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Wind has the potential to make a significant contribution to future energy
resources. Locating the sources of this renewable energy on a global scale is
however extremely challenging, given the difficulty to store very large data
sets generated by modern computer models. We propose a statistical model
that aims at reproducing the data-generating mechanism of an ensemble of
runs via a Stochastic Generator (SG) of global annual wind data. We intro-
duce an evolutionary spectrum approach with spatially varying parameters
based on large-scale geographical descriptors such as altitude to better ac-
count for different regimes across the Earth’s orography. We consider a multi-
step conditional likelihood approach to estimate the parameters that explicitly
accounts for nonstationary features while also balancing memory storage and
distributed computation. We apply the proposed model to more than 18 mil-
lion points of yearly global wind speed. The proposed SG requires orders
of magnitude less storage for generating surrogate ensemble members from
wind than does creating additional wind fields from the climate model, even
if an effective lossy data compression algorithm is applied to the simulation
output.

1. Introduction. Environmental and societal concerns about climate change
are prompting many countries to seek alternative energy resources [Moomaw et al.
(2011), Obama (2017)]. Wind is a clean and renewable energy source that has the
potential to substantially contribute to energy portfolios without causing negative
environmental impacts [Wiser et al. (2011)] and that can reduce the quantity of an-
thropogenic greenhouse gases on global warming [Barthelmie and Pryor (2014)].
In order to provide energy assessments in developing countries where no regional
studies are available, Earth System Models (ESMs) currently represent a valuable
tool to investigate where sustainable wind resources are located. While ESMs are
important for physically consistent projections, they represent only an approxima-
tion of the true state of the Earth’s system, thereby representing uncertainty. In
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particular, small perturbations in the initial conditions generate a plume of simu-
lations whose uncertainty (internal variability) needs to be quantified. While per-
forming sensitivity analysis from internal variability is a fundamental task, a typ-
ical collection (ensemble) of runs, such as the Coupled Model Intercomparison
Phase 5 (CMIP5) [Taylor, Stouffer and Meehl (2012)], comprises a small number
of ESM runs, making a detailed assessment infeasible. The Community Earth Sys-
tem Model (CESM) Large ENSemble project (LENS) from the National Center for
Atmospheric Research (NCAR) was implemented to provide a large collection of
climate model simulations to assess projections in the presence of internal variabil-
ity with the same forcing scenario [Kay et al. (2015)]. This ensemble required an
enormous effort for only a single scenario (10 million CPU hours and more than
400 terabytes of storage), and very few academic institutions or national research
centers have the resources for such an undertaking.

To mitigate storage issues arising when generating such large amounts of data,
NCAR has proposed a series of investigations on the topic of reducing storage
needs for climate model output. Baker et al. (2014) investigated the applicability
of lossless and lossy compression algorithms to climate model output. Lossless
and lossy compression algorithms respectively provide an exact reconstruction of
the data or a reconstruction with some loss of information. Baker et al. (2016)
reported that a lossy algorithm for LENS achieves data reduction that does not im-
pact general scientific conclusions. Guinness and Hammerling (2017) introduced a
compression approach based on a set of summary statistics and a statistical model
for the mean and covariance structure in the climate model output.

Statistical models can provide appropriate stochastic approximations of the
spatio-temporal characteristics of the model output, and hence they can be used as
surrogates of the original runs [Mearns et al. (2001)]. Castruccio and Stein (2013),
Castruccio and Genton (2014), Castruccio and Genton (2016) and Castruccio and
Guinness (2017) introduced a Stochastic Generator (SG) for annual temperature
data to investigate internal variability for different ensembles, assuming that the
observed ensemble members were realizations of an underlying statistical model.
This approach allowed them to generate runs that were visually indistinguishable
from the original model output. In this work, we operate under this framework.

This work is part of an ongoing collaborative effort with NCAR to develop
solutions to deal with memory-intensive models and of a series of investigations
sponsored by KAUST to develop novel statistical methodologies to assess wind
resources in Saudi Arabia and more broadly in developing countries by relying on
ESMs. Various approaches have been proposed to model wind in space and time;
see the reviews by Soman et al. (2010) and Zhu and Genton (2012). For LENS, we
establish a SG that accounts for the spatio-temporal dependence of the data and
uses its parameters to generate additional surrogate runs and efficiently assess the
uncertainty in multi-decadal projections.

Wind fields are expected to exhibit varying spatio-temporal smoothness across
longitudes, which is associated with land/ocean regimes and orography. Differ-
ences in altitude produce thermal effects as well as acceleration of wind flows
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over hills, and funneling effects in narrow valleys [Banuelos-Ruedas, Angeles-
Camacho and Rios-Marcuello (2011)], and these features are expected to impact
the spatial smoothness of this variable. We introduce an evolutionary spectrum ap-
proach [Priestley (1965)],2 coupled with spatially varying parameters depending
on the surface altitude to better account for different regimes across the Earth’s
orography. We further introduce a model that allows the latitudinal spectral depen-
dence to vary across different wavenumbers, which markedly improves the fit and
allows to model complex latitudinal nonstationarities.

