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For safe offshore operations, accurate knowledge of the extreme oceano-
graphic conditions is required. We develop a multi-step statistical downscal-
ing algorithm using data from a low resolution global climate model (GCM)
and local-scale hindcast data to make predictions of the extreme wave climate
in the next 50-year period at locations in the North Sea. The GCM is unable
to produce wave data accurately so instead we use its 3-hourly wind speed
and direction data. By exploiting the relationships between wind character-
istics and wave heights, a downscaling approach is developed to relate the
large and local-scale data sets, and hence future changes in wind characteris-
tics can be translated into changes in extreme wave distributions. We assess
the performance of the methods using within sample testing and apply the
method to derive future design levels over the northern North Sea.

1. Introduction. An important issue for the oil industry is the optimal de-
sign of offshore structures. If the strength of the offshore structure is underesti-
mated, damage may occur more often than hoped for, whereas if the strength is
overestimated the structure will be unnecessarily expensive to build. To ensure
adequate protection at minimum cost, the distribution of peak wave heights in ex-
treme storms needs to be estimated as efficiently as possible. Traditionally, this
distribution is then summarised by a single value, the T -year return level, corre-
sponding to the level exceeded by a stationary process once every T years. Many
offshore structures are designed to withstand 1000–10,000 year return values of
significant wave height (H ), where H is the mean of the highest third of waves
in a short period of time (i.e., either a 10- or 20-minute period) and is typically
sampled 3-hourly [Kinsman (2012)]. Standard extreme value models, fitted to his-
torical data, can be used to derive such return level estimates under the assumption
of stationarity [Coles (2001)]. Robinson (1995) and Jonathan and Ewans (2007)
show how to adapt these methods to account for directionality in sea currents and
H , respectively. The benefit of having directional return level information is that
the structures can be designed to have differential strength from different sectors,
which can lead to improved safety and cost savings.
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When designing structures to last, say, 50 years forward, the probable influence
of climate change makes the assumption of a stationary wave process too simplis-
tic. The changing dynamics of the climate system [Solomon et al. (2007)] need to
be accounted for in estimates of return levels of H for future years. There is no
consensus on the exact effects of climate change [Lofsted (2014)]. Within the ob-
servational data record of H , typically 50 years, any climate change signal is hard
to detect as it will be due to the combined effects of a number of physical pro-
cesses, some of which may be observed, whilst others will be unobserved. Further,
changes predicted by climate models for this period, are small relative to changes
predicted in the coming 50 years [Easterling et al. (2000)], so that even if we could
use a regression-type model fitted to the observed data to describe current change,
this would not provide reliable future estimates of return levels as the covariates
would also need to be predicted into the future.

In this paper, we focus on obtaining predictions of future H across a grid of
locations in the northern North Sea, in order to estimate the kinds of return levels
discussed above. To account for the effects of climate change, we use output from
the HADGEM2 RCP 8.5 General Circulation Model (GCM), obtained from the
Hadley Centre of the UK Met Office (UKMO). GCMs in general are run over a
coarse grid, and for a range of future climate change scenarios, to derive potential
future climates [Edwards (2010)]. HADGEM2 RCP 8.5 has the strongest climate
change signal of all the UKMO’s standard GCMs [Bellouin et al. (2011)], and so
any changes in return levels found using it could be viewed as an upper bound on
the potential change in design, with the bound derived over typical climate change
scenarios. Output is available from 1960 to 2100.

Since GCMs have coarse grids, it is optimistic to assume their output will pro-
vide reliable future values for physical variables at a given location. For exam-
ple, HADGEM2 has only six 120 km × 140 km grid boxes covering the north-
ern North Sea. Both wind and wave values vary dramatically within even one of
the GCM cells due to land shadows. Instead, some kind of transformation is re-
quired. Downscaling, either dynamical or statistical, is widely used to achieve this
[Maraun et al. (2015)]. Dynamical downscaling integrates GCMs with finer scale
numerical models to produce regional climate models. This approach is computa-
tionally costly and passes biases in the GCM down to local inference. Statistical
downscaling develops empirical relationships between data from the location of
interest and the associated GCM variable and then uses changes in the distribution
of the GCM data over time to infer changes in the distribution of the variable of
interest at the required location. There are three types of statistical downscaling
approaches; weather typing, weather generators and regression methods/transfer
functions [Maraun et al. (2015)], with regression-based approaches including mul-
tiple linear regression, canonical correlation analysis, neural networks and kriging
[Wilby et al. (2004)]. In recent years, hybrid methods such as Casas-Prat, Wang
and Sierra (2014) have also been developed, which combine multiple regression
analysis with a weather typing approach.
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It is impossible to downscale H directly as very few GCMs contain H , and,
if they do, the predictions are highly unreliable [Wilby et al. (2004)]. However,
GCMs regularly produce wind fields and so we can downscale these and then link
winds to waves. To do this, we use data for wind produced by an atmospheric
model and waves from the fine scale regional model WAM [Reistad et al. (2011)].
Together, we have wind and wave data for 100 “local” 40 km × 40 km grid boxes,
covering the northern North Sea, for the period 1960–2009. The wave hindcast
data have been calibrated with observational data and are widely regarded as being
very reliable over this region [Reistad et al. (2011)].

As identified by Kinsman (2012), the integrated effect of wind speed over the
distance of the location from the coast (termed the fetch) determines the height of
the waves. Fetch can change rapidly with direction in the North Sea due to land
shadow effects from Norway and the Shetland Isles, with the largest waves coming
from the longest fetches associated with the Arctic and Atlantic Oceans and with
more moderate waves driven by winds from the southern North Sea. Consequently,
wind direction is critical in determining wave height. Further, the North Sea basin
is wind-wave driven, with all of the extreme waves arising as a result of local
extreme wind speeds; swell waves, generated by low wind speeds over long time
periods external to the North Sea basin, are not a source of extreme wave heights
here. Evidence to support this is in given in Towe (2015).

The graphical model in Figure 1 shows the relationships between wind and
wave processes for our North Sea data set. The graph shows two types of nodes,
the light grey square nodes represent GCM variables and all other nodes represent
hindcast variables from the regional wave hindcast model. The relationships within
the wave hindcast variables are observational links, represented in Figure 1 by solid
black lines, whereas the relationship between the GCM and the wave hindcast are
distributional links and are represented by the dashed black lines.

FIG. 1. Relationships between the variables wind direction (θW ), wave direction (θH ), wind speed
(W ) and how they relate to significant wave height (H ). Variables with and without superscript (G)
are from the GCM and wave hindcast data, respectively. Solid black lines represent observational
links between the variables; dashed line are distributional links.
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In order to produce estimates of the future distribution of H , we first model the
relationships between the wave hindcast variables. Data from the GCM and wave
hindcast for the “past” period are then used to derive links between the variables
at the two spatial scales. Finally, the future values of the GCM outputs are used to
derive the distribution of future H . The physical processes that link wind to waves
are invariant to climate change so the past conditional relationship of H on the
predictors (wind speed, W , with wind and wave directions, θW and θH , resp.) can
be assumed to be preserved under climate change. When linking the wave hindcast
and GCM, we use the nearest neighbour GCM grid cell to the wave hindcast grid
location; exploratory analysis suggested there was no benefit from using additional
GCM grid boxes.

