ ∈ X and a ≥ 0, let us denote P

(i)
x̃,a

the probability

measure on (�,F,P) conditioned to the event [X0 = x̃, S0 = a,Z0 = ẽi] and E
(i)
x̃,a

the corresponding expectation.
First, notice that the quantity P(Zn 
= 0̃ | Z0 = ẽi ) equals Ex̃,a(q

(i)
n ) for any

(x, a) ∈X×R
+; thus we fix (x̃, a) ∈ X×R

+, ρ > 1 and 0 ≤ k ≤ n and decompose
P(Zn 
= 0̃ | Z0 = ẽi ) as

(3.9) P
(i)(Zn 
= 0̃) = An + Bn + Cn − Dn,

where:

• An = An(x̃, a) = P
(i)
x̃,a

(Zn 
= 0̃,mn ≤ 0);

• Bn = Bn(x̃, a, ρ) = P
(i)
x̃,a

(Zn 
= 0̃,mn > 0) − P
(i)
x̃,a

(Zn 
= 0̃,mρn > 0);

• Cn = Cn(x̃, a, ρ, k) = P
(i)
x̃,a

(Zk 
= 0̃,mρn > 0);

• Dn = Dn(x̃, a, ρ, k) = P
(i)
x̃,a

(Zk 
= 0̃,Zn = 0̃,mρn > 0).

We decompose the proof in 5 steps and then conclude, letting first k → +∞, then
ρ → 1 and at last a → +∞:

1. The quantity A = A(x̃, a) := lim supn→+∞
√

nAn(x̃, a) tends to 0 when
a → +∞.

2. The quantity B = B(x̃, a, ρ) := lim supn→+∞
√

nBn(x̃, a, ρ) tends to 0
when ρ → +1.

3. As n → +∞, the sequence (
√

nCn(x̃, a, ρ, k))n≥0 converges to

C = C(x̃, a, ρ, k) := c1
h(x̃, a)√

ρ
P̂x(Zk 
= 0̃).
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4. For any ρ > 1, the quantity D = D(x̃, a, ρ, k) := lim supn→+∞
√

n ×
Dn(x̃, a, ρ, k) tends to 0 when k → +∞.

5. The sequence (P̂
(i)
x̃,a

(Zk 
= 0))k≥0 converges to some limit v(i)(x̃, a) > 0.

Step 1. We may write

An(x̃, a) = Ex̃,a

(
E

(
Zn 
= 0̃|f (i)

0 , f1, . . . , fn−1
);mn ≤ 0

)
(3.10)

= Ex̃,a

(
q(i)
n ;mn ≤ 0

)
.

To control the quantity q
(i)
n , we use the expression (3.2); Lemma 2.1 yields

1

q
(i)
n

= 1

ẽiRn1
+

n−1∑
k=0

γk

ẽiRkYk+1,n

≥ max
0≤k≤n−1

{
γk

ẽiRkYk+1,n

}
� max

0≤k≤n−1

{
1

|x̃Rk|
}

≥ 1

exp{min0≤k≤n−1(a + ln |x̃Rk|)}
so that q

(i)
n � exp(mn(x̃, a)) and by applying Theorem 2.1, equation (2.7), we

obtain

An(x̃, a) = P
(i)
x̃

(Zn 
= 0̃,mn ≤ −a)

� Ex̃

[
exp(mn);mn ≤ −a

]
≤

+∞∑
k=a

e−k
Px̃ (−k < mn ≤ −k + 1)

≤
+∞∑
k=a

e−k
Px̃,k(τ > n)

� 1√
n

+∞∑
k=a

(k + 1)e−k.

Notice that the sum
∑+∞

k=a (k + 1)e−k becomes arbitrarily small for sufficiently
great a. Consequently, A(x̃, a) = lim supn→+∞

√
nAn(x̃, a) −→ 0 as x → +∞.

Step 2. Theorem 2.1 yields

0 ≤ Bn(x̃, a, ρ) = P
(i)
x̃,a

(Zn 
= 0̃,mn > 0) − P
(i)
x̃,a

(Zn 
= 0̃,mρn > 0)

∼ c1
h(x̃, a)√

n

(
1 − 1√

ρ

)
as n → +∞
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with c1 = 2
σ
√

2π
. Hence

B(x̃, a, ρ) := lim sup
n→+∞

√
nBn(x̃, a, ρ) ≤ c1h(x̃, a)

(
1 − 1√

ρ

)
ρ→1−→0.