We perform inference via a multi-step conditional likelihood approach, and we
show how the resulting model reduces computational burden and storage costs.
Once the parameters are estimated, the proposed model can generate surrogates
of ESM runs with different initial conditions within seconds on a modest laptop.
The SG requires a small data set of approximately 30 megabytes that describes the
mean structure and the parameters of the space–time covariance, whereas down-
loading a single wind variable from 40 LENS runs requires 1.1 gigabytes.

The remainder of the paper is organized as follows. Section 2 describes the
LENS data set. Section 3 details the space–time statistical model and the inferential
approach. Section 4 provides a model comparison and validation of local behavior.
Section 5 illustrates how to generate runs, validate the large scale behavior and
assess the internal variability of global wind fields and wind power densities. The
article ends with Section 6, which offers a discussion and concluding remarks.

2. The large ensemble. We focus on LENS, an ensemble of CESM runs with
version 5.2 of the Community Atmosphere Model from NCAR [Kay et al. (2015)].
The ensemble comprises 40 runs of coupled simulations for the period between
1920 and 2100 at 0.9375◦ × 1.25◦ (latitude × longitude) resolution. Each member
is subject to the same radiative forcing scenario: historical up to 2005 and the Rep-
resentative Concentration Pathway (RCP) 8.5 [van Vuuren et al. (2011)] thereafter.
We focus on yearly wind speed at 10 m (computed from the monthly U10 variable)
and, since our focus is on future wind trends, we analyze the projections from 2006
to 2100, for a total of 95 years. In the supplementary material [Figure S1, Jeong
et al. (2018)], we use a lack of fit index to assess the number of runs R required
in the training set for a satisfactory fit, and for this work we establish R = 5, ran-
domly chosen from the original ensemble. We consider all 288 longitudes, and we
discard latitudes near the poles as they would lead to numerical instabilities due to
the very close physical distance of neighboring points and the very different statis-
tical behavior of wind speed in the Arctic and Antarctic regions [McInnes, Erwin
and Bathols (2011)]. We therefore focus on 134 bands between 62◦S and 62◦N,
and the full dataset comprises more than 18 million points (5 × 95 × 134 × 288).
In Figure 1, we show the ensemble mean and standard deviation of the yearly wind
speed from the five chosen runs, in 2020.

2The evolutionary spectrum generalizes the spectrum of a stationary process, by allowing it to vary
across longitude while still retaining positive definite covariance functions.



STOCHASTIC WIND GENERATORS 493

FIG. 1. The (a) ensemble mean W(2020) = ∑R
r=1 Wr (2020)/R and (b) ensemble standard devi-

ation Wsd(2020) =
√∑R

r=1{Wr (2020) − W(2020)}2/R, where R is the number of ensemble mem-

bers, of the yearly near-surface wind speed (in ms−1) for R = 5.

3. The space–time covariance model.

3.1. A review of statistical models on a sphere. Recently, Gneiting (2013) and
Ma (2015) provided an overview of isotropic covariance functions for Gaussian
processes on a sphere based on geodesic distance. Porcu, Bevilacqua and Genton
(2016) proposed spatio-temporal covariance and cross-covariance models based
on geodesic distance and Clarke, Alegría and Porcu (2016) studied the regularity
properties of Gaussian random fields on a sphere across time. For nonstationary co-
variance models on a sphere, various construction approaches, such as differential
operators [Jun and Stein (2007, 2008), Jun (2011, 2014)], spherical harmonic rep-
resentation [Hitczenko and Stein (2012), Stein (2007)], stochastic partial differen-
tial equations [Bolin and Lindgren (2011), Lindgren, Rue and Lindström (2011)],
kernel convolution [Heaton et al. (2014)] and deformation [Das (2000)] have been
introduced. A new review of spherical process models for global spatial statistics
can be found in Jeong, Jun and Genton (2017).

When modeling global data, a common assumption is that the (Gaussian) spatial
process is axially symmetric, that is, its mean depends on latitude, L, and its co-
variance depends only on the longitudinal lag, �1 − �2, between two points [Jones
(1963)]. This class of models implies that data are stationary at a given latitude,
but this assumption is clearly inappropriate for many variables whose dynamics
are influenced by the presence of large-scale geographical descriptors such as land
and ocean. To better account for different statistical characteristics of variables
such as temperature or wind speed, more flexible nonstationary models are needed.
Jun (2014) considered nonstationary models with a differential operator approach
and spatially varying smoothness parameters over land and ocean. Castruccio and
Guinness (2017) also relaxed the assumption of axial symmetry by proposing an
evolutionary spectrum approach to account for different regimes over land and
ocean. In this work, we propose a generalization of this approach to allow spatial
smoothness to change with orography, and a novel approach for changing spectral
dependence across latitudes for different wavenumbers.
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3.2. The statistical framework. Climate model variables in the atmospheric
component tend to forget their initial conditions after a small number of time
steps. Each ensemble member evolves in “deterministically chaotic” patterns after
the climate model forgets its initial state [Lorenz (1963)]. Collins (2002), Collins
and Allen (2002) and Branstator and Teng (2010) discussed the validity of the de-
terministically chaotic nature of climate models. Since ensemble members from
the LENS differ only in their initial conditions [Kay et al. (2015)], each one will
be treated as a statistical realization from a common Gaussian distribution (see
Figure S2 for two normality tests for this data set). Denote by Wr(Lm, �n, tk)

the spatio-temporal near-surface wind speed for realization r at the latitude Lm,
longitude �n and time tk , where r = 1, . . . ,R, m = 1, . . . ,M , n = 1, . . . ,N , and
k = 1, . . . ,K . Define the vector

Wr = {
Wr(L1, �1, t1), . . . ,Wr(LM,�1, t1),

Wr(L1, �2, t1), . . . ,Wr(LM,�N, tK)
}�

.