Previous research on downscaling and climate change has restricted downscal-
ing to variables directly outputted by the GCM, with the focus on predicting the
mean rather than the extremes of a process. The closest approach to ours is Caires,
Swail and Wang (2006) who use surface level pressure and proxies for wind speed
as predictors in a regression analysis for H . Many studies, including Caires, Swail
and Wang (2006), Wang and Zhang (2010) and Vanem, Huseby and Natvig (2012),
have modelled extreme wave heights ignoring the critical effects of wind and wave
direction, leading both to bias in return level estimates and a failure to provide vi-
tal design information [Jonathan and Ewans (2007)]. Inclusion of both wind speed
and direction is vital as these variables have the strongest relationship with extreme
waves heights and directions [Towe et al. (2013)].

Our statistical downscaling framework is likely to provide the most reliable
estimates yet for determining future offshore design levels due to three sub-
stantial advances on existing methods. First, it models the joint distribution of
(H,W, θH , θW ) at each location, both in the past and in the future, gaining insight
over methods that only downscale H . Second, it uses state-of-the-art univariate
and multivariate extreme value theory including more efficient threshold methods,
and a broad class of asymptotically justified dependence models, which encompass
methods used previously by Bechler, Vrac and Bel (2015) as a special sub-class.
Finally, our approach uses a novel form of distributional downscaling that over-
comes some major weaknesses with existing methods.

Our model currently has no spatial structure imposed on the joint distributions
at different locations; over space the distributions of the variables will change rela-
tively smoothly, following smooth changes in the empirical joint distributions. Us-
ing our current methods, it is not possible to generate spatial coherent joint events;
see Section 5 for further discussion. However, if interest is in the joint distributions
of oceanographic variables at each location separately, our method is ideal as it is
easily parallelisable.

The layout of the paper is as follows. Section 2 outlines the core statistical
methodology that we use under idealised assumptions. Section 3 presents the in-
ference for the components of the graphical model shown in Figure 1, covering
extensions of the methods of Section 2 to handle covariates, assessment of fit and
an algorithm for simulating future values. Section 4 illustrates the downscaling al-
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gorithm producing the estimated distribution of future H irrespective of, and con-
ditionally on, wave direction. Two examples of prediction for a single site from
the wave hindcast data set are shown: in Section 4.1, we predict the distribution
for the last 10 years of observations as a validation exercise, then predictions are
made for 2040–2049. The latter application is then implemented over a grid in the
northern North Sea in Section 4.2. The 2040–2049 period was chosen as this is
towards the end of the design lifetime of an offshore structure constructed today,
so return levels in this period are critical for present day designs.

2. Background to modelling methodology.

2.1. Modelling marginal distributions with focus on their tails. Marginal
models are needed for wind direction and speed, and for wave height and direction.
In what follows, let Y denote a continuous random variable, with marginal distri-
bution function KY . The model for KY needs to be applicable across many sites,
so a simple choice is to use the kernel smoothed cumulative distribution function
K̃Y (y) [Silverman (1986)]. This method is known to work poorly for the tails of
the distribution, therefore, in the upper tail we replace the kernel estimate with a
model motivated by univariate extreme value theory [Coles (2001)]. This is partic-
ularly critical for wind speeds and wave heights, since it is the upper extremes of
these variables that are central to our model.

Consider the excess by Y of a high threshold u. Limit theory states that the only
possible nondegenerate limit distribution for the appropriately scaled excesses, as
u tends to the upper end point of KY , is the generalised Pareto distribution (GPD)
[Davison and Smith (1990)]. Assuming that this limit distribution holds for a given
threshold u, with P(Y > u) being small, motivates the model

(2.1) P(Y − u ≥ y|Y > u) =
(

1 + ξ

σu

y

)−1/ξ

+
for y > 0,

with scale parameter σu > 0 dependent on the threshold choice, shape parameter
ξ ∈ R and y+ = max{y,0}. The case ξ = 0 is interpreted as ξ → 0. Diagnostics
for the choice of u are discussed in detail by Coles (2001). The power of this result
is that threshold excesses are restricted to a single parametric family, the GPD,
regardless of the form of KY .

Combining the kernel smoothed distribution and GPD models gives

(2.2) KY (y) =
{
K̃Y (y) for y ≤ u,

1 − λu

[
1 + ξ(y − u)/σu

]−1/ξ
+ for y > u,

where λu = 1− K̃Y (u). We term this the GPD(u,λu, σu, ξ) tail model. The T -year
marginal return level yT , found by solving KY (yT ) = 1 − (mT )−1, is given by

(2.3) yT = u + σu

ξ

[
(T mλu)

ξ − 1
]
,

where m is the number of observations of the process in a year and T > (mλu)
−1.
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We can incorporate covariates in the models for either, or both, the body and the
tail, following the methods of [Davison and Smith (1990)]. Denote by C a vector
of covariates associated with Y , then write

(2.4) KY |C(y) =
{
K̃Y |C(y) for y ≤ uC,

1 − λ(C)
[
1 + ξ(C)(y − uC)/σu(C)

]−1/ξ(C)
+ for y > uC,

where K̃Y |C(y) is a kernel smoothed conditional cumulative distribution of Y |C.
The covariate-varying threshold uC is taken to be the qth quantile of Y |C, which
we obtain by solving K̃Y |C(uC) = q; giving λ(C) = 1−q . Other authors have used
quantile regression [Northrop and Jonathan (2011)] to determine uC . Return levels
can be obtained similar to the unconditional GPD tail model, except now care
needs to be taken to distinguish between conditional and marginal return levels;
for more details, see Eastoe and Tawn (2009).

In the above covariate model, it is usually assumed that the parameters σu(C)

and ξ(C) change as a smooth function of the covariate(s), for example, through
Fourier or spline representations [Jonathan, Ewans and Randell (2014)]. For one
of our variables, this is not the case and we use the following special case of
model (2.4), in which there is a single covariate C with covariate space [c1, c2].
This space can be partitioned into j = 1, . . . , J subsets, �j = [ψj−1,ψj ), with
ψ0 = c1 and ψJ = c2, where ψj−1 < ψj . Given a threshold uC as in model (2.4),
the threshold exceedances in each subset are assumed to follow the GPD tail model
with parameters (uC,λ(C), σu,j , ξj ). The partitioning parameters ψ1, . . . ,ψJ−1
can be specified in advance, or estimated as model parameters. We choose to do
the latter since this enables the model to be fitted automatically, reduces user-
subjectivity in the model fit and speeds up the modelling process when applied
across multiple sites.

2.2. Transform methods. Transform methods are used to relate the large scale
X (GCM) and local scale Y (wave hindcast) variables. Past data (XP and YP ) are
available for both X and Y whereas future data (XF ) are available for X only.
Our goal is to estimate the distribution of Y in the future (YF ). Two fundamental
assumptions are made. First, that for a given spatial scale and time period, each of
the variables is identically distributed, but that this distribution may differ between
spatial scales and time periods. Second, that the change in the distribution from
YP to YF is a direct consequence of the change in distribution from XP to XF .
Here, the standard transformation method for CDF downscaling is introduced, its
weaknesses are identified and novel approaches are presented to overcome these
deficiencies.