Step 3. Fix 0 ≤ k ≤ n. Using (3.5) and the fact that 1[mk>0] and mρn−k(Xk, Sk)

are measurable with respect to the σ -algebra σ(f
(i)
0 , f1, . . . , fk−1), we may write

Cn(x̃, a, ρ, k) = P
(i)
x̃,a

(Zk 
= 0̃,mρn > 0)

= P
(i)
x̃,a

(
Zk 
= 0̃,mk > 0,mρn−k(Xk, Sk)

)
= E

(i)
x̃,a

(
E

(
1
Zk 
=0̃1[mk>0]mρn−k(Xk, Sk) | f (i)

0 , . . . , fk−1
))

= E
(i)
x̃,a

(
P

(
Zk 
= 0̃|f (i)

0 , . . . , fk−1
)
1[mk>0]mρn−k(Xk, Sk)

)
= Ex̃,a

(
q

(i)
k ,mρn > 0

)
= Ex̃,a

(
q

(i)
k | mρn > 0

)
Px̃,a(mρn > 0).

By (3.6), since k is fixed

lim
n→+∞Ex̃,a

(
q

(i)
k |mρn > 0

) = Êx̃,a

(
q

(i)
k

) = P̂
(i)
x̃,a

(Zk 
= 0̃).

Hence, by Theorem 2.1

lim
n→+∞

√
nCn(x̃, a, ρ, k) = c1

h(x̃, a)√
ρ

P̂
(i)
x̃,a

(Zk 
= 0̃).

Step 4. As in the previous step, we may write

Dn(x̃, a, ρ, k) = P
(i)
x̃,a

(Zk 
= 0̃,Zn = 0̃,mρn > 0)

= P
(i)
x̃,a

(Zk 
= 0̃,mρn > 0) − P
(i)
x̃,a

(Zn 
= 0̃,mρn > 0)

= Ex̃,a

(
q

(i)
k ,mρn > 0

) −Ex̃,a

(
q(i)
n ,mρn > 0

)
= Ex̃,a

((
q

(i)
k − q(i)

n

)
m(ρ−1)n(Xn,Sn);mn > 0

)
� 1√

(ρ − 1)n

1

h(x̃, a)
Ex̃,a

((
q

(i)
k − q(i)

n

)
h(Xn,Sn);mn > 0

)
.

Since 1[mn>0] and h(Xn,Sn) are σ(S0, . . . , Sn)-measurable, we observe that

√
nDn(x̃, a, ρ, k) � 1√

ρ − 1
Êx̃,a

(
q

(i)
k − q(i)

n

)
= 1√

ρ − 1

(
P̂

(i)
x̃,a

(Zk 
= 0̃) − P̂
(i)
x̃,a

(Zn 
= 0̃)
)
.
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Hence

D(x̃, a, ρ, k) = lim sup
n→+∞

√
nDn(x̃, a, ρ, k) � 1√

ρ − 1

(
P̂x(Zk 
= 0̃) − v(i)(x̃, a)

)
so that D(x̃, a, ρ, k) −→ 0 as k → +∞.

Step 5. We first state the following lemmas whose proofs follow in the next
section.

LEMMA 3.1. For any x̃ ∈X and a ≥ 0,

Êx̃,a

+∞∑
n=0

e−Sn < +∞.

This allows one to identify the limit of the sequence (P̂
(i)
x̃,a

(Zk 
= 0̃))k≥0.

LEMMA 3.2. For any x̃ ∈ X and a ≥ 0, the sequence (q
(i)
n )n≥1 converges to

q
(i)∞ in L1(P̂x̃,a); in particular

(3.11) lim
k→+∞ P̂

(i)
x̃,a

(Zk 
= 0̃) = Êx̃,aq
(i)∞ ,

where q
(i)∞ is given by the expression (3.3).

From Lemma 3.2, it is obvious that Êx̃,aq
(i)∞ ≤ 1. On the other hand, the expres-

sion of q
(i)∞ combined with Lemma 3.1 and the fact that |x̃Rn| � ẽiRnYn+1,∞ (see

Lemma 2.1 property 2) yields Êx̃,aq
(i)∞ > 0. In other words, for any a ≥ 0,

0 < v(i)(x̃, a) := Êx̃,aq
(i)∞ < +∞.