We assume that Wr is independent across r conditional on its climate:

(3.1) Wr = μ + εr , εr
iid∼ N

(
0,�(θ)

)
,

where μ is the space–time mean across realizations and θ is a vector of fixed and
unknown covariance parameters. By assuming independent realizations, we can
estimate θ using a restricted log-likelihood without providing any parametrization
of μ. Castruccio and Stein (2013) provided the following expression for twice the
negative restricted log-likelihood function:

2l(θ;D) = KNM(R − 1) log(2π) + KNM log(R)

+ (R − 1) log
∣∣�(θ)

∣∣ + R∑
r=1

D�
r �(θ)−1Dr ,

(3.2)

where D = (D�
1 , . . . ,D�

R)� and Dr = Wr − W where W = ∑R
r=1 Wr/R. We use

this expression throughout this work.

3.3. Temporal dependence. Let εr (tk) be the vector of the stochastic com-
ponent of (3.1) for time tk and realization r . No evidence of nonstationarity in
time was found, and we assume a Vector AutoRegressive of order 2 [VAR(2)]
structure for εr (tk), with different parameters for each spatial location. Diagnos-
tics showed no evidence of the need for higher order autoregressive coefficients
or cross-temporal dependence [Figures S3 and S4 in the supplementary material
Jeong et al. (2018)]. A nonnegligible temporal dependence across locations (as
observed at higher temporal resolutions) would imply a nonseparable model. Our
model can be modified to allow for interactions of temporal dependence across
neighboring locations [Tagle et al. (2017)]. The VAR(2) model is

(3.3) εr (tk) = �1εr (tk−1) + �2εr (tk−2) + SHr (tk),



STOCHASTIC WIND GENERATORS 495

FIG. 2. Plots of the estimated autoregressive parameters for the temporal model as defined in (3.3):
(a) φ̂1

Lm,�n
, (b) φ̂2

Lm,�n
and (c) ŜLm,�n

.

where �1 = diag{φ1
Lm,�n

} and �2 = diag{φ2
Lm,�n

} are two MN × MN diagonal

matrices with autoregressive coefficients, and S = diag{S1
Lm,�n

} is an MN × MN

diagonal matrix with the associated standard deviations, so that the temporal pa-
rameters are denoted by θ time = (φ1

Lm,�n
, φ2

Lm,�n
, SLm,�n)

� for n = 1, . . . ,N and
m = 1, . . . ,M . For all spatial locations, we estimate �1, �2 and S by assum-
ing that the innovations Hr (tk) = {Hr(Lm, �n, tk)} are independent across latitude
and longitude. This allows us to perform inference in parallel: each spatial loca-
tion can be estimated independently by a core in a workstation or cluster. Here,

Hr (tk)
iid∼ N (0,C), and the following Sections 3.4 and 3.5 are entirely devoted to

determining the Hr (tk) for C.
Figure 2 shows the estimated autoregressive parameters. The two autoregressive

coefficients, φ1
Lm,�n

and φ2
Lm,�n

, are estimated to be mostly positive and negative,
respectively [corresponding p-values are available in Figure S3 in the supplemen-
tary material Jeong et al. (2018)]. ŜLm,�n exhibits higher values over ocean than
over land. The marginal standard deviation shows similar patterns to ŜLm,�n with a
different scale (not shown).

3.4. Longitudinal dependence. We now provide a model for the spatial cor-
relation of the unscaled innovations, Hr(Lm, �n, tk), at different longitudes but at
the same latitude. An evolutionary spectrum allows for changing behavior across
large-scale geographical descriptors. Castruccio and Guinness (2017) proposed to
model Hr(Lm, �n, tk) in the spectral domain by performing a generalized Fourier
transform across longitude:

(3.4) Hr(Lm, �n, tk) =
N−1∑
c=0

fLm,�n(c) exp(i�nc)H̃r(c,Lm, tk),

where i is the imaginary unit, c = 0, . . . ,N − 1 is the wavenumber, fLm,�n(c) is
the evolutionary spectrum across longitude, and H̃r(c,Lm, tk) is the transformed
process in the spectral domain.