Michelangeli, Vrac and Loukos (2009) define the CDF-transform model for the
distribution of YF as

(2.5) KYF
(y) = KYP

{
K−1

XP

[
KXF

(y)
]}

,
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where the distribution function K is indexed by the associated variable. The key
part of this expression is K−1

XP
[KXF

(·)], which implies that changes in the distri-
bution from YP to YF correspond to changes at a quantile scale in the distribu-
tion of XP to XF , where the latter changes can be attributed to climate change.
Michelangeli, Vrac and Loukos (2009) estimate KYF

using kernel smoothed esti-
mates for each term in the right-hand side of expression (2.5). For extreme event
data, Kallache et al. (2011) model each distribution on the right-hand side of equa-
tion (2.5) using a GPD. They call this the xCDF-transform method. If different
GPD parameters are used for YP ,XP and XF , the distribution of the excesses
Y ∗

F = YF − u|YF > u, for y > 0, is

(2.6) KY ∗
F
(y) = 1 −

{
1 + ξYP

ξXP

σXP

σYP

[(
1 + ξXF

σXF

y

)ξXP
/ξXF

+
− 1

]
+

}−1/ξYP

+
,

where here we drop the threshold indices from the scale parameters and indicate
the associated variable through the indices of all parameters.

There are a number of limitations to this approach. First, the variables YP ,XP

and XF need to follow a GPD. Second, for effective performance of these ap-
proaches, each of the distributions has to have the same support and broadly sim-
ilar variability. Third, and most fundamentally, the X and Y variables need to be
measured in the same units of measurement, otherwise it does not make sense to
evaluate, in equation (2.5), the probability KXF

(y), where y is on a completely
different measurement scale to X.

None of these restrictions are guaranteed to hold. In general, we can only justify
approximating the tails, and not the entire distribution, of each variable as GPD.
Further, there is no reason to suppose that the X and Y variables will have the same
support and measurement scales. For example, if X and Y represent wind speed
and wave heights, respectively, then they are both on different scales and recorded
in different units.

Kallache et al. (2011) attempt to overcome the second condition by restrict-
ing the support to be unbounded, that is, imposing that ξXP

, ξXF
and ξYP

are all
positive, and by ad hoc pre-processing of the variables through a location and
scale transformation to make the observed ranges of the variables identical and the
variables dimensionless. In what follows, we provide two extensions of the core
method of Kallache et al. (2011) which seek to extend beyond the GPD assump-
tion, formalise the pre-processing method and relax the assumption of unbounded
support.

Both extensions use the following basic alteration to the xCDF-transform.
Based on the premise that interest is in the whole distribution and not just the
tails, we model the terms in the right-hand side of expression (2.5) using the GPD
tail model (2.2). The thresholds for each variable may be different and must be
selected in advance. Throughout, we take the threshold exceedance rate to be con-
stant over variables [Kyselý, Picek and Beranová (2010)], that is, λYP

= λXP
=

λXF
= λ. The resulting downscaled distribution function for YF has tail behaviour,
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for y > uYF
,

KYF
(y) = 1 − λ

[
1 + ξYP

σYP

(
uXP

− uYP

+ σXP

ξXP

{[
1 + ξXF

(
y − uXF

σXF

)] ξXP
ξXF

+
− 1

})]−1/ξYP

.

(2.7)

If, in addition, ξXP
= ξXF

, then YF has a GPD(uYF
, λ, σYF

, ξYP
) tail model where

uYF
= uXF

+ σXF

σXP

(uYP
− uXP

) and σYF
= σYP

σXF

σYP

.

Model (2.7) can easily be extended to allow the distributions for YP , XP and XF to
be modelled conditionally on covariates, by use of the conditional tail model (2.4).
We refer to this as the cCDF-transform, where “c” stands for conditional (on co-
variates). We illustrate this approach in Section 3.3.

Like the original xCDF-transform, distribution (2.7) can only be applied when
all the component distributions have the same upper endpoint, which requires the
three shape parameters to have the same sign and imposes additional constraints
when they are all negative. To resolve this issue, our first extension (E1), applies
a model-based scaling factor to ensure that the distributions have a common upper
end-point, predict YF on this new scale, and then transform back onto the original
scale, thus formalising the idea of Kallache et al. (2011). Further details are given
in the Appendix, with an application to wind speeds in Section 3.3.

Unfortunately, extension E1 is not ideal as it does not extend to cases where the
variables have a mixture of finite and infinite upper endpoints, nor to cases where
scaling using tail quantiles gives different variability to the scaled distributions.
Instead, we propose our second extension (E2) in which we derive a new transfor-
mation approach which has a very different assumption. Specifically, we assume
that there exists a single strictly increasing monotonic function A such that the
distributions of A(XP ) and A(XF ) are identical to those of YP and YF , respec-
tively. This is a strong assumption, and we will see later that the identification of
A is sometimes nontrivial, resulting in the need then to fall back on extension E1
above.

Suppose, for now, that A can be identified, then this says that the change in
marginal distribution from YP to YF is given by a deterministic effect of the change
in marginal distribution from XP to XF . Therefore, for all y,

(2.8) KYF
(y) = Pr

(
A(XF ) < y

) = KXF

(
A−1(y)

)
,

with the support of YF being DYF
= {y ∈ R : 0 < KYF

(y) < 1} and the distribution
KXF

estimated using the GPD tail model. Notice that the assumption also implies
that for all y and all p ∈ [0,1]

KYP
(y) = KXP

(
A−1(y)

)
and K−1

YP
(p) = A

(
K−1

XP
(p)

)
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so that

A−1(y) = K−1
XP

(
KYP

(y)
)

for y ∈ DYP

and

A(x) = K−1
YP

(
KXP

(x)
)

for x ∈ DXP
,

where DXP
and DYP

are the support of XP and YP , respectively. The function A

maps any quantile of XP to the same quantile for YP , and thus the functional form
for A can be obtained by looking at a quantile-quantile plot of XP and YP .

As set out above, A is defined only over x ∈ DXP
(or equivalently A−1 for

y ∈ DYP
), whereas we require it over x ∈ DXF

(or equivalently A−1 for y ∈ DYF
).

If the support of XF is a subset of the support of XP , that is, DXF
⊆ DXP

then

(2.9) KYF
(y) = KXF

(
A−1(y)

) = KXF

(
K−1

XP

(
KYP

(y)
))

,

and A can be estimated empirically using a quantile-quantile plot (possibly
smoothed) of YP against XP . Note that transformation (2.9) is very similar in
structure to transformation (2.6), though critically it has the distributions in a dif-
ferent order so that now we have the natural property that we only ever evaluate
the X (Y ) distribution function with values taken on their respective measurement
scale.

It is more likely that DXF
� DXP

, that is, the support of XF is not a subset of
the support of XP . For example the distribution of XF may have shifted compared
to the distribution of XP due to climate change. Consequently, the estimate of A

identified on the domain x ∈ DXP
must then be extended into the domain DX =

DXP
∪ DXF

. There is no way theoretically to obtain a general functional form
for A. Instead, an appropriate form, for example, linear, quadratic or exponential,
may be found by examination of the quantile-quantile plot of XP and YP for large
XP .

In practice, identification of a simple functional form for A may prove impos-
sible, in particular if the distributions of X and Y vary in a nontrivial way with
covariates. An instance when A is too complex to model occurs with wind speed
(see Section 3.3). In this case, we suggest using instead extension E1. An applica-
tion of extension E2 including the selection of an appropriate functional form for
A, is shown for wave heights in Section 3.5.