This achieves the proof of Step 5.
Let us complete the proof of Theorem 1.1. Letting n → +∞ in expression (3.9)

yields, for any x̃ ∈X, a ≥ 0, ρ > 1 and k ≥ 1,

C − D ≤ lim inf
n→+∞

√
nP(i)(Zn 
= 0̃) ≤ lim sup

n→+∞
√

nP(i)(Zn 
= 0̃) ≤ A + B + C + D.

Letting first k → +∞ then ρ → 1 yields

c1h(x̃, a)v(i)(x̃, a) ≤ lim inf
n→+∞

√
nP(Zn 
= 0̃)

≤ lim sup
n→+∞

√
nP(Zn 
= 0̃)

≤ c1h(x̃, a)v(i)(x̃, a) + A(x̃, a).

Since v(i)(x̃, a) > 0, h(x̃, a) > 0 and A(x̃, a) < +∞, we obtain in particular

0 < lim inf
n→+∞

√
nP(Zn 
= 0̃) ≤ lim sup

n→+∞
√

nP(Zn 
= 0̃) < +∞.
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Finally, letting a −→ +∞, we conclude that both limits

lim
n→+∞

√
nP(i)(Zn 
= 0̃) and lim

a→+∞ c1h(x̃, a)v(i)(x̃, a)

exist, coincide and belong to ]0,+∞[.

3.4. Proof of Theorem 1.2. First, for any n ≥ 1 and s = (s1, . . . , sp), we de-

note Fn(s) = fξ0(fξ1(. . . (fξn−1(s)) . . .)). By definition of q
(i)
n , we have for any

0 ≤ k < n,

q(i)
n = ẽi

(
Fk(1) − Fk(z)

)
,

where z = z(k, n) = fξk
(. . . (fξn−1(0)) . . .); the mean value theorem yields

q(i)
n = ẽi

(
Fk(1) − Fk(z)

) ≤ ẽiM0 . . .Mk−11 � |x̃Rk| = exp
(
Sk(x̃,0)

)
so that q

(i)
n � exp(mn(x̃,0)) and E[q(i)

n ] � E[emn(x̃,0)] = Ex̃[emn].
Using the same trick like in (3.10), we can deduce that there exists a constant

c2 such that

Ex̃

[
emn

] = Ex̃

[
emn;mn ≤ 0

] ∼ c2√
n
,

and thus the upper estimate in equation (1.7) arrives.
To obtain the lower estimate in (1.7), for any R-valued multidimensional gener-

ating function f (s), s = (s1, . . . , sp)T , we obtain (see, for instance, formulas (64)
and (65) in [23])
(3.12)

f (s) ≤ 1 −
( p∑

i=1

∂f

∂si
(1)(1 − si)

)(
1 +

∑p
i,j=1

∂2f
∂si∂sj

(1)(1 − sj )(1 − si)∑p
l=1

∂f
∂sl

(1)(1 − sl)

)−1
.

We set gξn(s) = 1 − Mξn(1−s)

1+γ̃ξn (1−s)
, where Mξn is the mean matrix of fξn(s) and γ̃ξn =

(A, . . . ,A); thus, hypothesis H6 holds for gξn with B ′ = A. Applying inequality

(3.12) with f = f
(i)
ξn

, we may write

f
(i)
ξn

(s) ≤ g
(i)
ξn

(s), i = 1, . . . , p,

which yields

(3.13) E
[
1 − gξ0

(
gξ1

(
. . .

(
gξn−1(0)

)
. . .

))] ≤ E
[
1 − f0

(
f1

(
. . .

(
fn−1(0)

)
. . .

))]
.

The lower estimate in equation (1.6) appears by applying Theorem 1.1 to the left-
hand side of equation (3.13). Therefore, the assertion of Theorem 1.2 arrives.

4. Proof of lemmas. We first give some hints for the proof of Lemma 2.1 and
describe later the proofs of Lemmas 3.1 and 3.2.
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4.1. Proof of Lemma 2.1. First, using (2.1), we obtain

(4.1) |g| =
p∑

i,j=1

g(i, j)
p2B2

� g(k, l).