In this work, we propose a flexible model in which ocean, land and high moun-
tains with altitude information are included as covariates to better account for the
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statistical behavior of wind speed. The United Nations Environmental Programme
does not provide an unambiguous definition of “mountainous environment” [Blyth
et al. (2002)]. Hence, we subjectively choose a threshold value of 1000 m [see Fig-
ure S5 in the supplementary material Jeong et al. (2018) for the global distribution
of high mountains]. We allow fLm,�n(c) to depend on �n in a land, ocean and high
mountain domain so that it can be expressed as

(3.5)

fLm,�n(c)

= f 1
Lm,�n

(c)Iland∩hmt(Lm, �n) + f 2
Lm,�n

(c)bland∩hmtc (Lm, �n;gLm, rLm)

+ f 3
Lm,�n

(c)
{
1 − bland(Lm, �n;gLm, rLm)

}
,

bland(Lm, �n;gLm, rLm)

=
N∑

n′=1

Ĩland(Lm, �n;gLm)w(Lm, �n − �n′ ; rLm),

where Iland∩hmt(Lm, �n) is the indicator function for high mountains. The tran-
sition between nonmountainous land and ocean in the second and third terms re-
quires a parametrization for a smooth transition. Here, the modified indicator func-
tion of Iland(Lm, �n) is Ĩland(Lm, �n;gLm), which is equal to 1 for gLm grid points
wherever there is a land/ocean transition (this parameter can also be negative) and
w(Lm,�n − �n′ ; rLm) is the Tukey taper function [Tukey (1967)] with range rLm

(other taper functions are equally effective). Hence, bland(Lm, �n;gLm, rLm) al-
lows for a smoother transition between land/ocean states by convolving the modi-
fied land/ocean indicator, Ĩland(Lm, �n;gLm), with the taper function, w(Lm,�n −
�n′ ; rLm). We additionally use the information of the surface altitude, which has
an impact on land and high mountains. The component spectra in (3.5) is defined
according to the parametric form [Castruccio and Stein (2013), Poppick and Stein
(2014)]:∣∣f j

Lm,�n
(c)

∣∣2 = φ
j
Lm,�n

{(
α

j
Lm,�n

)2 + 4 sin2(cπ/N)
}ν

j
Lm,�n

+1/2
, j = 1,2,3,

where (φ
j
Lm,�n

, α
j
Lm,�n

, ν
j
Lm,�n

) have a similar interpretation as the variance, in-
verse range, and smoothness parameters, respectively, for the Matérn spectrum
over the line. We allow spatially varying parameters to depend on the sur-
face altitude, with log-linear parametrization to ensure positivity for φ

j
Lm,�n

=
β

j,φ
Lm

exp[tan−1{ALm,�nγ
φ
Lm

}], j = 1,2 and φ3
Lm,�n

= β
3,φ
Lm

, where β
j,φ
Lm

is a pos-

itive number, γ
φ
Lm

is a real number and ALm,�n represents the altitude at loca-

tion (Lm, �n). ν
j
Lm,�n

and α
j
Lm,�n

have a similar structure. In order to avoid over-

parametrization, γ
φ
Lm

controls the impact of the surface altitude for land and high

mountains, that is, φ1
Lm,�n

(c) and φ2
Lm,�n

(c) share the same coefficient, γ φ
Lm

. Hence,

the longitudinal parameters are θ lon = (β
j,φ
Lm

, γ
φ
Lm

,β
j,ν
Lm

, γ ν
Lm

,β
j,α
Lm

, γ α
Lm

, gLm,
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FIG. 3. (a) Log-ratio of periodograms, log{f̂Lm,�n
(N/2)/f̂Lm,�n

(0)}, and (b) surface altitude
(orography) near the Indian Ocean and Himalayan region.

rLm)�, j = 1,2,3 and m = 1, . . . ,M . The parameter values for each Lm are inde-
pendent from the other latitudinal bands, therefore, each core of a workstation or
cluster can perform inference independently on each band.

In Figure 3(a), we show log{f̂Lm,�n(N/2)/f̂Lm,�n(0)}, the log-ratio of peri-
odograms that empirically estimates the rate of spectral decay at high frequency,
and the surface altitude near the Indian Ocean and Himalayan region. At high alti-
tudes, the Himalayan region and Western China exhibit pronounced spectral decay
compared to neighboring land masses at low altitudes, such as India and Eastern
China. Moreover, the patterns of spectral decay markedly follow the topographical
relief, as apparent from Figure 3(b). Indeed, besides a smoother ocean behavior,
annual winds are considerably smoother at high altitudes, as demonstrated by the
fast rate of spectral decay over the region corresponding to the Himalayas.

Figure 4 presents a comparison of three models: the axially symmetric model
(AX), the evolutionary spectrum model with land and ocean (LAO) and the new
evolutionary spectrum model with altitude (ALT), in terms of the Bayesian Infor-

FIG. 4. Comparison of AX, LAO and ALT models in terms of BIC versus latitude.
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mation Criterion (BIC) against latitude. LAO and ALT uniformly outperform AX,
but ALT is significantly more flexible than LAO at latitudinal bands between 25◦S
and 45◦N, where the percentage of points with high mountains within these bands
is 7.6%, compared to 3% within the other bands.