Whichever method we use for the transformation, it is straightforward to simu-
late values of YF from these transformation models using the probability integral
transform method. Simulated values for XP and YP follow by quantile match-
ing; if YF is simulated as the p% quantile from KYF

(y), then concomitant values
of the other variables are simulated as p% quantiles of their respective distribu-
tions.
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2.3. Conditional model for multivariate extreme values. The downscaled W

is used to predict H via a model for the bivariate extremal dependence behaviour
of W and H . Consequently, we need to model the joint distribution of a bivariate
random variable, which we denote by (Y1, Y2), when at least one component of this
variable is large. The methods presented here for the bivariate case were initially
presented in the general multivariate case by Heffernan and Tawn (2004) but have
novel elements due to downscaling.

The joint distribution of (Y1, Y2) is determined by its marginal distributions and
its copula [Nelsen (2006)] and to estimate the extremal dependence structure of
the random variables (Y1, Y2), it is standard to estimate the marginal distributions
and transform the variables onto a common scale [de Haan and Ferreira (2010)].
Marginal models K1 and K2 are given by the GPD tail model (2.2). For reasons ex-
plained by Keef, Papastathopoulos and Tawn (2013), we then transform to Laplace
margins:

(2.10) Si = T (Yi) =
{

log
{
2Ki(Yi)

}
, Yi < K−1

i (0.5),

− log
{
2
[
1 − Ki(Yi)

]}
, Yi ≥ K−1

i (0.5)

for i = 1,2. Consequently, Si has exact exponential decay in both tails.
Now consider the extremal behaviour of the joint tail of (S1, S2). There are

infinitely many possible copula models but, as in the univariate case, asymptotic
theory can be applied to look for a parsimonious family of possibilities when we
restrict ourselves to the extremes only. Multivariate extreme value theory [de Haan
and Ferreira (2010), Ledford and Tawn (1996)] has identified fundamentally dif-
ferent behaviour in the properties of the joint extremes depending on the value
of

(2.11) χ = lim
v→∞P(S2 > v|S1 > v),

with χ > 0 and χ = 0 termed asymptotic dependence and asymptotic inde-
pendence, respectively. Since most multivariate extreme value models [Coles
and Tawn (1994), de Haan and de Ronde (1998)] and all max-stable processes
[Bechler, Vrac and Bel (2015), Davison, Padoan and Ribatet (2012)] can model
asymptotic dependence only, we shall use the conditional extreme value model
of Heffernan and Tawn (2004), which includes both asymptotic dependence and
asymptotic independence.

Heffernan and Tawn (2004) and Keef, Papastathopoulos and Tawn (2013) found
that for a wide range of copulas there exist parameters −1 ≤ α ≤ 1 and −∞ < β <

1 and a nondegenerate distribution function Q(z) such that for w > 0 and z ∈ R,

(2.12) lim
v→∞P

(
S2 − αS1

(S1)β
≤ z, S1 − v > w

∣∣∣S1 > v

)
= exp{−w}Q(z).

In addition some joint conditions on α,β and Q are required [Keef, Papastathopou-
los and Tawn (2013)]. Heffernan and Resnick (2007) found that (2.12) holds
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under general conditions if the affine transformation of S2 used suitable regu-
larly varying functions. For statistical purposes, the representation in Heffernan
and Tawn (2004) offers adequate flexibility and parsimony. If α = 1, β = 0 the
variables are asymptotically dependent and grow at the same rate. If 0 < α < 1
(−1 < α < 0), the variables are positively (negatively) asymptotically indepen-
dent, with the largest S2 being unlikely to occur with the largest S1. Further, if S1
and S2 are interchanged, the formulation holds but with potentially different pa-
rameter values and limit distribution Q; for discussion of the constraints to ensure
self-consistency of these two conditional models, see Liu and Tawn (2014).

There are three features to note about limit (2.12): the first term arises from S1
following a Laplace distribution; there is no closed-form parametric model for Q,
so we estimate it nonparametrically under the assumption that its first two moments
exist; and, given that S1 > v, in the limit as v → ∞, the normalised S1 and S2 are
independent.

For statistical modelling, we assume that the limiting result (2.12) holds exactly
above a sufficiently high dependence threshold v. If this assumption is valid, it
follows that, given S1 > v, the variable

(2.13) Z = S2 − αS1

S
β
1

,

has distribution Q with finite mean μ and variance ψ2, and is independent of S1.
This results in the regression model

(2.14) S2 = αS1 + S
β
1 Z for S1 > v,where −1 ≤ α ≤ 1,−∞ < β < 1,

where E[S2|S1 = s] = αs + sβμ and Var[S2|S1 = s] = (sβψ)2, for s > v. Es-
timates of α and β can be obtained using either moment estimation or regres-
sion, under the working assumption that Z follows a Gaussian distribution [see
Heffernan and Tawn (2004)]. Once estimates of α and β are determined, Q is
estimated using the kernel smoothed distribution function of the Z values (2.13).
Whilst the Gaussian assumption can be relaxed by using Bayesian nonparametric
methods [Lugrin, Davison and Tawn (2016)], in practice estimates are not greatly
affected.

In the context of downscaling, we use the bivariate conditional extremes model
for (XP ,YP ) to simulate from the distribution of YF |XF . The following simula-
tion algorithm requires the assumption that the copulae for (XP ,YP ) and (XF ,YF )

are identical, but that the marginal distributions of the variables change. First, es-
timate the marginal and dependence parameters of the conditional multivariate
extremes model using observations of (XP ,YP ). Next, estimate the marginal dis-
tribution KXF

of XF using previously downscaled values for this variable, and
use this distribution to transform to Laplace margins SXF

as in equation (2.10).
Conditional on SXF

, draw SYF
from the fitted dependence model (2.14). Finally,

transform SYF
to the original margins, using distribution (2.8), with A identified
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from a quantile-quantile plot of XP and YP . Inverting this distribution function
gives YF = A(K−1

XF
(L(S2)), where L is the distribution function of a Laplace ran-

dom variable. A discussion on modelling A is found in Section 3.5. Note that we
cannot back transform KYP

directly since the support of XP and XF (or YP and
YF ) may differ.

3. Inference for components of the graphical model.

3.1. Overview and notation. Throughout the rest of the paper, we use the no-
tation set out in Figure 1 and use superscripts as follows: G for GCM, P for past
and F for future. The following models for the components of the graphical model
in Figure 1 are presented:

1. Wind direction θF
W (clockwise from North, degrees) from which the wind

propagates: distribution downscaled using the distributions [θP
W ], [θG,P

W ], and
[θG,F

W ] (Section 3.2).
2. Wind speed WF (metres/sec): modelled distribution is [WF |θF

W ]. Dis-
tribution downscaled using the distributions [WP

S |θP
W ], [WG,P

S |θG,P
W ], and

[WG,F
S |θG,F

W ] (Section 3.3).
3. Wave direction θF

H (clockwise from North, degrees) from which the storm
propagates: modelled distribution is [θF

H |θF
W ,WF ]. Distribution determined by a

directional regression model [θP
H |θP

W ,WP ] (Section 3.4).
4. Significant wave height HF (metres): modelled distribution is

[HF |WF ,θF
H ] using a bivariate conditional extreme values model for the dis-

tribution of [HF ,WF |θF
H ] derived from [HP ,WP |θP

H ] under the assumption
that they have the same copulae (Section 3.5).

This section focuses on fitting the complete model for a single cell (location) in the
wave hindcast data; this is then rolled out to all sites in Section 4.2. For each com-
ponent, model fit at the single location is assessed using a variety of diagnostics,
including fitting the models using the first forty years of past data (1960–1999),
with the remaining ten years (2000–2009) held back and treated as the future for
the purposes of model validation. This data split is also used to perform a valida-
tion exercise on the entire model (see Section 4.1).