Further properties can be easily deduced from (4.1). Indeed, the assertions we need
are obvious by noticing that

|gx| =
p∑

i,j=1

g(i, j)xj

p3B2

� |g|,

ỹgx =
p∑

i,j=1

yig(i, j)xj

p2B2

� |g|,

|gh| =
p∑

i,j,k=1

g(i, j)h(j, k)
p7B4

� |g||h|.

4.2. Proof of Lemma 3.1. Before going into the proof, we first claim that in
the critical case, for any δ > 0 and c given from Lemma 2.1, there exists an integer
κ = κ(δ, c) ≥ 1 such that

(4.2) μ∗κ(Eδ) := μ∗κ{
g | ∀x̃ ∈ X, log |x̃g| ≥ δ

}
> 0.

Indeed, let τ ′ := inf{n ≥ 1 | log |Rn| ≥ log c+ δ}. The random variable τ ′ is a stop-
ping time with respect to the natural filtration (σ (M0, . . . ,Mk))k≥0; furthermore,
P(τ ′ < +∞) = 1 since the Lyapunov exponent πμ equals 0, which yields

lim sup
n→+∞

log |Rn| = lim sup
n→+∞

log |x̃ · Rn| = +∞
(this last property is a direct consequence of the ergodic theorem applied here to
the Birkhof sums log |x̃ · Rn|, n ≥ 0 [5]).

Therefore, for any δ > 0 and c given from Lemma 2.1, there exists κ ≥ 1 such
that P(τ ′ = κ) > 0. Moreover, we also have

P
(
log |Rκ | ≥ log c + δ

) ≥ P
(
log |Rκ | ≥ log c + δ, τ ′ = κ

)
= P

(
log |Rτ ′ | ≥ log c + δ, τ ′ = κ

)
= P

(
τ ′ = κ

)
> 0.

Since for any x̃ ∈X, g ∈ S+(B), |gx| ≥ |g|
c

, it follows that{
g | log |g| ≥ log c + δ

} ⊂ {
g | ∀x̃ ∈ X, log |x̃g| ≥ δ

}
.

Thus,

0 < P
(
log |Rκ | ≥ log c + δ

) = μ∗κ{
g | log |g| ≥ log c + δ

}
≤ μ∗κ{

g | ∀x̃ ∈ X, log |x̃g| ≥ δ
}
,

which is the assertion of the claim (4.2).
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Let us go into the proof of Lemma 3.1. For any x̃ ∈ X, a ≥ 0 and λ ∈ (0,1),
there exists some constant C(λ) > 0 such that (t +1)e−t ≤ C(λ)e−λt for any t > 0.
Hence

Êx̃,a

[+∞∑
n=0

e−Sn

]
≤ 1 + 1

h(x̃, a)

+∞∑
n=1

Ex̃,a

(
e−Snh(Xn,Sn);S1 > 0, . . . , Sn > 0

)

≤ 1 + c

h(x̃, a)

+∞∑
n=1

Ex̃,a

(
e−Sn(1 + Sn);S1 > 0, . . . , Sn > 0

)
(4.3)

≤ 1 + cC(λ)

h(x̃, a)

+∞∑
n=1

Ex̃,a

(
e−λSn;S1 > 0, . . . , Sn > 0

)
where c is introduced in inequality (2.5).

We define a function � for any x̃ ∈ X and a ∈R as follows:

�(x̃, a) :=
+∞∑
n=1

Ex̃,a

(
e−λSn;S1 > 0, . . . , Sn > 0

)
.

Notice that for any x̃ ∈ X, the function �(x̃, ·) increases on R. To prove
Lemma 3.1, it is sufficient to check that for any x̃ ∈ X and a ∈ R

(4.4) �(x̃, a) < +∞.

Let us explain briefly the strategy of our proof, inspired by Lemma 3.2 in [10].
J. Geiger and G. Kersting first use in a crucial way the so-called “duality prin-
ciple” [i.e., the fact that for a classical random walk (Sn)n≥1 on R the vectors
(S1, S2, . . . , Sn) and (Sn − Sn−1, Sn − Sn−2, . . . , Sn) have the same distribution]
and they prove in this context of random walks with i.i.d. increments that the quan-
tity

∑+∞
n=1 Ea[e−λSn;S1 > 0, . . . , Sn > 0] is finite when a = 0. Second, they extend

this property for any a ≥ 0.
In the multidimensional case, it is more complicated to apply the duality prin-

ciple and we can only prove at the beginning that the quantity �(x̃, a0) is finite
for some a0 < 0 (without any control on the value of a0). To extend this property
to �(x̃, a) for a > a0, we use the crucially hypothesis H5; we refer to Step 2 be-
low, especially inequality (4.5), and emphasize that the argument holds only when
−a0 ≤ δ. To avoid this difficulty, we modify the function � by introducing the
functions �κ associated with the κ th power of convolution μ∗κ of μ. For any
x̃ ∈ X, a ∈ R, let

�κ(x̃, a) :=
+∞∑
n=1

Ex̃,a

(
e−λSnκ ;Sκ > 0, . . . , Snκ > 0

)
.