3.5. Latitudinal dependence. We propose a novel Vector AutoRegressive
model of order 1, VAR(1), across latitudes to allow for dependence of
H̃r(c,Lm, tk) across neighboring wavenumbers. For any r and tk , denote by
H̃Lm = {H̃Lm(c1), . . . , H̃Lm(cN)}�, then

(3.6)
H̃Lm =

{
ϕLm

H̃Lm−1 + eLm, m = 2, . . . ,M,

eL1 ∼N (0, I), m = 1,

eLm

iid∼ N (0,�Lm), m > 1,

where ϕLm
is an N ×N matrix describing the autoregressive coefficients and �Lm

in an N × N matrix with the covariance structure of the innovation. We propose
the following banded structure, which eases the computational burden by inducing
sparsity and also results in a diagonally dominant matrix:

ϕLm
=

⎛⎜⎜⎜⎜⎝
ϕLm (c1)

{1 − ϕLm (c1)}aLm

4

{1 − ϕLm (c1)}bLm

4
0 · · · 0 0 0

{1 − ϕLm (c2)}aLm

4
ϕLm (c2)

{1 − ϕLm (c2)}aLm

4

{1 − ϕLm (c2)}bLm

4
· · · 0 0 0

{1 − ϕLm (c3)}bLm

4

{1 − ϕLm (c3)}aLm

4
ϕLm (c3)

{1 − ϕLm (c3)}aLm

4
· · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · {1 − ϕLm (cN−1)}aLm

4
ϕLm (cN−1)

{1 − ϕLm (cN−1)}aLm

4
0 0 0 0 · · · {1 − ϕLm (cN )}bLm

4

{1 − ϕLm (cN )}aLm

4
ϕLm (cN )

⎞⎟⎟⎟⎟⎠ ,

(3.7)

where aLm, bLm ∈ (−1,1) for all m, �Lm = diag{1 − ϕLm(cn)
2} and

(3.8) ϕLm(c) = ξLm

{1 + 4 sin2(cπ/N)}τLm

,

where ξLm ∈ [0,1] and τLm > 0 for all m. If aLm = bLm = 0, this model corre-
sponds to a nonstationary AR(1) process in latitude:

corr
{
H̃r(c,Lm, tk), H̃r ′

(
c′,Lm′, tk′

)} = 1
{
c = c′, k = k′, r = r ′}ρLm,Lm′ (c),

where ρLm,Lm′ (c) = ∏m′
j=m ϕLj

(c),m < m′ is the coherence between latitudes Lm

and Lm′ among the H̃r(c,Lm, tk)s with the same wavenumber, time and realization
[Castruccio and Guinness (2017)].

To compare VAR(1) with AR(1), we perform inference for every pair of con-
tiguous bands (Lm,Lm+1) independently for both models, and we report the BIC
and parameter estimates in Figures 5(a) and (b), respectively. For most latitudes,
VAR(1) has a large BIC improvement compared with AR(1), and âLm and b̂Lm are
significantly different from 0 (see confidence bands).
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FIG. 5. Comparison between AR(1) and VAR(1) latitudinal models for adjacent bands in terms
of (a) BIC and (b) âLm

and b̂Lm
as in (3.7) (the dotted lines represent the 95% confidence bands).

A smoothing spline has been applied to the parameters estimated in (b).

To complete the model, the latitudinal dependence of aLm, bLm in (3.7) and
ξLm, τLm in (3.8) must be specified. Figure 5(b) highlights how latitudes near the
equator result in âLm and b̂Lm being considerably (and significantly) different from
zero, hence the need of different coefficients near these latitudinal bands. To miti-
gate, however, the increased computational cost derived from these additional pa-
rameters we choose the bounds −30◦ and 30◦, consistently with Castruccio and
Guinness (2017), in order to include the tropics, whose climate is determined by
the complex interactions between large-scale atmospheric circulation, atmospheric
convection, solar and terrestrial radiactive transfer, boundary layers and clouds
[Betts and Ridgway (1988)]. As an important indicator of atmospheric circulation,
wind in these bands is influenced by the Hadley and Walker circulations, which
are the mean meridional and longitudinal overturning circulations, respectively. In
particular, the Walker circulation is affected by the El Niño-Southern Oscillation
(ENSO) over the Pacific Ocean [Gastineau, Li and Le Treut (2009)]. Therefore,
for −30◦ < Lm < 30◦ we assume that (ξLm , τLm) are fixed and equal to the esti-
mated value from the adjacent band fit in Figure 5, whereas we assume a constant
value equal to (ξ , τ ) outside this range and (a,b) for all latitudinal bands. The
parameter estimates and corresponding 95% confidence intervals are â = 0.136
(0.132,0.140), b̂ = 0.071 (0.067,0.075), ξ̂ = 0.960 (0.903,1.000) and τ̂ = 0.628
(0.626,0.630). The latitudinal parameters are then θ lat = (a, b, ξLm, τLm)� for m

such that the latitudes are in the range of −30◦ < Lm < 30◦. They are otherwise
constant.

3.6. Inference. A computational benefit of axially symmetric models on reg-
ularly spaced data is that the resulting covariance matrix is block circulant, and
hence block diagonal in the spectral domain [Davis (1979)]. Thus, likelihood eval-
uation is convenient in the spectral domain, requiring matrix inversion and deter-
minant computation of small matrices [Jun and Stein (2008)]. In case of a non-
stationary model across longitude at a given latitude, it is still possible to derive a
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likelihood expression whose computational efficiency is close to that of the axially
symmetric case if the data are on a regular grid.