To simplify modelling, it is helpful to assume independent and identically dis-
tributed (IID) realisations from the joint distributions of the variables in the GCM
and wave hindcast data sets. To make these assumptions realistic, we model storm
peak data only. In wave analysis, independent storm peaks are typically deter-
mined from the time series of H using a declustering algorithm [Jonathan and
Ewans (2007), Smith and Weissman (1994)], which also minimises the effect of
seasonality; in the North Sea extreme waves tend to occur in the winter only. Since
H is unavailable in the GCM data, we instead select storms based on W . This



STATISTICAL DOWNSCALING OF OCEANOGRAPHIC DATA 2387

ensures consistency of declustering across the GCM and wave hindcast data sets.
For each storm identified, we select the largest marginal value of W and concur-
rent values of the other variables of interest. Declustering is carried out separately
for the two spatial scales. Because of the multi-level nature of the model, we use
a nonparametric block bootstrap to derive confidence intervals. Blocks of 7 days
are used, as this is longer than our declustering interval. To replicate the seasonal
patterns, blocks selected for a given time period in the year are only drawn from
the corresponding time periods in the data.

3.2. Wind direction. The CDF-transform method (Section 2.2) is used to
downscale the distribution of θF

W . As the prevailing wind over the North Sea is from
the south-west, the distribution of θW has most mass in the interval (180,270),
with a secondary mode from the north (310,50). These modes hold regardless of
spatial-scale (GCM/hindcast) and time period (P /F ). To preserve these features,
and to ensure continuity of the density function over 0 and 360 degrees, we consid-
ered both cyclic (von Mises) [von Mises (1964)] and noncyclic (Gaussian) kernels.
For the Gaussian kernel, the data were repeated with shifts of 360 and the resulting
density normalised over (0,360). Both approaches gave similar results.

Figure 2(a) compares the empirical distributions of θP
W , θ

G,P
W and θ

G,F
W across

the past (1960–1999) and validation (2000–2009) periods. Since we are not pre-
dicting far into the future, the distribution of the GCM variable changes little across
the two time periods. However, there is a clear difference between the distributions
at the local and global scales. Figure 2(b) shows the downscaled distribution for

FIG. 2. Comparisons of (a) the empirical distributions of wind direction for θP
W (black), θ

G,P
W

(dashed grey) and θ
G,F
W (dotted light grey); (b) the downscaled distribution for θF

W (black line) and

95% confidence intervals (dashed black lines) with the empirical distribution of θF
W (grey line). In

both cases, past (P ) is 1960–1999 and future (F ) is 2000–2009.
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θF
W in the validation period, compared with the empirical distribution of observed

θW for the same period. The downscaled distribution appears to be almost uniform,
whereas the empirical distribution appears bi-modal. However, the empirical dis-
tribution does lie within the pointwise 95% confidence intervals of the downscaled
distribution.

3.3. Wind speed. The cCDF-transform methods (Section 2.2) are adopted to
downscale wind speed given wind direction. Through equation (2.6), we combine
the three conditional distributions, [WP

S |θP
W ], [WG,P

S |θG,P
W ], and [WG,F

S |θG,F
W ] to

give the downscaled conditional distribution for WF |θF
W as

(3.1) KWF |θF
W

(w) = KWP |θP
W

{
K−1

WG,P |θG,P
W

[
K

WG,F |θG,F
W

(w)
]}

.

Application of extension E2 of the cCDF-transform was found to be difficult in
this case, since inclusion of wind direction as a covariate in the component distri-
butions implies that the function A should also vary (smoothly) over wind direc-
tion. An exploratory investigation of the quantile-quantile plots of (WP ,WG,P )

for a number of directional sectors suggested no consistent functional form for A;
consequently we use extension E1 instead justified further by all of the compo-
nent distributions having bounded support. Simulation from this distribution is
by application of the probability integral transform, conditional on the values of
θP
W , θ

G,P
W , θ

G,F
W obtained from the simulations in Section 3.2.

To model each of the conditional distributions on the right-hand side of distri-
bution (3.1), we use the methods discussed in Section 2.1: a conditional kernel
smoothed distribution below a pre-specified covariate dependent threshold and a
covariate dependent GPD tail model (2.4) above this threshold. The former is given
by

(3.2) K̃W |θW
(y) =

∑n
i=1 �(

y−Wi

hW
)φ(

θW −θW,i

hθW
)∑n

i=1 φ(
θW −θW,i

hθW
)

,

where W1, . . . ,Wn and θW,1, . . . , θW,n are the respective joint samples of wind
speeds and corresponding wind direction, hW (hθW

) is the bandwidth for wind
speed (direction) and � (φ) is the distribution (density) function of the standard
Normal distribution. Here, as in Section 3.2, the data were wrapped to ensure the
distribution functions K̃W |0 and K̃W |360 are identical. Further, it was found that the
conditional kernel model fitted poorly to the very lowest values of W , most likely
due to an edge effect. To resolve this, an unconditional kernel distribution was fit-
ted to these points. Above the threshold, no evidence was found for either the scale
or shape parameters of the GPD to vary with wind direction, and consequently the
downscaled distribution simplifies to equation (2.7). There was evidence to retain
separate shape parameters for WG,P and WG,F , that is, ξWG,P 
= ξWG,F .
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FIG. 3. Estimated 1 in 100 storm peak return values for wind speed W (ms−1) conditional on
wind direction θW (degrees): downscaling estimate (black line), with quantile regression based esti-
mates obtained from past (1960–1999, light grey) and future (2000–2009, dark grey) wave hindcast
data. Dashed black lines correspond to the pointwise 95% bootstrapped confidence intervals for the
downscaled estimate.

Figure 3 shows the conditional 1 in 100 storm peak return value for wind speed,
conditional on wind direction, as estimated from the above model. To interpret
these return values, consider 100 arbitrary storms. These values show the direction-
specific wind speed that we would expect to be exceeded once in the given direc-
tion when looking over all 100 storms. Note that this is not the same as the 1
in 100 storm peak conditional return value, which would look at the wind speed
that we would expect to be exceeded once for each direction conditional on ob-
serving 100 storms from that particular direction. To assess how consistent this
estimate is with the observed data, plots of the equivalent return levels estimated
from the past (1960–1999) and future (2000–2009) wave hindcast data are also
shown. These estimates were obtained directly from the respective data sets using
a quantile regression on the 99% quantile. It is clear that the downscaled estimate
follows a similar pattern to the estimate from the future wave hindcast data and,
although the two estimates do not match exactly, the estimate from the future data
does lie fairly well within the pointwise 95% confidence interval for the down-
scaled estimate.