The relation is that �(x̃, a) � �κ(x̃, a) for any x̃ ∈ X, a ∈ R. Then, by using the
duality principle, we bound from above �κ(x̃, a) by a new quantity �κ(x̃) defined
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below for any x̃ ∈ X and a ∈ R. Finally, we prove �κ(x̃) < +∞ by using the
ascending ladder epochs associated to the Markov walk (Ln · x, log |Lnx|)n≥0 and
the elementary renewal theorem.

We set L0 = 0 and denote Ln := Mn−1 . . .M0 the left product of the matrices
M0, . . . ,Mn when n ≥ 1. Set, for any x̃ ∈ X,

�κ(x̃) :=
+∞∑
n=1

E
[|Lnκx|−λ; |Lnκx| > |L(n−1)κx|, . . . , |Lnκx| > 1

]
.

Property (4.4) is a direct consequence of the four following steps:

1. For any κ ≥ 1, there exists C(κ) > 0 such that, for any x̃ ∈ X and a ∈ R,

�(x̃, a) ≤ C(κ)
(
1 + �κ(x̃, a)

)
.

2. If there exist some κ ≥ 1, x̃0 ∈ X and a0 < 0 such that 0 < �κ(x̃0, a0) <

+∞, then

∀x̃ ∈ X,∀a ∈ R �κ(x̃, a) < +∞.

3. There exist C1 > 0 and a1 < 0 such that for any κ ≥ 1, x̃ ∈ X and a < a1

�κ(x̃, a)
C1� �κ(x̃).

4. For any κ ≥ 1 and x̃ ∈X,

�κ(x̃) < +∞.

With these steps at hand, we may prove (4.4) as follows. First, for any a0 ≤
a1 < 0, we choose some δ0 such that δ0 > −a0 > 0. For each δ0, there exists
κ0 ≥ 1 such that P(log |x̃Rκ0 | ≥ δ0) > 0 [see (4.2) above]. Since δ0 > −a0, we
have Px̃,a(Sκ0 > 0) > 0, which implies �κo(x̃0, a0) > 0. On the other hand, since
a0 ≤ a1, Step 3 and Step 4 yield �κo(x̃0, a0) < +∞. Therefore, we can apply
Step 2 and it yields �κ(x̃, a) < +∞ for any x̃ ∈ X and a ∈ R. Finally, thanks to
Step 1, (4.4) arrives.

Step 1. It is easy to see that

�(x̃, a) ≤
κ−1∑
r=1

Ex̃,a

[
e−λSr

] +
+∞∑
n=1

κ−1∑
r=0

Ex̃,a

[
e−λSnκ+r ;Sκ > 0, . . . , Snκ > 0

]

≤
κ−1∑
r=1

Ex̃,a

(
e−λSr

)

+
+∞∑
n=1

Ex̃,a

(
e−λSnκ ;Sκ > 0, . . . , Snκ > 0

) ×
κ−1∑
r=0

sup
ỹ∈X

Eỹ,a

(
e−λSr

)

≤
(

κ−1∑
r=0

sup
ỹ∈X

Eỹ,a

(
e−λSr

))(
1 + �κ(x̃, a)

)
,



2966 E. LE PAGE, M. PEIGNÉ AND C. PHAM

which yields to the expected result with

0 < C(κ) =
κ−1∑
r=0

sup
ỹ∈X

Eỹ,a

[
e−λSr

]
< +∞.

Step 2. The inequality �κ(x̃0, a0) > 0 implies that P(log |x̃0Rκ | > −a0) > 0;
we thus fix δ > −a0 > 0 and κ ≥ 1 such that μ∗κ(Eδ) > 0. Since a0 < 0, this
property may hold only when κ is large enough; this happens, for instance, when
the support of μ is bounded.