Let θ = (θ�
time, θ

�
lon, θ

�
lat)

�, where θ time, θ lon, and θ lat are collections of all tem-
poral, longitudinal and latitudinal parameters, respectively. If the data are on a grid,
(3.2) simplifies to

2l(θ;D) = KNM(R − 1) log(2π) + KNM log(R)

+ (R − 1)

M∑
m=1

log
∣∣�1

m(θ lon)
∣∣ + (R − 1)

P∑
p=1

log
∣∣�2

p(θ lat)
∣∣(3.9)

+
R∑

r=1

K∑
k=1

P∑
p=1

vp(tk, r; θ time, θ lon)
��2

p(θ lat)
−1vp(tk, r; θ time, θ lon),

where �1
m(θ lon) is the N × N coherence matrix of latitudinal band Lm, �2

p(θ lat)

is the (M × 	N/P 
) × (M × 	N/P 
) covariance matrix describing the coherence
among multiple latitudinal bands, which is obtained by approximating ϕLm

in (3.7)
with p = 1, . . . ,P diagonal blocks and the vector vp(tk, r; θ time, θ lon) is a suitable
transformation of D [Castruccio and Genton (2014)]. To estimate the spatial and
temporal structure of the data, we use (3.9) throughout this study.

As θ is typically very high dimensional, we achieve an approximate maximum
likelihood estimator by applying (3.9) under a conditional approximations infer-
ence scheme that assumes independence across increasingly large subsets, as in
Castruccio and Stein (2013). Each approximation assumes that the parameters ob-
tained from previous steps are fixed and known for the upcoming steps:

Step 1. Estimate the temporal parameters, θ time, by assuming that there is no
cross-temporal dependence in latitude and longitude;

Step 2. Consider that θ time is fixed at its estimated value and estimate θ lon by
assuming that the latitudinal bands are independent;

Step 3. Consider θ time and θ lon fixed at their estimated values and estimate θ lat.

Since steps 1 and 2 assume independence across subsets, inference can be per-
formed independently by multiple processors in a workstation or in a cluster.

As argued by Castruccio and Guinness (2017), the sequential approach with
previously estimated parameters could produce an estimation bias. This is mostly
apparent from step 2 to 3, where the estimated parameters for the single latitudinal
band approximation may not be the optimal values for the multiple latitudinal band
approximation. One solution to mitigate this issue is to refit θ lon for two adjacent
bands. This step requires additional computational time, 1.5 to 2 hours on a 24-
cores workstation for the ALT-VAR model (parallelizing the inference for different
sets of contiguous bands) but it improved model fit markedly in this study. This
can be done for several adjacent bands if the computational time is acceptable, but
refitting all bands with the full data set may require several weeks of computational
time and very powerful computational resources.
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4. Model comparison and validation of local behavior. We compare the
model introduced in the previous section with previously available models, and
we validate the local space–time structure against the data.

Table 1 presents a comparison in terms of model selection metrics: a land/ocean
evolutionary spectrum with a nonstationary latitudinal AR(1) process [LAO-
AR(1)], our new evolutionary spectrum with a nonstationary latitudinal AR(1)
process [ALT-AR(1)] and with a nonstationary latitudinal VAR(1) process [ALT-
VAR(1)]. ALT-AR(1) requires approximately 1.67 times more parameters than
does LAO-AR(1), but it shows clear improvements in terms of the normalized
log-likelihood, BIC and other standard model selection metrics (not shown). ALT-
AR(1) allows for spatially varying coefficients across the mountain profiles and
shows a noticeable improvement in model fit as the log-likelihood improves by
0.08 units per observation. The most general ALT-VAR(1) requires two additional
parameters a and b, and it achieves a further improvement in the fit. While the
relative improvement between ALT-VAR(1) and ALT-AR(1) compared to the im-
provement between LAO-AR(1) and ALT-AR(1) is not conspicuous, the results in
Table 1 are expressed in 108 units and, as Figure 5(a) highlights, the improvement
in absolute terms is far from being negligible: the BIC improves hundreds, or even
thousands of units in some latitudes.

We assess the high-frequency behavior of the models by computing the contrast
variances to assess the quality of the fit [Jun and Stein (2008)]:


ew;m,n = 1

KR

K∑
k=1

R∑
r=1

{
Hr(Lm, �n, tk) − Hr(Lm, �n−1, tk)

}2
,


ns;m,n = 1

KR

K∑
k=1

R∑
r=1

{
Hr(Lm, �n, tk) − Hr(Lm−1, �n, tk)

}2
,

(4.1)

where 
ew;m,n and 
ns;m,n denote the east-west and north-south contrast vari-
ances, respectively.