3.4. Wave direction. Wave direction (θH ) is driven by both wind speed (W )
and direction (θW ). Whilst this physical process may be susceptible to climate
change, for example, through changes to sea level in shallower waters which would
alter water depth, and thus also change the way in which wind-driven waves are
produced, such changes are subtle and location-specific; we therefore assume that
the distributional forms of [θF

H |θF
W ,WF ] and [θP

H |θP
W ,WP ] are identical. To deter-

mine the form of this conditional distribution, consider the difference θH − θW , as
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FIG. 4. The difference between wave θH and wind θW directions (degrees) plotted against wind
speed W (ms−1).

plotted against W , in Figure 4. For the very highest wind speeds, θH and θW are
very similar as the local wave field is dominated by the behaviour of the wind. For
lower wind speeds, average values of θH are still close to θW , however, there is
greater variability of θH relative to θW since other factors, such as swell waves,
have an increasing effect on the wave field [Bierbooms (2003)]. Consequently, we
model [θH |θW ,W ] as a mixture of von Mises distributions with mixture weight ω

being a function of W ,

fθH |θW ,W (θH ) = ω(W)
exp{κ1 cos[θH − θW − μ1]}

2πI0[κ1]
+ [

1 − ω(W)
]exp{κ2 cos[θH − θW − μ2]}

2πI0[κ2] ,

(3.3)

where I0 is the modified Bessel function of order 0; (μ1, κ1) and (μ2, κ2) are
parameters to be estimated, and the mixture weight is modelled as a function of
wind speed as follows:

(3.4) ω(W) = ζ exp(β0 + β1W)

1 + exp(β0 + β1W)
,

where 0 ≤ ζ ≤ 1. The mixture components can be thought of as models for wind
directions associated with wind and swell waves, respectively. Since ω(W) → ζ ≤
1 as wind speed gets large, including the scaling parameter ζ allows both wind and
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FIG. 5. Within block estimates of the mixture weight (points), with the estimate of ω(W) obtained
from the full data sets given by the solid black line. Dashed lines show the pointwise 95% confidence
interval for ω(W).

swell waves to occur at the highest wind speeds. For the strongest winds, if ζ < 1,
then both components will contribute to the overall mixture distribution, whereas
if ζ = 1, the mixture is determined by the “wind” component only.

To gain insight into this weight parameter, distribution (3.3) was first fitted to
the entire data set assuming a constant weight ω(W) = ω. Next, the data set was
divided into 10 equal-sized blocks, defined by the quantiles of wind speed. With
the location and precision parameters for the two components fixed at the estimates
obtained in the first step, and a constant mixture weight was estimated within each
block, the resulting estimates of the weight parameter, shown in Figure 5, display
a clear relationship with wind speed. The estimate of ω(W) obtained from the fit
of the model described in equations (3.3) and (3.4) to the full data set, also shown
in Figure 5, appears to follow the trend seen in the block estimates.

3.5. Significant wave height.

3.5.1. Overview. From Figure 1, significant wave height H is dependent on
θW , θH and W . The conditional bivariate extremes approach of Section 2.3 is
used to model the dependence structure between H and W , with dependence on
wave and wind directions modelled through the conditional marginal distributions
H |θH and W |θW . Whilst it is possible to allow the conditional bivariate depen-
dence model parameters to also vary with direction [Jonathan, Ewans and Randell
(2014)], our data show no evidence to justify this additional model complexity.
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Critical to our approach is that, unlike the marginal distributions, the copula for H

and W is assumed not to change over time.

3.5.2. Marginal models. To fit the conditional bivariate extremes model, the
marginal variables for (WP ,HP ) must first be transformed to a common marginal
distribution using transform (2.10). For both margins, a threshold which varies
with the conditioning variable (wind or wave direction) is used. Consequently, the
distribution for WP |θP

W , denoted KWP |θP
W

, is the same as the one described in Sec-
tion 3.3, that is, a GPD tail model with wind direction as a covariate. Furthermore,
future values of W can be transformed using expression (3.1) for KWF |θF

W
.

The effect of wave direction on past H was found to be more complex than
could be modelled by assuming a smooth change in the GPD model parameters
with θP

H . This is largely due to the effect of the Norwegian sector, a region of
directions from which storms are very rarely observed due to the limited fetch.
Additionally, this sector varies over the grid of sites. Consequently, we apply the
special case of the covariate GPD model discussed at the end of Section 2.1, with
covariate space [0,360]◦. We split this interval into three blocks [0,ψ1), [ψ1,ψ2]
and (ψ2,360], with the interval [ψ1,ψ2] denoting the Norwegian sector. A GPD
model with parameters (σ1, ξ1) and a constant rate λ1 is fitted to observed threshold
exceedances of HP for which θP

H is in either [0,ψ1) or (ψ2,360]. Similarly, a GPD
model with parameters (σ2, ξ2) and constant rate λ2 is fitted to observed threshold
exceedances of HP for which θP

H is in [ψ1,ψ2]. The partitioning parameters are
estimated jointly with the GPD and rate parameters using a maximum likelihood
function for all eight parameters. The resulting model is denoted KHP |θP

H
. Figure 6

shows a QQ plot which further demonstrates the goodness-of-fit of the Norwegian-
sector model.

The distribution of HF |θF
H is estimated using transformation method E2 and

distribution function (2.8); the parameters of A were allowed to differ between the
Norwegian and non-Norwegian sectors defined above. To choose the functional
form of A, quantile-quantile plots of (HP ,WP ) for the two directional sectors
were investigated; see Figure 7. In both cases, the relationship between the quan-
tiles appears to be linear, at least for the highest quantiles. Thus we model A above
a threshold v as linear, that is, A(x) = aθH

+ bθH
x for x > v. Consequently, the

parameters aθH
and bθH

were estimated using only data from the quantile-quantile
plots above the respective 80% quantiles of W . Figure 7 shows the fit appears to
be good. This linear model is further supported by the known physical relationship
between wind speed and wave heights in the North Sea [Kinsman (2012)]. Specif-
ically, if all other factors were kept constant wave heights increase linearly with
wind speed. In practice, the joint distribution of (H,W) is more complex due to
factors such as the time period the wind blows and the direction of winds varying
continually. The distribution of HF |θF

H is estimated using transformation method
E2 and distribution function (2.8); the parameters of A were allowed to differ be-
tween the Norwegian and non-Norwegian sectors defined above. To choose the
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FIG. 6. QQ plot to show the goodness of fit of the Norwegian-sector GPD model to H |θH .

functional form of A, quantile-quantile plots of (HP ,WP ) for the two directional
sectors were investigated; see Figure 7. In both cases, the relationship between the
quantiles appears to be linear, at least for the highest quantiles. Thus we model A

above a threshold v as linear, that is, A(x) = aθH
+ bθH

x for x > v. Consequently,
the parameters aθH

and bθH
were estimated using only data from the quantile-

FIG. 7. QQ plots of wind speed against significant wave height (black) for (a) the Norwegian sector
and (b) data outside the Norwegian sector. In each case, above the 80% quantile of wind speed (black
vertical line), the relationship between the quantiles is estimated by a linear model (grey).
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quantile plots above the respective 80% quantiles of W . Figure 7 shows the fit
appears to be good. This linear model is further supported by the known physi-
cal relationship between wind speed and wave heights in the North Sea [Kinsman
(2012)]. Specifically, if all other factors were kept constant wave heights increase
linearly with wind speed. In practice, the joint distribution of (H,W) is more com-
plex due to factors such as the time period the wind blows and the direction of
winds varying continually.

3.5.3. Dependence modelling. Application of transform (2.10) using the
above models, KWP |θP

W
and KHP |θP

H
, results in Laplace variables (S1, S2). The con-

ditional bivariate extremes model is used to describe the distribution of S2|S1 > v

for large v. This is equivalent to HP |(WP > T −1(v), θP
W , θP

H ), with T defined
by expression (2.10) in which KYi

is replaced by KWP |θP
W

. Since we need to also

capture the possibility that large HP values may occur when WP is not extreme,
we need an additional model for HP |(WP < T −1(v), θP

W , θP
H ), or equivalently for

S2|S1 < v. A conditional kernel density is used for values of s1 < v; although the
resulting model for S2|S1 has a potential discontinuity at v, Towe (2015) found
better fits were achieved without imposing continuity at v.