To simplify the notation, we assume that −a0 < δ where δ is given by H5. We
set κ = 1 and write

�(x̃0, a0) =
+∞∑
n=1

E
[|x̃0Rn|−λ; |x̃0R1| > e−a0, . . . , |x̃0Rn| > e−a0

]

≥
∫
{g∈S+(B):|x̃0g|≥e−a0 }

+∞∑
n=2

E
[|x̃0gR1,n|−λ; |x̃0g| > e−a0,

. . . , |x̃0gR1,n| > e−a0
]
μ(dg)

≥
∫
Eδ

+∞∑
n=2

E
[|x̃0gR1,n|−λ; |x̃0g| ≥ eδ > e−a0, |x̃0gR1,2| > e−a0,

. . . , |x̃0gR1,n| > e−a0
]
μ(dg)

=
∫
Eδ

|x̃0g|−λ
+∞∑
m=1

E
[∣∣(x̃0 · g)Rm

∣∣−λ; ∣∣(x̃0 · g)R1
∣∣ > e−a0−log |x̃0g|,

. . . ,
∣∣(x̃0 · g)Rk

∣∣ > e−a0−log |x̃0g|]μ(dg)

=
∫
Eδ

|x̃0g|−λ�
(
x̃0 · g, a0 + log |x̃0g|)μ(dg),

so that

(4.5) �(x̃0, a0) ≥
∫
Eδ

|x̃0g|−λ�(x̃0 · g, a0 + δ)μ(dg).

Consequently, if �(x̃0, a0) < +∞ then �(x̃0 · g, a0 + δ) < +∞ for μ-almost all
g ∈ Eδ and by iterating this argument, there thus exists a sequence (gk)k≥1 of
elements of Eδ such that

∀k ≥ 1, �(x̃0 · g1 . . . gk, a0 + kδ) < +∞.

By Lemma 2.1, for any x̃, ỹ ∈X and a ∈ R

�(x̃, a − log c) ≤ cλ
+∞∑
n=1

E
[|Rn|−λ; |R1| > e−a, . . . , |Rn| > e−a]

≤ c2λ�(ỹ, a + log c);
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it follows that, by choosing k sufficiently great such that a0 + kδ > a + 2 log c, we
have

�(x̃, a) ≤ �(x̃0 · g1 . . . gk, a + 2 log c) ≤ �(x̃0 · g1 . . . gk, a0 + kδ) < +∞.

Step 3. For any 0 ≤ k < n, denote Ln,k := Mn−1 . . .Mk and Ln,k = I otherwise.
Let c > 1 be the constant given by Lemma 2.1. For any x̃ ∈ X and a ∈R, by using
Lemma 2.1, we may write

�κ(x̃, a) =
+∞∑
n=1

E
(|x̃Rnκ |−λ; |x̃Rκ | > e−a, . . . , |x̃Rnκ | > e−a)

≤ cλ
+∞∑
n=1

E

(
|Rnκ |−λ; |Rκ | > e−a

c
, . . . , |Rnκ | > e−a

c

)

so that, by duality principle and Lemma 2.1,

�κ(x̃, a) ≤ cλ
+∞∑
n=1

E

(
|Lnκ |−λ; |Lnκ,(n−1)κ | > e−a

c
, . . . , |Lnκ | > e−a

c

)

= cλ
+∞∑
n=1

E

[
|Lnκ |−λ; |Lnκ,(n−1)κ | × |L(n−1)κ | > |L(n−1)κ |e

−a

c
,

. . . , |Lnκ | > e−a

c

]

≤ cλ
+∞∑
n=1

E

(
|Lnκ |−λ; |Lnκ | > |L(n−1)κ |e

−a

c2 , . . . , |Lnκ | > e−a

c2

)

≤ c2λ
+∞∑
n=1

E

(
|Lnκx|−λ; |Lnκx| > |L(n−1)κx|e

−a

c4 , . . . , |Lnκx| > e−a

c4

)
.