We compute the squared distances between the empirical and fitted variances for
both LAO-AR(1) and ALT-VAR(1), and plot their differences in Figure 6. Positive

TABLE 1
Comparison between different models in terms of the number of parameters (excluding the temporal

component), the normalized restricted log-likelihood, and BIC. The general guidelines for

loglik/{NMK(R − 1)} are that anything above 0.1 is large and anything above 0.01 is modest

but still sizable [Castruccio and Stein (2013)]

Model LAO-AR(1) ALT-AR(1) ALT-VAR(1)

# of parameters 1202 2006 2008

loglik/{NMK(R − 1)} 0 0.08152 0.08177
BIC (×108) −1.02638 −1.05015 −1.05023
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FIG. 6. The squared distances of the fitted contrast variances from the empirical contrast variances
between two models, LAO-AR(1) and ALT-VAR(1): (a) {
ew;m,n − 
̂LAO

ew;m,n
}2 − {
ew;m,n −


̂ALT
ew;m,n

}2 and (b) {
ns;m,n −
̂LAO
ns;m,n

}2 −{
ns;m,n−
̂ALT
ns;m,n

}2. Black dots indicate the locations
where the surface altitude is larger than 1000 m.

and negative values represent better and worse model fit of ALT-VAR(1) compared
to LAO-AR(1), respectively. The Himalayan region (from 78.75◦E to 86.25◦E and
from 26.86◦N to 30.63◦N) has considerably more positive values for the north-
south contrast variance case in Figure 6(b). It is also apparent how ALT-VAR(1)
shows a better model fit near the Tian Shan mountain region (from 72.5◦E to 80◦E
and from 38.16◦N to 41◦N) with positive values for both east-west and north-south
contrast variance cases.

To quantify the improvement corresponding to these mountain ranges, we com-
puted the aforementioned difference among these two mountain regions and com-
pared their distributions. Table 2 represents the 25th, 50th, 75th percentiles of dif-
ference near Himalayan and Tian Shan mountain regions, and we observe that
overall the distributions tend to have more positive values, that is, ALT-VAR(1)
has better model fit in terms of contrast variances compared to LAO-AR(1). The
table also confirms the visual inspection in Figure 6: the two metrics have larger
values near Tian Shan mountain region compared to near Himalayan region.

TABLE 2
25th, 50th and 75th percentiles of two difference metrics near Himalayan region (H) and Tian Shan

mountain region (T)

Metric Region 25th 50th 75th

[{
ew;m,n − 
̂LAO
ew;m,n

}2 − {
ew;m,n − 
̂ALT
ew;m,n

}2] × 103 H −1 1 2
T −9 20 57

[{
ns;m,n − 
̂LAO
ns;m,n

}2 − {
ns;m,n − 
̂ALT
ns;m,n

}2] × 103 H 0 6 10
T −3 8 52
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5. Generation of stochastic surrogates and validation of large-scale behav-
ior. In this section, we explain how to generate the stochastic surrogates from
the SG. Besides their interest for wind energy assessment, such surrogate runs can
then be compared with the original LENS runs to validate the large-scale behavior
of the statistical model.

In the previous sections, θ = (θ�
time, θ

�
lon, θ

�
lat)

� in (3.1) have been defined and
estimated from the training set. The mean climate μ can be obtained as a smoothed
version of the ensemble mean W. Similar to Castruccio and Genton (2016) and
Castruccio and Guinness (2017), for each location (Lm, �n) we fit a smoothing
spline W̃ (Lm, �n, tk) for k = 1, . . . ,K , which minimizes

λ

K∑
k=1

{
W(Lm,�n, tk) − W̃ (Lm, �n, tk)

}2 + (1 − λ)

K∑
k=1

{∇2W̃ (Lm, �n, tk)
}2

,

where ∇2 is the second-order finite difference operator. We impose a penalty term,
λ = 0.01, to reflect the slowly varying climate of annual wind fields over the next
century [Vaughan and Cracknell (2013)].

Once μ and θ are estimated, surrogate runs can be almost instantaneously gen-
erated on a modest laptop by performing the following steps:

Step 1. Generate eLm

iid∼ N (0,�Lm) as in (3.6);
Step 2. Compute H̃Lm with expressions (3.6);
Step 3. Compute Hr(Lm, �n, tk) with expression (3.4);
Step 4. Compute εr with equation (3.3);
Step 5. Obtain the reproduced run as W̃ + εr , where

W̃ = {
W̃ (L1, �1, t1), . . . , W̃ (LM,�1, t1), W̃ (L1, �2, t1), . . . , W̃ (LM,�N, tK)

}�
.

We generated one hundred runs and compared them with the climate model
runs; see Figure S8 for a comparison in 2050 of five runs with other five LENS
runs not in the training set and a movie of a surrogate run (Movie S1). We com-
puted near-future (2013–2046) annual wind speed trends (a reference metric in
the reference LENS publication [Kay et al. (2015)]) for each of the surrogate and
LENS runs and then plotted the corresponding means in Figures 7(a) and 7(b) (see
Figure S7 for a comparison of the individual runs), and the 2.5th, 50th and 97.5th
percentiles in 2050 in Figure S9. From these figures, it is apparent how the SG and
LENS distributions are visually indistinguishable, with a stronger trend over ocean
and coastline than over land.