A dependence threshold corresponding to the 80% quantile of S1 was chosen by
using the diagnostic methods of Heffernan and Tawn (2004). Estimates (95% con-
fidence intervals), of the key model parameters are α̂ = 0.78 (0.4,1) and β̂ = 0.79
(0.6,1). Note that although the width of the confidence intervals of the two depen-
dence parameters is large, the parameters themselves are negatively correlated and
as a result a trade-off exists in their estimation. Furthermore, the resulting confi-
dence intervals for the conditional mean of the process HP are in fact narrower
than one would expect given the variability of (α̂, β̂); examples of this can be seen
below. Thus there is a strong extremal dependence which includes asymptotic de-
pendence inside the confidence intervals. For the less extreme values of S1, there
is likewise a strong dependence with conditional quantiles of S2|S1 increasing al-
most at the same rate as quantiles of S1, clarifying that WP is indeed a key driver
of HP across the full support of WP .

We assess the fit of the model in three ways. Two graphical diagnostics are
shown in Figure 8. First, the residuals, Z from the copula part of the fit of the
conditional bivariate extremes model closely follow the assumed Gaussian distri-
bution. Second, we compare a plot of observed HP against WP , to a simulation
of N -storms from the model on common Laplace margins. The simulated data
seem to reproduce the relationship seen in the observed data. The simulated data
seem to reproduce the relationship seen in the observed data. Finally, empirical and
model-based estimates of conditional expectations of HP |WP > q show strong
agreement across a range of values for q . Taking q to be the 95% quantile of WP ,
the estimated conditional means of HP are: model, 8.32, with a 95% confidence
interval of (8.12,8.52), and empirical, 8.23. Taking q to be the 99% quantile of
WP , the conditional means are: model, 9.16 (8.89,9.43), and empirical, 8.98.
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FIG. 8. (a) Quantile-quantile plot of the residuals for the conditional bivariate extremes model
compared to the Normal(μ,ψ) distribution. (b) Wave height against wind speed on Laplace margins:
past data (black) with a data set simulated from the conditional bivariate extremes model (grey).

4. Downscaled predictions.

4.1. Prediction and model validation. At a given location, the simplest way to
obtain estimates of return levels, either marginal or conditional, for a given future
period is by direct simulation from the model described in Section 3. A benefit of
this approach is that it generates joint samples for (WF , θF

W , θF
H ,HF ) and not sim-

ply the distribution of the downscaled variable, as in many existing downscaling
methods. Return levels and joint characteristics can then be obtained empirically
from the samples.

A natural way to predict a marginal m-year return level for a future decade is
to simulate N years of storm peaks from the downscaling model for this decade,
and take the appropriate largest order statistic as the estimate of the return level
(i.e., to calculate the 50-year return level from 100 years of simulated storm peaks,
the second largest order statistic is taken as the point estimate of the return level).
However, this does not take into account simulation (Monte Carlo) uncertainty. To
account for this, we used 100 replications of simulations of storm peaks each cor-
responding to 2000 years, with the median of the appropriate largest order statistic
taken as the point estimate. To obtain a confidence interval for the return level,
this process is repeated for all bootstrapped model fits. Further, investigations (not
shown here) showed that the contribution due to simulation to the overall uncer-
tainty in the return level estimates was much smaller than the contribution due to
sampling. In terms of the uncertainty within the downscaling algorithm, the steps
relating to W and H were found to cause the largest uncertainty.
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To predict a conditional m-year return level, where conditioning is on wave di-
rection, the same N -year simulated data set, as described above, can be used. Now
though the simulations are binned into, say, 22.5◦ bins according to wave direc-
tion. The appropriate largest order statistic within each bin gives an estimate of the
conditional m-year return level. Again, multiple simulations should be carried out,
and the appropriate largest order statistic of the direction-wise estimates taken as
the point estimate.

Return levels simulated using the above methods can be used in validating the
model fitted to the past period 1960–1999, by a comparison of the downscaled
return level estimates for the future data period 2000–2009 with the return level
estimated from a tail model fitted directly to the wave hindcast data for the 2000–
2009 period. To obtain marginal (conditional on wave direction) return levels di-
rectly from the 2000–2009 wave hindcast data the GPD tail model (2.2) and (2.4),
respectively, are used.

Table 1 shows downscaled estimated marginal return levels for a single site for
the decades 2000–2009 and 2040–2049. The return levels for 2040–2049 are larger
than those for 2000–2009, for return periods of over 10 years, although all changes
are within the 95% confidence limits. An issue with identifying statistically signif-
icant changes over this time period, due primarily to the W and H components. To
improve the power of our methods for identifying change requires more efficient
inference of these components. Spatial pooling for inference may help here, but
this is not explored further.

We can also compare the downscaled conditional return levels for the same site
and the same decades. For a return period of 10 years, Figure 9 shows both of
these, along with the empirical conditional return levels for the period 2000–2009.
All conditional return levels are given for sixteen nonoverlapping sectors, each of
width 22.5◦. The plot shows that the downscaling model is capturing well the gen-
eral trend in H with θH . The 2000–2009 return levels for the Norwegian sector,
which for this site was estimated as (40◦,120◦), are over-estimated compared to
the empirical estimates; however, as θH is rarely in this sector this is not prob-
lematic. Downscaled return levels across the remaining sectors show no consistent

TABLE 1
Single-site downscaled estimates of (and 95% confidence intervals)
for marginal return levels of significant wave height for the decades

2000–2009 and 2040–2049

Return period
(years) 2000–2009 2040–2049

10 13.41 (12.53, 15.57) 12.68 (10.34, 14.94)
50 15.10 (14.26, 18.24) 15.54 (12.15, 18.80)

100 15.70 (14.63, 19.11) 16.93 (12.87, 20.89)
200 16.28 (15.05, 19.97) 17.87 (13.58, 23.53)
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FIG. 9. Single-site conditional 10-year return levels of H for nonoverlapping 22.5◦ sectors of
θH , starting with [0,22.5)◦. Downscaled estimates are for the periods 2000–2009 (square) and
2040–2049 (triangle). Empirical estimates for 2000–2009 (circle) are also given. Vertical lines show
bootstrapped confidence intervals on the downscaled 2000–2009 estimates. The estimate for each
sector is plotted at its mid-point.

disagreement with their empirical equivalents. Further, there appears to be no ob-
vious change in the return levels estimated for 2000–2009 and those estimated for
2040–2049. We can also compare the downscaled conditional return levels for the
same site and the same decades. For a return period of 10 years, Figure 9 shows
both of these, along with the empirical conditional return levels for the period
2000–2009. All conditional return levels are given for sixteen nonoverlapping sec-
tors, each of width 22.5◦. The plot shows that the downscaling model is capturing
well the general trend in H with θH . The 2000–2009 return levels for the Norwe-
gian sector, which for this site was estimated as (40◦,120◦), are over-estimated
compared to the empirical estimates; however, as θH is rarely in this sector this
is not problematic. Downscaled return levels across the remaining sectors show
no consistent disagreement with their empirical equivalents. Further, there appears
to be no obvious change in the return levels estimated for 2000–2009 and those
estimated for 2040–2049.