Consequently, setting a1 := −4 log c and using the fact that the map a 	→ �κ(x̃, a)

is nondecreasing for any a ∈R, one may write �κ(x̃, a) ≤ �(x̃) as long as a < a1.
Step 4. To simplify the notation, we assume here κ = 1; the proof is the same

when κ ≥ 2. For any x̃ ∈ X and n ≥ 0, set X′
n := Ln · x and S′

n := log |Lnx|;
the random process (X′

n, S
′
n)n≥0 is a Markov walk on X × R starting from (x,0)

and whose transitions are governed by the ones of the Markov chain (X′
n)n≥0 on

X. To study the quantity �(x̃), we follow the strategy developed in the case of
one-dimensional random walks on R with independent increments and we thus
introduce the sequence (ηj )j≥0 of ladder epochs of (S′

n)n≥0 defined by

η1 = 0, ηj+1 = ηj+1(x) := min
{
n > ηj : log |Lnx| > log |Lηj

x|}, j ≥ 0.
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For any x̃ ∈ X, one may write

�(x̃) =
+∞∑
n=1

E
(|Lnx|−λ; ∃j ≥ 1 | n = ηj

)
(4.6)

=
+∞∑
j=1

E
(|Lηj

x|−λ)
.

Let Q′ denote the transition kernel of the Markov walk (X′
n, S

′
n)n≥0 and GQ′ :=∑+∞

n=0 Q′n its Green kernel. The sub-process (X′
ηj

, S′
ηj

)j≤0 is also a Markov chain,
and its transition kernel Q′

η is given by: for any bounded Borel function φ : X ×
R→C and for any x ∈X, a ∈ R,

Q′
ηφ(x, a) = E

(
φ

(
X′

η1
, a + S′

η1

)|X′
0 = x

)
=

+∞∑
n=1

E
(
φ

(
Ln · x, a + log |Lnx|);η1 = n

)

=
+∞∑
n=1

E
[
φ

(
Ln · x, a + log |Lnx|);

|L1x| ≤ 1, . . . , |Ln−1x| ≤ 1, |Lnx| > 1
]
.

Let G′
η denote the Green kernel associated with the process (X′

ηj
, S′

ηj
)j≥0; by (4.6)

1 + �(x̃) =
+∞∑
j=0

E
(|Lηj

x|−λ)

=
+∞∑
j=0

∫
X

∫
R

e−λa(
Q′

η

)j (
(x,0), dy da

)
=

∫
X

∫
R

e−λaG′
η

(
(x,0), dy da

)
.

The Markov walk (X′
n, S

′
n)n≥0 has been studied by many authors (see, for in-

stance, [9, 14] or [13]). All the works are based on the fact that the transition
kernel of the chain (X′

n)n≥0 has some “nice” spectral properties, namely its re-
striction to the space of Lipschitz functions on X is quasi-compact. In particu-
lar, it allows these authors to prove that the classical renewal theorem remains
valid for this Markov walk on X × R as long as it is not centered, that is,
πμ = limn→+∞ 1

n
E[log |Ln|] 
= 0; in this case, one may prove in particular that,

for any x̃ ∈ X, the quantity GQ′((x,0),X× [0, a]) is equivalent to a
π

as a → +∞
[14]. For the behaviour as a → +∞ of G′

η((x,0),X× [0, a]), the situation is way
different. On one hand, it is easier since for any j ≥ 1 the random variables S ′

ηj
are
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strictly positive, one might thus expect a similar result; on the other hand, the con-
trol of the spectrum of the transition kernel Q′

η remains unfortunately unknown
in this circumstance, in particular the transition kernel Q′

η does not even act on
the space of continuous functions on X. Nevertheless, we have the following weak
result with the postponed proof at the end of this subsection.

FACT 4.1. There exists C > 0 such that for any x̃ ∈ X and a ≥ 0

G′
η

(
(x,0),X× [0, a]) =

+∞∑
j=0

P
(
log |Lηj

x| ≤ a
) ≤ Ca.

It follows that

1 + �(x̃) =
∫
X

∫
R

+∗
e−λaG′

η

(
(x,0), dy da

)
≤ eλ

+∞∑
a=1

e−λaG′
η

(
(x,0),X× [a − 1, a])

≤ eλ
+∞∑
a=1

e−λaG′
η

(
(x,0),X× [0, a])

≤ Ceλ
+∞∑
a=1

ae−λa < +∞.