Figure 7(c)–(d) shows a comparison between reproduced and climate model
runs in terms of their distribution of wind power density at 80 m in 2020 [details
on how to derive this variable from wind speed are provided in the supplementary
Jeong et al. (2018)] for locations near Riyadh (24.97◦N and 46.25◦E) and Rabigh
(23.01◦N and 38.75◦E), Saudi Arabia. Both locations are in the Arabian penin-
sula and exhibit significant nondecreasing trends. So, an assessment of the internal
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FIG. 7. Top: Global maps of (a) the mean from reproduced runs and (b) the ensemble mean of the
near-future (2013–2046) annual near-surface wind speed trends. Bottom: Histogram of the distribu-
tion of the wind power density at 80 m in 2020 with nonparametric density in red for the one-hundred
reproduced runs near (c) Riyadh and (d) Rabigh, Saudi Arabia (∗ represents the original climate
model runs).

variability is crucial to determining the robustness of the point estimates and could
inform policy makers on the uncertainty and associated risks in building wind
turbines in these areas where no regional studies and very limited ground-based
observations are available. Here, we observe that Rabigh on the coastline has con-
siderably more potential to generate wind power than Riyadh in the central inland
of Saudi Arabia. A more accurate assessment of wind resources could be achieved
by using wind speed data at a higher spatio-temporal resolution than the one used
in this study (i.e., annual mean wind speed at horizontal resolution of approxi-
mately 1◦), but such an assessment is currently unfeasible given the absence of
ESM simulations at fine spatio-temporal resolutions for multiple decades. The five
climate model runs are poorly informative for internal variability, but the distribu-
tion generated from many reproduced runs allows for a more accurate assessment.
Both locations exhibit a considerable variability in wind power density (2.5 and
97.5 percentiles), with (15.7, 19.7) Wm−2 for Riyadh and (42.3, 55.9) Wm−2 for
Rabigh.

Figure 7(c)–(d) depends only on the marginal wind at two given locations, so
it could be obtained with simpler pointwise approaches without assuming spatial
dependence. The SG, however, allows to generate spatially resolved fields, which
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are indistinguishable from the original LENS runs (see Figures S7 and S8). To vi-
sualize this interactively, a dynamic Graphical User Interface (GUI) application in
Matlab is provided in the supplementary material [Jeong et al. (2018)]. The GUI
requires to download μ̂ and θ̂ in (3.1), for a total of 30 megabytes, instead of down-
loading the entire climate model ensemble (40 members), which is 1.1 gigabytes.
A user can then use the stored coefficients and generate many runs to achieve a
considerably more detailed assessment of wind uncertainty under different initial
conditions.

6. Discussion and conclusion. Understanding the spatio-temporal variability
of wind resources is essential to sustain the increasing energy demand, but tradi-
tional ESM ensemble-based approaches for assessment in developing countries are
increasingly computationally, time and memory consuming. SGs provide a simple
and computationally convenient tool for generating surrogate runs under different
initial conditions and assessing the uncertainty from internal variability without
storing a prohibitive amount of information. Once inference is performed and the
parameters have been estimated from a small number of LENS members, an end
user can download a small software package and use it to almost instantaneously
generate many reproduced runs whose large-scale features are almost identical to
the original runs [see Figures 7(a) and (b)] and assess the uncertainty in future
wind power density due to internal variability [see Figure 7(c) and (d)].

We introduced a spectral model for gridded data which allows for an improved
fit of global wind data. Our proposed model presents two elements of novelty from
the current literature:

1. It incorporates more large-scale geographical information to explain the non-
stationary behavior of wind across longitude. In particular, the model incorporates
orography, which is shown to affect the spatial smoothness of wind fields. The
proposed model allows for spatially varying parameters depending on the sur-
face altitude over land and high mountains, contains the axially symmetric and
the land/ocean evolutionary spectrum as special cases and shows improved per-
formance in terms of the log-likelihood, BIC and other standard model selection
metrics.

2. It introduces a nonstationary VAR(1) model for the latitudinal coherence for
multiple wavenumbers. By assuming independent partitions of the correlated inno-
vations for neighboring wavenumbers, the proposed model still holds a convenient
formulation of the log-likelihood function in (3.9) and further improves the model
fit.

Inference is performed via a multi-step conditional likelihood approach, which
leverages on parallel computation and achieves a fit on a data set of more than 18
million data points.



506 JEONG, CASTRUCCIO, CRIPPA AND GENTON

For policy making purposes, a clear limitation of our approach is the coarse
time scale at which wind power density is assessed. Finer time scales require con-
siderable modeling and face computational challenges. On the modeling side, the
Gaussianity assumption has to be relaxed at higher temporal resolution and re-
quires alternative trans-Gaussian processes, such as Tukey g-and-h random fields
[Xu and Genton (2017)]. On the computational side, the already considerable data
size of this application (more than 18 million data points) will be increased by
more than two orders of magnitude. While clearly adding a layer of complexity
to inference, the same key ingredients, namely leveraging on regular geometries,
parallel computing and spectral methods have already shown to achieve inference
from data sets larger than one billion data points [Castruccio and Genton (2016)],
so a global inference of daily wind power density for the entire ensemble is likely
achievable with current computational architectures. If a smaller region such as
Saudi Arabia is chosen, then the decrease in the number of spatial locations alle-
viates the computational burden to some extent, and would allow to model non-
Gaussian processes at finer scale; see Tagle et al. (2017).

SUPPLEMENTARY MATERIAL

Supplement to “Reducing storage of global wind ensembles with stochastic
generators” (DOI: 10.1214/17-AOAS1105SUPP; .zip). Further technical details
and a Graphical User Interface application in Matlab can be found in the online
supplementary material.
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