4.2. Spatial predictions for 2040–2049. The downscaling algorithm is now
implemented at all 100 locations on the 350 km by 350 km wave hindcast grid. For
each location, the nearest GCM grid cell is chosen to provide the variables to be
downscaled. Since wind behaviour differs markedly between land and sea, when
the nearest GCM grid cell contains land the closest GCM grid cell that solely cov-
ers sea is chosen instead. Repeating a similar process to Section 4.1 a downscaled
sample for 2040–2049 is used to derive estimates of the marginal and conditional
return values for HF site-by-site over the wave hindcast grid.
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FIG. 10. Estimates of the marginal 10-year return levels for significant wave height at all locations
in the North Sea study region: (left) 2000–2009 and (right) 2040–2049.

Figure 10 shows the 10-year marginal estimates for HF for the decades 2000–
2009 and 2040–2049. The spatial variability captures important known local fea-
tures of the region: the lowest values are in the Shetland land shadow and the high-
est nearest to the Atlantic Ocean, though these estimates exhibit linear features
linked to nearby sites having a common nearest GCM grid cell.

To illustrate the conditional return levels, we condition on wave direction θF
H

being in one of the following directional sectors: Norwegian [20,150), North Sea
[150,220) and Atlantic [220,20). The conditional 10-year return levels for 2040–
2049 for each site and each of the above sectors are plotted in Figure 11. From
Figure 11, the land-shadow effect of the Shetlands is clear, since the highest return
levels, conditional on a storm coming from the Atlantic sector, occur to the north
of this group of islands. Conditioning on a storm coming from the southern North
Sea, there is again a north-south trend in the return levels, with the less sheltered
sites to the north generally having higher return values. In Figure 11, there is how-
ever an even clearer blocking pattern for each of the conditional directions than
was apparent in the marginal estimates of Figure 10. Since this blocking is likely
to be due to sites sharing a nearest GCM cell, a potential area for further research
would involve determining the optimal weighting for the set of nearest GCM grid
cells to a particular fine grid location.

5. Discussion and conclusions. This paper has developed a downscaling
framework to predict extreme significant wave height. Our methods exploit recent
advances in climate modelling by using global climate models to downscale wind
speeds and directions jointly with wave height and direction. We have extended
existing statistical transfer function downscaling techniques using a combination
of generalised Pareto tails, covariate models, and two possible extensions to over-
come their major limitations. We have also shown that multivariate extreme value
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FIG. 11. Estimates of the conditional 10-year return levels for significant wave height in
2040–2049, where conditioning is on wave direction being in the sectors North Sea, Norwegian
and Atlantic (left to right).

methods, in particular the conditional multivariate extremes model, can be used in
statistical downscaling. Due to the use of local wind fields, the proposed imple-
mentation is only applicable to regions, such as the North Sea, where significant
wave heights are dominated by wind waves rather than swell waves. For regions
with swell dominated waves, which are generated outside the local area, global
climate model grid cells for the area over which swell waves are generated would
need to be used in the downscaling. Furthermore, wave period would need to be
incorporated into the graphical model (Figure 1).

Our estimates of the future behaviour of the extreme wave climate of the North
Sea show that the sizes of the largest waves, as well as the directions from which
they arise, are changing within the lifetime of current offshore designs. For the
return levels of 100 years or more, required for offshore design estimation, un-
certainty somewhat obscures these changes. This uncertainty could be reduced by
modifying the estimation of the distribution of WG,F |θG,F

W in expression (3.1).
In our approach, only data from the 10-year future period of the global climate
model was used in this estimation, under the assumption that the distribution would
not change over this period. However, since the climate is changing slowly and
smoothly, a more efficient estimation of this distribution would be to fit this model
over a longer time period than the 10 years of interest, and with time as an ad-
ditional covariate. For example, it may be reasonable to fit this using data from
1960–2049. This provides additional data but avoids biasing estimates if longer-
term climate changes from 2050 onwards are not well estimated. Such a model
could then be applied by averaging this time changing distribution over the 2040–
2049 period.

Our downscaling methodology is flexible enough to handle the varying marginal
characteristics of the whole North Sea. However, the spatial nature of the processes
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could be explicitly modelled both by imposing spatially smooth changes to the es-
timated component distributions of Section 3 and by estimating the joint extremes
over sites through generating spatial events in the simulations. This should provide
the added benefit of improving the marginal inferences as well by pooling spatial
information. These issues are addressed in Davison, Padoan and Ribatet (2012)
and Wadsworth and Tawn (2012) for models of processes which exhibit spatial
asymptotic dependence and asymptotic independence, respectively. Our method-
ology provides a natural framework for incorporating these extensions and this
remains an important area for future work.

APPENDIX: SCALING FACTOR FOR XCDF-TRANSFORM

When simulating under the xCDF-transform, it is assumed that the random vari-
ables XP , XF and YP share the same support. If the distributions of these variables
have unequal, finite upper end-points, simulation of YF degenerates in the upper
tail. To get around this, we simulate a re-scaled version of YF , by first re-scaling
each of XP , XF and YP , before transforming back to the original scale.

In order to obtain the re-scalings required, first note that if Y ∼ GPD(σ, ξ), then,
for any ψ > 0, the re-scaled variable Y ∗ = Y/ψ also follows a GPD, with scale
parameter σ/ψ and the same shape parameter ξ . Both Y and Y ∗ have finite end-
points if and only if the shape parameter ξ is negative. For the original variable, Y ,
this end-point is y+ = −σ/ξ , and for the re-scaled variable it is

(A.1) m = − σ

ψξ
.

Equivalently, to obtain a re-scaled variable Y ∗ with end-point m, we should re-
scale by ψ = −σ(mξ)−1. Therefore, each of the following re-scaled variables
shares a common end-point m:

X∗
P = XP

ψXP

= −mξXP
XP

σXP

∼ GPD(−mξXP
, ξXP

),

X∗
F = XF

ψXF

= −mξXF
XF

σXF

∼ GPD(−mξXF
, ξXF

),

Y ∗
P = YP

ψYP

= −mξXP
YP

σYP

∼ GPD(−mξYP
, ξYP

).

(A.2)

In practice, the parameters (σ∗, ξ∗) are obtained by modelling each variable on the
original scale and the shared end-point m is specified by the user.

Simulation from the distribution of the re-scaled Y ∗
F follows by direct appli-

cation of the xCDF-transform to the GPD tail models for the re-scaled variables
given in equation (A.2). To transform the predicted Y ∗

F back to the original scale,
YF = ψYF

Y ∗
F , requires the scaling factor ψYF

= −σYF
(mξYF

)−1; however, this is
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unknown since there is no data which can be used to estimate (σYF
, ξYF

). We pro-
pose that ψYF

be chosen so that the ratio between the end-points of YF and YP is
the same as the ratio of the end-points of XF and XP , that is,

(A.3) y+
F = y+

P

x+
F

x+
P

.

By re-arranging equation (A.1), it is clear that each variable has been scaled so
that mψ is equal to the end-point of the original data. Therefore, equation (A.3) is
equivalent to

ψYF
= ψYP

ψXF

ψXP

that is, the scaling factor for YF is selected so that the ratio between ψYF
and ψYP

is the same as the ratio between ψXF
and ψXP

. This scaling factor can then be
applied to obtain YF = ψF Y ∗

F .
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