To complete the proof of Step 4, it remains to prove Fact 4.1. First, by definition
of Eδ , for any j ≥ 0 and x̃ ∈ X, we may write S′

ηj+1
− S′

ηj
≥ δ1Eδ(Mηj

); setting
εj := 1Eδ(Mηj

), this yields S′
ηj

≥ δ(ε0 + · · · + εj−1) so that

G′
η

(
(x,0),X× [0, a]) =

+∞∑
j=0

P
(
X′

ηj
∈ X, S′

ηj
∈ [0, a]|X′

0 = x
)

≤
+∞∑
j=0

E
(
1[0,a]

(
S′

ηj

)|X′
0 = x

)

≤
+∞∑
j=0

E
(
1[0,a]

(
δ(ε0 + · · · + εj−1)

))
.

To conclude, we use the fact that (εi)i≥0 is a sequence of i.i.d. random variables;
the elementary renewal theorem for the Bernoulli random walk process [(ε0 +· · ·+
εj−1)]j≥0 implies

G′
η

(
(x,0),X× [0, a]) ≤ E

(+∞∑
j=1

1[0,a]
(
δ(ε0 + · · · + εj−1)

)) � a.
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4.3. Proof of Lemma 3.2. We claim that

(4.7) lim
n→+∞ Êx̃,a

∣∣∣∣ 1

q
(i)
n

− 1

q
(i)∞

∣∣∣∣ = 0.

By definition, the quantities q
(i)
n are always less than or equal to 1. Therefore, (4.7)

implies that the same property holds P̂x̃,a-almost surely for q
(i)∞ . Hence,∣∣q(i)

n − q(i)∞
∣∣ = q(i)

n q(i)∞
∣∣∣∣ 1

q
(i)
n

− 1

q
(i)∞

∣∣∣∣ ≤
∣∣∣∣ 1

q
(i)
n

− 1

q
(i)∞

∣∣∣∣.
Using (4.7) again, we find that limn→+∞ Êx̃,a|q(i)

n − q
(i)∞ | = 0. In particular,

lim
n→+∞ P̂

(i)
x̃,a

(Zn 
= 0̃) = lim
n→+∞ Êx̃,aq

(i)
n = Êx̃,aq

(i)∞ ,

which is the assertion of (3.11).
Finally, it remains to verify (4.7). From (3.2) and (3.3),∣∣∣∣ 1

q
(i)
n

− 1

q
(i)∞

∣∣∣∣ ≤
∣∣∣∣ 1

ẽiRn1

∣∣∣∣
+

n−1∑
k=0

∣∣∣∣ γk

ẽiRkYk+1,n

− γk

ẽiRkYk+1,∞

∣∣∣∣ + +∞∑
k=n

∣∣∣∣ γk

ẽiRkYk+1,∞

∣∣∣∣
so that

Êx̃,a

∣∣∣∣ 1

q
(i)
n

− 1

q
(i)∞

∣∣∣∣ ≤ In + Jn + Kn

with

In = Êx̃,a

∣∣∣∣ 1

ẽiRn1

∣∣∣∣,
Jn =

n−1∑
k=0

Êx̃,a

∣∣∣∣γk

ẽiRk(Yk+1,n − Yk+1,∞)

(ẽiRkYk+1,n)(ẽiRkYk+1,∞)

∣∣∣∣,
Kn =

+∞∑
k=n

Êx̃,a

∣∣∣∣ γk

ẽiRkYk+1,∞

∣∣∣∣.
By using Lemma 2.1, it is obvious that Lemma 3.1 implies

(4.8)
+∞∑
k=0

Êx̃,a

(
1

|Rk|
)

< +∞.

Besides, as a direct consequence of Lemma 2.1,

In � Êx̃,a

(
1

|Rn|
)
,(4.9)
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ẽiRk(Yk+1,n − Yk+1,∞)

(ẽiRkYk+1,n)(ẽiRkYk+1,∞)

∣∣∣∣ � |Yk+1,n − Yk+1,∞|
|Rk| � 1

|Rk| ,(4.10)

Kn �
+∞∑
k=n

Êx̃,a

(
1

|Rk|
)
.(4.11)

Hence:

• (4.8) and (4.9) implies In → 0 as n → ∞.
• Since Yk+1,n(ω) → Yk+1,∞(ω) for any ω ∈ � (see Section 3.1), this conver-

gence holds in particular P̂x̃,a-almost surely; combining (4.8), (4.10) and the
dominated convergence theorem, we obtain Jn → 0 as n → +∞.

• By (4.8) and (4.11), the term Cl can be made arbitrarily small by choosing l

sufficiently great.
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